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Abstract The dynamic-statistic prediction shown excellent performance on monthly10

and seasonal precipitation prediction in China and has been applied on several11

dynamical models. In order to further improve the prediction skill of summer12

precipitation in China, the Unequal-Weighted Ensemble prediction (UWE) based on13

the dynamic-statistic combined schemes is presented, and its possible impact factors14

are also analyzed. Results indicate that the UWE has shown promise in improving the15

prediction skill of summer precipitation in China, on account to the UWE can16

overcome shortcomings of the structural inadequacy of individual dynamic-statistic17

prediction, reducing formulation uncertainties, resulting in more stable and accurate18

predictions. Impact factors analysis indicates that 1) the station-based ensemble19

prediction with ACC being 0.10-0.11 add PS score being 69.3-70.2, has shown better20

skills than the grid-based one, as the former produces probability density distribution21

of precipitation being closer to the observation than the latter. 2) The use of the spatial22

average removed anomaly correlation coefficient (SACC) may lower the prediction23

skill and introduce obvious errors on estimating the spatial consistency of prediction24

anomalies. SACC could be replaced by the revised anomaly correlation coefficient25

(RACC), which is calculated directly using the precipitation anomalies of each station26

without subtracting the average precipitation anomaly of all stations. 3) The low27

dispersal intensity among ensemble samples of UME implies the historical similar28

error selected by different approach is quite close to each other, making the correction29

on the model prediction is more reliable. Therefore, the UWE is expected to further30

improve the accuracy of summer precipitation prediction in China by considering31

impact factors such as the grid32
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or station-based ensemble approach, the method of calculating the ACC, and the33

dispersal intensity of ensemble samples in the application and analysis process of34

UWE.35

36
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Introduction41

Accurate prediction of summer precipitation across China is paramount for dealing42

with critical issues such as flood and drought management, economic development,43

and ensuring food security. However, this task is fraught with challenges due to the44

intricate interplay among various atmospheric circulation components, including the45

East Asian summer monsoon (Ding, 1994; Lu, 2005), the Northwest Pacific46

subtropical high (Tao, 2006), and the East Asia-Pacific teleconnection patterns47

(Huang, 2004; Huang, 1987). Additionally, external influences, such as the El48

Niño-Southern Oscillation (ENSO) (Sun et al., 2021) and the snow cover on the49

Tibetan Plateau (Si and Ding, 2013), further complicate the prediction process. Due to50

these complexities, increasing the accuracy of summer rainfall prediction in China51

still faces challenges, the pursuit of more precise summer rainfall predictions in China52

is an endeavor that warrants the utmost attention from climate scientists (Gong et al.,53

2016; Wang et al., 2012).54

55

Over the past few decades, there has been a remarkable progression in the foundation56

of observational data and theoretical understanding, which has significantly enhanced57

the capabilities of climate dynamical models in predicting seasonal rainfall58

(Gettelman et al., 2022; Wu et al., 2017). High-resolution climate simulations, such as59

those with atmospheric resolutions of approximately 50 km and oceanic resolutions of60

0.25°, have been successfully implemented by several research institutions (Roberts et61

al., 2016; Satoh et al., 2014; Wu et al., 2021). These dynamic models have also62

demonstrated success in long-term prediction of atmospheric circulation patterns and63

sea surface temperatures in low-latitude regions (Zhu and Shukla, 2013). However,64

the current performance of seasonal predictions for key climate elements, including65

rainfall and temperature, particularly in monsoon-influenced areas like East Asia66

