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Abstract. Land use and land cover changes (LUCC) is a key factor in determining regional vegetation greenness, impacting 

terrestrial carbon, water, and energy budgets. As a global hotspot of LUCC, Southeast Asia has experienced intensive cropland 

and plantation expansions in the past half-century, yet their impacts on regional greenness have not been elucidated. Here, we 15 

harmonized multiple land cover datasets, and used satellite-derived leaf area index (LAI) in combination with a machine 

learning approach to quantify the impacts of LUCC on vegetation greenness in insular Southeast Asia (i.e., Peninsular Malaysia, 

Sumatra, and Borneo islands). We found that regional LAI shows almost no trend (0.04 × 10-2 m2 m-2 yr-1) from 2000 to 2016, 

as a net effect of increased LAI (+5.71 × 10-2 m2 m-2 yr-1) due to CO2 fertilization, offset by decreased LAI mainly due to 

cropland expansion (-4.46 × 10-2 m2 m-2 yr-1). The impact of croplands on greenness in Southeast Asia contrasts with that in 20 

India and China. Meanwhile, oil palm expansion and climate change induced only small decreases in LAI in Southeast Asia 

(-0.41 × 10-2 m2 m-2 yr-1 and -0.38 × 10-2 m2 m-2 yr-1, respectively). Our research unveils how LAI changes with different 

processes of LUCC in Southeast Asia and offers a quantitative framework to assess vegetation greenness under different land 

use scenarios. 

1 Introduction 25 

Terrestrial vegetation plays a pivotal role in regulating ecosystem services, conserving biodiversity, and mitigating climate 

change impacts. Over recent decades, long-term satellite records of the leaf area index (LAI) have disclosed a notable increase 

in vegetation greenness on Earth (Chen et al., 2019; Zhu et al., 2016). While at the global scale, elevated atmospheric CO2 

concentrations and climate change are regarded as the driving factors for vegetation greening (Zhu et al., 2016), at the regional 

scale, land use and land cover changes (LUCC) can also substantially impact greenness. Previous studies have found that 30 

cropland intensification and afforestation are the primary drivers for the greening in India and China (Chen et al., 2019; 
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Kuttippurath and Kashyap, 2023). Meanwhile, other studies reported that deforestation for croplands or pastures serves as a 

key driver for decreasing greenness in Amazon (Chen et al., 2019; Querino et al., 2016). Thus, the LUCC can either increase 

or decrease vegetation greenness, depending on the prior land use (e.g., forests, pastures), the subsequent land use (e.g., 

croplands, pastures, and plantations), and the intensity of these land uses (Wang and Friedl, 2019).  35 

Southeast Asia harbours diverse biodiversity and ecosystems. Yet, the trends and drivers of regional greenness remain largely 

underexplored. Previous studies reveal that CO2 fertilization is a primary driver of the greening trend in Southeast Asia within 

a global context (Zhu et al., 2016, Chen et al., 2022). Climate change, especially temperature rise, could reduce vegetation 

growth in the tropics (Piao et al., 2019) or drive green-up in maritime Southeast Asia during El Niño (Satriawan et al., 2024). 

More importantly, land-use change, particularly deforestation, is the predominant factor causing the decline of greenness in 40 

tropical countries like Indonesia (Piao et al., 2019; Chen et al., 2019). However, these studies primarily focused on a global 

scale and likely oversimplified regional dynamics, such as complex land use processes.  

 

Since the 1950s, SSoutheast Asia has been a global hotspot of LUCC since the 1950s (Houghton and Nassikas, 2017), with 

maritime countries such as Indonesia and Malaysia having the greatest deforestation rates in the world (Harris et al., 2012). 45 

An increase in food crops and export-oriented crop production has driven a significant transformation of tropical forests into 

commodity plantations like oil palms or croplands for food (Fagan et al., 2022; Zeng et al., 2018). Indonesia and Malaysia are 

the largest producers of palm fruit, with 250 and 97 million tons of palm fruit produced in 2020 (FAOSTAT, 2022), 

respectively. Meanwhile, Indonesia and Malaysia experienced tree cover losses of approximately 29.4 and 8.92 million 

hectares respectively in the past two decades, equivalent to 18% and 30% of their tree cover in 2000 (Global Forest Watch, 50 

https://www.globalforestwatch.org/).  

