
Reviewer #1  

R1C1: The manuscript effectively quantifies the contributions of various factors to 
land surface greening and LAI changes. The aim of the manuscript is clearly 
articulated, and the background for the problem in the study area is well presented. 
However, I have some concerns regarding the methods and results that need 
clarification for further consideration. Below are my major and minor comments: 

Response: We appreciate the positive and constructive comments from the 
reviewer. In this round of revision, we have endeavored to take the comments on 
board to improve the manuscript. The primary changes include the addition of a 
workflow diagram and details about the datasets we used. We also included a 
selected pixel to better illustrate our scenario simulations. Please kindly refer to our 
point-to-point response below. 

 

R1C2: 1. About the LUCC detection methods  

The main conclusion of the manuscript is that cropland expansion acts as the 
primary factor offsetting the greening trend resulting from climate change and CO2 
elevation. While this finding is good, I have big concerns regarding the robustness of 
the input data used in this manuscript. The authors take the percentiles of crop 
expansion in 500m grid cells equal to the available 0.25-degree cells introduced 
many uncertainties. Representing higher resolution grid cells with coarser ones is 
unconventional. In this way, it is not able to identify differences among individual 
500m pixels, further complicating the analysis.   

A common technique for addressing such challenges in remote sensing is data 
fusion, although it requires many additional efforts. One potential solution to enhance 
the robustness of the manuscript's findings could involve conducting analyses using 
a matched resolution of 0.25 degrees rather than 500m. This adjustment would 
mitigate uncertainties associated with the coarse-to-fine representation of data.  

Response: We appreciate the detailed guidance from the reviewer. Following the 
suggestion, we reconducted our analyses using a matched resolution of 0.25 
degrees (Fig. S2 and Fig. S3 below). The new results indicated that the spatial 
pattern of land use and the changes over time were similar to the original results we 
obtained at a finer resolution (Fig. 2, Fig. 6), suggesting our result were robust to the 
choice of spatial resolution. We have added the corresponding figures in the 
supplementary file. 



 
Figure S2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 0.25-degree resolution. 

 

Figure 2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 500-m resolution. 



 
Figure S3: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at a 0.25-degree resolution. 

 

Figure 6: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at 500-m resolution. 

 

 

R1C3: Moreover, the methodology described in section 2.3 is long with text. it would 
be beneficial to include a conceptual figure illustrating a comparison of pixels. This 
would improve the clarity of the methodology section.  

Response: We have included a conceptual figure (Fig. S1) to clarify how we 
compared and harmonized multiple land cover datasets, according to the suggestion 
from the reviewer.  



 
Figure. S1: A conceptual figure illustrating the processes of harmonizing land cover datasets 
with in a grid with a spatial resolution of 500 meter in this study. Step (1): upscale fine-resolution 
global forest change maps (GFC) to 500 meter to determine forest (A%) and non-forest (B%). Step 
(2) and step (3): calculate percentages of oil palm, evergreen broadleaf forest (EBF), and other forest 
types (OT1) within forest areas. Oil palm percentages are derived by upscaling a 100-meter resolution 
oil palm product to 500 meters. EBF and OT1 percentages are sourced from the MODIS dataset. 
Step (4): Determine cropland and other land uses (OT2) percentages using the LUH2 dataset, 
assuming LUH2 data at a 0.25° grid applies to 500-meter grid cells within each 0.25° grid cell. Note, 
the conceptual figure illustrates only the percentage of each land use, not their specific locations. 

In addition, we have added a flowchart (Fig. 1) to this section to provide a step-by-
step illustration on our method. We added the numbers of each step and detailed 
description from Line 100 to Line 115 for further clarification: “As shown in Fig. 1, the 
workflow for harmonizing multiple land cover datasets involved the following steps:  

(1) We first determined the annual percentage of forested (A%) and non-forested 
areas (B%) within each 500 m grid cell by aggregating the mean of the annual 30 m 
resolution Global Forest Change v1.11 (GFC) maps (Hansen et al., 2013), using the 
‘reduceResolution()’ function in Google Earth Engine 
(https://developers.google.com/earth-engine/guides/resample). 

(2) Within the forested fraction of each grid cell, we estimated the proportion of oil 
palm (OP) plantations (A1%) using an openly available dataset that covers OP 
distribution from 2001 to 2016 across Malaysia and Indonesia (Xu et al., 2020). To 
estimate the proportion of OP, we calculated the frequency of oil palm pixels in each 
500 m × 500 m window.  

(3) After accounting for the area of OP, the remaining forested area in each grid was 
further categorized into the evergreen broadleaf forest (EBF) (A2%) and other forest 
types (i.e., deciduous broadleaf forest, coniferous forest, mixed forest, etc.), based 
on the ratio of EBF to the total forested area provided by MODIS Land Cover Type 
Product (MCD12Q1 v6.1) (Sulla-Menashe and Friedl, 2018). 