(Gong et al., 2017; Wang et al., 2015), remains somewhat constrained due to inherent67

limitations in parameterization schemes and the challenges associated with boundary68

value problems (Wang et al., 2015). This has spurred meteorologists to delve deeper69

into understanding how to effectively enhance the seasonal prediction skills of climate70

models to better align with the needs of end-users (Gong et al., 2016). It is well71

recognized that regional climate characteristics can significantly influence local72

rainfall patterns. Despite this, dynamic models still struggle to accurately capture73

these nuances, suggesting that there is potential for improvement in rainfall prediction74
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through a statistical-dynamic approach (Specq and Batté, 2020). This integrated75

methodology could provide a more robust framework for prediction, ultimately76

leading to more reliable and actionable climate predictions.77

78

To enhance the precision of rainfall prediction, Chou (1974) initially suggested the79

integration of dynamical model data with statistical analogue information. This80

approach leverages the prediction errors from historical years with analogous initial81

conditions, such as similar circulation anomalies, snow cover, and sea surface82

temperatures (SST), to refine dynamic-analogue correction techniques. For instance,83

Huang et al. (1993) introduced the evolutionary analogue-based multi-time prediction84

method, (Ren and Chou, 2006; Ren and Chou, 2007) employs historical analogue data85

to estimate model errors in accordance with the atmospheric analogy principle, (Feng86

et al., 2020; Feng et al., 2013) further develops this concept with their correction87

method focused on key regional impact factors. Wang and Fan (2009) proposed a88

scheme that integrates model forecasts with the observed spatial patterns of historical89

"analog years," while Gong et al. (2018) advanced the leading mode-based correction90

method. In addition to these advancements, dynamic-statistic correction methods have91

been successfully applied to rainfall predictions in regions such as North China (Yang92

et al., 2012) and Northeast China (Xiong et al., 2011b). Furthermore, the application93

of these dynamic-statistic prediction has been extended to seasonal predictions,94

including those for autumn, winter, and spring (Lang and Wang, 2010). At the Beijing95

Climate Center, various error selection methods have been operationalized in rainfall96

prediction, including the raw field-based similar error selection method, the empirical97

orthogonal function-based similar error selection method, the grid-based similar error98

selection method, the regional key impact factors-based similar error selection method,99

and the abnormal factor-based similar error selection method (Feng et al., 2020).100

These innovative approaches underscore the ongoing efforts to harness both101

dynamical and statistical insights to achieve more accurate and reliable rainfall102

predictions.103

104

Research has consistently demonstrated the benefits of integrating predictions from105

multiple climate models. For instance, the Bayesian model averaging approach (Luo106

et al., 2007) and the moving coefficient ensemble approach (Yang et al., 2024) are107

two such approaches that have shown promise. The use of a multi-model ensemble108
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can mitigate the collective local biases that can occur in space, time, and across109

different variables when using individual models (Krishnamurti et al., 2016). This110

approach not only assigns higher weights to the outputs of more accurate models but111

also enhances overall predictive skill and reduces the uncertainty associated with112

single-model ensembles (Yan and Tang, 2013). By accounting for comprehensive113

uncertainties stemming from both model discrepancies and initial conditions,114

multi-model ensembles often outperform single models (Palmer et al., 2004).115

Furthermore, the diverse assumptions inherent in different model frameworks can116

potentially compensate for our incomplete understanding of atmospheric dynamics117

(Yan and Tang, 2013). The multi-model approach has been successfully applied118

across a broad spectrum of forecasting needs, including medium-range weather119

forecasting (Candille, 2009) and seasonal climate prediction (Vitart, 2006). Given the120

aforementioned advantages of dynamic-statistic methods in seasonal predictions, it is121

imperative to adopt an ensemble approach that combines the predictions from these122

methods. This integration is crucial for further enhancing prediction accuracy and123

reliability. By leveraging the collective strengths of various models and techniques,124

we can achieve a more robust and nuanced understanding of climate patterns,125

ultimately leading to improved prediction capabilities.126

127

In the process of examining the ensemble prediction, it is crucial to take into account128

the various factors that can influence its predictive accuracy (Krishnamurti and129