Despite the substantial LUCC in the past years, we lack a clear understanding of the impacts of LUCC on vegetation greenness 

in Southeast Asia. This is partly due to the complexity of the recent land use history of the region. For example, in Indonesia, 

the dominant LUCC types in the 2000s were the conversion of forests to oil palm plantations and cropland in lowland regions, 

while in the 2010s, the conversion of forests to oil palm slowed down, shifting more towards highland croplands and the 55 

rotation of plantations (Descals et al., 2021; Xu et al., 2020; Zeng et al., 2018). These LUCC processes can differentially affect 

vegetation greenness and biogeochemical cycles (Ito and Hajima, 2020), with further feedbacks on vegetation greenness 

(Wang and Friedl, 2019). However, current studies on the assessment of LUCC impacts do not often distinguish these 

individual land use processes, but instead categorize the loss of forests under one “deforestation” category (Sitch et al., 2015) 

or regard plantation as similar to natural forests (Hansen et al., 2013). 60 

 In this study, we aim to assess the impact of LUCC on vegetation greenness in Southeast Asia and quantify the contributions 

of the different LUCC processes to the changes in greenness. We collected and harmonized various types of land cover datasets 

(Chini et al., 2021; Hansen et al., 2013; Sulla-Menashe et al., 2019; Xu et al., 2020) to build a detailed land use history for 

Southeast Asia from 2000 to 2016. We further used a machine learning approach to quantify the impacts of land uses on LAI, 

along with the impacts from climate, CO2 concentrations, stand age, etc. Our machine learning approach, combined with 65 

https://www.globalforestwatch.org/
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hypothetical scenarios that simulate vegetation greenness without LUCC processes, enables us to isolate the impacts of 

different land use changes on LAI by estimating the difference between scenario-based LAI.  

2. Materials and Methods 

2.1 Study areas 

Depending on the availability of various land use data, we focused our study on a region including Peninsular Malaysia, 70 

Sumatra, and Borneo islands (Fig. 1), which experience rapid LUCC in Southeast Asia (Geist and Lambin, 2001; Mao et al., 

2023). Since the 1980s, the insular Southeast Asia has lost at least 1.0% of its forests annually (Felbab-Brown, 2013; Miettinen 

et al., 2011), primarily due to cropland and plantation expansions (Wang et al., 2023; Wicke et al., 2011; Xu et al., 2020). 

Particularly notable is the expansion of oil palm plantations in Indonesia and Malaysia (Euler et al., 2016; Chen et al., 2023). 

From the 1990s to the 2010s, the extent of oil palm plantations increased from 1.3 million hectares (Mha) to 7.7 Mha in 75 

Indonesia and from 2.1 to 5.2 Mha in Malaysia (Xu et al., 2022). A national-wide study reported that around 55% to 59% of 

oil palm plantation expansions in Malaysia and at least 56% in Indonesia occurred on lands previously covered by forests 

during the period of 1990 to 2005 (Koh and Wilcove, 2008; Vijay et al., 2016). In parallel, cropland expansion also drives 

deforestation in our study area, with approximately 15% of forest loss in Indonesia attributed to this cause (Austin et al., 2019). 

Rubber, timber and other plantations have also resulted in deforestation. A recent study revealed that between 2001 and 2016, 80 

approximately 20% of rubber plantations in Indonesia and 33% in Malaysia were established on land previously covered by 

forests, resulting in a loss of about 1 Mha and 0.32 Mha of forest in these countries, respectively (Wang et al., 2023). 

2.2 Identification of greening trend  

Leaf area index indicates the total amount of one-sided leaf area per unit ground surface area (Chen and Black, 1992; Watson, 

1947) and often serves as a measure of vegetation greenness (Zhu et al., 2016). In this study, we use the GLOBMAP LAI 85 

dataset, which provides a global record of vegetation cover with a 500 m resolution and is one of the main LAI datasets used 

for global greenness studies (Piao et al., 2020; Zhu et al., 2016). We used the GLOBMAP LAI (version 3) dataset post 2001, 

which was generated based on the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance (Liu et al., 

2012), with an advanced algorithm to consider canopy clumping, making it particularly suitable for dense canopies in the 

tropics (Fang et al., 2019). To assess the trend of LAI for individual pixels, we utilized the Mann-Kendall Test, a non-90 

parametric statistical method that can effectively identify consistent upward or downward trends over time (Mann, 1945). This 

test provides the pixel-by-pixel magnitude (β) and statistical significance (p-values) of the greening trends. 

2.3 Mapping different land-use transitions 

In our study area, we considered natural forests, oil palms, and croplands as the major land use types, as they together accounted 

for over 90% of the land cover (Fable, 2020). To delineate the annual changes of all these land use types from 2001 to 2016, 95 
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we harmonized various land use datasets, which were provided at different spatial resolutions (Table S1), into a unified dataset 

on a 500 m grid. This harmonization was essential to make changes in various land use types compatible with each other, and 

to match the spatial resolution of the land use data to LAI dataset. As shown in Fig. S1 and Fig. S1 shows, the workflow for 

harmonizing multiple land cover datasets proceeded involved the following stepsas follows:  

(1) (1) We first determined the annual percentages of forested (A%) and non-forested areas (B%) within each 500 m grid cell 100 

by aggregating the mean of the annual 30 m resolution Global Forest Change v1.11 (GFC) maps we first determined the annual 

percentage of forested (A%) and non-forested areas (B%) within each 500m grid cell, by aggregating the mean of the annual 

30 m resolution Global Forest Change (GFC) maps (Hansen et al., 2013), using the ‘reduceResolution()’ function in Google 

Earth Engine (https://developers.google.com/earth-engine/guides/resample). 