(4) Within the non-forested fraction of each grid cell, we used the latest version of the 
Land-use harmonization datasets (LUH2) dataset (Hurtt et al., 2020) to estimate the 
percentage of cropland (CRO) (B1%) and other non-forest land uses (i.e., pasture, 
grass, etc.). In this analysis, we assumed that the fraction of each land use type in 



the LUH2 dataset on a 0.25° grid is applicable to the 500 m grid cells within each 
0.25° grid cell.  

At the end, we obtained detailed information for EBF, OP, CRO, and “Other” land-use 
types (including other forests and non-forest vegetated areas), at the 500 m spatial 
resolution. We grouped other forests and other non-forest vegetated areas together, 
as they represented a minor proportion (less than 5%) of the land surface (Table S2) 
and exhibited minimal changes during the study period.”  

 

 
Figure 1: Workflow of the study. Steps (1) to (4) outline the processes for harmonizing multiple land 
cover datasets. Steps (5) to (6) show the establishment and interpretation of the LAI prediction 
machine learning model and the process of scenario simulations. 

 

R1C4: Additionally, when upscaling global forest change maps from 30m to 500m 
resolution, the issue of non-integer pixel numbers within a 500m grid cell arises. How 
did you treat the boundary cells? Clarification and a clear explanation are needed 
regarding how the methodology addresses boundary cells for the analysis. 

Response: We agree with the reviewer that it is very likely to have some non-integer 
pixel numbers over boundaries when upscaling high resolution map to low resolution 
– in this case from global forest change maps at 30m to 500m resolution. We 
addressed this issue by using the ‘reduceResolution()’ function, the default 
aggregation method in Google Earth Engine (GEE). According to GEE, the weights 
assigned to pixels during the aggregation process are determined by the extent of 
overlap between the smaller pixels being aggregated and the larger pixels defined by 



the output projection. This is illustrated in Figure R1. In the diagram, the output pixel 
has area a (i.e., 500 m × 500 m in our study), the weight of the input pixel with 
intersection area b is computed as b/a, and area c is computed as c/a. To compute 
forested area per pixel, use the fraction of a pixel covered, then multiply by area. 

To make it clear for readers, we improved our statements about the upscaling 
process from Line 100 to Line 105: “We first determined the annual percentages of 
forested (A%) and non-forested areas (B%) within each 500m grid cell by 
aggregating annual 30m resolution Global Forest Change v1.11 (GFC) maps 
(Hansen et al. 2013), using the ‘reduceResolution()’ function in Google Earth Engine 
(https://developers.google.com/earth-engine/guides/resample).” 

 

Figure R1: Input pixels (black) and output pixel (blue) for function of reduceResolution() in 
google earth engine. Source: https://developers.google.com/earth-engine/guides/resample 

 

R1C5: 2. About the Machining learning Approaches  

Machine learning methodologies, however, have often remained as "black boxes" to 
ecologists due to their intricate algorithmic nature and limited interpretability 
regarding their predictive power (Simon, Glaum and Valdovinos 2023). In the 
manuscript, the authors establish five scenarios for predicting Leaf Area Index (LAI) 
by maintaining certain variables unchanged. However, it remains unclear how the 
machine learning method treats the unchanged variables within each scenario. 
Furthermore, the manuscript lacks description on the disparities in predicted LAI 
across scenarios, particularly concerning the inclusion of varying changed variables. 
It is important for the authors to select specific pixels to show the gradual changes in 
prediction results and accuracy, from the first, second, and to the last scenario. 

Response: We appreciate the reviewer’s suggestions. Accordingly, we randomly 
selected a pixel (102.15°E, 0.95°S) to illustrate the changes in predicted LAI across 
scenarios (Fig. S9). Specifically, in scenario simulations, we adjusted the input 
variables according to specific assumptions to progressively quantify the impact of 
different processes on the greening trend.  



For S1 (indicated by the black line), we assumed that only CO2 varied from 2001 to 
2016, while climate and land use variables (i.e., CLI, f_EBF, f_CRO, f_OP and 
f_Other) remained constant at their values in 2001. This scenario simulated the 
greening trend (i.e., b1 = 0.07) solely attributed to elevated CO2 concentration. 

For S2 (indicated by the red line), we assume CO2 concentration and climate change 
(CLI) over time, with land uses remaining unchanged since 2001. The difference 
between the trends in S2 and S1 is attributed to the impact of CLI on the greening 
trend (i.e., b2 - b1). 

S3 to S5 sequentially considered different land use processes. S3 (indicated by the 
blue line) involved changes from EBF to CRO and time-varying CO2 and climate, 
while keeping OP and other land use types constant post-2001; The difference 
between S3 and S2 highlights the impact of CRO expansion on the greening trend 
(i.e., b3 - b2), showing a significant decrease (around -0.24). 

S4 (indicated by the green line) included conversions from EBF to both CRO and OP 
with time-varying CO2, climate, while other land uses unchanged since 2001; The 
difference between S4 and S3 illustrates the minimal impact of OP expansion on the 
greening trend (i.e., b4 - b3). 

S5 encompassed all LUCC changes, with all variables including CO2, climate, and all 
types of LUCC varying over time. The different trends between S5 and S4 indicate 
impact of other LUCC on greening trend (i.e., b5 - b4).  