Kumar, 2012). The ensemble's output is particularly sensitive to several key elements:130

the number of models incorporated, the duration of the dataset utilized for training,131

and the distribution of weights for both downscaling and the integration of multiple132

models or schemes (Krishnamurti et al., 2016). Both grid-based reanalysis data and133

station-based observational data can serve as the foundation for model training or134

validation (Ding et al., 2004; Gong et al., 2016; Wang et al., 2015). It is therefore135

essential to explore and discuss the differential impact that the use of these two136

distinct types of datasets may have on ensemble predictions. Furthermore, the137

dispersion of samples across different models or methodologies cannot be overlooked,138

as it also affects the ensemble's predictive skill, and deserve certain attention (Houze139

et al., 2015).140

141

Based on above statement, the aim of this research is to construct an142
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Unequal-Weighted Ensemble prediction (UWE) employing a comprehensive array of143

dynamic-statistic methods and to explore the potential factors that may influence its144

predictive capabilities. Specifically, the study is designed to delve into three primary145

areas: (1) Elucidate the process of establishing the UWE through a suite of146

dynamic-statistic methods, highlighting the distinctions between grid-based147

ensembles and station-based ensembles. (2) Examine the most effective148

methodologies for evaluating the spatial congruence between observational data and149

the UWE's output. (3) Investigate the connection between the dispersal of samples150

across various dynamic-statistic methods and the predictive accuracy of the UWE.151

This study will provide a comprehensive analysis of the UWE's development and its152

performance, offering valuable insights into the factors that influence its predictive153

success.154

155

1 Data and Method156

1.1 Data157

The monthly precipitation data of 1634 stations during 1983–2020 are from the158

National Meteorological Information Center of the China Meteorological159

Administration. The monthly grid precipitation data during 1983–2020 is derived160

from the Combined Rainfall Analysis (CMAP) data of the U.S. Climate Prediction161

Center. The model prediction data for summer precipitation in China are hindcast162

datasets of the BCC_CPSv3. Monthly climate indices during 1983–2020 including163

circulation indices (i.e. AO, AAO), SST indices (i.e. Nino 3.4, Nino 4, Pacific164

Decadal Oscillation), snow cover indices (i.e. Tibet snow cover area index, Northeast165

China snow cover area index) is available from the Beijing Climate Center website166

(http://cmdp.ncc-cma.net/Monitoring/ cn_index_130.php) (Gong et al., 2016).167

1.2 Climate regions division168

Climate in China influence by various climate systems, such as the Monsoon,169

mid-high latitude circulation system and westly jet circulation system etc. (Ding, 1994;170

Li et al., 2008; Wu et al., 2017). Since summer rainfall has regional characteristics171

and potential impact factors, we divide the whole country into 8 regions (Feng et al.,172

2020) in terms of South China (110º~120ºE, 20º~25ºN), East China (110º~123ºE,173

25º~35ºN), North China (110º~123ºE, 35º~42.5ºN), Northeast China (110º~135ºE,174

42.5º~55ºN), Eastern Northwest China (90º~110ºE, 35º~43ºN), Western Northwest175

China (75º~90ºE, 35º~48ºN), Tibet Area (80º~100ºE, 27º~35ºN and Southwest China176
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(95º~110ºE, 22º~33ºN). Each region is treated separately by the dynamic-statistic177

prediction process.178

179

1.3 The dynamic-statistic predictions180

Numerical model is an approximation of the behavior of the actual atmosphere. The181

dynamic-statistic prediction is to utilize the information of historical analogues to182

estimate model’s prediction errors through the statistical method, thereby to183

compensate the model deficiencies and reduce the model errors (Huang et al., 1993).184

As addressed by Feng et al. (2020), the dynamic-statistic prediction can be explained185

by equation (1),186

)p(-)(p~)p()(p̂ jj00   , （1）187

Where )(p̂ 0 is the corrected prediction, )(p 0 is the original model prediction,188

and )(p j is the model prediction of historical year having the similar initial189

conditions as current one, )(p~ j is the corresponding historical observation. Eq. (1)190

is the integral form of the similarity error correction equation, in which the error term191

of the similar historical prediction )p(-)(p~ jj  is added to the prediction results of192

the numerical model.193

)(ˆ)(p̂ 00  EEstimate  , (2)194

The core idea of the dynamic-statistic prediction is developing the scheme how to195

select the similar year and estimate historical prediction errors(Feng et al., 2013;196

