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Abstract. Treelines are sensitive indicators of global change, as their position, composition and pattern directly respond to 10 

numerous ecological and anthropogenic factors. Most studies are case-specific and treeline features vary greatly worldwide 11 

making it very difficult to model an overall pattern. Therefore, the further development of methods to accurately map fine-12 

scale treeline spatial patterns, especially through innovative approaches such as remote sensing with unmanned aerial vehicles 13 

(UAV) and deep learning models, is of scientific importance for the conservation of forest ecosystems in the face of ongoing 14 

and future ecological challenges. 15 

In this study, we aimed to fill this gap by combining field and UAV-based data with a deep learning model to retrieve single 16 

tree-scale information over 90 ha distributed on 10 study sites in the Italian Alps. Using the proposed methodology, we were 17 

able to correctly detect individual tree crowns of conifers taller than 50 cm with a detection rate of 70% and an F1 score of 18 

0.76. The detection rates of individual tree crowns improved with increasing tree height, reaching a peak value of 86% when 19 

only tall trees (>2 metres) were considered. Canopy delineation was good when all trees were considered (Intersection over 20 

Union (IoU) = 0.76) and excellent when only tall trees were considered (IoU = 0.85). The estimates of tree position and height 21 

achieved an RMSE of 59 cm and 92 cm, respectively. Our univariate and bivariate heterogeneous Poisson Point Pattern 22 

Analysis (PPA) revealed a clustered pattern for spatial scales < 20 m, and a strong repulsion between small and tall trees at all 23 

the tested spatial scales, respectively. PPA results suggest that in the Alps, seedlings tend to progressively occupy safe sites 24 

and colonise non-competitive sites, resulting in the evenly sized clusters found. We demonstrated that the proposed 25 

methodology effectively detects, delineates, georeferences and, measures tree height of most trees across diverse Alpine 26 

treeline ecotones. This enables the analysis of fine-scale spatial patterns and underlying ecological processes. The inclusion of 27 

heterogeneous study areas facilitates the transferability of the segmentation model to other mountain regions and makes the 28 

present study a benchmark for creating a global network of fine-scale mapped treeline spatial patterns to monitor the effects 29 

of global change on ecotone dynamics.   30 
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1 Introduction 31 

The elevational treeline is the transition zone from the uppermost closed montane forest (timberline) to the highest scattered 32 

trees (tree species line) (Holtmeier et al., 2003), and one of the most studied ecotones. Since the late 19th century scientific 33 

studies largely focused on the diversity and complexity of factors affecting the ecotone spatial and temporal patterns at different 34 

scales (Hansson et al., 2021; Holtmeier, 2009). It is well known that temperature plays a crucial role in treeline positioning 35 

and dynamics from regional to global scales (Dirnböck et al., 2003; Gehrig-Fasel et al., 2007; Harsch et al., 2009), but is not 36 

the only driving factor. Many other studies have emphasised the significant  role of other factors in treeline formation (Mienna 37 

et al., 2024), including water availability (Barros et al., 2017; Williams et al., 2013), site topography (Leonelli et al., 2016; 38 

Marquis et al., 2021; Müller et al., 2016), biotic drivers (Brown and Vellend, 2014; Cairns et al., 2007) and anthropogenic 39 

pressure (Gehrig-Fasel et al., 2007; Malandra et al., 2019; Vitali et al., 2019). 40 

Global change can trigger large-scale vegetation dynamics affecting the provision of ecosystem services - such as carbon 41 
sequestration (Mienna et al., 2024). Climate alteration can induce upward migration of species threatening a loss of habitat 42 
and biodiversity of high alpine communities habitat (Kyriazopoulos et al., 2017). This sensitivity to climatic and anthropogenic 43 
factors makes high-elevation ecotones key indicators of global change (Dirnböck et al., 2011; Greenwood and Jump, 2014). 44 
Monitoring changes at elevational treelines is therefore of utmost importance to follow how forests are responding and to 45 
forecast how they will respond to a changing environment (Chan et al., 2024; Hansson et al., 2023; Mottl et al., 2021) and 46 
ultimately to guide the definition of appropriate conservation strategies. However, the complex interaction of the above-47 
mentioned drivers requires very heterogeneous systems capable to appreciate within wide spatio-temporal gradients soil and 48 
vegetation features over short distances (Holtmeier and Broll, 2007, 2017). 49 
An open question in many fields of ecology is how to infer processes by observing patterns. In this context, the great spatial 50 