 
Figure S9: A selected pixel to show the gradual changes in prediction results for each 
scenario. 

 

R1C6: In Figure 3, the specific scenario being shown here is not mentioned. 
Clarification regarding which scenario is represented in the figure is necessary. 
Additionally, inclusion of a time-series curve, focusing on a specific pixel, would 



provide valuable insight into the predictions generated by the machine learning 
algorithms.  

Response: Thank you for your comment. In Figure 3, we presented the calibration 
and validation results of the machine learning model, not a hypothetical scenario (we 
could not do validation for hypothetical scenarios as hypothetical scenarios do not 
have ground truth).  

Perhaps to further clarify, our study consisted of two main steps: (1) Establishing the 
relationship between LAI and environmental factors using machine learning 
algorithms. This is what Figure 3 illustrates. (2) Scenario simulations by applying the 
established machine learning model to predict the impacts of various processes 
(CO2 elevation, climate change, CRO expansion, OP expansion, and other LUCC) 
on vegetation greenness. Please refer to the workflow chart in our response to 
R1C3, where the model establishment and scenario predictions are detailed in Steps 
5 and 6, respectively. Regarding the time-series curve illustrating predictions 
generated by our machine-learning method, please see our response to R1C5. 

 

R1C7: Moreover, the manuscript fails to show details about splitting the data into 
training and testing sets, and how different splitting ratios may impact the 
conclusions drawn. A comprehensive explanation of the data splitting process and its 
potential implications on the study's findings is essential. 

Response: Following previous studies (Wang et al., 2022; Abel et al., 2023), we 
randomly split the data into training and testing sets with a ratio of 80%:20% in our 
study. We have added the details in our manuscript from Line 165 to Line 166. To 
assess the impact of different splitting ratios, we also tested 70%:30% and 60%:40% 
ratios. We found that these different splitting ratios had minimal impact on the model 
performance and interpretations (Fig. S5). 



 
Figure S5: The impact of different training and testing dataset splitting ratios on model 
performance and interpretations. Panels (a) and (d) depict results using an 80%:20% ratio for 
training and testing, respectively. Panels (b) and (e) correspond to a 70%:30% ratio, while panels (c) 
and (f) reflect a 60%:40% ratio. 

Wang H, Yan S, Ciais P, et al. Exploring complex water stress–gross primary production relationships: 
Impact of climatic drivers, main effects, and interactive effects[J]. Global Change Biology, 2022, 
28(13): 4110-4123. 

Abel C, Abdi A M, Tagesson T, et al. Contrasting ecosystem vegetation response in global drylands 
under drying and wetting conditions[J]. Global change biology, 2023, 29(14): 3954-3969. 

 

R1C8: 3. About the LAI change trend  

I have concerns regarding the GLOBMAP LAI dataset, which is also the only LAI 
product used in the manuscript. There is substantial variability among global LAI 
products. However, it is notable that even most LAI datasets depict an increasing 
trend in LAI changes, the GLOBMAP dataset stands out as an exception, which 
characterized by notably lower values (Jiang, Ryu et al. 2017), see the figure below. 



 

The slight change trend observed in the LAI within the study area could potentially 
be attributed to the specific LAI products utilized by the authors. To enhance the 
confidence in the conclusions, the inclusion of additional LAI products is essential to 
provide a more comprehensive assessment of vegetation dynamics. 

Response: Thanks for pointing this out, but we would like to clarify a neglected 
issue in the community. The GLOBEMAP LAI product we used is the most recent 
version (version 3) and has been tested to be robust for global greening trend 
studies (Piao et al., 2020; Winkler et al., 2021). The GlOBEMAP LAI used in Jiang’s 
study was a very preliminary version and could not indicate the true performance of 
the dataset. Made fully public since 2021 (https://doi.org/10.5281/zenodo. 4700264), 
the updated GLOBEMAP LAI involved several improvements (Liu et al., 2021): it 
employed MODIS C6 land surface reflectance products (MOD09A1) for generating 
MODIS LAI, accounted for pixel-level clumping effects, and utilized a new cloud 
detection algorithm. This updated version of LAI product showed an increasing trend 
globally, consistent with other datasets (Fig. R2). 

We use GLOBEMAP v3 for two reasons: (1) it is a primary LAI dataset for global and 
regional greenness studies (Piao et al., 2020; Winkler et al., 2021; Satriawan et al., 
2024), showing high consistency with other LAI datasets; (2) it is generated with an 
advanced algorithm to consider canopy clumping, making it particularly suitable for 
dense canopies in the tropics (Fang et al., 2019). 

In addition to enhancing reliability, we further analysed the greening trend using 
MODIS LAI datasets (Fig. S4). Our findings indicated that both GLOBEMAP and 
MODIS LAI datasets demonstrated a moderate increasing trend across the entire 
region (Fig. S4a). For pixel-by-pixel validation, over 70% of the regions exhibited a 



consistent trend (Fig. S4b), with very similar spatial pattern of the trend. We have 
included the figure and corresponding statements in the Supplementary file. We 
noticed that the annual change in LAI in the region show much larger interannual 
variation, which is very untypical for tropical ecosystems. Therefore in the main 
analysis, we continue to use GLOBEMAP LAI but added the results based on 
MODIS in SI. 

