
Reviewer #2  

R2C1: This manuscript provides a detailed analysis of how land use changes in the 
Southeast Asia region affect vegetation greenness. Utilizing multi-source land cover 
datasets, it reveals how the transformation of land use since the 21st century has 
impacted vegetation greenness, based on machine learning algorithms and the 
SHAP interpreter. The topic of this manuscript is interesting, explaining why China 
and India, despite both being countries with rapidly developing agriculture, make 
significant contributions to greening trends, while the greening trend in Southeast 
Asia remains stagnant. However, certain aspects may need addressing before 
publication. 

Response: We appreciate the accurate summary and positive comments from the 
reviewer, and thank them for recognizing the importance of our work on studying 
regional greening trends. 

 

Major comments 

R2C2: The literature review concerning the driving mechanisms behind vegetation 
greenness changes in Southeast Asia appears to be incomplete and insufficiently 
detailed. It is essential to provide a more comprehensive overview of existing 
research to adequately situate the study within the current body of knowledge. 

Response: According to the suggestion, we further enhanced the literature review 
on the drivers of vegetation greenness in Southeast Asia. It is unfortunate that few 
studies specifically focused on this region (e.g., Satriawan et al., 2024), and we 
gained most of our knowledge on Southeast Asia from global scale studies (e.g., Zhu 
et al., 2016; Piao et al., 2019; Chen et al., 2019; Chen et al., 2022). Specifically, 
these global studies reveal that CO2 fertilization is a primary driver of the greening 
trend globally, including in Southeast Asia (Zhu et al., 2016, Chen et al., 2022). 
Climate change, especially temperature rise, could reduce vegetation growth in the 
tropics (Piao et al., 2019) or drive green-up in maritime Southeast Asia during El 
Niño (Satriawan et al., 2024). However, land-use change, especially deforestation, is 
the predominant factor driving the greenness decline in tropical countries like 
Indonesia (Piao et al., 2019; Chen et al., 2019).  

We have included the corresponding references in our manuscript and the context is 
added in Line 35 to Line 45, “Southeast Asia harbours diverse biodiversity and 
ecosystems. Yet, the trends and drivers of regional greenness remain largely 
underexplored. Previous studies reveal that CO2 fertilization is a primary driver of the 
greening trend in Southeast Asia within a global context (Zhu et al., 2016, Chen et 
al., 2022). The impact of climate change on vegetation growth, however, remains 
uncertain (Piao et al., 2019, Satriawan et al., 2024), although some studies have 
reported that tropical temperature approaching critical thresholds may lead to leaf 
browning (Doughty et al., 2023). Land-use change, particularly deforestation, has 



been found to be a predominant factor causing the decline of greenness in some 
tropical regions (Piao et al., 2019; Chen et al., 2019). However, these studies 
primarily focused on a global scale while the regional mechanisms (i.e., complexity in 
land use change) for greenness change were not fully examined” 
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R2C3: The methodology section requires significant revision due to several critical 
issues: · The use of citations is improper, with several missing references that need 
to be included to support the study's claims and methodology. 

Response: We double-checked the citations in the methodology section and added 
the necessary references. Specifically, we added references (i.e., Euler et al., 2016; 
Chen et al., 2024) to support our statements about land use change in Southeast 
Asia, and references (i.e., Fable, 2020; Sulla-Menashe and Friedl, 2018; Hurtt et al., 
2020; Lundberg et al., 2018; Sitch et al., 2015) about the methodology regarding 
harmonization of different land use datasets, and the XGBoost-SHAP framework and 
scenario simulations (i.e., Lundberg et al., 2018; Sitch et al., 2015).  
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R2C4: · Details regarding the specific version of the dataset used and the 
preprocessing steps undertaken are absent, which is crucial for the reproducibility 
and integrity of the research. 

Response: We apologize for the missing information about the version of the 
dataset we used. In the updated manuscript, we have included details about 
GLOBMAP LAI (v3), Global forest change maps (v1.11), and MODIS land cover 
product (v6.1). We have also made sure that version numbers for other land use 
datasets and climate datasets used in our study were provided. 

 

We hope to clarify that the datasets we collected are all established products. The 
main processing we carried out is to harmonize them into a common grids. To better 
describe the process, we have included a figure and statements in SI (see below). 

