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Abstract. The planetary boundary layer (PBL) height (PBLH) is an important 21 

parameter for various meteorological and climate studies. This study presents a multi-22 

structure deep neural network (DNN) model, which can estimate PBLH by integrating 23 

the morning temperature profiles and surface meteorological observations. The DNN 24 

model is developed by leveraging a rich dataset of PBLH derived from long-standing 25 

radiosonde records and augmented with high-resolution micro-pulse lidar and Doppler 26 

lidar observations. We access the performance of the DNN with an ensemble of ten 27 

members, each featuring distinct hidden layer structures, which collectively yield a 28 

robust 27-year PBLH dataset over the Southern Great Plains from 1994 to 2020. The 29 

influence of various meteorological factors on PBLH is rigorously analyzed through 30 

the importance test. Moreover, the DNN model's accuracy is evaluated against 31 

radiosonde observations and juxtaposed with conventional remote sensing 32 

methodologies, including Doppler lidar, ceilometer, Raman lidar, and Micro-pulse 33 

lidar. The DNN model exhibits reliable performance across diverse conditions and 34 

demonstrates lower biases relative to remote sensing methods. In addition, the DNN 35 

model, originally trained over a plain region, demonstrates remarkable adaptability 36 

when applied to the heterogeneous terrains and climates encountered during the 37 

GoAmazon (Tropical Rainforest) and CACTI (Middle Latitude Mountain) campaigns. 38 

These findings demonstrate the effectiveness of deep learning models in estimating 39 

PBLH, enhancing our understanding of boundary layer processes with implications for 40 

enhancing the representation of PBL in weather forecasting and climate modeling. 41 

 42 
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1 Introduction 43 

The Planetary Boundary Layer (PBL) is the atmosphere's lowest part, where the 44 

Earth's surface directly influences meteorological variables, impacting the climate 45 

system (Garratt, 1994; Kaimal and Finnigan, 1994). The PBL height (PBLH) is a 46 

meteorological factor that strongly influences surface-atmosphere exchanges of heat, 47 

moisture, and energy (Stull, 1988; Caughey, 1984; Holtslag and Nieuwstadt, 1986; 48 

Mahrt, 1999; Helbig et al., 2021; Guo et al., 2024; Beamesderfer et al., 2022). In 49 

addition, PBLH it is a crucial variable for monitoring and simulating surface pollutant 50 

behaviors since it determines the volume available for near-surface pollutant dispersion 51 

(Li et al., 2017; Su et al., 2024a; Tucker et al., 2009; Wang et al. 2020). Due to its 52 

impact on cloud evolution and the development of convective systems, PBLH is also a 53 

key parameter in numerical weather forecasts and climate projections models 54 

(Deardorff, 1970; Kaimal et al. 1976; Menut et al., 1999; Park et al., 2001; Emanuel, 55 

1994; Guo et al., 2017, 2019; Lilly, 1968; Matsui et al., 2004).  56 

Radiosonde (SONDE) remains the standard method for estimating PBLH, yet it is 57 

hampered by limitations in temporal frequency, restricting its ability to capture the 58 

whole diurnal cycle of PBL development (Stull, 1988; Seidel et al. 2010; Guo et al. 59 

2021; Liu and Liang, 2010). To overcome these challenges, there has been an increasing 60 

dependence on remote sensing techniques, especially lidar systems. These techniques 61 

capture atmospheric vertical information (e.g., aerosols, temperature, humidity, and 62 

wind) at high temporal and vertical resolutions, leading to remote sensing-based 63 

retrievals of PBLH (Menut et al., 1999; Kotthaus et al., 2023; Sawyer and Li, 2013; 64 
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Wang et al., 2023). The remote sensing systems, including Doppler lidar (Barlow et al. 65 

2011), ceilometer (Zhang et al. 2022), Raman lidar (Summa et al. 2013), and Micro-66 

pulse lidar (Melfi et al., 1985), utilize laser-based technology to track PBLH diurnal 67 

evolutions, helping us understand the PBL dynamics evolutions (Cohn and Angevine, 68 

2000; Davis et al., 2000). In addition, wind profilers can estimate the PBLH using 69 

algorithms that analyze the signal-to-noise ratio from wind profiler data (Molod et al. 70 

2015; Solanki et al. 2022; Liu et al. 2019; Salmun et al. 2023; Bianco and Wilczak 71 

2002; Bianco et al. 2008; Tao et al. 2021). 72 

However, the advancement in remote sensing for the estimation of PBLH 73 

challenges is still posing in bridging the results obtained by different remote sensing 74 

instruments with those obtained from the SONDE measurements (Zhang et al. 2022; 75 

Chu et al., 2019). Specifically, interpreting aerosol, turbulence, and moisture profiles 76 

derived from remote sensing techniques to determine PBLH bears inherent limitations 77 

due to the unstable signal-to-noise ratio (Kotthaus et al., 2023; Krishnamurthy et al., 78 

2021). This issue is compounded by the different measurement methodologies and 79 

definitions employed by various remote sensing tools, leading to uncertainties when 80 

comparing their PBLH estimates to the retreivals derived from SONDE measurements 81 

(Zhang et al. 2022; Sawyer and Li, 2013). 82 

As machine learning (ML) has shown potential in atmospheric science (McGovern 83 

et al., 2017; Gagne et al., 2019; Su et al. 2020a; Vassallo et al., 2020; Cadeddu et al., 84 

2009; Molero et al. 2022), this technique presents a promising tool for refining the 85 

estimation of PBLH to resolve the inherent complexity and variability of PBL. For 86 
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example, several studies use ML to identify PBLH using thermodynamic profiles 87 

Atmospheric Emitted Radiance Interferometer (AERI) or using backscatter profiles 88 

from lidarPBL heights using thermodynamic profiles or backscatter profiles from Lidar 89 

or Atmospheric Emitted Radiance Interferometer (AERI), highlighting the ML's 90 

superiority over conventional techniques under different scenarios (Sleeman et al. 2020; 91 

Krishnamurthy et al., 2021; Rieutord et al. 2021; Liu et al. 2022; Ye et al. 2021). For 92 

exampleMoreover, Li et al. (2023) applied an ML algorithm for retrieving PBLH under 93 

complex atmospheric conditions with account of the vertical distribution of aerosols. 94 

Krishnamurthy et al. (2021) incorporated a random forest model, along with machine 95 

learning, to use Doppler lidar data for the extraction of PBLH with better results 96 

compared to the results retrieved by traditional methods. 97 

While existing ML methodologies have made great progress marked progress in 98 

estimating PBLH, these studies mainly focus on refining retrievals from remote sensing 99 

data, particularly lidar-based technologies. Thus, there is an inherent limitation to the 100 

applicability due to a reliance on specific remote sensing instruments. To address this 101 

issue, we aim to leverage and integrate the comprehensive field observations (i.e., 102 

radiosonde and remote sensing techniques) to develop a deep learning model for direct 103 