 

Figure R2: Changes in satellite-derived global vegetation indices from four products: GIMMS, 
GLASS, GLOBMAP and MODIS. Sources: (a) is from Piao et al (2020), and the panel (b) is from 
Winkler et al (2021). 

 

Figure S4: Comparison of LAI Trends Between MODIS and GLOBEMAP LAI Datasets. (a) 
illustrates the relative changes in annual mean LAI across the entire region from 2001 to 2016. (b) 
provides a spatial comparison of the datasets, where '++' denotes an increase observed in both 
datasets, '−−' indicates a decrease in both, '+−' signifies an increasing trend in GLOBEMAP but a 
decrease in MODIS, and '−+' represents the opposite scenario. 

References: 

Liu, R., Liu, Y., & Chen, J. (2021). GLOBMAP global leaf area index since 1981 (3.0) [Dataset]. 
Zenodo. https://doi.org/10.5281/zenodo. 4700264 



Piao, S., Wang, X., Park, T., Chen, C., Lian, X., &He, Y., et al. (2020). Characteristics, drivers and 
feedbacks of global greening. Nature reviews. Earth & environment, 1(1), 14-27. 
http://doi.org/10.1038/s43017-019-0001-x 

Winkler A J, Myneni R B, Hannart A, et al. Slowdown of the greening trend in natural vegetation with 
further rise in atmospheric CO2. Biogeosciences, 2021, 18(17): 4985-5010. 

Satriawan T W, Luo X, Tian J, et al. Strong green-up of tropical Asia during the 2015/16 El Niño[J]. 
Geophysical Research Letters, 2024, 51(8): e2023GL106955. 

Fang, H., Baret, F., Plummer, S., &Schaepman Strub, G. (2019). An Overview of Global Leaf Area 
Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 57(3), 739-799. 
http://doi.org/10.1029/2018RG000608 

 

R1C9: 4. About the assessing trend contribution from variables  

In section 3.3, the authors outlined their approach to calculating the contributions of 
various variables to LAI trends. However, there appears to be confusion regarding 
the methodology's assessment. As stated, did the authors evaluate the contribution 
of elevated CO2 to greening by comparing the LAI trend from Scenario 1 to that from 
Observation? If so, authors should present scatterplots and regression lines for each 
scenario, and their statistical significance to allowing readers to know the differences 
among them.  

Response: We apologize for the confusion regarding the statements of the 
methodology part. As addressed in our response to R1C6, the contribution of 
elevated CO2 to greening was estimated using scenario simulations (i.e., step 6 in 
our workflow). This step involved hypothesis testing for attribution analysis and thus 
could not be validated using observations. Specifically, we assumed that only CO2 
varied over time, with no climate and land-use change changes since 2001. 
Consequently, the trend in LAI in this scenario was thus solely attributed to CO2 
variations. 

 

R1C10: In addition, it seems the authors calculated the average value of the trend 
for all the pixels as the final conclusions. How did you examine the significant of the 
machine learning results for each pixel before calculating the mean value? 
Furthermore, considering pixels with no significance, how might this bias the 
conclusion? It's crucial for the authors to address these concerns to ensure the 
reliability of their findings. 

Response: In our final conclusions regarding the impact of each process on the 
regional LAI trend (i.e., Fig. 6f), we first calculated the annual mean LAI for the entire 
region for each hypothesis scenario. We then analyzed the trends. The differences in 
trends between scenarios represented the contribution of each process to the overall 
regional LAI trend. At this stage, we did not exclude the non-significant pixels, 
because we treat the study area as a whole. 



For the pixel-level analysis of the impact of each process on LAI trend (i.e., Fig. 6a – 
6e), we provided the significance (p < 0.01) of trends under different scenarios (Fig. 
S8). But when comparing trends between scenario simulations, we included non-
significant pixels. This approach was adopted because (1) trends of LAI in one pixel 
may be significant under one scenario, but not significant in another, therefore it 
would not be apple to apple comparisons if we only use different number of pixels 
from different scenarios for comparison; (2) excluding non-significant pixels could 
potentially overestimate the impact of specific processes. For example, CRO 
expansion might increase the trend in some pixels without reaching statistical 
significance. Ignoring such pixels could lead to overestimating the negative impact of 
CRO expansion on greening trends. 

 
Figure 6: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends. 

 
Figure S8: The spatial distribution of the pixel-wise impacts of each scenario on the greening 
trends.  



Reviewer #2  

R2C1: This manuscript provides a detailed analysis of how land use changes in the 
Southeast Asia region affect vegetation greenness. Utilizing multi-source land cover 
datasets, it reveals how the transformation of land use since the 21st century has 
impacted vegetation greenness, based on machine learning algorithms and the 
SHAP interpreter. The topic of this manuscript is interesting, explaining why China 
and India, despite both being countries with rapidly developing agriculture, make 
significant contributions to greening trends, while the greening trend in Southeast 
Asia remains stagnant. However, certain aspects may need addressing before 
publication. 