 



Figure. S1: A conceptual figure illustrating the processes of harmonizing land cover datasets 
with in a grid with a spatial resolution of 500 meter in this study. Step (1): upscale fine-resolution 
global forest change maps (GFC) to 500 meter to determine forest (A%) and non-forest (B%). Step 
(2) and step (3): calculate percentages of oil palm, evergreen broadleaf forest (EBF), and other forest 
types (OT1) within forest areas. Oil palm percentages are derived by upscaling a 100-meter resolution 
oil palm product to 500 meters. EBF and OT1 percentages are sourced from the MODIS dataset. 
Step (4): Determine cropland and other land uses (OT2) percentages using the LUH2 dataset, 
assuming LUH2 data at a 0.25° grid applies to 500-meter grid cells within each 0.25° grid cell. Note, 
the conceptual figure illustrates only the percentage of each land use, not their specific locations. 

 

R2C5: · The explanation of how multiple land cover datasets were harmonized lacks 
clarity, making it difficult to understand the approach taken. 

Response: To enhance clarity, we moved the flowchart that illustrates how multiple 
land cover datasets were harmonized from the supplementary file to the Methods 
section. Additionally, we added order numbers and corresponding statements from 
Line 100 to Line 115 in this section for further clarification: “As shown in Fig. 1, the 
workflow for harmonizing multiple land cover datasets involved the following steps:  

(1) We first determined the annual percentage of forested (A%) and non-forested 
areas (B%) within each 500m grid cell by aggregating the mean of the annual 30 m 
resolution Global Forest Change v1.11 (GFC) maps (Hansen et al., 2013), using the 
‘reduceResolution()’ function in Google Earth Engine 
(https://developers.google.com/earth-engine/guides/resample).  

(2) Within the forested fraction of each grid cell, we estimated the proportion of oil 
palm (OP) plantations (A1%) using an openly available dataset that covers OP 
distribution from 2001 to 2016 across Malaysia and Indonesia (Xu et al., 2020). To 
estimate the proportion of OP, we calculated the frequency of oil palm pixels in each 
500 m × 500 m window.  

(3) After accounting for the area of OP, the remaining forested area in each grid was 
further categorized into the evergreen broadleaf forest (EBF) (A2%) and other forest 
types (A3%) (i.e., deciduous broadleaf forest, coniferous forest, mixed forest, etc.), 
based on the ratio of EBF to the total forested area provided by MODIS Land Cover 
Type Product (MCD12Q1 v6.1) (Sulla-Menashe and Friedl, 2018). 

(4) For the non-forested fraction of each grid cell, we used the latest version of the 
Land-use harmonization datasets (LUH2) dataset (Hurtt et al., 2020) to estimate the 
percentage of cropland (CRO) (B1%) and other non-forest land uses (B2%) (i.e., 
pasture, grass, etc.). ” 



 
Figure 1: Workflow of the study. Steps (1) to (4) outline the processes for harmonizing multiple 
land cover datasets. Steps (5) to (6) show the establishment and interpretation of the LAI 
prediction machine learning model and the process of scenario simulations. 

 

 

R2C6: · Descriptions of scenario simulations are unclear. When introducing scenario 
simulation schemes, it is imperative to explicitly detail the calculation methods for 
assessing the impact of each factor, which would greatly enhance the manuscript's 
credibility and reliability. 

Response: We apologize for the confusion. In the updated version, we explicitly 
included equations detailing the calculation process and improved the clarity of our 
statements for this section as follows: 

“To quantify and compare the impacts of specific LUCC processes, climate change, 
and elevated CO2 concentrations on vegetation greenness changes, we adopted the 
scenario simulation framework from several factorial attribution analyses (Sitch et al., 
2015). Specifically, we first estimated the LAI trend under five hypothetical scenarios 
(S1 to S5) using the established XGBoost model. The equations are as below,  

𝐿𝐴𝐼!,#,$% = 	𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐶𝑂2!,#,$%, 𝐶𝐿𝐼!,#,$%, 𝑓_𝐸𝐵𝐹!,#,$%, 𝑓_𝐶𝑅𝑂!,#,$%, 𝑓_𝑂𝑃!,#,$%, 𝑓_𝑂𝑡ℎ𝑒𝑟!,#,$%)    (3) 

𝛽𝐿𝐴𝐼!,#,$% = 𝑠𝑙𝑜𝑝𝑒(𝐿𝐴𝐼!,#,$%)                                                 (4) 

Where, 𝐿𝐴𝐼!,#,$% represents the simulated LAI for the ith grid at year of t under 
scenario Sn and 𝛽𝐿𝐴𝐼!,#,$% indicates the LAI trend. The XGBoost stands for the 
established model for LAI prediction using CO2 concentration, climate variable (CLI), 



and land cover types such as fraction of evergreen broadleaf forest (f_EBF), 
cropland (f_CRO), oil palm (f_OP), other land uses (f_Other) (see Method 2.4).  