; (2) Within the fraction of forested fraction of area in each grid cell, we estimated the proportion of oil palm (OP) plantations 105 

(A1%) based onusing an openly available dataset for that covers OP oil palm distribution spanning from 2001 to 2016 across 

Malaysia and Indonesia (Xu et al., 2020). The dataset provides an annual OP distribution at 100 m resolution, generated using 

observations from Advanced PALSAR, ALOS-2 PALSAR-2, and MODIS. To estimate the proportion of OP, we calculated 

the frequency of oil palm pixels in each 500 m × 500 m window.  

(3) After accounting for the area of OP, the remaining forested area in each grid was further categorized into the evergreen 110 

broadleaf forest (EBF) (A2%) and other forest types (i.e., deciduous broadleaf forest, coniferous forest, mixed forest, etc.), 

based on the ratio of EBF to the total forested area provided by MODIS Land Cover Type Product (MCD12Q1 v6.1) (Sulla-

Menashe and Friedl, 2018). 

; (43) Within the non-forested fraction of each grid cell, we used a recent versionthe latest version of the Land-use 

harmonization datasets (LUH2) dataset (Hurtt et al., 2020) to estimate the percentage of cropland (CRO) (B1%) and other non-115 

forest vegetated land uses (i.e., pasture, grass, etc.). In this analysis, we assumed that the fraction of each land use type in the 

LUH2 dataset on a 0.25° grid is applicable to the 500 m grid cells within each 0.25° grid cell. To avoid biases during 

downscaling land cover data from coarse to fine resolution, we also tested our results by upscaling all datasets to 0.25° (Fig. 

S2 and Fig. S3). 

At the end, we obtained detailed information for EBF, OP, CRO, and “Other” land-use types (including other forests and non-120 

forest vegetated areas), at the 500 m spatial resolution. We grouped other forests and other non-forest vegetated areas together, 

as they represented a minor proportion (less than 5%) of the land surface (Table S2) and exhibited minimal changes during the 

study period.  
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Figure 1: Workflow of the study. Steps (1) to (4) outline the processes for harmonizing multiple land cover datasets. Steps (5) to (6) 

show the establishment and interpretation of the LAI prediction machine learning model and the process of scenario simulations. 

 

2.4 Extreme gradient boosting model 

Tree-based machine learning models, such as Extreme Gradient Boosting (XGBoost), have been widely used in predicting and 130 

analysing ecosystem dynamics (Green et al., 2022; Wang et al., 2022a; Yuan et al., 2019). Compared to neural networks, 

which often function like 'black boxes’, tree-based models offer greater interpretability and are particularly effective on tabular-

style datasets (Lundberg et al., 2020). XGBoost is an ensemble learning algorithm that iteratively constructs multiple decision 

trees and has proven to be effective for both classification and regression tasks (Chen and Guestrin, 2016; Yan et al., 2020). 

This algorithm employs shrinkage techniques and performs multithreaded calculations to minimize overfitting (Meng et al., 135 

2021).  

In our study, we applied the XGBoost algorithm (Chen and Guestrin, 2016) to model the spatial-temporal variations in the 

mean annual LAI using climatic and LUCC factors as inputs. These factors include the fractions of EBF, OP, CRO, and Other 

land uses, EBF-stand and OP-stand ages (Besnard et al., 2021; Danylo et al., 2021), CO2 concentrations 

(https://gml.noaa.gov/ccgg/trends/), and climatic variables (Table S3). The climatic variables in our study include mean annual 140 

temperature (MAT), mean annual precipitation (MAP), wind speed (WS), shortwave radiation (RAD), and relative humidity 

(RH). These gridded climatic variables were obtained from the European Centre of Medium‐Range Weather Forecasts 

https://gml.noaa.gov/ccgg/trends/
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(ECMWF) reanalysis product v5 - Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land). We 

aggregate the original hourly data to the annual time step using an annual average.  

To fine-tune the parameters of our XGBoost model for LAI prediction,  we randomly split the data into training and testing 145 

sets with a ratio of 80%:20%. Wwe then utilized the GridSearchCV method to test different parameter combinations (i.e., 

varying numbers of trees from 150 to 400, tree depths from 5 to 15, and learning rates between 0.01 and 0.1) and determined 

the best parameter combinations through cross-validation (Pedregosa et al., 2011a).  