heterogeneity of this high-altitude ecotone hinders the transferability of case studies observations and therefore their 51 

generalization. How to tackle the spatial heterogeneity issue is still an open question, and consequently the attribution of the 52 

observed processes to specific drivers is still a challenge (Garbarino et al., 2023). Combining ground-based and remote sensing 53 

data could be a winning venue to solve this compelling issue, especially if pursued with a flexible and efficient protocol. Field 54 

surveys remain the traditional methods used also at treelines and involve measuring several tree parameters (e.g. stem DBH, 55 

height, position, health conditions) within small study areas – plots or transects (Mainali et al., 2020; Van Bogaert et al., 2011; 56 

Vitali et al., 2017, 2019). This approach supplies precise data, but is time-consuming. In addition to the limited spatial extension 57 

of the plots/transects, their lack of spatial contiguity can make them scarcely representative and the obtained results unsuitable 58 

to detect tree spatial distribution. 59 

At this point remote sensing (RS) techniques come into play. The use of remote sensing techniques dates back to the 1980s 60 

(Holmgren and Thuresson, 1998), but it is only in the last two decades that they have been widely used in treeline ecology 61 

(Garbarino et al., 2023). The choice of the right RS tool involves the scientific question of which spatial and temporal scale 62 

we need to use. For instance, while satellite imagery can provide suitable data over large forest areas and wide time intervals 63 
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(Garbarino et al., 2020; Nguyen et al., 2024), most optical sensors do not provide the spatial resolution required for individual 64 

tree mapping (Bennett et al., 2024; Morley et al., 2018; Simard et al., 2011). Within the limitations of field surveys (limited 65 

spatial and temporal extent) and satellite-based data (high spatial and temporal extent and low resolution) that Uncrewed Aerial 66 

Vehicle (UAV) platforms can bridge the gap and be applied in tree mapping (Fromm et al., 2019; Qin et al., 2022; Xie et al., 67 

2024). The increasing accessibility and friendly use of these aerial platforms make them increasingly valuable and efficient 68 

for such applications. In addition to wall-to-wall mapping of relatively large and heterogeneous areas, drone survey enables 69 

the analysis of fine-scale drivers and the extraction of tree attributes and features (Nasiri et al., 2021; Panagiotidis et al., 2017; 70 

Shimizu et al., 2022; Xiang et al., 2024). 71 

A single-tree scale approach is fundamental in treeline ecology, as it provides a better understanding of the underlying 72 

ecological processes (i.e., drivers) essential for linking treeline dynamics to tree-to-tree interactions and facilitation-73 

competition relationships (Looney et al., 2018; Trogisch et al., 2021; Wang et al., 2021). 74 

Convolutional Neural Networks (CNNs) based on very-high-resolution images are a reliable and versatile tool for single-tree 75 
scale analyses, enabling the accurate identification and representation of different plant species and communities as well as 76 
the detection of individual trees (Braga et al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn et al., 2021). The 77 
latter can be achieved through instance segmentation algorithms that enable the detection of individual objects on the input 78 
images, allowing to distinguish and separate individual neighbour tree canopies (Ball et al., 2023; Braga et al., 2020). 79 
Our general hypothesis is that RGB imagery derived from low-cost UAVs can provide data for accurate single tree detection 80 
and extraction of attributes at the treeline ecotone. In particular, we expect tree height to have a strong influence on the 81 
performance of the model, with better results for larger trees. Furthermore, we set the hypothesis that by training the DL model 82 
with very different treelines images, we could improve the transferability of the model to different mountainous regions without 83 
a significant drop in performance. 84 
Despite the widespread use of UAV for single tree mapping and tree features detection in different forest ecosystems 85 
(Dietenberger et al., 2023; Diez et al., 2021; Weinstein et al., 2019), a framework for mapping fine-scale tree spatial patterns 86 
at treeline ecotones based on low-cost UAV imagery is still lacking. At this regard, the present study aims to: (i) propose a 87 
methodology that combines very high-resolution RGB images derived from low-cost UAVs with CNNs to provide a single-88 
tree fine-scale perspective and infer processes from patterns; (ii) test  if the model is transferable to heterogeneous datasets and 89 
validate the performance in single tree detection, crown delineation and estimating position and height; (iii) use the fine-scale 90 
treeline maps output to analyse spatial patterns and investigate tree-to-tree interactions with the aim of testing the applicability 91 
of our results to treeline ecology. 92 

https://doi.org/10.5194/egusphere-2024-3757
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