For different scenarios, we adjusted the input variables according to specific 
assumptions to progressively incorporated different factors. For S1, we assumed 
only CO2 concentration varies from 2001 to 2016, while climate and land uses 
variables (i.e., CLI, f_EBF, f_CRO, f_OP and f_Other) remained constant at their 
values in 2001. For S2, CO2 and climate change over time, with land uses remaining 
unchanged since 2001. S3 to S5 sequentially considered different land use 
processes. S3 involved changes from EBF to CRO using time-varying CO2, climate, 
and CRO area, while keeping OP and other land use types constant post-2001; S4 
included conversions from EBF to both CRO and OP using time-varying CO2, 
climate, CRO and OP areas, while other land uses unchanged since 2001; S5 
encompassed all LUCC changes, with all variables including CO2, climate, and all 
types of LUCC varying over time. 

We then quantified the impacts of each factor on vegetation greening based on 
differences in LAI trends between scenarios,  

𝐷𝑟𝑖𝑣𝑒𝑟% 	= δ𝐿𝐴𝐼	𝑡𝑟𝑒𝑛𝑑 = 	𝛽𝐿𝐴𝐼!,#,$% −	𝛽𝐿𝐴𝐼!,#,$%&'                  (5) 

Here, D𝑟𝑖𝑣𝑒𝑟% measures the impact of the nth driver (ranging from CO2, climate 
change, CRO expansion, OP expansion, to Other LUCC) on LAI trends. Notably, 
D𝑟𝑖𝑣𝑒𝑟& quantifies the impact of CO2, equal to 𝛽𝐿𝐴𝐼!,#,$&.” 

 

 

Minor comments 

R2C7: 1. The discussion mentions, "It is also important to note that our estimation of 
CRO or OP expansion was based on the assumption that the increased areas of 
CRO or OP since 2001 came from EBF." Such a crucial assumption should be stated 
in the methodology section. 

Response: Thank you for the suggestion. We have moved this statement to the 
methodology section Line 220 to Line 222.  

 

R2C8: 2. On the basis of Figure 5, it would be beneficial to add the spatial 
distribution of dominant factors for each pixel. This enhancement would more clearly 
reveal whether the LAI trend for each pixel is positive or negative and which factors 
primarily drive these changes. 

Response: Following the suggestion, we included the spatial distribution of 
dominant factors for each pixel by comparing the impacts of factors on the LAI trend 
(Fig. S6). Consistent with Figure 5, we found that the effect of CO2 fertilization 



dominated the increase in LAI in most areas, accounting for 62.10% of the study 
area. Conversely, CRO expansion was a dominant driver for greenness decline in 
many regions, accounting for 26.33% of the study area.  

We have added the figure below in the supplementary file and included the following 
statement in the Result section, from Line xx to Line xx: “From a spatial perspective, 
we found that elevated CO2 dominated the increase in LAI in most areas, accounting 
for 62.10% of the study area, while CRO expansion was the primary driver in LAI 
decrease in other regions (26.33%), especially coastal areas (Fig. S6)”. 

 
Figure S6: Spatial pattern of dominant drivers of trend in LAI (a), and the percentage of the 
study area dominated by each diver (b). The drivers include elevated CO2 (CO2), climate 
change (CLI), crop expansion (CRO), oil palm expansion (OP) and other land use changes 
(Other). A prefix ‘+’ of the drivers indicates a positive impact on LAI trends, whereas ‘−’ 
indicates a negative impact. 

 

R2C9: 3. It would be preferable to represent Figure S2 as a scatter density plot (like 
Figure 4c,d) to facilitate the observation of changes in SHAP values with features, 
and to prevent potential misinterpretation arising from the clustering of scatter points. 

Response: We agree that representing Figure S2 as a density plot will help avoid 
misinterpretation. Accordingly, we have revised this figure in the updated manuscript, 
as shown below. 



 
Figure S2: The density plots show the changes in SHAP values of each factor on LAI with 
corresponding factor variations. The abbreviations for each factor are available in Table S3. 

 

R2C10: 4. There is an error in Equation (2) that needs to be corrected. 