PBLH estimation from conventional meteorological data. This strategy circumvents the 104 

limitations of relying on particular remote sensing technologies. Furthermore, our 105 

model employs an advanced deep neural network (DNN) approach (Sze et al. 2017; 106 

Schmidhuber, 2015; Nielsen, 2015; Pang et al. 2020), diverging from traditional ML 107 

methods like random forest. This deep learning model utilizes ensemble techniques, 108 
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constructing arrays of various structures and using their average for the final estimation. 109 

This approach method provides particular advantages in the context of complex and 110 

nonlinear processes (Ganaie et al. 2022; Mohammed and Kora. 2023). Ensemble DNN 111 

with multi-structure designs shows very strong flexibility and robustness, so it 112 

relatively performs better and has high stability across a wide range of conditions (Xue 113 

et al. 2020; Dong et al. 2020).  our model employs a multi-structure deep neural network 114 

(DNN), diverging from traditional ML methods like random forest, to enhance its 115 

adaptivity for PBLH estimations. This multi-structure DNN approach offers great 116 

potential for wide applications under various meteorological conditions, as well as a 117 

stable performance for both trained and untrained periods. This underscores facilitates 118 

the adaptability versatility of DNN as a tool for PBLH estimation, which can be utilized 119 

under different scenarios and locations. 120 

By focusing on the interaction between surface meteorology and the PBL, this study 121 

introduces a DNN-based method to estimate the daytime evolution of PBLH from 122 

morning temperature profiles and surface meteorology. We evaluate the model's 123 

performance using extensive datasets over the Southern Great Plains (SGP) for a period 124 

spanning 27 years (1994-2020) and includes comparisons with PBLH estimations 125 

obtained from Doppler lidar, ceilometer, Raman lidar, and micro-pulse lidar. 126 

Furthermore, we explore the generalizability of the model to different geographic 127 

regions and climates, as tested during the field campaigns, e.g., Green Ocean Amazon 128 

(GoAmazon) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI).  129 

 130 
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2 Data and instruments 131 

2.1 ARM Sites 132 

The Atmospheric Radiation Measurement (ARM) program, funded by the U.S. 133 

Department of Energy, has been employed at the Southern Great Plains (SGP) site in 134 

Oklahoma (36.607°N, 97.488°W) , situated 314 meters above mean sea levelfor several 135 

decades. This study use comprehensive field observations at the SGP site during 1994 136 

to 2020. In addition to the SGP site, this study utilizes data from the ARM GoAmazon 137 

(3.213°S, 60.598°W) and ARM CACTI (32.126°S, 64.728°W) field campaigns to carry 138 

out indenpendant tests for the deep learning model. Specificly, the GoAmazon 139 

campaign is located in the amazon tropical forests and provides rich field observations 140 

data during 2014-2015 (Martin et al. 2016). Meanwhile, the CACTI central site, at an 141 

elevation of 1141 meters within the Sierras de Córdoba Mountain range in north-central 142 

Argentina, offers the observations during the 2018-2019 period (Varble et al. 2021). 143 

Utilizing these comprehensive ARM datasets, our study includes thermodynamic 144 

profiles derived from radiosondes, data from the Active Remote Sensing of Clouds 145 

(ARSCL,  Clothiaux et al. 2000, 2001; Kollias et al. 2020), in-situ surface flux 146 

measurements, and standard meteorological observations at the surface, as documented 147 

by Cook (2018) and Xie et al. (2010). 148 

SONDE measurements at the ARM sites launch routinely several times a day and 149 

provide detailed information into the thermodynamic conditions of the atmosphere. The 150 

technical details of the ARM SONDE data are documented in Holdridge et al. (2011). 151 

Moreover, we use the surface meteorological parameters at the standard meteorological 152 
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station. In-situ measurements at 2 meters above ground level provide data on 153 

temperature, relative humidity, and vapor pressure. Moreover, this study obtain the 154 

surface sensible and latent heat fluxes from the surface instruments (Wesely et al., 155 

1995). In SGP, we use the best-estimate surface fluxes in the Bulk Aerodynamic Energy 156 

Balance Bowen Ratio (BAEBBR) product, which is derived from the measurements by 157 

Energy Balance Bowen Ratio (EBBR). Due to the availability, we utilize the surface 158 

fluxes from Quality Controlled Eddy CORrelation (QCECOR) datasets from CACTI 159 

and GoAmazon sites (Tang et al. 2019).  160 

 161 

2.2 Existing PBLH datasets over the ARM sites 162 

For analyzing PBLH, we have utilized a variety of datasets to get a full picture of 163 

PBLH derived from different instruments. These datasets are developed by using 164 

different methodologies and instruments and jointly offer a detailed information of 165 

PBLH under various meteorological conditions. Among these datasets, SONDE- and 166 

ceilometer-derived PBLH are available for all three sites, other datasets are only 167 

available over the SGP. The technique details for these datasets can be found in the 168 

corresponding publications or technique reports.  169 

(1) SONDE-derived PBLH by Liu and Liang (2010): 170 

PBLHs are retrieved using a method developed by Liu and Liang (2010), based on 171 

potential temperature gradients from SONDE. We focus on daytime data during 05:00–172 

18:00 Local Time (LT), with a resampled vertical resolution of 5-hPa. The SONDE 173 

dataset is available at DOI: https://doi.org/10.5439/1595321. 174 

https://doi.org/10.5439/1595321
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(2) Doppler Lidar-derived PBLH by Sivaraman and Zhang (2021): 175 

Doppler lidar PBLH estimates are derived using a vertical velocity variance method 176 

during 2010-2019 (Tucker et al., 2009; Lareau et al., 2018; Sivaraman and Zhang 2021). 177 

The dataset is available at DOI: https://doi.org/10.5439/1726254. 178 

(3) Combined MPL and SONDE PBLH by Su et al. (2020b): 179 

We utilize a PBLH dataset that merges lidar and SONDE measurements during 180 

1998-2023, ensuring vertical coherence and temporal continuity (Su et al. 2020b). An 181 

additional method for handling cloudy conditions is detailed in Su et al. (2022). The 182 

dataset is available at DOI: https://doi.org/10.5439/2007149. 183 

(4) Ceilometer-derived PBLH by Zhang et al. (2022): 184 

The Vaisala CL31 ceilometer, with a 7.7 km vertical range, provides detailed 185 

backscatter profiles used for PBLH estimation via gradient methods during 2011-2023 186 

(Zhang et al. 2022). Enhanced algorithms ensure robust estimations under all weather 187 

conditions. The dataset is available at DOI: https://doi.org/10.5439/1095593. 188 

(5) MPL-derived PBLH by Sawyer and Li (2013): 189 

Micropulse lidar (MPL) is utilized for its high temporal resolution to retrieve PBLH 190 

during 2009-2020. MPL-derived PBLH, validated against SONDE and infrared 191 

spectrometer (AERI) data, improves understanding of boundary-layer processes 192 

(Sawyer and Li. 2013). The dataset is available at DOI: 193 

https://doi.org/10.5439/1637942. 194 

(6) Combined Raman Lidar and AERI PBLH by Ferrare (2012): 195 

https://doi.org/10.5439/1726254
https://doi.org/10.5439/2007149
https://doi.org/10.5439/1095593
https://doi.org/10.5439/1637942