Gong et al., 2016). Eq. (2) transforms improvement in the dynamical model prediction197

into the estimation of model error (Feng et al., 2013; Ren and Chou, 2006; Xiong et198

al., 2011b).199

200

1.4 Schemes for the dynamic-statistic prediction201

Fig.2 presents the flow chart of the dynamic-statistic prediction method. The key step202

is the scheme for selecting the historical similar years, which is the step in the red box.203

Different scheme of selecting similar years from the historical dataset corresponds to204

different dynamic-statistic prediction scheme. In previous years, a series of the205

dynamic-statistic prediction schemes has been developed for selecting similar years206

from the historical information, and excellent results have been achieved in predicting207

summer precipitation anomalies in China (Feng et al., 2013; Wang and Fan, 2009;208
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Wang et al., 2015; Xiong et al., 2011b).209

210

211

Fig. 1 The flow chart of the dynamic-statistic prediction method. The key step is the212

scheme for selecting the historical similar years, which is the step presented in the red213

dash box.214

215

Five kinds of the dynamic-statistic prediction approach representing different216

scheme for analogue error selection are introduced as follows,217

1) The scheme for original model prediction-based similar error selection (ORM).218

With the dynamical model original prediction, select four historical years has the most219

similar feature of anomaly distribution as the current year’s prediction. Then calculate220

the analogue prediction error using these similar years, add to the current prediction221

and produce the corrected prediction.222

2) The scheme for Empirical Orthogonal Function mode-based similar error223

selection (EOF). Calculating the model prediction error filed and produce the224

corresponding spatial modes and corresponding principal components using the EOF225

method. Similar years is selected based on the Euclidean distance of the principal226

components. Historical similar error is calculated using the selected similar years and227

added to the current model prediction, which then produce the corrected prediction228

(Gong et al., 2018).229

3) The scheme for the regional average precipitation-based similar error selection230

(REG). Dividing the whole country into 8 regions using according to the introduction231

of section 1.2. Selecting the climate indices having high correlations with the regional232

average precipitation of each region. With these highly correlated indices,233
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multi-factors are randomly configurated and used to calculate the shortest Euclidean234

distance to choose the historical similar years and produce the similar error.235

Cross-validation are carried out to correct the model prediction error and obtain the236

optimal multi-factor configuration. Based on this final optimal multi-predictor237

configuration, the dynamic-statistic prediction can be implemented (Xiong et al.,238

2011b).239

4) The scheme for the grid precipitation-based similar error selection (GRD).240

The similar error selection is the same as the REG approach, but the model prediction241

error correction is carried out on each grid point within a region.242

5) The scheme for the abnormal factors based similar error selection (ABN).243

Establish factors having significant correlations with the regional precipitation.244

Determine the anomaly threshold of each factor and select the key factors reaching245

the threshold. Based on the selected abnormal factors, similar years are selected by246

the shortest Euclidean Distance of factor set between current year and historical years.247

Then the analogue errors can be calculated by using the method of weighted average248

integration and be added on the current year’s model prediction, which can produce249

the corrected prediction (Feng et al., 2020).250

The selected similar years are not consistent with each other among these five251

schemes, the analogue errors usually show similar pattern, but have difference in252

detail. Besides the dynamic-statistic prediction, the system error correction are also253

presented for comparation.254

255

1.5 The ensemble for dynamic-statistic prediction256

Based on the five the dynamic-statistic prediction schemes, the unequal257

weighting ensemble prediction (UWE) mE is calculated as equation (3),258

1
( 5)n

m km kmk
E w F n


  , （3）259

Where kmF is the single prediction of each dynamic-statistic scheme and kmw is the260

weight coefficient of each member. n denotes the total number of dynamic-statistic261

scheme, m denotes the current prediction year. kw can be calculated using equation262