Response: Thanks for pointing this out. We have corrected the Equation (2). 

𝜙! , 𝑗(𝑥) = (
|𝑆|! (|𝑁| − |𝑆| − 2)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖, 𝑗}) − 𝑓(𝑆 ∪ {𝑖}) − 	𝑓(𝑆 ∪ {𝑗}) + 	𝑓(𝑆)]															(2)

"⊆${!}

 

 

R2C11: 5. Figure 4c,d depicts the coupling effects of f_EBF with f_OP and f_CRO 
rather than the interaction effects mentioned in the caption, making it seem 



indistinguishable from Figure S2a. It is recommended to add SHAP dependence 
plots illustrating the interaction effects for a more in-depth analysis. 

Response: Following the suggestion from the reviewer, we added SHAP interaction 
plots (Fig. 4e-f) on top of the SHAP dependence (coupling) plots (Fig. 4c-d) in the 
main text, to distinguish the figure from Fig. S2. We have also revised Fig. S2 to 
highlight the difference. We ensure that the caption provided for figure 4 is correct to 
avoid confusions. However, we refrained from overinterpreting the interaction plots 
(such as the interactions between f_EBF, f_OP and f_CRO), as by nature, we 
suspect that these three factors are likely dependent on each other (e.g., less f_EBF, 
more f_OP), not necessarily interact with each other (i.e., independent variables) in 
meaningful way. 

 
Figure 5: The impact of factors on LAI. (a) Bee swarm plots show the SHAP values of each 
factor on LAI for each sample. The SHAP value indicates the magnitude and direction of the 
impact on LAI (see Methods). Each dot represents an individual sample, with the color 
indicating the relative values of the specific factor. (b) The bar plot of the mean absolute SHAP 



values of each factor for LAI. (c) The interaction of f_OP and f_EBF, and (d) the interaction of 
f_CRO and f_EBF on LAI. The abbreviations for each factor are available in Table S3. 

 

R2C12: 6. Previous studies have highlighted discrepancies between the cropland 
area changes provided by LUH2 and actual conditions in China and the United 
States. It is worth investigating whether a similar discrepancy exists in Southeast 
Asia. Meanwhile, the spatial resolution of the LUH2 dataset is too coarse for the 
purposes of this study. 

Response: Regarding the accuracy of LUH2 in Southeast Asia, Mao et al. (2023) 
conducted a comparative analysis of LUH2 and eight other land-use products 
against a constructed land-use product for Southeast Asia. They compared several 
datasets, including remote sensing datasets like the MODIS Land Cover dataset 
(MCD), ESA CCI land cover maps (CCI), GLC_FCS30 (GLC), Copernicus Global 
Land Service Land Cover product (CGLS), and GlobeLand30 (GL), along with 
datasets from FAO, HYDE, and SAGE (Mao et al., 2023). Their analysis found that 
the cropland area estimates for this region were most closely aligned with those from 
LUH2, with a correlation coefficient (r) of 0.98 (Mao et al., 2023; Figure R1). This 
consistency indicates that LUH2 provides reliable cropland data for Southeast Asia.  



 
Figure. R1. Taylor diagrams comparing cropland area estimates with (a) LUH2, (b) HYDE, (c) 
SAGE (d) MCD, (e) GL, (f) CCI, (g) CGLS, (h) GLC, and (i) FAO data for subtropical East Asia 
and Southeast Asia. (Source: Mao et al., 2023) 

Mao F, Li X, Zhou G, et al. Land use and cover in subtropical East Asia and 
Southeast Asia from 1700 to 2018[J]. Global and Planetary Change, 2023, 226: 
104157. 

 

To examine the impact of spatial resolution on our results, we conducted a parallel 
analysis using spatial resolution of both 500m and 0.25 degree. We found our 
findings were robust to variations in spatial resolution, though the resolution of LUH2 
is coarse. Specifically, we found the land use change and their impacts on the 
greening trends in our study area remain consistent across both 0.25-degree (Fig. 
S2, Fig. S6) and 500-meter (Fig. 2, Fig. 6) grid resolutions. 



 
Figure S2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 0.25-degree resolution. 

 

Figure 2: Land use composition and its changes from 2001 to 2016 in the study area, analyzed 
at a 500-m resolution. 



 
Figure S6: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at a 0.25-degree resolution. 

 

Figure 6: The spatial distribution of the pixel-wise impacts of each process on the greening 
trends, analyzed at 500-m resolution. 

 