 

 10 

PBLH is calculated using merged potential temperature profiles from Raman lidar 196 

and AERI, with criteria established for the SGP site. PBL heights are computed hourly 197 

for 2009-2011. The dataset is available at DOI: https://doi.org/10.5439/1169501. 198 

In the datasets, (1-3) serve as the foundation for training. Concurrently, considering 199 

radiosonde as the benchmark standard, we utilized dataset (1) for validating PBLH 200 

retrievals obtained from various sources. Meanwhile, datasets (4-6) are used for the 201 

intercomparisons between PBLH derived from DNN and remote sensing techniques. 202 

 203 

3 Deep Learning Model to Estimate PBLH 204 

3.1 The Multi-Structure Deep Learning Model 205 

Our deep learning model for estimating PBLH leverages the robustness of ensemble 206 

learning using a multi-structure DNN (Sze et al. 2017; Schmidhuber, 2015; Nielsen, 207 

2015; Pang et al. 2020). This model used the TensorFlow Package, developed by 208 

Google (Abadi et al., 2016; https://www.tensorflow.org/). By employing an array of 209 

varied network architectures, we capitalize on the unique strengths of each structure to 210 

synthesize a more accurate and reliable estimation of PBLH. Figure 1 outlines the 211 

DNN's comprehensive design, beginning with the input layer that ingests a suite of 212 

morning meteorological features. The DNN model derives the PBLH from surface 213 

meteorological parameters. We also incorporate boundary layer heights derived from 214 

sensible heat and parcel methods ( 𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙  and 𝐵𝐿𝐻𝑆𝐻 ) as inputs. Specifically, 215 

𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙  is calculated based on the morning profile of potential temperature 216 

(Holzworth. 1964), while 𝐵𝐿𝐻𝑆𝐻  is determined using the surface temperature 217 

https://doi.org/10.5439/1169501
https://www.tensorflow.org/
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combined with surface sensible heat, following the methodologies (Stull, 1988; Su et 218 

al. 2023). We first present a preliminary run for the model to obtain the importance of 219 

each input feature. Then, these inputs undergo a filtration process based on their 220 

importance (Date and Kikuchi, 2018; Altmann et al. 2010), ensuring that only the 221 

impactful data guide the model (detailed in Section 3.3). Subsequently, the filtered 222 

inputs traverse through an ensemble of ten structures with distinct hidden layers. Each 223 

structure here represents an ensemble member and contributes to the prediction of 224 

PBLH in its unique way (Ganaie et al. 2022). The ensemble employs a three-layer base 225 

structure [52, 28, 16] for neural networks, from which ten unique configurations are 226 

derived by applying random perturbations to the default settings of the base structure. 227 

These different structures for ensembles 1-10 are presented in Table 1. 228 

At the final stage, the model use the PBLH esimations from different ensembles to 229 

get a mean value as the final PBLH retrieval. This process allows the model to leverage 230 

the different results of all structures and enhance the generalizability of results. In the 231 

DNN model, neuron biases in the output and hidden layers  are important for the 232 

network's architecture (Battaglia et al. 2018). These biases serve as fine-tuning 233 

parameters to adjust the activation thresholds of neurons in different layers and further 234 

refine the model's predictive capabilities. Neuron biases are initialized with small 235 

random values at the start of the training process and then iteratively adjusted according 236 

to the network weights during the training. Normalization is a preprocessing technique 237 

that often leads to improvements in model training by scaling the input features and 238 

target values to a standard range (Raju et al. 2020). The normalization process was 239 
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applied to each input data to ensure that they have a zero mean and a standard deviation 240 

of one, as well as the target data. This standardization scales the different input data to 241 

a similar range, and thus, contributes a more stable and efficient training process. 242 

The hidden layers of the DNN model incorporate L2 regularization to curtail 243 

overfitting, while batch normalization aids in stabilizing learning. Moreover, a dropout 244 

rate of 0.2 helps the model to generalize better by reducing reliance on any specific 245 

neurons during training. We choose the Adam optimizer and mean squared error as the 246 

loss function, which aligns with one of the best practices for regression models (Zhang. 247 

2018). The mean absolute error is selected as a metric to evaluate the model's accuracy 248 

during the training. We incorporate the early stopping and learning rate reduction 249 

callbacks in in the model's training for regularization and fine-tuning (Liu et al. 2019). 250 

Such measures ensure optimal performance by terminating training at the right juncture 251 

and avoid the overfitting in the final results. 252 

 253 

3.2 Training the DNN Model 254 

The training of the DNN model was conducted using a PBLH dataset enriched by 255 

SONDE and lidar measurements during 1994 to 2016 over the SGP. Table 2 presents 256 

the distribution of dataset samples under different local time, which were important for 257 

both the training and validation processes of the DNN model. The primary dataset (i.e., 258 

PBLH derived from SONDE measurements) is listed in the first column and are 259 

available routinely for 5, 11, and 17 LT. The training dataset was augmented with the 260 

combined MPL-SONDE PBLH dataset (Su et al. 2020b) and the Doppler Lidar-derived 261 
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PBLH (Sivaraman and Zhang, 2021) to address the gaps where SONDE measurements 262 

were not available. In instances where radiosonde data are unavailable, the lidar datasets 263 

are used for training, contingent upon their agreement with radiosonde measurements 264 

within a margin of 0.2 km over a 3-hour window. Specifically, out of the total 265 

comparisons during the study period, 40.2% of the lidar measurements do not agree 266 

within the 0.2 km threshold with the SONDE results. The cases with relatively larger 267 

inconsistencies stem from various factors, including instrumental errors, rainy 268 

conditions, stable PBL conditions, differing definitions, and lidar signal attenuation, as 269 

discussed in previous studies (Su et al., 2020b; Kotthaus et al., 2023). These cases were 270 

excluded from the DNN model training to maintain the quality of the process. 271 

 For the purpose of training the DNN model, 70% of the hourly data from both 272 

SONDE and the lidar combined dataset were randomly selected. The remaining 30% 273 

dataset, comprises the portion of SONDE measurements set aside for validation 274 

purposes, including a separate subset from the years 2017 to 2020 to test the model’s 275 

predictive capabilities on independent data. This training and validation scheme ensures 276 

that the DNN model is not only well-trained but also thoroughly evaluated, reinforcing 277 

its reliability in accurately estimating PBLH. As morning SONDE data constitute the 278 

primary input and boundary conditions for the model, the validation of PBLH retrievals 279 

is consequently confined to the 08:00 to 18:00 LT. 280 

 281 

 282 Formatted: Normal (Web), Justified, Indent: First line:  0.2",

Pattern: Clear (White)



 