 
 

2 Materials and Methods 93 

2.1 Study Area  94 

We selected ten study sites across the Italian Alps (Fig. 1) covering a large longitudinal gradient to obtain a balanced dataset 95 

representative of the Western, Central, and Eastern Italian Alps, therefore showing highly heterogeneous climatic, 96 

topographical, soil, and vegetational conditions (Appendix A). For instance: (i) climate conditions vary from Atlantic to 97 

continental from West to East with influences of cold polar air descending from northern Europe and warm Mediterranean air 98 

flowing northward from the south. Mean annual temperatures range from 0° to 10° C and annual precipitation varies between 99 

400 and 3000 mm with extremes in both variables strongly related to physiography (Isotta et al., 2014); (ii) topography consists 100 

of extensive lowlands, steep valleys and mountain peaks rising above 4800 m a.s.l.; (iii) above the closed forest the soil includes 101 

mesic and xeric regions, displaying a sequence of grasslands, sparsely vegetated areas, screes and surfaces strongly affected 102 

by gravitational events forming rill and gullies; and (iv) all the landscapes experienced centuries of humans land use practices 103 

with different degrees, yet land abandonment is more marked in the Western sector of the study area (Anselmetto et al., 2024; 104 

Bätzing et al., 1996). The introduction of such heterogeneity in the dataset was aimed at testing the transferability of the 105 

protocol to several treeline conditions. In line with the typical species coniferous composition of the subalpine belt in the Alps, 106 

in all the studied treelines the dominant treeline-forming species are European larch (Larix decidua Mill.) and Swiss stone pine 107 

(Pinus cembra L.). The study sites host also Norway spruce (Picea abies (L.) H.Karst.), dwarf mountain pine (Pinus mugo 108 

Turra), mountain pine (Pinus uncinata Miller), Scots pine (Pinus sylvestris L.) and a smaller presence of broadleaf species 109 

such as green alder (Alnus viridis (Ehrh.) K. Koch) and silver birch (Betula pendula Roth). Further and more detailed 110 

information of the study sites are reported in Table 1.   111 
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112 
Figure 1. Geographic location of (a) the Alpine Convention Perimeter in Europe and (b) the ten study sites (brown diamonds) along 113 
with their names across the Italian Alps. Detail in the UAV-derived orthomosaic of the study site (c) Devero and (d) same site 114 
overlayed with the CHM. (e) further details of the study area Devero and (f) its CHM. For further details see Sect. 2.2  115 
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 116 
Table 1. Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.l.), 117 
aspect, dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived 118 
from Chelsa Climate database (Karger et al. 2020), while position, elevation, and species from the field surveys.  119 

Study site date Latitude (°) Longitude (°) Elevation 
 (m a.s.l.) Aspect Species 

Mean annual 
temperature 

(°C) 

Annual 
precipitation 

(mm) 

Avic 06/10/2021 45.697 7.593 2,184 SE L. decidua, P. abies,  
P. uncinata 1.9 1115 

Becco 28/09/2021 46.471 12.118 2,190 N-NE P. cembra, L. decidua, 
P. abies 0.9 1449 

Bocche 06/07/2021 46.338 11.744 2,245 SW P. cembra, L. decidua,  
P. abies 0.7 1225 

Chianale 29/06/2021 44.646 6.975 2,283 N L. decidua, P. cembra 1.6 829 

Devero 14/06/2021 46.316 8.294 2,186 NW L. decidua 1.4 1631 

Genevris 26/07/2021 45.030 6.897 2,379 W L. decidua, P. cembra 1.4 1263 

Livigno 22/07/2021 46.516 10.142 2,322 NW L. decidua, P. cembra,  
P. mugo 0.1 1067 