(4).263

1

( )( )
| ( ) |
k

k n
kk

T iw i
T i






, （4）264

https://doi.org/10.5194/egusphere-2024-3762
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



１０

Where ( )kT i is the correlation coefficients between the dynamic-statistic prediction265

and observation at each station or grid point i . One year out validation is266

implemented to define weight coefficients. The anomaly correlation coefficient267

(ACC), PS score, and root mean standard error are used for evaluating the prediction268

skill for summer precipitation in China. The PS score can be calculated using269

equation (5).270

100
2211000

221100 





MNfNfNfNN
NfNfNfPS , （5）271

Where N is the total number of stations, is the number of the correctly predicted272

stations with abnormal within (-20%, 20%), 0f is weight coefficient of 0N ； 1N and273

1f are for the stations with abnormal within (-50%, -20%) or (20%, 50%); 2N ， 2f274

are for the stations with abnormal within (-100%, -50%) or (50%, 100%); M is the275

total number of correctly predicted stations with abnormal below -100% or above276

100%. In this study, we set 0 2f  ， 1 2f  and 2 4f  .277

Normally, the spatial average removed ACC (SACC) is calculated by formular (6) to278

assess the spatial consistency of prediction for summer precipitation in China (Fan et279

al., 2012; Xiong et al., 2011b).280

 

 








n

i

n

i sisi

n

i sisi

yyxx

yyxx
R

1 1
22

1

)()(

))((
, (6)281

Where n is the total number of stations, ix is the summer precipitation abnormal of282

observation at station i, while iy is the summer precipitation abnormal of prediction283

at station i. x and y are respectively the average abnormal of observation and284

prediction for all the stations. This so-called SACC need to subtract the average285

precipitation anomaly of all stations from precipitation anomaly of each station before286

calculating the ACC.287

In order to confirm if the SACC can properly estimate the spatial consistency of288

prediction for summer precipitation, we also calculated the revised anomaly289

correlation coefficient (RACC) using formular (7),290













n

i ti
o
i

n

i ti
o
i

n

i ti
o
iti

o
i

yyxx

yyxx
R

1
2

,1
2

,

1 ,,*

)()(

))((
(7)291
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Where n is the total number of stations, o
ix and o

iy are respectively the summer292

precipitation of observation and prediction at station i. tix , and tiy , is the average of293

observation and prediction of summer precipitation for all the years at each station i.294

The RACC is calculated directly using the precipitation anomalies of each station295

without removing the average precipitation anomaly of all stations.296

297

2 The summer precipitation prediction using the dynamic-statistic scheme298

The RACCs and PSs of the summer precipitation in China produced by the five299

dynamic-statistic methods are presented in Table 1. The 10-year average of PS score300

of the dynamic-statistic methods varied from 67.4-69.6, which have the better301

performance than that of the SYS method (65.8). In figure 2, the temporal correlation302

coefficients of the dynamic-statistic methods are higher than the SYS method over303

most China with the distribution spatial pattern is similar to each other, but the most304

improved areas varied among different method. It is further confirmed with previous305

studies that the merger of prediction error estimated via the statistical method and306

dynamic model-based original output represents a potential means for improving307

prediction skill of summer rainfall in China (Feng et al., 2020).308

309

Table 1 10-year average of RACC and PS of the summer precipitation prediction310

from 2011 to 2020 for the dynamic-statistic predictions and system error correction.311

Scheme ORM EOF REG

RACC 0.10 0.03 0.01

PS 69.5 69.6 67.4

Scheme GRD ABN SYS

RACC 0.05 0.02 -0.08

PS 68.2 69.4 65.8

312

313
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314

Fig. 2 The differences of the temporal correlation coefficients for summer315

precipitation predictions in China from 2011 to 2020. Values indicate differences of316

the dynamic-statistic method minus the SYS method. (a) ORM, (b) EOF, (c) REG, (d)317