Response: We appreciate the accurate summary and positive comments from the 
reviewer, and thank them for recognizing the importance of our work on studying 
regional greening trends. 

 

Major comments 

R2C2: The literature review concerning the driving mechanisms behind vegetation 
greenness changes in Southeast Asia appears to be incomplete and insufficiently 
detailed. It is essential to provide a more comprehensive overview of existing 
research to adequately situate the study within the current body of knowledge. 

Response: According to the suggestion, we further enhanced the literature review 
on the drivers of vegetation greenness in Southeast Asia. It is unfortunate that few 
studies specifically focused on this region (e.g., Satriawan et al., 2024), and we 
gained most of our knowledge on Southeast Asia from global scale studies (e.g., Zhu 
et al., 2016; Piao et al., 2019; Chen et al., 2019; Chen et al., 2022). Specifically, 
these global studies reveal that CO2 fertilization is a primary driver of the greening 
trend globally, including in Southeast Asia (Zhu et al., 2016, Chen et al., 2022). 
Climate change, especially temperature rise, could reduce vegetation growth in the 
tropics (Piao et al., 2019) or drive green-up in maritime Southeast Asia during El 
Niño (Satriawan et al., 2024). However, land-use change, especially deforestation, is 
the predominant factor driving the greenness decline in tropical countries like 
Indonesia (Piao et al., 2019; Chen et al., 2019).  

We have included the corresponding references in our manuscript and the context is 
added in Line 35 to Line 45, “Southeast Asia harbours diverse biodiversity and 
ecosystems. Yet, the trends and drivers of regional greenness remain largely 
underexplored. Previous studies reveal that CO2 fertilization is a primary driver of the 
greening trend in Southeast Asia within a global context (Zhu et al., 2016, Chen et 
al., 2022). The impact of climate change on vegetation growth, however, remains 
uncertain (Piao et al., 2019, Satriawan et al., 2024), although some studies have 
reported that tropical temperature approaching critical thresholds may lead to leaf 
browning (Doughty et al., 2023). Land-use change, particularly deforestation, has 



been found to be a predominant factor causing the decline of greenness in some 
tropical regions (Piao et al., 2019; Chen et al., 2019). However, these studies 
primarily focused on a global scale while the regional mechanisms (i.e., complexity in 
land use change) for greenness change were not fully examined” 

 

Satriawan T W, Luo X, Tian J, et al (2024). Strong green-up of tropical Asia during 
the 2015/16 El Niño. Geophysical Research Letters, 51(8): e2023GL106955 

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., &Canadell, J. G., et al. (2016). 
Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791-795. 
http://doi.org/10.1038/nclimate004 

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., &He, Y., et al. (2019). 
Characteristics, drivers and feedbacks of global greening. Nature reviews. Earth & 
environment, 1(1), 14-27. http://doi.org/10.1038/s43017-019-0001-x 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., &Chaturvedi, R. K., et al. (2019). 
China and India lead in greening of the world through land-use management. Nature 
Sustainability, 2(2), 122-129. http://doi.org/10.1038/s41893-019-0220-7 

Chen, C., Riley, W. J., Prentice, I. C., &Keenan, T. F. (2022). CO2 fertilization of 
terrestrial photosynthesis inferred from site to global scales. Proceedings of the 
National Academy of Sciences, 119(10). http://doi.org/10.1073/pnas.2115627119 

Chen, J. M., &Black, T. A. (1992). Defining leaf area index for non-flat leaves. Plant, 
cell and environment, 15(4), 421-429. http://doi.org/10.1111/j.1365-
3040.1992.tb00992.x 

 

R2C3: The methodology section requires significant revision due to several critical 
issues: · The use of citations is improper, with several missing references that need 
to be included to support the study's claims and methodology. 

Response: We double-checked the citations in the methodology section and added 
the necessary references. Specifically, we added references (i.e., Euler et al., 2016; 
Chen et al., 2024) to support our statements about land use change in Southeast 
Asia, and references (i.e., Fable, 2020; Sulla-Menashe and Friedl, 2018; Hurtt et al., 
2020; Lundberg et al., 2018; Sitch et al., 2015) about the methodology regarding 
harmonization of different land use datasets, and the XGBoost-SHAP framework and 
scenario simulations (i.e., Lundberg et al., 2018; Sitch et al., 2015).  

 

Euler M, Schwarze S, Siregar H, et al. Oil palm expansion among smallholder 
farmers in Sumatra, Indonesia[J]. Journal of Agricultural Economics, 2016, 67(3): 
658-676. 

http://doi.org/10.1038/nclimate004
http://doi.org/10.1038/s43017-019-0001-x


Chen S, Woodcock C, Dong L, et al. Review of drivers of forest degradation and 
deforestation in Southeast Asia[J]. Remote Sensing Applications: Society and 
Environment, 2023: 101129. 