Rion 22/09/2021 45.830 7.262 2,290 S-SE L. decidua, P. abies 0.7 1759 

Senales 07/07/2021 46.727 10.898 2,319 S L. decidua, P. cembra, 
P. abies 0.2 923 

Valfurva 21/07/2021 46.454 10.461 2,371 E L. decidua, P. abies,  
P. cembra 1.2 894 

2.2 Sampling design and data collection  120 

We randomly selected 10 treeline ecotones above 2,000 m a.s.l. along an eastern-western gradient in the Italian Alps with a 121 

minimum distance of 25 km. In these ecotones, we placed ten 9-ha square plots (300 m x 300 m) with a side parallel to the 122 

main slope so that the forestline occurred in the lower third of the plot. We defined forestline as the continuous line separating 123 

the closed forest (canopy cover > 10%) from the semi-open and open areas (canopy cover < 10%) (FAO, 1998). The canopy 124 

cover was assessed based on the pan-European Tree Cover Density (TCD) layer provided by Copernicus 125 

(https://land.copernicus.eu/en).  126 

Data collection included UAV and field surveys in summer 2021. In particular, we employed a DJI Phantom 4 pro V2 127 

quadcopter equipped with a RGB camera with a 1-inch CMOS sensor with 20 MP. UAV survey consisted of three flights: two 128 

of them with the camera in the nadiral position (one along the contour lines and one perpendicular to them), and the last one 129 

with an oblique camera perspective of 60° off-nadir, granting a more complete view of trees and terrain features. Image 130 

acquisition was achieved by performing swipes at a flight height of 30 m above the highest point of the 300m x 300m plot. To 131 
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avoid a drop in the spatial resolution in the bottom area of the plot due to the steepness, the three flights were repeated starting 132 

from the central area of the plot, at approximately 150 m from the plot side. All the flights were performed on sunny, windless 133 

days to avoid cloud coverage and to minimise image distortions due to UAV movements. Images frontal and lateral overlaps 134 

were, respectively, 80 and 80% to ensure a comprehensive coverage of the surface. Prior to the UAV flights, 12 Ground 135 

Control Points (GCPs) in the form of bull’s eye targets were deployed in the imaged area and their position was assessed using 136 

a Trimble R2 and Reach RS2 GNSS (Global Navigation Satellite Systems) antennas, both with sub-metric static horizontal 137 

and vertical positioning accuracies with a 10-min occupancy. GCPs position was ultimately post-processed for a final 138 

georeferencing correction. The acquired RGB aerial images were processed using Agisoft Metashape Pro software version 139 

1.5.1. A Structure-from-Motion procedure was used to produce 3D point clouds which enabled the production of DSMs, and 140 

5-cm spatial resolution orthomosaics. A ground classification from the aerial data point cloud was used to normalise the point 141 

cloud and generate a digital terrain model (DTM). The DTMs and DSMs were used to extract the CHMs by computing the 142 

above-ground height, thus enabling the discernment of ground and non-ground points in the respective point clouds. We 143 

recorded position, height, and species of 50 randomly selected trees for each study site scattered across the plot. Tree’s height 144 

was assessed through a TruPulse 200b (Crisel srl) or measuring tape for smaller individuals. The position of the trees was 145 

measured through the use of the above mentioned antennas with a 3- to 5-minute occupancy. The final ground control dataset 146 

included a total of 500 trees.  147 

The entire workflow of the study, from data acquisition to final analyses, is reported in Figure 2. 148 
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149 
Figure 2. Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different 150 
methodological step of the study.  151 

2.3 Deep learning modelling 152 

To perform tree detection and segmentation we used a pre-trained deep learning (DL) model based on the Mask R-CNN 153 

algorithm implemented in the “Detectron2” library from Meta AI and available at 154 

https://github.com/facebookresearch/detectron2. Mask R-CNN is a DL framework which performs instance segmentation by 155 

combining semantic segmentation and object detection (Kattenborn et al., 2021). Its framework involves the generation of 156 

region of interest proposals by a deep fully convolutional network, and then there is a classification of the object of interest 157 

within each generated region proposal. Our methodology consisted in the following steps: i) cropping RGB orthomosaic of 158 