GRD, and (e) ABN.318

319

Based on the equation of formular (1), four schemes of UWE prediction using the320

single dynamic-statistic predictions as ensemble members and their corresponding321

one year out cross validations are presented in Table 2. In order to distinguish the322

performances UWE prediction against the grid-point observation and station323

observation, both the grid-based ensemble and station-based ensemble are calculated.324

Comparing with the single scheme of the dynamic-statistic prediction, the E4 scheme325

has the best skill among the four ensemble schemes, with RACC being 0.9 and PS326

score being 70. The grid-based ensemble can somewhat improve the summer327

precipitation prediction in China, but its effect varied among different schemes. The328

skills of the station-based ensemble are obviously better than the grid-based one, with329

RACC being 0.10-0.11 add PS score being 69.3-70.2. As addressed by Yan and Tang330

(2013) the multi-model ensemble approach (MME) considers the structural331

inadequacy of individual models and can reduce model formulation uncertainties. The332

reason why the ensemble of multiple dynamic-statistic predictions can improve the333

summer precipitation in China is similar to that of MME, which can somewhat334

overcome the shortcomings of a single prediction and produce the more stable335

prediction.336

337

Table 2 10-year average of RACC and PS score of summer precipitation prediction of338

the four UWE in China during 2011 ~ 2020.339

Ensemble

Scheme
Ensemble member

Grid Ensemble Station Ensemble

RACC PS RACC PS

E1 ORM, GRD 0.04 69.2 0.11 69.3

E2 ORM, GRD, EOF 0.07 69.3 0.11 70.2
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E3 ORM, GRD, EOF, REG 0.08 69.9 0.11 70.7

E4 ORM,GRD,EOF,REG,ABN 0.09 70.0 0.10 70.1

340

341

Fig. 3 Scatter distribution of differences of (a) PS and (b) RACC values for UWE of342

summer precipitation in China during 2011 - 2020. Values indicates the differences of343

station-based ensemble minus the grid-based ensemble.344

345

In Fig. 4, the TCC of the station-based ensemble for summer precipitation prediction346

show positive values in most China, with the high value centers distributed in western347

South China, central China, southern North China and western Northeast China etc.348

The similar spatial distributions are observed in predictions of the four station-based349

ensemble schemes (Fig. 4 a, c, e, g). The TCC differences between the station-based350

ensemble and the grid-based ensemble indicate that the former has higher than values351

than the later in most areas of China, except for part of Central China and East China352

(Fig. 4 b, d, f, h). The spatial distribution of TCC indicates the improvement of the353

station-based ensemble is suitable for most stations in China and implies this354

approach can make the summer precipitation prediction being closer to the355

observation. Bueh et al. (2008) also addressed that the training phase of multi-model356

ensemble learns from the recent past performances of models and is used to determine357

statistical weights from a least square minimization via a simple multiple regression.358

During the training process, more precise objective data can produce better weight359

coefficients and lead to more accurate ensemble result, which might be the reason for360

the station-based ensemble produce better predictions of summer precipitation in361

China than the grid-based one.362

Fig.5 indicates that the probability density distribution of station-based ensemble363

predictions is closer to the observation especially at the peak part than the gird-based364
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ensemble and this feature is observed in four ensemble predictions. If the onsite365

observation dataset can be used for training, we may have a parameterization scheme366

containing precise information for each single station, which may be of help to367

produce the prediction being close to the real situation of summer precipitation in368

China. Since the gird-based dataset normally is the reproduced observation data,369

which may lose certain precise information especially for those extreme values. This370

flaw of the grid data may cause it to have poor performance on improving the371

prediction accuracy than the station data(Kim et al., 2012; Xiong et al., 2011a; Yang et372

al., 2024).373
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374

Fig. 4 Spatial distribution of TCC of station-based UWE for summer precipitation in375

