
Response to Referees’ Comments 

Response to Reviewer #1: 

The authors have used 27 years of data collected by variety of instruments at the ARM 

SGP site to determine PBL height using machine learning. The method uses the PBL 

height derived by radiosondes, ceilometer, doppler lidar etc. at variety of temporal 

resolution to derive PBL height as hourly resolution. The results compare well with 

the evaluation data. The method is then applied to data collected during two field 

campaigns, CACTI and GoAmazon showcasing reasonable results. The authors argue 

that this demonstrates the utility of the deep learning models in predicting PBL height 

(Line 39). The article is well-written, and a lot of work has gone into it. However, I 

find some flaws with it and encourage the authors to revise it as it will make it better. 

Response: We appreciate the reviewer’s thoughtful feedback and recognition of 

the extensive work involved in our study. In response, we have addressed the 

concerns raised and have integrated more analyses to strengthen the manuscript. 

All of the comments and concerns raised by the referee have been carefully 

considered and incorporated into the revised manuscript. Detailed responses to 

the specific points are provided below. 

 

Major Comments: 

1. It is unclear to me whether the article is about highlighting the uniqueness of deep 

learning model or it is about implementing the model to derive PBL height for 

atmospheric science. From the abstract and discussion, it seems that it is an article 

demonstrating the uniqueness of machine learning model, which is fine but might 

make it unsuitable for ACP. If it is for doing science from the derived high resolution 

PBL height values, then maybe some more analysis should be included in the paper. 

Response: We appreciate the reviewer's comments on the focus of our manuscript. 

The primary aim is to demonstrate the utility of the deep learning model for 

deriving PBLH and to highlight its implications for deriving reliable values under 

different scenarios. In response to this feedback, we have expanded our discussion 

to better elucidate the physical meaning and implications of the feature 

importance derived from our deep learning model as follows in Section 3.3: 

"Figure 2 presents the importance scores to demonstrate each primary 

feature's relative influence on the model's performance. Prominently, features 

such as the 𝑩𝑳𝑯𝑷𝒂𝒓𝒄𝒆𝒍 , morning potential temperature profiles  θ profile), and 

surface relative humidity are identified as most important three features, with 

their substantial impact on the accuracy of PBLH estimation being highlighted. 
𝑩𝑳𝑯𝑷𝒂𝒓𝒄𝒆𝒍 is defined as the height where the morning potential temperature first 

exceeds the current surface potential temperature by more than 1.5 K  Holzworth, 

1964; Chu et al., 2019). Among these features, 𝑩𝑳𝑯𝑷𝒂𝒓𝒄𝒆𝒍 captures the response of 

the PBL to surface heating, which can drastically affect local convection and thus 

serves as one of the key parameters in the DNN model. Incorporating this 

parameter and its association with PBL development better simulates diurnal 

variations of PBLH in the DNN model. Meanwhile, the morning θ profile 

represents the vertical stratification of thermodynamics and is essential for 

understanding stability and mixing processes within the PBL. Thus, θ profile 

serves as the initial boundary condition for the PBLH estimation with a significant 

importance score. Surface relative humidity also emerges as a key influencer, 

affecting the model's performance significantly. Humidity levels influence the 

condensation and evaporation processes within the PBL, which are important in 

determining its vertical extent layer and structure. Fair-weather and dry 



conditions are typically associated with a more turbulent and higher PBL. 

Conversely, high surface humidity often contributes to the formation of boundary 

layer clouds, which introduces complex interactions with PBL thermodynamics." 

In addition, we have incorporated a new analysis that examines the 

performance of our DNN-derived PBL heights under shallow cumulus cloud 

conditions. This analysis provides further validation of the model's capabilities 

and offers the physical perspective of the PBL evolution, as well as its association 

with boundary layer clouds. The details of the analyses can be found in the 

response to comment #3. Thus, these revisions align our study more closely with 

the scientific objectives of ACP. These enhancements aim to clarify the scientific 

contributions of our work and its relevance to the application of deep learning in 

boundary layer processes. 