each study site into adjacent tiles of 512 x 512 pixels size; ii) systematic selection of 10 tiles per each study site to create the 159 

reference data; iii) dataset random split in training, validation and testing followed by a split in training and validation dataset 160 

based on sites geographical distribution for a cross-validation; iv) Hyper-parameters definition and training; v) performances 161 

evaluation. Each of the steps is furtherly explained in the following chapters. We selected tiles of 512 x 512 pixels (equivalent 162 

to 25.6 x 25.6 m at 5 cm spatial resolution) as the model achieved better performance, i.e., higher detection rate and accuracy 163 

on all sites, compared to tiles of 128 x 128 and 256 x 256 pixels. 164 

https://doi.org/10.5194/egusphere-2024-3757
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

 
 

2.3.1 Training, validation, and test data  165 

We here used only 3% of the total amount of tiles for training, with the purpose of testing the limits of using a low number of 166 

training images on a pre-trained DL model. To build a strong reference dataset we fine-tuned the model using a Meta AI  167 

Segment Anything for the creation of individual tree crowns samples (https://github.com/facebookresearch/segment-168 

anything). For the creation of the ground truth all the trees were segmented and labelled by visual interpretation of RGB 169 

images, resulting in non-overlapping binary masks. To minimise operator biases photo interpretation was conducted by a single 170 

operator. The semi-automatically delineated tree crowns were used to evaluate the model performances in delineation (see 171 

Section 2.3.4). At the end of the process, we obtained a dataset with a total of 1,016 individual canopies of different coniferous 172 

species (larch trees n = 885, pine trees n = 131). All the segmented crowns were classified and labelled as ”trees'' regardless 173 

of the species due to the similar spectral information.  174 

To generate the training, validation and test datasets, the reference dataset of 100 tiles (512 x 512) was split into 70 % of 175 

images for training, 20 % for validation, and 10 % for testing. The split in the three datasets was performed by systematically 176 

sampling the 512-pixel tiles in the reference dataset. The tiles were sampled diagonally in order to cover a larger surface of 177 

the study area and to minimise spatial autocorrelation. Finally, we assessed the performance of the model using the test dataset, 178 

consisting of tiles with which the model was not familiar.  179 

To validate the model transferability, we corroborated the results with a k-fold spatial cross-validation. The dataset was split 180 

in nine folds. In each fold nine sites’ images were used for both training and validation, while the images of one site were used 181 

for testing only. The process was repeated 10 times so that each site was used as the test dataset once. The outputs of the 10 182 

iterations through the entire dataset were finally averaged to achieve a mean F1 score, precision, recall, and average precision 183 

value.   184 

2.3.2 Model development and hyper-parameter configuration  185 

During training we utilised the Adam optimizer with a learning rate of 0.00025; 128 ROIs per image; 1500 epochs; batch size 186 

of 30. We used the R101-FPN configuration as it is reported to have the best speed in training maintaining a high accuracy in 187 

instance segmentation (https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md). To prevent overfitting 188 

we kept track of the validation loss in the F1-score every 100 iterations and implemented an early stopping when the F1-score 189 

degraded for more than 5 evaluations. The model was trained with data augmentation consisting in random resizing and rotation 190 

of the input images. 191 

We predicted tree crowns contours using the tiling process developed by Ball et al. (2023). This method allowed us to create 192 

a buffer around each tile, thus avoiding crowns at the edges of the tile to be split. The overlapping crowns resulting from this 193 

operation were then filtered by removing those with the lowest confidence value assigned during the prediction. Classified 194 

maps were post-processed to remove noise and correct obvious classification errors. The crowns remaining after this cleaning 195 
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process were deemed correctly predicted trees. The evaluation of the model performances was computed before the cleaning 196 

process for all the evaluation metrics apart from DET% and IoU (see Section 2.3.4 for details)  197 