China during 2011-2020 (a1-a4), TCC differences of station-based ensemble minus376

the grid-based ensemble (b1-b4). (a1, b1) Ensemble scheme E1; (a2, b3) Ensemble377

scheme E2; (a3, b3) Ensemble scheme E3; (a4, b4) Ensemble scheme E4.378

379

https://doi.org/10.5194/egusphere-2024-3762
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



１６

380

Fig. 5 Probability density distribution of the total precipitation for observation and381

UWE. (a) Ensemble Scheme E1, (b) Ensemble Scheme E2, (a) Ensemble Scheme E3,382

(a) Ensemble Scheme E4.383

384

3 Calculating the spatial similarity of ensemble prediction.385

In Fig. 6, the SACCs and RACCs are not consistent with each other, and the former386

are more frequently lower than the latter. The 10-year average values of SACC for387

each ensemble prediction for summer precipitation in China are also lower than the388

RACC (table 1). The SACC is calculated after subtracting the spatial average of389

anomaly for all the stations from the original precipitation anomaly. This approach390

may cause the new value for each station can’t reflect the real situation and lead to a391

decrease of RACC between the prediction and observation. In fig.7 the correlation392

between the RACC and PS are all higher than those between the SAAC and PS,393

which further indicated RACC can better assess the prediction skill of summer394

precipitation. It is also noted that the differences between the SACC and RACC are395

quite obvious in 2011 and 2015 for ensemble schemes E2, E3, and E4 (Fig. 6 b, c, d).396

Comparing with the PS scores, it seems that the RACC for each prediction have more397

consistent feature than the SACC. In order to figure out if the RACC has the better398

performance than the SACC on indicating the spatial consistency of precipitation399

prediction, the observation and prediction of summer precipitation in 2011 and 2015400
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are respectively presented in Fig. 7. Comparing with the observation (Fig. 7 a5),401

predicted precipitation anomalies in summer 2011 show consistent feature in most402

China (Fig. 7 a1-a4). The PS scores of four ensemble schemes are respectively 69.5,403

68.7, 73.5, 74.3, and RACCs are 0.08, 0.07, 0.10, 0.11, which properly indicate the404

prediction skill of these four predictions on the summer precipitation in 2011. It is405

also noted that the SACCs of 2011 prediction are respectively 0.01, -0.08, -0.11 and406

-0.14, which obviously have flaws in assessing the performance of these four schemes407

on predicting the precipitation. This shortcoming of the SACC is also exhibited in the408

prediction of summer precipitation anomalies in 2015 (Fig. 7 b1-b5), owing to its409

improperly low SACC values being 0.01, -0.07, -0.13, -0.17, respectively.410

411

Table 3 10-year average of RACC, SACC of station-based ensemble predictions for412

summer precipitation in China during 2011-2020.413

E1 E2 E3 E4

RACC 0.11 0.11 0.11 0.10

SACC 0.10 0.08 0.07 0.05

414

415

Fig. 6 Annual RACC, SACC and PS of station-based ensemble predictions for416

summer precipitation in China. Prediction of (a) E1, (b) E2, (c) E3 and (d) E4417

approach, respectively.418
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419

Fig. 7 The spatial distribution of anomalies (unit: %) of observation and prediction of420

summer precipitation in 2011 and 2015. (a1-a4) prediction of scheme E1-E4, and (a5)421

observation for 2011; (b1-b4) prediction of scheme E1-E4, and (b5) observation for422

2015.423
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424

4. Impact of dispersal intensity on the ensemble prediction.425

The dispersal intensity (Di) also called as the coefficient of variation, which is a426

variable measure the differences among single samples and can be calculated by427

formal (5). The dispersal intensity is also a relative measure of variability that428

indicates the size of a standard deviation in relation to its mean. It is a standardized,429

unitless measure that allows you to compare variability between disparate groups and430

characteristics.431

2

1
( ) /

n

mkm
k

m

F F n
Di

F






(8)432

Since the dispersal intensity of each statistic-dynamic prediction has obvious433

interannual variation, it is necessary to analyze its probable impact on the ensemble434