 14 

3.3 Feature Importance Score 283 

In the DNN model, we quantified the significance of each input parameter using the 284 

permutation importance technique, which is a widely-used method for the deep learning 285 

(Date and Kikuchi, 2018; Altmann et al. 2010; Breiman, L., 2001). Initially, we carry 286 

out a test run to determine a baseline performance by calculating the mean absolute 287 

error (MAE) on the validation set. Then, each feature within this set was then 288 

individually shuffled, severing its correlation with the target PBLH, and the MAE was 289 

recalculated. Compared to the baseline performance, the increase in MAE from this 290 

shuffled state indicates the feature's predictive value: the greater the increase, the more 291 

significant the feature. We repeat this shuffling and evaluation for 15 times, each with 292 

a unique random seed to ensure statistical robustness. Furthermore, we calculated the 293 

average MAE increase across these iterations as the importance score. These scores are 294 

expressed as percentages, with each feature's importance score normalized to sum to 295 

100%. Each score quantitatively represents how much the shuffling of a feature 296 

increases the MAE, indicating the relative significance of that feature in the model's 297 

predictive accuracy and facilitating a straightforward comparison of the influence of 298 

each feature within the model. Therefore, we derived a composite importance metric 299 

for feature groups to represent their significance as the cumulative sum of reltaed inputs. 300 

Figure 2 presents the importance scores to demonstrate the relative influence of 301 

different feature groups on the model's performance. Prominently, features such as the 302 

𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙 , morning potential temperature profiles (θ profile), and surface relative 303 

humidity are identified as pivotalmost important three features, with their substantial 304 
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impact on the accuracy of PBLH estimation being highlighted. 𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙 is defined as 305 

the height where the morning potential temperature first exceeds the current surface 306 

potential temperature by more than 1.5 K (Holzworth, 1964; Chu et al., 2019). Among 307 

these features, 𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙 captures the response of the PBL to surface heating, which 308 

can drastically affect local convection and thus serves as one of the key parameters in 309 

the DNN model. Incorporating this parameter and its association with PBL 310 

development better simulates diurnal variations of PBLH in the DNN model. 311 

Meanwhile, the morning θ profile represents the vertical stratification of 312 

thermodynamics and is essential for understanding stability and mixing processes 313 

within the PBL. Thus, θ profile serves as the initial boundary condition for the PBLH 314 

estimation with a significant importance score. Surface relative humidity also emerges 315 

as a key influencer, affecting the model's performance significantly. Humidity levels 316 

influence the condensation and evaporation processes within the PBL, which are 317 

important in determining its vertical extent layer and structure. Fair-weather and dry 318 

conditions are typically associated with a more turbulent and higher PBL. Conversely, 319 

high surface humidity often contributes to the formation of boundary layer clouds, 320 

which introduces complex interactions with PBL thermodynamics. 321 

In this analysis, each feature, such as θ profile, comprises several different inputs, 322 

and the relative importance scores presented in Figure 2 are calculated as the cumulative 323 

sum of these inputs. Complementing this, Table 3 offers an exhaustive breakdown of 324 

importance scores for all considered input features within the deep learning model. In 325 

refining the model, features contributing a negligible or negative effect on performance 326 
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(i.e., importance scores less than zero) are excluded. As a result, this selection criterion 327 

has led to the inclusion of 58 out of the original 64 features. This process ensures we 328 

only use inputs with a proven positive influence in the DNN model. 329 

 330 

4 Evaluation of Deep Learning Model  331 

4.1 Comparative analysis of biases among different datasets 332 

A critical component of evaluating our deep learning model's efficacy is analyzing 333 

the biases of individual ensemble members and their collective output. Figure 3 offers 334 

a visual assessment of the mean absolute error (MAE), root mean square error (RMSE), 335 

and correlation coefficient (R) for each ensemble member, alongside a comparison with 336 

the ensemble mean (average of all individual ensemble members). The plotted data 337 

points reveal the variation in performance across different model architectures, while 338 

the ensemble mean, represented by the horizontal dashed lines, indicates the collective 339 

accuracy of the ensemble approach. The structures of different hidden layer 340 

configurations are listed in the Table 1. 341 

This methodological consolidation results in a more reliable and accurate PBLH 342 

estimation, leveraging the strengths and mitigating the weaknesses of individual 343 

models. By integrating multiple neural network configurations, we revealed that an 344 

ensemble prediction that consistently outperforms the individual models. This strategy 345 

can improve the MAE by up to 4.4%, rendering the model less dependent on any 346 

specific structural configuration. 347 
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An in-depth comparative analysis of biases among various PBLH estimation 348 

methods is essential for validating the reliability and accuracy of the DNN developed 349 

in this study. Figure 4 illustrates the MAE trends for several methods over a multi-year 350 

span, with the SONDE-derived PBLH serving as the benchmark for ground truth. The 351 

analysis reveals the performance of different methodologies: the DNN approach, 352 

doppler lidar, ceilometer, MPL, and Raman lidar. Significantly, the DNN model, 353 

depicted in black, maintains a consistent MAE trend throughout the trained period 354 

(1994-2016) as well as the subsequent untrained period (2017-2020), demonstrating 355 

robust predictive stability. In contrast, the remote sensing-based methods show a 356 

reduction in bias from 2010 to 2022, possibly due to the improvement of remote sensing 357 

data quality. The discrepancy in PBLH estimates between the DNN and SONDE 358 

remains consistently lower than those observed with conventional remote sensing 359 

techniques. 360 

Figure 5 provides a detailed evaluation of the DNN model in comparison to 361 

ceilometer and doppler lidar-derived PBLH, as these two methods have demonstrated 362 

the high quality with more than nine years of datasets. Figure 5a-b contrast the PBLH 363 

predictions from the DNN model for both the trained period (1994-2016) and untrained 364 

periods (2017-2020), respectively, showcasing strong correlations and low MAEs, 365 

indicative of the model's robust training and generalization capabilities. Figure 5c-d 366 

further this examination with ceilometer and Doppler lidar comparisons, respectively. 367 

Overall, Doppler lidar exhibits a closer alignment with SONDE-derived PBLH than the 368 

ceilometer. However, the MAE from Doppler lidar-based estimates is still 369 
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approximately 48% higher than those derived from the DNN model. The correlation 370 

coefficient for the DNN-derived PBLH estimates has seen a substantial improvement, 371 

rising from the 0.5-0.6 range typically observed with remote sensing-based PBLH 372 

methods to exceed 0.8 when compared to SONDE-derived PBLH measurements. This 373 

comparative analysis not only confirms the DNN model’s accuracy but also offers 374 

insights into the relative performance of various contemporary PBLH estimation 375 

methodologies. 376 

 377 

4.2 Performances of PBLH retrievals under different conditions 378 

The performance of PBLH retrievals under varying atmospheric conditions is a 379 

crucial aspect of model evaluation. In Figure 6, the seasonal diurnal cycles of PBLH 380 

estimated by different methods are presented, offering information into the diurnal and 381 

seasonal evolution of PBL. As PBLH demonstrates notable variations for different 382 

seasons and local time with large differences between summer and winter, the DNN 383 

and Doppler lidar estimates show good agreement and closely track the variations 384 

observed in SONDE data. Meanwhile, the ceilometer presents an underestimation of 385 