2.3.3 Model performance assessment  198 

To assess the performances of the DL model we chose four evaluation metrics according to similar studies focusing on 199 

individual tree detection (Beloiu et al., 2023; Dersch et al., 2023; Dietenberger et al., 2023; Xie et al., 2024). The chosen 200 

evaluation metrics were: precision (1), recall (2), F1 score (3), and average precision (4). The F1 score, which measures the 201 

test accuracy, was computed as the weighted average of precision and recall. The closer the F1 value is to 1, the higher the 202 

accuracy of the class prediction. The average precision is computed as the area under the precision-recall curve. It evaluates 203 

the quality of the classifier in retrieving the relevant instances.  204 

To validate the model transferability, we corroborated the results with a spatial cross-validation. (1), (2), (3), and (4) were 205 

computed after each cross-validation and the 10 outputs were averaged to achieve a mean precision, recall, F1 score and 206 

average precision value to be compared with the not-cross-validated results.   207 

Tree maps were evaluated in terms of detection rate (DET%) and delineation accuracy (IoU). DET% is the ratio between the 208 

predicted and the number of trees measured in the field (5). It is computed to evaluate how many objects were correctly 209 

classified out of all the ground truth data. For the evaluation of the DET% we used as reference data all the field-sampled trees 210 

with the exclusion of the ones falling within the training and validation data. The IoU is measured as the ratio between the area 211 

of overlap and the area of union of the ground truth crown and predicted crown (6), it is used to evaluate the precision with 212 

which the predicted crowns were segmented. For IoU evaluation we used as reference data the semi-automatically delineated 213 

tree crowns in the test dataset. 214 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

= %&''(%)*+	-'(./%)(.	)'((0
1**	)'((0	-'(./%)/&20

	,	 (1)		

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#$3

= %&''(%)*+	-'(./%)(.	)'((0
1**	4'&52.6)'5)7(.	)'((	-'(./%)/&20

	,	 (2)		

where TP are the true positives instances; FP are the false positive instances; FN are the false negatives (number of ground 215 

truth trees that the model did not detect). 216 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	 -'(%/0/&2∗	'(%1**!"#$%&%'()"#$*++
,

	,		 (3)		

𝐴𝑃 = 	𝑛å(𝑅2 − 𝑅269)×𝑃𝑛	AP=n∑(Rn−Rn−1)⋅Pn	,	 (4)	

where n is the number of thresholds; Rn is the recall at the n-th threshold; Pn is the precision at the n-th threshold. 217 
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2.3.4 Tree attributes assessment  218 

Tree position estimation accuracy was evaluated through a comparison between the field-collected coordinates with ones of 219 

the centroids of predicted crowns. For the evaluation of height estimation, we compared the value of the CHM at the predicted 220 

centroid with the height measured in the field. The evaluation metrics chosen for evaluating the accuracy in tree height and 221 

position were: root mean square error (RMSE) and mean absolute error (MAE). Both these metrics were calculated in 222 

centimetres. RMSE is a standard deviation of prediction errors or residuals (7). The MAE shows how close the ground truth 223 

values and predicted values are to each other (8). It is obtained as the absolute difference between the real value and the 224 

predicted value, hence, it gives the same importance to small and big differences between estimated and predicted value. 225 

Position estimation accuracy was also evaluated in terms of Euclidean distance between the centroid of the predicted crown 226 

and the one of the ground truth crown (9). For tree height estimation accuracy, we also computed the deviation between real 227 

and predicted values calculated both in absolute and relative terms. RMSE, MAE, Euclidean distance and tree height accuracy 228 

were computed only for correctly predicted trees (n = 343) with the exclusion of the trees that fell within tiles used for training 229 

and validation of the neural network (n = 157).  230 

𝑅𝑀𝑆𝐸 = F	
∑ (<!6<"),(
%	./ 	

2
		,	 (7)		

𝑀𝐴𝐸 =	∑ ><!6<">(
%	./

2
,	 (8)		

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =	L		(𝑋- − 𝑋')? 	+ (𝑌- − 𝑌')?		,	 (9)		

where n is the number of observations; xp, yp are the predicted values; xr, yr are the actual values. 231 

We tested tree height influence on the results’ accuracy by grouping trees into 3 categories according to their height: small 232 

trees (height ≤ 130 cm), medium trees (130 cm < height ≤ 200 cm) and tall trees (height > 200 cm). Statistical differences 233 

between the three different size classes results were evaluated using a Wilcoxon test with pairwise comparison between the 234 

groups. To investigate how the inclusion in the analysis of trees smaller than 50 cm impacted on the position and height 235 

estimation accuracies, we created a separate size class excluding them (height > 50 cm).  236 
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2.4 Spatial pattern analysis  237 