2.5 Shapley Additive Explanations 

We utilized the TreeExplainer-based SHapley Additive exPlanations (SHAP) framework to interpret the individual and 150 

interactive contributions of LUCC and other factors (including climate variables, CO2 concentration, and stand ages) to the 

LAI variations in our XGBoost model. The SHAP methodology, which is based on the concept of Shapley values in 

cooperative game theory, offers an insightful interpretation of factor importance (Lundberg and Lee, 2017a). It provides 

detailed, instance-specific explanations, termed SHAP values to quantify the impact of each factor on the model predictions 

(Lundberg et al., 2020; Yang et al., 2021).  155 

In the SHAP framework, the value for a given factor 𝑖  in a particular sample 𝑥  is computed as the average marginal 

contribution of that factor across all possible combinations. This is mathematically represented as: 

𝜙𝑖(𝑥) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]                               (1)

𝑆⊆𝑁{𝑖}

 

where 𝑁 is the set of all factors, 𝑆 is a subset of factors, and 𝑓 is the prediction model. This formula quantifies the contribution 

of factor 𝑖 by comparing the prediction with and without the factor, averaging over all possible subsets of factors.  160 

The SHAP value indicates the magnitude and direction of the impact of a factor on prediction in the specific sample. To be 

specific, the magnitude (absolute value) of a SHAP value indicates the importance of a factor. Larger absolute SHAP values 

mean the factor has a greater impact on the model's output. The sign of a SHAP value (positive or negative) shows the direction 

of the impact. A positive SHAP value indicates that the factor positively affects the model's output (e.g., increases LAI), while 

a negative SHAP value suggests a negative impact (e.g., decreases LAI). By aggregating mean SHAP values of all samples, 165 

we can also derive global factor importance, which offers a holistic view of variables affecting annual LAI variations.  

Furthermore, SHAP values aid in the interpretation of the interactive effects of two or more factors in machine learning models 

(Lundberg et al., 2018). The interactive effect is defined as the change in prediction when the joint contribution of two or more 

factors is considered, by subtracting the individual contributions made by each factor. The interactive effects of 𝑖th and 𝑗th 

factors are expressed as,  170 

𝜙𝑖 , 𝑗(𝑥) = ∑
|𝑆|! (|𝑁| − |𝑆| − 2)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖, 𝑗}) − 𝑓(𝑆 ∪ {𝑖}) −  𝑓(𝑆 ∪ {𝑗}) +  𝑓(𝑆)]    (2)

𝑆⊆𝑁{𝑖}
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We utilized the xgboost and scikit-learn packages in Python 3.11.0 for developing and training the XGBoost model (Chen and 

Guestrin, 2016; Pedregosa et al., 2011b). Then, we employed the ‘TreeExplainer’ function from the shap (Lundberg and Lee, 

2017b) package to interpret the impact of factors on LAI predictions. 

2.6 Simulation scenarios 175 

To quantify and compare the impacts of specific LUCC processes, climate change, and elevated CO2 concentrations on 

vegetation greenness changes, we adopted the scenario simulation framework from several factorial attribution analyses (Sitch 

et al., 2015). Specifically, we first estimated the LAI trend under various five hypothetical scenarios (S1 to S5) using the 

established XGBoost model. The equations are as below, We used 5 scenarios (S1, S2, S3, S4, S5) in the study:  

𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 =  𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐶𝑂2𝑖,𝑡,𝑆𝑛, 𝐶𝐿𝐼𝑖,𝑡,𝑆𝑛, 𝑓_𝐸𝐵𝐹𝑖,𝑡,𝑆𝑛, 𝑓_𝐶𝑅𝑂𝑖,𝑡,𝑆𝑛, 𝑓_𝑂𝑃𝑖,𝑡,𝑆𝑛, 𝑓_𝑂𝑡ℎ𝑒𝑟𝑖,𝑡,𝑆𝑛)  (3) 180 

S1: CO2 only (i.e., time-varying CO2 from 2001 to 2016), with climate and land uses remaining unchanged (i.e. using the 

values in 2001). This scenario simulated the LAI trend under the impact of elevated CO2. 𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 =

 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐶𝑂2𝑖,𝑡,𝑆𝑛 , 𝐶𝐿𝐼𝑖,𝑡,𝑆𝑛, 𝑓_𝐸𝐵𝐹𝑖,𝑡,𝑆𝑛 , 𝑓_𝐶𝑅𝑂𝑖,𝑡,𝑆𝑛 , 𝑓_𝑂𝑃𝑖,𝑡,𝑆𝑛, 𝑓_𝑂𝑡ℎ𝑒𝑟𝑖,𝑡,𝑆𝑛)           (3) 

𝛽𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 = 𝑠𝑙𝑜𝑝𝑒(𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛)                                                                    (4) 

Where, 𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 represents the simulated LAI for the ith grid at year of t under scenario Sn and 𝛽𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 indicates the LAI 185 

trend. The XGBoost stands for the established model for LAI prediction using CO2 concentration, climate variable (CLI), and 

land cover types such as fraction of evergreen broadleaf forest (f_EBF), cropland (f_CRO), oil palm (f_OP), other land uses 

(f_Other) (see Method 2.4).  