PBLH, especially for the summer afternoon, indicating the potential bias of ceilometer 386 

derived PBLH under a convective environment. 387 

Figure 7 illustrates the diurnal variation in the model's performance by comparing 388 

the correlation coefficient, RMSE, and MAE against SONDE-derived PBLH as the 389 

reference. The bar graphs for each local time hour offer a comparison of the RMSE and 390 

MAE, as well as the correlation, showcasing the model's precision and consistency 391 
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relative to remote sensing methods (i.e., ceilometer and Doppler lidar). The ceilometer-392 

derived PBLH exhibits the greatest variations during different hours, particularly 393 

around noon, suggesting a time-dependent bias in its measurements. Conversely, both 394 

the DNN and Doppler lidar-derived PBLH demonstrate stable performance in term of 395 

MAE and RMSE throughout the day. Regarding the correlation, remote sensing 396 

methods like ceilometer and Doppler lidar exhibit a lower correlation with SONDE-397 

derived PBLH, especially in the early hours (8-9 LT) with a value of 0.1-0.3, indicating 398 

potential limitations in their reliability during these times. On the other hand, the DNN 399 

model shows a relatively good correlation with SONDE retrievals (above 0.6 under 400 

different hours). This comparison shows the efficacy of DNN in tracking the diurnal 401 

cycle of PBLH. 402 

Continuing our assessment of the DNN model, we analyze the DNN model's 403 

monthly performance in estimating PBLH, as shown in Figure 8. The analysis compares 404 

MAE, RMSE, and correlation coefficients for each month to assess the model's 405 

precision and dependability. The summer months (June-July-August) exhibit higher 406 

biases, with MAE values for the DNN, ceilometer, and Doppler lidar at 0.3 km, 0.56 407 

km, and 0.45 km, respectively. In contrast, the winter months (December-January-408 

February) show reduced biases, with MAE values of 0.2 km for the DNN, 0.27 km for 409 

the ceilometer, and 0.24 km for the Doppler lidar. Specifically, the DNN model shows 410 

a much lower bias during the summer season. Compared to the remote sensing-based 411 

retrievals, the DNN-derived PBLH shows a much better agreement with SONDE-412 
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derived PBLH, increasing from 0.3-0.6 to approximately 0.8 in term of correlation 413 

coefficients.  414 

Figure 9 presents the biases of PBLH retrievals under clear-sky and low cloud 415 

conditions. We calculated biases as the absolute deviation from the mean PBLH for 416 

each condition, focusing particularly on the differences between low cloud (maximum 417 

cloud fraction between 0-4 km exceeding 1%) and clear-sky (total cloud fraction below 418 

1%) scenarios. The threshold of 1% for cloud fraction is also used to identify cloud base 419 

height (CBH) in the European Centre for Medium-Range Weather Forecasts' fifth-420 

generation global reanalysis (ERA-5, Hersbach et al., 2023). The violin plots in this 421 

figure illustrate the data distribution of biases for each method to demonstrate their 422 

variability. For the DNN model and ceilometer, the relative biases between clear and 423 

cloudy conditions are comparable and the difference is less than than 1%. This suggests 424 

a consistent performance across these atmospheric states. However, the Doppler lidar 425 

exhibits a larger disparity, showing a 5.5% bias under cloudy conditions compared to 426 

clear skies. Moreover, the spread of biases (shaded areas and error bars) is notably wider 427 

for both the ceilometer and Doppler lidar. This indicates large variability in their 428 

performance. For all three methods, the mean biases are notably higher than the median 429 

values. Such differences indicate that the mean values are notably influenced by outliers 430 

under both clear-sky and cloudy conditions. 431 

The evolution of the PBLH under shallow cumulus conditions offers insights into 432 

the interactions between clouds, PBL, and land surface (Zhang and Klein, 2010, 2013). 433 

Figure 10 demonstrates the variations of PBLH measurements from different methods 434 
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during conditions typical of shallow cumulus clouds. Shallow cumulus clouds were 435 

identified following Su et al. (2024b). Specifically, these coupled clouds form post-436 

sunrise; and the sky must not be overcast, characterized by a cloud fraction less than 437 

90%. This selection criterion ensures that the observed cloud formations are primarily 438 

driven by surface heating and local convection. The DNN model closely matches the 439 

SONDE-derived PBLH and the CBH from ARSCL. This alignment underscores the 440 

physical validity of the DNN approach, confirming its capability to replicate traditional 441 

measurement techniques to a good extend of accuracyaccurately. Meanwhile, Doppler 442 

lidar-derived PBLH retrievals also show high consistency with SONDE measurements, 443 

whereas ceilometer-derived PBLH generally underestimates values under shallow 444 

cumulus conditions. 445 

Figure 10 also demonstrates the general relationship between the development of 446 

shallow cumulus clouds and the PBL, which are driven by local convection and 447 

turbulence. The formation of these cumulus clouds is linked to rising thermals and an 448 

increase in surface heat fluxes, essential for driving vertical mixing within the sub-cloud 449 

layer. This relationship is evidenced by the increased occurrence of cumulus clouds 450 

along with an increase in DNN-derived PBLH from morning to late afternoon. 451 

Specifically, during periods with a high frequency of shallow cumulus, the DNN-452 

derived PBLH often surpasses the CBH. This indicates that rising air parcels extend 453 

beyond the condensation level, facilitating the formation and development of coupled 454 

cumulus clouds. 455 
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In this context, these analyses confirm the physical consistency of DNN-derived 456 

PBLH with traditional measurement techniques and highlight its physically reasonable 457 

variations during cloudy conditions. The results presented in this section  458 

The analyses presented in this section illustrate the effectiveness of the DNN model 459 

in capturing the PBLH variations  across different local times, seasons, and atmospheric 460 

cloudy conditions. Compared to the traditional remote sensing methods, the DNN 461 

model exhibits relatively good accuracy in aligning with SONDE-derived PBLH, 462 

indicating its capability and stable performance under different scenarios.  463 

 464 

4.3 Testing the DNN Model's Adaptability 465 

The DNN model relies on the incorporation of morning temperature profiles as 466 

inputs, such as detailed in Table 3. This dependency prompts the question of how to 467 

proceed the DNN model in the absence of SONDE data at specific locations. As a 468 

solution, we suggest employing morning temperature profiles from the European 469 

Centre for Medium-Range Weather Forecasts' fifth-generation global reanalysis (ERA-470 

5, (Hersbach et al., 2020) dataset when radiosonde data is not available to maintain the 471 

model's operational integrity under for the conditions without SONDE datasounding-472 

data-constrained conditions. As one of the most advanced reanalysis data, the ERA-5 473 

is generated by the Integrated Forecasting System coupled with a data assimilation 474 

system, and offer the meteorological data at a spatial resolution of 0.25°- 0.25°. 475 