Fable (2020). Pathways to Sustainable Land-Use and Food Systems. 2020 Report of 
the FABLE Consortium. International Institute for Applied Systems Analysis (IIASA) 
and Sustainable Development Solutions Network (SDSN), Laxenburg and Paris. 
10.22022/ESM/12-2020.16896. Indonesia chapter. 

Sulla-Menashe D, Friedl M A. User guide to collection 6 MODIS land cover 
(MCD12Q1 and MCD12C1) product[J]. Usgs: Reston, Va, Usa, 2018, 1: 18. 

Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land use change and 
management for the period 850–2100 (LUH2) for CMIP6[J]. Geoscientific Model 
Development, 2020, 13(11): 5425-5464. 

Lundberg S M, Erion G G, Lee S I. Consistent individualized feature attribution for 
tree ensembles[J]. arXiv preprint arXiv:1802.03888, 2018. 

Sitch S, Friedlingstein P, Gruber N, et al. Recent trends and drivers of regional 
sources and sinks of carbon dioxide[J]. Biogeosciences, 2015, 12(3): 653-679. 

 

R2C4: · Details regarding the specific version of the dataset used and the 
preprocessing steps undertaken are absent, which is crucial for the reproducibility 
and integrity of the research. 

Response: We apologize for the missing information about the version of the 
dataset we used. In the updated manuscript, we have included details about 
GLOBMAP LAI (v3), Global forest change maps (v1.11), and MODIS land cover 
product (v6.1). We have also made sure that version numbers for other land use 
datasets and climate datasets used in our study were provided. 

 

We hope to clarify that the datasets we collected are all established products. The 
main processing we carried out is to harmonize them into a common grids. To better 
describe the process, we have included a figure and statements in SI (see below). 

 



Figure. S1: A conceptual figure illustrating the processes of harmonizing land cover datasets 
with in a grid with a spatial resolution of 500 meter in this study. Step (1): upscale fine-resolution 
global forest change maps (GFC) to 500 meter to determine forest (A%) and non-forest (B%). Step 
(2) and step (3): calculate percentages of oil palm, evergreen broadleaf forest (EBF), and other forest 
types (OT1) within forest areas. Oil palm percentages are derived by upscaling a 100-meter resolution 
oil palm product to 500 meters. EBF and OT1 percentages are sourced from the MODIS dataset. 
Step (4): Determine cropland and other land uses (OT2) percentages using the LUH2 dataset, 
assuming LUH2 data at a 0.25° grid applies to 500-meter grid cells within each 0.25° grid cell. Note, 
the conceptual figure illustrates only the percentage of each land use, not their specific locations. 

 

R2C5: · The explanation of how multiple land cover datasets were harmonized lacks 
clarity, making it difficult to understand the approach taken. 

Response: To enhance clarity, we moved the flowchart that illustrates how multiple 
land cover datasets were harmonized from the supplementary file to the Methods 
section. Additionally, we added order numbers and corresponding statements from 
Line 100 to Line 115 in this section for further clarification: “As shown in Fig. 1 and 
Fig .S1, the workflow for harmonizing multiple land cover datasets involved the 
following steps:  

(1) We first determined the annual percentage of forested (A%) and non-forested 
areas (B%) within each 500 m grid cell by aggregating the mean of the annual 30 m 
resolution Global Forest Change v1.11 (GFC) maps (Hansen et al., 2013), using the 
‘reduceResolution()’ function in Google Earth Engine 
(https://developers.google.com/earth-engine/guides/resample).  

(2) Within the forested fraction of each grid cell, we estimated the proportion of oil 
palm (OP) plantations (A1%) using an openly available dataset that covers OP 
distribution from 2001 to 2016 across Malaysia and Indonesia (Xu et al., 2020). To 
estimate the proportion of OP, we calculated the frequency of oil palm pixels in each 
500 m × 500 m window.  

(3) After accounting for the area of OP, the remaining forested area in each grid was 
further categorized into the evergreen broadleaf forest (EBF) (A2%) and other forest 
types (A3%) (i.e., deciduous broadleaf forest, coniferous forest, mixed forest, etc.), 
based on the ratio of EBF to the total forested area provided by MODIS Land Cover 
Type Product (MCD12Q1 v6.1) (Sulla-Menashe and Friedl, 2018). 

(4) For the non-forested fraction of each grid cell, we used the latest version of the 
Land-use harmonization datasets (LUH2) dataset (Hurtt et al., 2020) to estimate the 
percentage of cropland (CRO) (B1%) and other non-forest land uses (B2%) (i.e., 
pasture, grass, etc.). ” 



 
Figure 1: Workflow of the study. Steps (1) to (4) outline the processes for harmonizing multiple 
land cover datasets. Steps (5) to (6) show the establishment and interpretation of the LAI 
prediction machine learning model and the process of scenario simulations. 

 

 

R2C6: · Descriptions of scenario simulations are unclear. When introducing scenario 
simulation schemes, it is imperative to explicitly detail the calculation methods for 
assessing the impact of each factor, which would greatly enhance the manuscript's 
credibility and reliability. 