 

2. Table 3: The table lists feature importance of the input variables. Thereby it should 

highlight the variables that are most important for predicting the PBL height. The 

values are very small, and it is unclear why they don’t add up to one. I highly 

encourage the authors to normalize the values before presenting them in the table. 

Please see the paper below for more information. Something like their Figure 7 

would be great. 

Response: Thanks for the insightful comments regarding the presentation of 

feature importance values. We recognize the importance of normalizing these 

values to enhance their interpretability and to facilitate an intuitive comparison 

across different model inputs. Following the comment, we have normalized the 

importance scores so that they now sum to 100%. Now, these relative importance 

scores are expressed as percentages. Each score quantitatively represents how 

much the shuffling of a feature increases the MAE, indicating the relative 

significance of that feature in the model's predictive accuracy and facilitating a 

straightforward comparison of the influence of each feature within the model.  

Following the style of Figure 7 in Gagne et al. (2019), which utilized the 

permutation feature importance method to rank input variables based on the 

impact of randomizing their values on prediction error, we have similarly revised 

Figure 2 (shown in Figure R1). This revision ensures consistency between the 

Figure 2 and Table 3. It's important to note that Gagne et al. (2019) employed 

AUC, the area under the ROC curve, as a measure of total prediction skill in a 

classification context (i.e., positive and negative events), while we use Mean 

Absolute Error (MAE) as the key metric to evaluate our models. The revised 

Figure 2 now effectively illustrates the relative importance of each input variable 

in a more visually accessible format, making it easier to discern which variables 

are most critical for estimating the PBLH. 



 
Figure R1 (the revised Figure 2). Feature importance with permutation method in the 

deep learning model. This table presents the importance scores of each input feature 

used in the deep learning model to estimate the PBLH. The features include local time 

(LT), month, relative humidity (RH), surface U and V wind components, pressure at 

the surface (Pressure), precipitation (PREC), surface temperature (Temp), sensible and 

latent heat (SH and LH), surface-derived lifting condensation level (LCL), boundary 

layer height derived from sensible heat and parcel methods (𝐵𝐿𝐻𝑃𝑎𝑟𝑐𝑒𝑙 and 𝐵𝐿𝐻𝑆𝐻), 

and morning profiles of potential temperature (θ Profile). The importance scores are 

presented as percentages, representing each feature's relative contribution to the model's 

predictive accuracy, normalized to sum to 100%. 

 

3. The second author Dr. Zhang has done a lot of work on the SGP site, especially on 

shallow cumulus clouds and their controls pertaining to land-atmosphere 

interactions. It will be great if the authors can use either the shallow cumulus case 

library made by Dr. Zhang, or the shallow cumulus cases simulated by LASSO 

activity to probe how the new DNN derived PBL heights compare with cloud 

boundaries.  As of now it is hard to tell whether the DNN derived PBL heights are 

physically consistent. 

Response: We appreciate the valuable suggestion to compare our DNN-derived 

PBL heights with cloud boundaries. In response, we have incorporated an analysis 

using the shallow cumulus cases to verify the physical consistency of our DNN 

outputs with observed cloud boundary conditions. The results from this 

comparison are now included in Section 4.2 of the revised manuscript. They 

indicate a good alignment between the DNN-derived PBL heights and the cloud-

base height, further validating the accuracy and reliability of the DNN model in 

capturing PBL evolutions. The detailed discussions are presented as follows. 

“The evolution of the PBLH under shallow cumulus conditions offers insights 

into the interactions between clouds, PBL, and land surface (Zhang and Klein, 

2010, 2013). Figure 10 (Figure R2) demonstrates the variations of PBLH 

measurements from different methods during conditions typical of shallow 

cumulus clouds. Shallow cumulus clouds were identified following Su et al. (2024). 



Specifically, these coupled clouds form post-sunrise; and the sky must not be 

overcast, characterized by a cloud fraction less than 90%. This selection criterion 

ensures that the observed cloud formations are primarily driven by surface 

heating and local convection. The DNN model closely matches the SONDE-derived 

PBLH and the cloud-based height from ARSCL. This alignment underscores the 

physical validity of the DNN approach, confirming its capability to replicate 

traditional measurement techniques accurately. Meanwhile, Doppler lidar-

derived PBLH retrievals also show high consistency with SONDE measurements, 

whereas ceilometer-derived PBLH generally underestimates values under shallow 

cumulus conditions. 