For different scenarios, we adjusted the input variables according to specific assumptions to progressively incorporated 

different factors. For S1, we assumed only CO2 concentration varies from 2001 to 2016, while climate and land uses variables 190 

(i.e., CLI, f_EBF, f_CRO, f_OP and f_Other) remained constant at their values in 2001. For S2, CO2 and climate change over 

time, with land uses remaining unchanged since 2001. S3 to S5 sequentially considered different land use processes. S3 

involved changes from EBF to CRO using time-varying CO2, climate, and CRO area, while keeping OP and other land use 

types constant post-2001; S4 included conversions from EBF to both CRO and OP using time-varying CO2, climate, CRO and 

OP areas, while other land uses unchanged since 2001; S5 encompassed all LUCC changes, with all variables including CO2, 195 

climate, and all types of LUCC varying over time. 

We then quantified the impacts of each factor on vegetation greening based on differences in LAI trends between scenarios,  

𝐷𝑟𝑖𝑣𝑒𝑟𝑛  = δ𝐿𝐴𝐼 𝑡𝑟𝑒𝑛𝑑 =  𝛽𝐿𝐴𝐼𝑖,𝑡,𝑆𝑛 −  𝛽𝐿𝐴𝐼𝑖,𝑡,𝑆(𝑛−1)                                       (5) 

Here, D𝑟𝑖𝑣𝑒𝑟𝑛  measures the impact of the nth driver (ranging from CO2, climate change, CRO expansion, OP expansion, to 

Other LUCC) on LAI trends. Notably, D𝑟𝑖𝑣𝑒𝑟1 quantifies the impact of CO2, equal to 𝛽𝐿𝐴𝐼𝑖,𝑡,𝑆1. In addition, our estimation of 200 

CRO or OP expansion assumed that the increased areas of CRO or OP since 2001 came from EBF, given CRO and OP 

expansion mostly resulted from deforestation in Indonesia and Malaysia (Numata et al., 2022; Wagner et al., 2022). 
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CO2 and climate change (i.e., time-varying CO2 and climate from 2001 to 2016), with no changes in land uses.S1: CO2 only 

(i.e., time-varying CO2 from 2001 to 2016), with climate and land uses remaining unchanged (i.e. using the values in 2001). 

This scenario simulated the LAI trend under the impact of elevated CO2.  205 

S2: CO2 and climate change (i.e., time-varying CO2 and climate from 2001 to 2016), with no changes in land uses. We then 

quantified the impact of climate change based on the difference in LAI trends between S2 and S1.  

S3 to S5 sequentially considered different land use processes. S3: EBF to CRO using time-varying CO2, climate change, and 

CRO area, while keeping the area of OP and other land use types remained unchanged after 2001; S4: EBF to both CRO and 

OP using time-varying CO2, climate change, CRO and OP areas, with other land uses unchanged since 2001; S5: EBF to all 210 

LUCC where all variables including CO2, climate, and all types of LUCC are time-varying. We then quantified the impacts of 

each type of LUCC on vegetation greening based on differences in LAI trends between scenarios.  

3. Results 

3.1 Land Use Changes and Greening Trends 

From 2001 to 2016, the extent of forest in our study area decreased annually by 1.29%, leading to a reduction in EBF from 215 

73.41% to 53.09% of the study area. Notably, approximately 25.54% of the region experienced rapid deforestation with a 

forest loss rate exceeding 2% of the land surface per year. This deforestation rate was especially pronounced in the eastern 

parts of Sumatra and along the western and southern edges of Borneo (Fig. 1b2b). 

In the deforested areas, we observed widespread expansions of CRO and OP plantations. The area of CRO increased at a rate 

of 0.63% per year, resulting in an increase of CRO from 14.45% to 24.56% of the region (i.e., 20.76 × 104 km2 to 35.28 × 104 220 

km2) from 2000 to 2016. Meanwhile, the expansion of OP proceeded at a pace of 0.48% per year, resulting in nearly tripled 

the extent of oil plantations over the past decade (i.e., from 3.91% in 2001 to 12.05% in 2016; Fig. 1a2a). In central Sumatra, 

the south edge of Borneo, and the southern part of Peninsula Malaysia, OP showed the largest increase, partly at the expense 

of decreases in CRO (Fig. 1c2c).  
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 225 

Figure 12: Land use composition and its changes from 2001 to 2016 in the study area. (a) The changes of the fractions of main land 

uses including evergreen broadleaf forest (EBF), oil palm (OP), cropland (CRO), and others over the study period. (b)-(d) Spatial 

distribution of the trend of EBF, CRO, and OP as a fraction of land area.  