Response: We apologize for the confusion. In the updated version, we explicitly 
included equations detailing the calculation process and improved the clarity of our 
statements for this section (Line 200 – Line 220) as follows: 

“To quantify and compare the impacts of specific LUCC processes, climate change, 
and elevated CO2 concentrations on vegetation greenness changes, we adopted the 
scenario simulation framework from several factorial attribution analyses (Sitch et al., 
2015). Specifically, we first estimated the LAI trend under five hypothetical scenarios 
(S1 to S5) using the established XGBoost model. The equations are as below,  

𝐿𝐴𝐼!,#,$% = 	𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐶𝑂2!,#,$%, 𝐶𝐿𝐼!,#,$%, 𝑓_𝐸𝐵𝐹!,#,$%, 𝑓_𝐶𝑅𝑂!,#,$%, 𝑓_𝑂𝑃!,#,$%, 𝑓_𝑂𝑡ℎ𝑒𝑟!,#,$%)    (3) 

𝛽𝐿𝐴𝐼!,#,$% = 𝑠𝑙𝑜𝑝𝑒(𝐿𝐴𝐼!,#,$%)                                                 (4) 

Where, 𝐿𝐴𝐼!,#,$% represents the simulated LAI for the ith grid at year of t under 
scenario Sn and 𝛽𝐿𝐴𝐼!,#,$% indicates the LAI trend. The XGBoost stands for the 
established model for LAI prediction using CO2 concentration, climate variable (CLI), 



and land cover types such as fraction of evergreen broadleaf forest (f_EBF), 
cropland (f_CRO), oil palm (f_OP), other land uses (f_Other) (see Method 2.4).  

For different scenarios, we adjusted the input variables according to specific 
assumptions to progressively incorporated different factors. For S1, we assumed 
only CO2 concentration varies from 2001 to 2016, while climate and land uses 
variables (i.e., CLI, f_EBF, f_CRO, f_OP and f_Other) remained constant at their 
values in 2001. For S2, CO2 and climate change over time, with land uses remaining 
unchanged since 2001. S3 to S5 sequentially considered different land use 
processes. S3 involved changes from EBF to CRO using time-varying CO2, climate, 
and CRO area, while keeping OP and other land use types constant post-2001; S4 
included conversions from EBF to both CRO and OP using time-varying CO2, 
climate, CRO and OP areas, while other land uses unchanged since 2001; S5 
encompassed all LUCC changes, with all variables including CO2, climate, and all 
types of LUCC varying over time. 

We then quantified the impacts of each factor on vegetation greening based on 
differences in LAI trends between scenarios,  

𝐷𝑟𝑖𝑣𝑒𝑟% 	= δ𝐿𝐴𝐼	𝑡𝑟𝑒𝑛𝑑 = 	𝛽𝐿𝐴𝐼!,#,$% −	𝛽𝐿𝐴𝐼!,#,$%&'                  (5) 

Here, D𝑟𝑖𝑣𝑒𝑟% measures the impact of the nth driver (ranging from CO2, climate 
change, CRO expansion, OP expansion, to Other LUCC) on LAI trends. Notably, 
D𝑟𝑖𝑣𝑒𝑟& quantifies the impact of CO2, equal to 𝛽𝐿𝐴𝐼!,#,$&.” 

 

 

Minor comments 

R2C7: 1. The discussion mentions, "It is also important to note that our estimation of 
CRO or OP expansion was based on the assumption that the increased areas of 
CRO or OP since 2001 came from EBF." Such a crucial assumption should be stated 
in the methodology section. 

Response: Thank you for the suggestion. We have moved this statement to the 
methodology section Line 220 to Line 222.  

 

R2C8: 2. On the basis of Figure 5, it would be beneficial to add the spatial 
distribution of dominant factors for each pixel. This enhancement would more clearly 
reveal whether the LAI trend for each pixel is positive or negative and which factors 
primarily drive these changes. 

Response: Following the suggestion, we included the spatial distribution of 
dominant factors for each pixel by comparing the impacts of factors on the LAI trend 
(Fig. S7). Consistent with Figure 5, we found that the effect of CO2 fertilization 



dominated the increase in LAI in most areas, accounting for 62.10% of the study 
area. Conversely, CRO expansion was a dominant driver for greenness decline in 
many regions, accounting for 26.33% of the study area.  

We have added the figure below in the supplementary file and included the following 
statement in the Result section, from Line 340 to Line 345: “From a spatial 
perspective, we found that elevated CO2 dominated the increase in LAI in most 
areas, accounting for 62.10% of the study area, while CRO expansion was the 
primary driver in LAI decrease in other regions (26.33%), especially coastal areas 
(Fig. S7)”. 

 
Figure S7: Spatial pattern of dominant drivers of trend in LAI (a), and the percentage of the 
study area dominated by each diver (b). The drivers include elevated CO2 (CO2), climate 
change (CLI), crop expansion (CRO), oil palm expansion (OP) and other land use changes 
(Other). A prefix ‘+’ of the drivers indicates a positive impact on LAI trends, whereas ‘−’ 
indicates a negative impact. 