Figure 10 (Figure R2) also demonstrates the general relationship between the 

development of shallow cumulus clouds and the PBL, which are driven by local 

convection and turbulence. The formation of these cumulus clouds is linked to 

rising thermals and an increase in surface heat fluxes, essential for driving vertical 

mixing within the sub-cloud layer. This relationship is evidenced by the increased 

occurrence of cumulus clouds along with an increase in DNN-derived PBLH from 

morning to late afternoon. Specifically, during periods with a high frequency of 

shallow cumulus, the DNN-derived PBLH often surpasses the cloud base height. 

This indicates that rising air parcels extend beyond the condensation level, 

facilitating the formation and development of coupled cumulus clouds. In this 

context, these analyses confirm the physical consistency of DNN-derived PBLH 

with traditional measurement techniques and highlight its physically reasonable 

variations during cloudy conditions.” 

 
Figure R2 (the revised Figure 10). Daytime evolution of planetary boundary layer 

height (PBLH) derived from various methods under the shallow cumulus condition. 

PBLH values estimated by the deep neural network (DNN) are shown in red, ceilometer 

(CEIL) estimates in blue, Doppler lidar (DL) in green. Observed radiosonde (SONDE) 

data are represented by black stars. Purple bars show the relative frequency of shallow 

cumulus occurrences throughout the day, while purple dots mark the corresponding 

cloud-base heights (CBH). Shaded areas around each line reflect the standard 

deviations for each method. 



4. Line 240: you have used the lidar derived PBL height when the radiosonde data 

are not available, with a caveat that they agree within 200m. Can you please tell 

us how many of them did not agree within the 200m threshold and what was done 

for those periods? Thanks. 

Response: Thanks for pointing out the need for additional details regarding the 

agreement between lidar-derived and SONDE-derived PBLH. Specifically, out of 

the total comparisons during the study period, 40.2% of the lidar measurements 

do not agree within the 0.2 km threshold with the SONDE results. The cases with 

relatively larger inconsistencies stem from various factors, including instrumental 

errors, rainy conditions, stable PBL conditions, differing definitions, and lidar 

signal attenuation, as discussed in previous studies (Su et al., 2020; Kotthaus et al., 

2023). These cases were excluded from the DNN model training to maintain the 

quality of the process. We have incorporated these discussions into Section 3.2 of 

the revised manuscript to clarify our methodology. 

 

Minor Comments: 

Line 117: add height above mean sea level.  

Response: We added the elevation of SGP site for the clarity.  

 

Line 119-120: Add references to the field campaigns. 

Response: References to the CACTI and GoAmazon field campaigns have been 

included (Varble et al. 2021; Martin et al. 2016). 
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Response to Reviewer #2: 

While traditional machine learning methodologies (e.g., Random Forest) have been 

widely used to estimate PBLH, most studies heavily rely on specific remote sensing 

instruments or focuses on limited time-period or specific region of interest. More 

importantly, lack of enough physical explanation is another concern. To address this 

issue, this manuscript introduces a multi-structure deep neural network (DNN) model 

that is used to generate yield a robust 27-year PBLH dataset over the Southern Great 

Plains from 1994 to 2020. Through leveraging a variety of meteorological data, 

independent of remote sensing instruments, this model yielded an PBLH dataset over 

the SGP with robust accuracy, consistently yielding lower bias values across various 

conditions and datasets. Besides, the generalizability of this model to different 

geographic regions and climate zones are explored, exhibiting high potential and less 

uncertainties in terms of seasonal, diurnal variability. Overall, this manuscript is well 

organized with clear enough logic, I would like to offer the following suggestions for 

further improvement: 

Response: We appreciate the reviewer’s positive and comprehensive comments on 

our work. Following these insights, we have refined our manuscript to enhance its 

clarity. We have carefully considered and addressed all comments and concerns 

raised by the reviewer in this revision. Our detailed responses to each point are 

provided below. 