The regional average LAI exhibited a non-significant upward trend over the study period, with a slope of 0.04 × 10-2 m2 m-2 

yr-1 (Fig. 2a3a). Using another LAI dataset (MODIS LAI), we also captured the increasing trend (Fig. S4). According to 230 

(Galán-Acedo et al., 2021), areas with over 70% forest loss are categorized as having high to severe deforestation, while areas 

with less than 70% forest loss are classified as undergoing low to intermediate deforestation. We found that for our study area, 

there was a non-significant upward trend in LAI. This was due to a net effect of a rapid LAI increase ( = +1.07 × 10-2 m2 m-2 

yr-1, p < 0.05) in areas with low to intermediate deforestation and a significant LAI decline ( = -3.08 × 10-2 m2 m-2 yr-1, p < 

0.001) in areas with high to severe deforestation (Fig. 2a3a). Across the study area, 58.50% of the region showed a significant 235 

decreasing LAI trend and they are mostly areas with pronounced forest loss (Fig. 1b2b). 
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Figure 23: The trends of LAI from 2001 to 2016 in the study area. (a) Regional average LAI trend, the LAI trends from regions with 

high to severe deforestation, and LAI trend from regions with low to intermediate deforestation. The classification of the 

deforestation level is referred to (Galán-Acedo et al., 2021), where areas experiencing more than 70% forest loss are classified as 240 
high/severe deforestation, whereas those with less than 70% loss are classified as low/intermediate deforestation. (b) the spatial 

pattern of LAI trend, with histogram plot shows the frequency (%) of the pixel-wise LAI trend in the study area.  

3.2 Drivers of the changes in LAI 

To understand the variations in vegetation greenness in Southeast Asia, we established a XGBoost model to quantify the 

relationship between vegetation greenness and land uses, climate variables, CO2 concentrations and stand ages. The XGBoost 245 

model showed high explanatory power (i.e., 98% accuracy for calibration and 93% accuracy for validation), underscoring the 

model's reliability for analysing the determinants of LAI variability (Fig. 34),. Using different splitting ration for calibration 

and validation dataset, we obtained the similar model performance (Fig. S3S5 and S4). 

 

Figure 34: Comparison of observed and predicted LAI values with the XGBoost model for the calibration dataset (a), and validation 250 
dataset (b). 
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Based on the built XGBoost model, we evaluated the contributions of each factor to LAI in the SHAP framework (Fig. 54; see 

Methods). Our results revealed that the fraction of EBF (f_EBF) in each grid holds the greatest mean absolute SHAP value 

(1.28), indicating that f_EBF had the largest impact on LAI (Fig. 4b5b) and this impact was positive (Fig. 4a 5a and Fig. 

S2aFig. S6a).  255 

The average impact of the fraction of OP (f_OP) on LAI ranked the second largest (0.21) and had a similar positive impact on 

LAI as f_EBF (Fig. 4a5a, b and S2bS6b). In contrast, the impact of CRO and other land uses on LAI was found to be negative 

(Fig. 4a5a, S2c S6c and S2dS6d). A higher fraction of CRO (f_CRO) led to a larger negative SHAP value. We further explored 

the impacts of interactions of land use types (i.e., f_CRO, f_OP and f_EBF) on LAI. The results demonstrated that in areas 

with low f_EBF, an increase of f_OP enhanced LAI while f_CRO induced LAI decreases. Meanwhile, in areas with high 260 

f_EBF, the impacts of both f_OP and f_CRO on LAI are markedly reduced, suggesting low intensity of land use change in the 

region (Fig. 4c 5c and 4d5d).  

Apart from the impacts of LUCC on LAI, we also found that elevated CO2 concentration substantially increased LAI, with a 

mean SHAP value at 0.18. In contrast to elevated CO2 concentration, the MAT was negatively related to LAI with a smaller 

mean SHAP value of 0.08 (Fig. 4b 5b and S2eS6e). Other climate variables have limited impacts on LAI. It is noteworthy is 265 

that the stand ages of both EBF (Age_EBF) and stand ages of OP (Age_OP) positively impact LAI. Specifically, Age_EBF 

has a greater impact than that of Age_OP, as indicated by a higher absolute mean SHAP value for Age_EBF (0.11) compared 

to Age_OP (0.08). While we found that Age_EBF continuously contributed to LAI increases (Fig. S2kFig. S6k), Age_OP 

increased LAI at a younger age (less than 12 years) and then decreased LAI afterwards (Fig. S2lFig. S6l). 
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 270 

Figure 45: The impact of factors on LAI. (a) Bee swarm plots show the SHAP values of each factor on LAI for each sample. The 

SHAP value indicates the magnitude and direction of the impact on LAI (see Methods). Each dot represents an individual sample, 

with the color indicating the relative values of the specific factor. (b) The bar plot of the mean absolute SHAP values of each factor 

for LAI. (c) The interaction of f_OP and f_EBF, and (d) the interaction of f_CRO and f_EBF on LAI. The abbreviations for each 

factor are available in Table S3. 275 

3.3 Impacts of LUCC on Greening  

Through scenario-based prediction, we quantified the impacts of LUCC, elevated CO2 concentration and climate change on 

the trend of greening (Fig. 5f6f and Fig. S8). Compared to the observed greening trend for the study area (i.e., 0.04 × 10-2 m2 

m-2 yr-1), we found that the greening trend increased to 5.71 × 10-2 m2 m-2 yr-1 under the scenario S1, which simulated the effect 

of elevated CO2 alone with climate and LUCC remaining constant. The result suggests that elevated CO2 was the primary 280 

reason for the increase of LAI in Southeast Asia if there were. Climate change showed a small negative impact (i.e., mostly 

due to rising temperature) on the LAI. We found both CRO expansion and OP expansion decreased LAI trend, with the trend 

dramatically dropped by -4.46 × 10-2 m2 m-2 yr-1 under the impact of CRO expansion, and by -0.41 × 10-2 m2 m-2 yr-1 under the 

impact of OP expansion. The results highlight that CRO expansion was the primary reason for the decrease in vegetation 
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greenness, counteracting the greening trend caused by elevated CO2 in our study area. In contrast, OP expansion only 285 

contributed to a small decline in greenness.  