Figure 110 assess the performance of DNN produced by multi-sources field 476 

observations in estimating the PBLH by using morning temperature profiles from ERA-477 
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5 (5 LT) and observed surface meteorological data. The temperature profiles in ERA-5 478 

have a vertical resolution of 25-hPa in the lower atmosphere and are interpolated into 479 

different levels described in Table 3. By utilizing ERA-5 morning profiles, the model 480 

demonstrates similar performance to those results achieved with radiosonde inputs, as 481 

evidenced by comparing Figure 10a 11a and Figure 5. Moreover, this alternative 482 

approach also shows enhanced accuracy over the native PBLH model outputs from 483 

ERA-5, increasing the correlation coefficient from 0.74 to 0.86 and reducing the MAE 484 

from 0.3 km to 0.25 km. In addition, it is important to acknowledge that the PBLH 485 

represented in ERA-5 is indicative of a grid-average value, approximately 25 km in 486 

scale, and therefore inherently differs from site-specific data.  487 

These findings highlight the alternative DNN model's robustness, offering a reliable 488 

substitute for radiosonde data by leveraging reanalysis data with similar performance. 489 

This demonstrates the DNN model's adaptability and potential as a practical tool for 490 

PBLH estimation across various meteorological sites, especially in regions or periods 491 

where radiosonde data may be lacking. 492 

We further test the adaptability and generalizability of the DNN model, by applying 493 

across different climatic and geographic regions. To this end, we extended our model 494 

evaluation to include SONDE and surface meteorological data from the GoAmazon 495 

(Tropical Rainforest) and CACTI (Middle Latitude Mountain) field campaigns. 496 

Seasonality is accounted for as an input variable in the DNN model, with months in the 497 

Southern Hemisphere adjusted to reflect their Northern Hemisphere seasonal 498 

counterparts (e.g., July inputs are treated as January). The normalization process 499 
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(Section 3.1) was reapplied for the CACTI campaign data to adjust for notable pressure 500 

level variations, ensuring input standardization with zero mean and unit variance.  501 

Figure 121 presents the model's performance, in comparison to SONDE 502 

observations for both GoAmazon and CACTI campaigns. The DNN model 503 

demonstrates commendable adaptability, maintaining a strong correlation (0.86-0.88) 504 

with SONDE measurements (Figure 11a12a-b). Further comparison is provided, which 505 

assess the performance of ceilometer derived PBLH against SONDE for the same 506 

campaigns. When assessing the performance of the ceilometer-derived PBLH against 507 

SONDE for the same campaigns, the DNN model exhibited both stronger correlations 508 

and smaller biases, as shown in Figure 121b-d. 509 

Nevertheless, the analysis highlighted the presence of systematic biases, with 510 

relatively larger MAE at the GoAmazon and CACTI sites compared to the SGP site. 511 

Figure 132 underscores this by presenting a comparative analysis of PBLH means and 512 

standard deviations across the three ARM sites. The early morning measurements 513 

during 05-07 LT are excluded. The results, derived from SONDE, the DNN model, 514 

ceilometer, and Doppler lidar data, reveal average differences in PBLH means relative 515 

to SONDE. These differences suggest an overestimation (+15%) and underestimation 516 

(-23%) by the DNN model for the GoAmazon and CACTI sites, respectively, compared 517 

to the more consistent PBLH values at the SGP site. 518 

The evident systematic deviations when applying the SGP-trained DNN model to 519 

the diverse environments of GoAmazon and CACTI underscore the challenges in 520 

generalizing the model to regions with significantly different meteorological 521 
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backgrounds. These findings point to the potential of DNN models for PBLH estimation 522 

while also highlighting the necessity for region-specific model adjustments. 523 

 524 

5 Summary 525 

This study has developed a Multi-Structure DNN model for estimating PBLH using 526 

conventional meteorological data. The DNN model is developed by leveraging a long-527 

term dataset of PBLH derived from radiosonde data and augmented with high-528 

resolution MPL and Doppler lidar observations. This model produced an PBLH dataset 529 

over the SGP with robust accuracy, consistently yielding lower bias values across 530 

various conditions and datasets. Utilizing conventional meteorological data, this 531 

method generates a 27-year dataset over the SGP, encompassing periods with limited 532 

remote sensing data availability. In situations where morning radiosonde data is 533 

unavailable, ERA-5 data can be effectively employed to initiate the model, offering a 534 

practical alternative. 535 

An important aspect of this research involved comparing DNN models with diverse 536 

remote sensing instruments. Although these instruments offer high temporal and 537 

vertical resolution, discrepancies in PBLH estimation remain. Our DNN model, 538 

leveraging a broad range of input features refined by their importance, constructs a 539 

representation of PBL evolutions, frequently demonstrating a closer agreement with 540 

SONDE-derived PBLH. In the absence of remote sensing data, the DNN model can 541 

produce high-quality PBLH results from the conventional meteorology data. 542 
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The study has shown the DNN model's ability to synthesize complex patterns from 543 

meteorological data, reflecting the versatility of machine learning in simulating the 544 

boundary layer processes. Its application to varied geographic terrains and climates 545 

during the GoAmazon and CACTI campaigns has further validated its adaptability, 546 

demonstrating a high correlation between DNN-derived PBLH and SONDE-derived 547 

PBLH. Nonetheless, systematic biases in regions outside the SGP highlight the 548 

influence of regional factors in PBLH estimation and suggest the need for region-549 

specific refinements to the model. 550 

In summary, this research introduces a machine learning framework for PBLH 551 

estimation that is able to generate high-quality PBLH using meteorological data, 552 

independent of remote sensing instruments. This methodology, alongside the datasets 553 

derived from the deep learning model, is beneficial in advancing our understanding of 554 

PBL daytime development including thermodynamics and dynamics. It also has 555 

implications for improved representation of the PBL processes in weather forecasting 556 

and climate models, particularly by offering the potential to diagnose PBL in models 557 

through the integration of modeled meteorological data as input. Future efforts will be 558 

directed towards refining this model to ensure its wide applicability over a global scale. 559 

These developments aim to effectively tackle the challenges of systematic biases and 560 

regional variability in PBLH estimation. 561 

 562 

Data Availability. ARM radiosonde data, surface fluxes, and cloud masks are available 563 

at https://doi.org/10.5439/1333748 (ARM User Facility. 1994). The datasets of 564 

https://doi.org/10.5439/1333748
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planetary boundary layer height used in this study can be downloaded from 565 

https://adc.arm.gov/discovery/#/results/instrument_class_code::pblht (last access: 7 566 

January 2024; ARM User Facility, 2024). Climate Data Store offers the ERA-5 567 

reanalysis data (https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2023). The 568 