 

Major Comments: 

Introduction: Except for the lidar systems, the authors seem to ignore the radar wind 

profiler, which provides the direct measurements of turbulence in the atmosphere and 

thus affords the retrievals of PBLH. A variety of algorithms or methods in the literature 

have been proposed to accomplish this task. Therefore, the authors can argue the 

current literature review in this regard. 

Response: Thanks for the helpful suggestion. We acknowledge the importance of 

radar wind profilers in measuring atmospheric turbulence and their utility in 

PBLH retrieval and acknowledge the relevant studies in the introduction as 

follows:  

“In addition, wind profilers can estimate the PBLH using algorithms that 

analyze the signal-to-noise ratio from wind profiler data (Molod et al. 2015; 

Solanki et al. 2022; Liu et al. 2019; Salmun et al. 2023; Bianco and Wilczak 2002; 

Bianco et al. 2008; Tao et al. 2021).” 
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Line 89-102: The reason for the selection of multi-structure deep neural network (DNN) 

in the retrieval of PBLH lacks necessary literature support. Are there similar models 

constructed based on DNN? If any, how is the performance compared with other 

models or methods? This should be clarified and some necessary references are 

required to be cited here. 

Response: Response: We appreciate the comment regarding the need for a clearer 

explanation for the choice of the deep learning model. In response, we have added 

a detailed discussion on the introduction as follows:  

“We aim to leverage and integrate the comprehensive field observations 

(i.e., radiosonde and remote sensing techniques) to develop a deep learning model 

for direct PBLH estimation from conventional meteorological data. This strategy 

circumvents the limitations of relying on particular remote sensing technologies. 

Furthermore, our model employs an advanced deep neural network (DNN) 

approach (Sze et al. 2017; Schmidhuber, 2015; Nielsen, 2015; Pang et al. 2020), 

diverging from traditional ML methods like random forest. This deep learning 

model utilizes ensemble techniques, constructing arrays of various structures and 

using their average for the final estimation. This approach method provides 

particular advantages in the context of complex and nonlinear processes (Ganaie 

et al. 2022; Mohammed and Kora. 2023). Ensemble DNN with multi-structure 

designs shows very strong flexibility and robustness, so it relatively performs 

better and has high stability across a wide range of conditions (Xue et al. 2020; 

Dong et al. 2020). This facilitates the adaptability of DNN as a tool for PBLH 

estimation, which can be utilized under different scenarios and locations.” 
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Specific comments: 

1. Line 50: “it” is redundant and can be removed.  

Response: Thanks for catching this typo. We have revised it. 

 

2. Line 54: “climate models” -> “climate projections”  

Response: Revised as suggested.   

 

3. Line 83: “PBL heights using thermodynamic profiles or backscatter profiles from 

Lidar or Atmospheric Emitted Radiance Interferometer (AERI)” -> “PBLH using 

thermodynamic profiles Atmospheric Emitted Radiance Interferometer (AERI) or 

using backscatter profiles from Lidar”. 

Response: We have rephrased the sentence as suggested. 

 

4. Line 87: “Moreover,” -> “For example, ”  

Response: The suggestion has been incorporated. 

 

5. Line 89: “marked progress” -> “made great progress”  

Response: Revised as suggested.   

 

6. Line 136: Some words are missing between “latent heat fluxes” and “the surface 

instruments”  

Response: We revised it as “latent heat fluxes from the surface instruments”. 

 

7. Line 365-367: is there any supporting material for the threshold used to define low 

cloud (maximum cloud fraction between 0-4 km exceeding 1%)? 

Response: The ECWMF also use 1% as the threshold to identify the cloud base 

height. Specifically, cloud base is calculated by searching from the second lowest 

model level upwards, to the height of the level where cloud fraction becomes 

greater than 1% and condensate content greater than 1.E-6 kg kg-1 (Hersbach et 

al. 2023). We include this reference in the manuscript. 
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