We further examined the spatial variations of the impacts of each factor on greening by quantifying the differences in greening 

trend under different scenarios at the pixel level. Across the study area, LUCC imposed a negative impact on LAI trends (Fig. 

5c6c, 5d 6d and 5e6e). Consistent with regional average values, we found the changes from EBF to CRO had a more 

pronounced negative impacts on the greening trend than the conversion of EBF to OP (Fig. 5c 6c and 5d6d). In some regions, 290 

such as the southern edges of Sumatra and Borneo, OP enhanced regional greening (Fig. 5d6d). Meanwhile, elevated CO2 

concentrations consistently had a positive impact on greening across the region (Fig. 5a6a), and climate change showed an 

overall negative but highly heterogeneous impacts on LAI trends (Fig. 5b6b). From a spatial perspective, we found that 

elevated CO2 dominated the increase in LAI in most areas, accounting for 62.10% of the study area, while CRO expansion 

was the primary driver in LAI decrease in other regions (26.33%), especially coastal areas (Fig. S7).  295 

 

Figure 56: The spatial distribution of the pixel-wise impacts of each factor on the greening trends (LAI trend). Positive values mean 

the factors considered increase LAI trend and negative values mean otherwise. We show the spatial patterns of contribution from 

(a) elevated CO2 concentrations, (b) climate changes, (c) expansion of cropland (CRO), (d) expansion of oil palm (OP), and (e) other 

land use changes. (f) shows the average impact of each factor, with the error bars indicating one standard deviation. The symbol (***) 300 
denotes a statistically significant difference in LAI trends at p < 0.001 level. 

4. Discussion 

In this study, we analyzed the typical LUCC processes in Peninsular Malaysia, Sumatra and Borneo and their impacts on 

greenness over the past two decades. We found a significant decline in EBF coverage, from 73.41% to 53.09%, predominantly 

due to CRO and OP plantation expansions. Meanwhile, we did not find a significant trend in LAI in our study area, as the 305 
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increases in regional greenness due to elevated CO2 were offset by the decreases in regional greenness caused by CRO and OP 

expansions. Notably, the negative effect of CRO expansion (-4.46 × 10-2 m2 m-2 yr-1) was more pronounced than that of OP 

expansion (-0.41 × 10-2 m2 m-2 yr-1), indicating a dominant role of CRO expansion on greenness decline in our study area.  

4.1 Strong negative impact of cropland expansion on greenness in Southeast Asia  

Our results demonstrate that CRO expansion in Southeast Asia contributed negatively to vegetation greenness. This is opposite 310 

to reports on the greening trend in China and India, where CRO are suggested as the main reason for the net increase in LAI 

(Chen et al., 2019; Kuttippurath and Kashyap, 2023). This disparity may be partly attributed to original land use types before 

CRO expansion. In Southeast Asia, CRO expansion mainly occurs at the expense of natural forests (Potapov et al., 2022; Zeng 

et al., 2018), and crops often have less dense canopies than the natural forests (Asner et al., 2005; Foley et al., 2005; Pocock 

et al., 2010). In contrast, the increase in LAI in China and India primarily resulted from the intensification of croplands, rather 315 

than their expansion, and where expansion did occur, it predominantly took place on lands that were previously bare or sparsely 

vegetated (Chen et al., 2019).  

We also note that agricultural practices in Indonesia and Malaysia are generally less intensive compared to India and China, 

partly due to less advanced agricultural technologies deployed in the region (Liu et al., 2021). For example, in China and India, 

intensive agricultural practices including precision fertilization and advanced irrigation systems, such as drip irrigation in 320 

China and spray irrigation in India, are widely adopted to enhance crop growth (Wang et al., 2013; Cui et al., 2022). In addition, 

the development of specialized crop varieties, such as hybrid rice in China and climate-smart drought-tolerant rice varieties in 

India (Panda et al., 2021; Zhang et al., 2022), also facilitated plant growth and, consequently, regional greening (Zhao et al., 

2021; Zhao et al., 2023). In contrast, Indonesia and Malaysia predominantly depend on rainfed irrigation and traditional 

farming methods, such as the Subak terraced rice fields in Indonesia, leading to lower crop intensity. Less intensive practices 325 

are less likely to create dense canopy and biomass of croplands (Takeshima, 2019).  