DNN-derived PBLH datasets over the SGP, CACTI, and GoAmazon are available at 569 

Zenodo (https://zenodo.org/records/10633811, Su. 2024) and will be uploaded to ARM 570 

data archive as a product with detailed information upon acceptance. 571 
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Table list: 918 

Table 1. This table lists the varying structures of hidden layers used by each ensemble 919 

member for PBLH estimation. Each configuration is expressed as an array, with the 920 

number of elements indicating the number of layers and each value specifying the 921 

number of neurons activated in the corresponding layer. For instance, a structure 922 

denoted as [52, 28, 16] comprises three hidden layers containing 52, 28, and 16 neurons, 923 

respectively. 924 

 925 

Ensemble 

Member 

Different Structures 

in Hidden Layer  

Ensemble 

Member 

Different Structures 

in Hidden Layer 

Member 1 [52, 28, 16] Member 6 [57, 44, 19] 

Member 2 [61, 43, 20] Member 7 [55, 43, 19] 

Member 3 [59, 45, 19] Member 8 [57, 43, 15] 

Member 4 [60, 45, 23] Member 9 [59, 41, 20, 10] 

Member 5 [57, 45, 23] Member 10 [57, 43, 18, 9] 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 
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Table 2. Distribution of Dataset Samples for deep learning neural network (DNN) 939 

Training and Validation. This table details the sample data in different local time used 940 

for the development and validation of DNN to estimate planetary boundary layer height 941 

(PBLH). The first column lists the available PBLH derived from radiosonde (SONDE, 942 

Liu and Liang. 2010) during various local hours from 1994 to 2016. The second column 943 

supplements the dataset with a combined MPL and SONDE approach (Su et al. 2020b) 944 

and Doppler Lidar-derived PBLH (Sivaraman and Zhang, 2021) used in the absence of 945 

SONDE measurements. Seventy percent of the combined dataset from the first and 946 

second columns was randomly selected for the model's training. The third column 947 

provides the number of SONDE measurements available for validation purposes. Since 948 

morning SONDE serves as the input and boundary condition. 949 

Local Time 

(h) 
SONDE 

Supplement 

Lidar Dataset  

SONDE for 

Validation 

5 7163 0 0 

6 22 1181 0 

7 3 1186 0 

8 1225 2541 453 

9 16 2629 8 

10 9 2732 3 

11 6513 13 3307 

12 26 2797 9 

13 14 2694 47 

14 2131 2334 728 

15 28 2555 9 

16 3 2730 1 

17 6503 2 3348 
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Table 3. Feature Importance in the Deep Learning Model. This table presents theThe 950 

relative importance scores (%) of each input feature used in the deep learning model to 951 

estimate the planetary boundary layer height. The features include local time, month, 952 

relative humidity, U and V wind components, surface pressure, precipitation, 953 

temperature, lifting condensation level (LCL), boundary layer height derived from 954 

sensible heat and parcel methods (Sensible Heat BLH and Parcel Method BLH), 955 

sensible and latent heat, and profiles of potential temperature (θ) at different heights. 956 

The importance scores are expressed as percentages, indicating each feature's relative 957 

contribution to the model's predictive accuracy, normalized to sum to 100%. The 958 

importance scores quantify the relative contribution of each feature to the model's 959 

predictive accuracy. 960 

Feature Importance (%) Feature Importance (%) 

Local Time 0.385238096 θ 0.45km 0.589744268 

Month 3.589829217 θ 0.5km 0.537731259 

RH (i-1) 1.525447612 θ 0.55km 0.534610382 

RH (i) 16.25123402 θ 0.6km 0.552997086 

U Wind (i-1) 0.385834048 θ 0.65km 0.431060615 

U Wind (i) 

V Wind (i-1) 
2.076794013 θ 0.7km 0.342764903 

2.537910928 θ 0.75km 0.310147803 

V Wind (i) 2.405275378 θ 0.8km 0.380120894 

Surface Pressure (i-1) 0.187890954 θ 0.85km 0.468503984 

Surface Pressure (i) 1.016443163 θ 0.9km 0.413498983 

Rain Rate (i-1) 0.077638613 θ 0.95km 0.263411835 

Rain Rate (i) 0.10979265 θ 1km 0.132168034 

Temperature (i-1) 1.028603672 θ 1.1km 0.163035362 

Temperature (i) 1.382663171 θ 1.2km 0.042643843 

LCL (i-1) 0.330188472 θ 1.3km -0.020619871 

LCL (i) 2.92117154 θ 1.4km -0.117425464 

Sensible Heat BLH (i-1) 1.071904572 θ 1.5km -0.020003889 

Sensible Heat BLH (i) 2.650567178 θ 1.6km 0.10811159 

Parcel Method BLH (i-1) 8.796298485 θ 1.7km 0.211953821 

Parcel Method BLH (i) 22.15513884 θ 1.8km 0.092761568 

Sensible Heat (i-1) 1.09273529 θ 1.9km 0.134436502 

Sensible Heat (i) 0.344360459 θ 2km 0.109195516 

Latent Heat (i-1) 1.240177933 θ 2.2km -0.10805866 

Latent Heat (i) 1.705848738 θ 2.4km -0.217483536 

θ 0.05km 13.55861389 θ 2.6km -0.178324068 

θ 0.1km 1.19646809 θ 2.8km 0.08071272 

θ 0.15km 0.025100917 θ 3km 0.249503653 

θ 0.2km 0.193888217 θ 3.2km 0.143137953 
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θ 0.25km 0.445161715 θ 3.4km 0.19819078 

θ 0.3km 0.572192811 θ 3.6km 0.158828504 

θ 0.35km 0.751498918 θ 3.8km 0.185359544 

θ 0.4km 0.768690105 θ 4km 1.046682377 

Figures 961 

 962 

Figure 1. Schematic of the multi-structure deep neural networks (DNN) used for 963 

estimating the planetary boundary layer height (PBLH). Input features, including 964 

morning potential temperature profiles, temperature, wind, humidity, surface fluxes, 965 

seasonality, and time, are filtered based on importance and fed into the network. The 966 

system comprises ten distinct hidden layer structures, each processing the inputs to 967 

model PBLH. The outputs from these structures are then synthesized to determine the 968 

final PBLH value, leveraging the diverse representations of atmospheric dynamics 969 
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captured by each neural network configuration. Neuron biases are applied at the output 970 

and hidden layers to fine-tune the model's performance. 971 

972 

 973 

Formatted: Centered
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Figure 2. Feature importance with permutation method in the deep learning model. 974 

This table presents the importance scores of each input feature used in the deep learning 975 

model to estimate the PBLH. The features include local time (LT), month, relative 976 

humidity (RH), surface U and V wind components, pressure at the surface (Pressure), 977 

precipitation (PREC), surface temperature (Temp), sensible and latent heat (SH and 978 