 

R2C9: 3. It would be preferable to represent Figure S2 as a scatter density plot (like 
Figure 4c,d) to facilitate the observation of changes in SHAP values with features, 
and to prevent potential misinterpretation arising from the clustering of scatter points. 

Response: We agree that representing Figure S2 as a density plot will help avoid 
misinterpretation. Accordingly, we have revised this figure in the updated manuscript, 
shown as Figure S6 below. 



 
Figure S6: The density plots show the changes in SHAP values of each factor on LAI with 
corresponding factor variations. The abbreviations for each factor are available in Table S3. 

 

R2C10: 4. There is an error in Equation (2) that needs to be corrected. 

Response: Thanks for pointing this out. We have corrected the Equation (2). 

𝜙! , 𝑗(𝑥) = (
|𝑆|! (|𝑁| − |𝑆| − 2)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖, 𝑗}) − 𝑓(𝑆 ∪ {𝑖}) − 	𝑓(𝑆 ∪ {𝑗}) + 	𝑓(𝑆)]															(2)

"⊆${!}

 

 

R2C11: 5. Figure 4c,d depicts the coupling effects of f_EBF with f_OP and f_CRO 
rather than the interaction effects mentioned in the caption, making it seem 



indistinguishable from Figure S2a. It is recommended to add SHAP dependence 
plots illustrating the interaction effects for a more in-depth analysis. 

Response: Following the suggestion from the reviewer, we added SHAP interaction 
plots (Fig. 4e-f) on top of the SHAP dependence (coupling) plots (Fig. 4c-d), to 
distinguish the figure from Fig. S2. We have also revised Fig. S2 to highlight the 
difference. We ensure that the caption provided for figure 4 is correct to avoid 
confusions. However, we refrained from overinterpreting the interaction plots (such 
as the interactions between f_EBF, f_OP and f_CRO), as by nature, we suspect that 
these three factors are likely dependent on each other (e.g., less f_EBF, more f_OP), 
not necessarily interact with each other (i.e., independent variables) in meaningful 
way. 

 
Figure 4: The impact of factors on LAI. (a) Bee swarm plots show the SHAP values of each 
factor on LAI for each sample. The SHAP value indicates the magnitude and direction of the 
impact on LAI (see Methods). Each dot represents an individual sample, with the color 
indicating the relative values of the specific factor. (b) The bar plot of the mean absolute SHAP 



values of each factor for LAI. (c) The dependence of f_OP and f_EBF, and (d) the dependence 
of f_CRO and f_EBF on LAI. (e) The interaction of f_OP and f_EBF, and (f) the interaction of 
f_CRO and f_EBF on LAI. The abbreviations for each factor are available in Table S3. 

 

R2C12: 6. Previous studies have highlighted discrepancies between the cropland 
area changes provided by LUH2 and actual conditions in China and the United 
States. It is worth investigating whether a similar discrepancy exists in Southeast 
Asia. Meanwhile, the spatial resolution of the LUH2 dataset is too coarse for the 
purposes of this study. 

Response: Regarding the accuracy of LUH2 in Southeast Asia, Mao et al. (2023) 
conducted a comparative analysis of LUH2 and eight other land-use products 
against a constructed land-use product for Southeast Asia. They compared several 
datasets, including remote sensing datasets like the MODIS Land Cover dataset 
(MCD), ESA CCI land cover maps (CCI), GLC_FCS30 (GLC), Copernicus Global 
Land Service Land Cover product (CGLS), and GlobeLand30 (GL), along with 
datasets from FAO, HYDE, and SAGE (Mao et al., 2023). Their analysis found that 
the cropland area estimates for this region were most closely aligned with those from 
LUH2, with a correlation coefficient (r) of 0.98 (Mao et al., 2023; Figure R1). This 
consistency indicates that LUH2 provides reliable cropland data for Southeast Asia.  



 
Figure. R1. Taylor diagrams comparing cropland area estimates with (a) LUH2, (b) HYDE, (c) 
SAGE (d) MCD, (e) GL, (f) CCI, (g) CGLS, (h) GLC, and (i) FAO data for subtropical East Asia 
and Southeast Asia. (Source: Mao et al., 2023) 

Mao F, Li X, Zhou G, et al. Land use and cover in subtropical East Asia and 
Southeast Asia from 1700 to 2018[J]. Global and Planetary Change, 2023, 226: 
104157. 

 

To examine the impact of spatial resolution on our results, we conducted a parallel 
analysis using spatial resolution of both 500m and 0.25 degree. We found our 
findings were robust to variations in spatial resolution, though the resolution of LUH2 
is coarse. Specifically, we found the land use change and their impacts on the 
greening trends in our study area remain consistent across both 0.25-degree (Fig. 
S2, Fig. S3) and 500-meter (Fig. 2, Fig. 6) grid resolutions. 



 
Figure S2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 0.25-degree resolution. 

 

Figure 2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 500-m resolution. 



 
Figure S3: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at a 0.25-degree resolution. 

 

Figure 6: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at 500-m resolution. 
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