4.2 Minor contribution of oil palm to regional greenness 

Our study observed a negative, yet small impact of OP expansion on greenness. This aligns with studies reporting that OP has 

LAI values comparable to, or only slightly lower than, native forests (Propastin, 2009; Rusli and Majid, 2014; Vernimmen et 

al., 2007). Therefore, OP expansion, though a major driver for land use change in Southeast Asia, was not a main driver of 330 

greenness decline in the region.  

Meanwhile, we also found that the age of OP stands influences LAI, as the LAI of OP increases stand age when OP is young, 

and then decrease LAI after a threshold of stand age. This observation agrees with previous studies reporting the plateau and 

decreases of oil palm LAI after the age of 10 (Xu et al., 2021), and the plateau and decrease of oil palm yield after age of 8-9 

(Park et al., 2023). The stand age of most OP planted in Southeast Asia is approaching maturity (over half are planted before 335 

2009) (Danylo et al., 2021). In response, industrial and smallholder plantations have undergone or are starting to undergo the 

process of replanting (Danylo et al., 2021; Numata et al., 2022) although replanting in smallholder plantations is often delayed 
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as farmers face more financial constraints (Zhao et al., 2023). Hence, we expect to see a more complex influence of OP on 

LAI trend depending on the management practices of different types of plantations. 

In comparison with CRO, our findings indicate that the impact of OP expansion on vegetation greenness decline is relatively 340 

minor (Fig. 65). This can be attributed to the generally higher biomass of OP compared to typical crops like rice and maize in 

Indonesia and Malaysia. It is also important to note that our estimation ofIn addition, we assumed CRO or OP expansion was 

based on the assumption that the increased areas of CRO or OP since 2001 came from EBF in our study. While CRO and OP 

expansion indeed mostly resulted from deforestation in Indonesia and Malaysia (Numata et al., 2022; Wagner et al., 2022), the 

expansions of CRO and OP can also come from other land uses (i.e., grasslands or pastures). Transitions from these land uses 345 

to CRO and OP might result in a smaller negative impact on vegetation greenness, we suspect, considering grasslands and 

shrubs have smaller LAI than EBF.  

4.3 Other LUCC impacts on greenness in Southeast Asia 

While our study examined the two most prominent processes of LUCC in Southeast Asia (EBF to OP and EBF to CRO), there 

are other types of land use changes we analyzed together under the category of “Other” land use types. The changes in these 350 

land use types are also relevant to deforestation, and they include other plantations such as rubber plantations (Wang et al., 

2023), agroforests such as cocoa and coffee (Pantera et al., 2021), and grasslands or pastures (Austin et al., 2019). In total, 

“Other” accounted for 4.70% of the study area in 2016, much less than the three main types we studied (51.06% for EBF, 

25.01% for CRO and 12.09% for OP in 2016), and experienced minor changes since 2001.  

Meanwhile, we found the overall impact of these other LUCC on greenness was likely small (Fig. 65f). The small impact is 355 

contingent on their smaller extent compared to EBF, CRO and OP (see above). It may also result from the offset of positive 

and negative impacts from individual Other LUCC processes on greenness. For example, rubber plantations exhibit a higher 

LAI than natural forests (Wang et al., 2022b), agroforestry and other plantations generally have a lower LAI than nature forests, 

therefore leading to different trends in LAI after deforestation.  

4.4 Impact of climate change and CO2 concentrations on regional greenness 360 

CO2 fertilization effects appear to be the primary drivers of greening trends observed in global studies (Chen et al., 2022; 

Ewert, 2004; Zhu et al., 2016). Our research also confirmed the substantial contribution of rising CO2 levels to the greening 

of vegetation in Southeast Asia. The impact of temperature on greenness in Southeast Asia was negative, in contrast to the 

positive effects noted in cold climate zones, such as the Qinghai-Tibet Plateau (Zhong et al., 2019) and Arctic areas (Forbes 

et al., 2010). We suspect that the negative effect of temperature implies that temperature may have exceeded the optimal point 365 

for plant growth in parts of Southeast Asia. This aligns with several studies suggesting that ecosystem functions in the tropics 

are approaching a temperature tipping point (Doughty et al., 2023; Meir et al., 2015; Wu et al., 2019). Additionally, temperature 

rise might exacerbate the incidence of pests and diseases in tropical forests, negatively impacting plant health and productivity 
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(Ghini et al., 2011). These factors might contribute jointly to the observed decline in greenness with increasing temperatures 

in Southeast Asia. 370 

5. Conclusion 

Our study closely examined the impacts of LUCC on vegetation greenness in part of Southeast Asia. We found that there was 

no significant trend in vegetation greenness in the study area, which is attributed to the net effect of negative impacts of LUCC 

on LAI and positive influence of elevated CO2 on LAI. Among various LUCC processes, we found that cropland expansion 

was the primary reason for LAI decrease, while oil palm expansion had a small impact on LAI trends. These results shed light 375 

on the interplay between greenness and land use changes and provide valuable insight into our future studies on terrestrial 

carbon, water and energy budgets in the land use change intensive Southeast Asia. 
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