LH), surface-derived lifting condensation level (LCL), boundary layer height derived 979 

from sensible heat and parcel methods (𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙 and 𝐵𝐿𝐻𝑆𝐻), and morning profiles 980 

of potential temperature (θ Profile). The importance scores are presented as 981 

percentages, representing each feature's relative contribution to the model's predictive 982 

accuracy, normalized to sum to 100%. The importance scores quantify the relative 983 

contribution of each feature to the model's predictive accuracy. 984 

 985 

 986 

Figure 3: Performance metrics of individual ensemble members and the ensemble 987 

mean in estimating planetary boundary layer height (PBLH). Panel (a) displays the 988 

mean absolute error (MAE), panel (b) the root mean square error (RMSE), and panel 989 
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(c) the correlation coefficient (R) for each of the ten ensemble members (represented 990 

by dots) and the ensemble mean (indicated by the horizontal dash line). The ensemble 991 

approach demonstrates improved accuracy and reliability in PBLH estimation as 992 

evidenced by the aggregation of individual model predictions into a robust ensemble 993 

mean. 994 

 995 

 996 

 997 

Figure 4: Comparative analysis of the mean absolute error (MAE) in PBLH estimation 998 

using different methodologies. PBLH derived from SONDE is considered as the ground 999 

truth. The DNN approach is shown in black, doppler lidar (Sivaraman and Zhang. 2021) 1000 

in yellow, ceilometer (Zhang et al. 2022) in pink, micro-pulse lidar (MPL, Sawyer and 1001 
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Li. 2013) in light red, and Raman lidar (Ferrare. 2012) in dark red. DNN model is 1002 

trained during 1994-2016. Individual MAE values for DNN are represented by gray 1003 

dots, while the solid lines denote the smoothed MAE for each method with a 2-year 1004 

smooth window.  1005 

 1006 

Figure 5: Scatter plots comparing observed radiosonde (SONDE) PBLH with estimates 1007 

from the machine learning model and lidar observations. Panels (a) and (b) show the 1008 

PBLH estimated by the deep neural network (DNN) during the trained period (1994-1009 

2016) and the untrained period (2017-2020), respectively, with corresponding 1010 

correlation coefficients (R) and mean absolute errors (MAE). Panels (c) and (d) display 1011 

comparisons of Sonde PBLH with ceilometer (CEIL) and doppler lidar (DL) derived 1012 
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PBLH, respectively. The color gradient indicates the normalized density of data points, 1013 

while the solid black line represents the line of best fit and error bars indicates the mean 1014 

and standard deviations for each bin. 1015 

 1016 

Figure 6: Seasonal-averaged daytime evolution of planetary boundary layer height 1017 

(PBLH) derived from various methods. The panels represent the mean PBLH values 1018 

throughout the day for different seasons: (a) March-April-May (MAM), (b) June-July-1019 

August (JJA), (c) September-October-November (SON), and (d) December-January-1020 

February (DJF). The PBLH values estimated by the deep neural network (DNN) are 1021 

shown in red, ceilometer (CEIL) estimates in blue, Doppler lidar (DL) in green, and 1022 

observed radiosonde (SONDE) data in black. Shaded areas around the lines indicate the 1023 

standard deviations within each method.  1024 
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 1025 

Figure 7: Diurnal variations in the performance metrics for estimating PBLH using 1026 

different datasets. (a) Shows the correlation coefficient (R), (b) represents the root mean 1027 

square error (RMSE), and (c) depicts the mean absolute error (MAE) at various local 1028 

times throughout the day. The deep learning neural network (DNN) estimates are in 1029 

blue, ceilometer (CEIL) derived estimates are in pink, and doppler lidar (DL) estimates 1030 

are in green. Note that these biases metrics are calculated using SONDE PBLH as the 1031 

standard. The availability of SONDE data for different hours is detailed in Table 2.  1032 
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 1033 

Figure 8: Similar to Figure 7, but for MAE, RMSE, and R for different month. 1034 
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 1035 

Figure 9: Comparative analysis of PBLH estimation bias under clear-sky and low cloud 1036 

conditions for various methods. Bias percentages are computed as the absolute bias 1037 

normalized by the mean PBLH for each condition, with the number above each method 1038 

indicating the difference in bias between low cloud and clear-sky scenarios. The 1039 

boxplots detail the 10th, 25th, 50th, 75th, and 90th percentiles, while shaded areas in 1040 

violin plots illustrate the distribution of dataset biases. The dots indicate the mean value 1041 

for each condition. 1042 

 1043 
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 1044 

Figure 10: Daytime evolution of planetary boundary layer height (PBLH) derived from 1045 

various methods under the shallow cumulus condition. PBLH values estimated by the 1046 

deep neural network (DNN) are shown in red, ceilometer (CEIL) estimates in blue, 1047 

Doppler lidar (DL) in green. Observed radiosonde (SONDE) data are represented by 1048 

black stars. Purple bars show the relative frequency of shallow cumulus occurrences 1049 

throughout the day, while purple dots mark the corresponding cloud-base heights 1050 

(CBH). Shaded areas around each line reflect the standard deviations for each method. 1051 

 1052 
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 1053 

Figure 1011: Scatter plots comparing SONDE PBLH with estimates from the DNN 1054 

and ERA-5. (a) The comparison between observed SONDE PBLH and estimates from 1055 

the DNN model, which utilizes morning temperature profiles (5 LT) from ERA-5 (ERA 1056 

Profile) and observed surface meteorological data (surface OBS) as inputs. (b) The 1057 

correlation comparison observed SONDE PBLH and PBLH model outputs from the 1058 

ERA-5 datasets. The color gradient in both panels represents the normalized density of 1059 

data points, while the solid black line indicates the linear regression, and the error bars 1060 

denote the mean and standard deviations for each bin. 1061 
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 1062 

Figure 1112: Validation of the DNN trained over the SGP for the GoAmazon (Tropical 1063 

Rainforest) and CACTI (Middle Latitude Mountain) field campaigns. Panels (a) and (c) 1064 

illustrate the correlation (R) and mean absolute error (MAE) between DNN predictions 1065 

and SONDE observations for GoAmazon and CACTI, respectively. Panels (b) and (d) 1066 

show the performance of ceilometer (CEIL) derived PBLH compared to SONDE for 1067 

the same campaigns. The color gradient indicates the normalized density of data points, 1068 

while the solid black line represents the line of best fit and error bars indicates the mean 1069 

and standard deviations for each bin.  1070 
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 1071 

Figure 1213: Comparative PBLH mean (dots) and standard deviations (error bars) 1072 

across ARM sites (SGP, GoAmazon, and CACTI). The datasets are derived from 1073 

radiosonde (SONDE, in black), the DNN model (in pink), ceilometer (CEIL, in blue), 1074 

and Doppler lidar (DL, in green), respectively. Noted the DL-derived PBLH is only 1075 

available at the SGP. The percentages in various colors denote the differences in PBLH 1076 

means derived from the DNN, CEIL, and DL methods relative to SONDE observations. 1077 

To mitigate sampling bias, these mean values and standard deviations are computed 1078 

exclusively for intervals where all instruments have concurrently available data. 1079 