prediction of summer prediction in China. Fig. 8 presents the relationship of ACC -435

dispersal intensity of summer precipitation prediction, in which high ACCs of summer436

precipitation prediction mostly corresponds to the low dispersal intensity among437

statistic-dynamic predictions. The variabilities of the signal and noise for the438

ensemble prediction can be measured as the variance of the ensemble mean and439

ensemble spread of all the initial conditions (Liu et al., 2019; Zheng et al., 2009), the440

sampling error on measuring the signal variance, the more reasonable estimation of441

the signal variance can be given and used to measure the overall potential442

predictability of the prediction system (DelSole, 2004; DelSole and Tippett, 2007).443

The UWE has the similar theory as the ensemble prediction, the low dispersal444

intensity among ensemble samples implies the historical similar error selected by445

different approach is quite closet to each other, which makes the correction on the446

model prediction is more trustable and then produce a more accurate prediction than447

those cases with high dispersal intensity.448
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449

Fig. 8 The relationship between each UME’s ACC and the dispersal intensity of each450

summer precipitation prediction during 2011-2020.451

452

453

454

455
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456

Fig. 9 The spatial distinction of the 10-year average of dispersal intensity (a, c, e,457

g) and TCC (b, d, f, h) of UME scheme of E1-E4 during 2011-2020.458

459

In Fig. 9, the 10-year average of dispersal intensity of each UME scheme show the460

similar pattern as the spatial distribution of TCC of summer prediction produced by461

UME. Except for part of Northwest China and middle East China, the low dispersal462

intensity also tends to produce high TCC of statistic-dynamic combined ensemble463

prediction in most China. The low dispersal intensity among the single prediction464

corresponds to the major physical process captured by each prediction scheme is465

similar with each other, which is help of the more reasonable estimation of the signal466

variance and produce the better precipitation predictions.467

468

5. Conclusions and discussion469

This study presents the UWE of the dynamic-statistic schemes in order to enhance470

summer precipitation prediction in China. The analysis also includes an examination471

of factors that may impact the prediction skill of UWE, such as grid-based and472

station-based prediction, the calculation of prediction skill, and the influence of473

sample dispersion on prediction accuracy.474

475

UWE's performance surpasses the model and the dynamic-statistic scheme predictions,476

potentially due to its ability to overcome individual model or scheme inadequacies,477

reduce formulation uncertainties, and yield a more stable and accurate predictions.478

The average RACC and PS values for the station-based ensemble prediction479

fluctuated between 0.10-0.11 and 69.3-70.2 from 2011 to 2020, indicating480

significantly higher proficiency compared to the grid-based ensemble prediction. The481

ensemble prediction based on station data can produce precipitation with a probability482

density distribution function that is closer to the observed data compared to the483
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grid-based prediction, making the former more accurate. The use of the SACC needs484

to remove the spatial average of the whole stations from the original value, which485

may produce inaccurate station values and lead to a lower correlation between486

predictions and observations. This makes SACC unsuitable for estimating the spatial487

consistency of summer precipitation predictions. The commonly used SACC should488

be supplanted by the updated RACC, which is computed by directly utilizing the489

precipitation anomalies at each station, without the need to deduct the overall average490

precipitation anomaly from all stations.491

492

Moreover, the higher RACCs in summer precipitation prediction are predominantly493

associated with lower dispersal intensity among the dynamic-statistic predictions.494

This indicates that a more concentrated ensemble, where predictions are closely495

aligned, tends to result in more accurate forecasts. Accordingly, the dispersal intensity496

of ensemble samples is a crucial factor affecting the prediction accuracy of497

dynamic-statistic combined UWE. UWE shares a similar theoretical foundation with498

ensemble prediction. Low dispersal intensity among ensemble samples suggests that499

the historical similar errors identified by various methods are closely aligned. This500

alignment enhances the reliability of corrections applied to model predictions, thereby501

yielding more accurate forecasts compared to cases with high dispersal intensities.502
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