Tree maps and extracted tree heights were finally used to investigate tree spatial patterns. We assessed tree distribution patterns 238 

by applying a univariate Point Pattern Analysis (PPA) computed through the grid-based software Programita(2014) (Wiegand 239 

and A. Moloney, 2004). We used a pair-correlation function g(r), a second-order statistic that is non-cumulative and uses only 240 

points separated by a distance r, thus allowing the identification of spatial scales where there are significant interactions among 241 

points. We analysed patterns across a distance ranging from 0 to 100 m, that is one-third of the width of the study sites 242 

(Rosenberg, 2015). The observed univariate patterns were compared with simulation patterns and confidence envelopes 243 

generated by a Heterogeneous Poisson (HP) null model. This null model distributes the points (tree centroids from the tree 244 

maps) on the study area with a probability proportional to the intensity map but relaxes the assumption of complete spatial 245 

randomness and allows the intensity of the point pattern to vary across the study area. For the generation of the intensity 246 

function to be employed in the HP null model we employed an Epanecnikov kernel with enabled edge correction and we set 247 

the ring width of the moving window to 5, and allowed only one point per cell. 248 

To test significant departure from the null model, for each analysis we performed 99 Monte Carlo simulations which generated 249 

99% confidence limits (Carrer et al., 2018; Getzin et al., 2006; Petritan et al., 2015). The spatial pattern was defined as 250 

randomised, clustered or regular if the g(r) values were respectively equal, greater or lower than the confidence envelopes 251 

calculated using Monte Carlo simulations at specific spatial scales. To verify the robustness and significance of the departure, 252 

and to avoid incurring in Type I error (if the value of g(r) is close to a simulation envelope the null model may be rejected even 253 

if it is true) we used the Goodness-of-Fit (GoF) over the given distance interval (Loosmore and Ford, 2006).   254 

Additional univariate PPAs were also performed for each tree size category in order to gain insights on tree spatial distribution 255 

within each dimension class. 256 

To assess the relationship existing between tall and small trees we applied a bivariate point pattern analysis (Wiegand e A. 257 

Moloney 2004). We extended the pair-correlation function used before for a bivariate analysis (g12(r)), thus allowing us to 258 

detect the interactions between the two different classes of trees. The interaction was defined as independent, attraction or 259 

repulsion if the g12(r) values were respectively equal, greater or lower than the confidence envelopes at specific spatial scales.  260 

For the bivariate analysis we used the antecedent condition null model, with points of pattern 1 (tall trees) fixed, and points of 261 

pattern 2 (small trees) distributed in accordance with a HP null model, where small trees are randomly distributed in the 262 

neighbourhood of the tall trees.  263 

To investigate potential dynamics of attraction/repulsion among individuals of different sizes we performed the analysis by 264 

using the same classes (tall, medium and small trees) previously created. The middle class was used as a dividing element 265 

between tall and low trees in order to avoid overlapping groups, and was hence not used in the analysis.  266 

One of the assumptions of the PPA is that objects (trees) are considered as points. However, we decided to test whether the 267 

point approximation (canopies centroids) was somehow hindering the spatial relationships between trees. To investigate this 268 
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aspect all the above mentioned analyses were performed again using as input data the crowns’ shapes taken from the generated 269 

tree maps, hence using the setting for objects of finite size and real shape (Wiegand et al., 2006).  270 

Univariate and bivariate analyses on points approximation and on objects of finite size and real shape were performed for each 271 

site using the same settings and were ultimately combined with the “combine replicates” protocol. 272 

3 Results 273 

3.1 Tree detection rate, delineation performances and transferability of the protocol  274 

Throughout the evaluation process, the DL model achieved a F1 score of 0.76, a precision of 0.92, a recall of 0.79, and an AP 275 

of 0.68. As corroborated through the spatial cross-validation, the DL model showed good performances on yet-unseen data, 276 

achieving an F1 score 0.68, a precision of 0.90, a recall of e of 0.56 and an AP of 0.36 (appendix B).  277 

As shown by DET% results, the DL model was able to accurately detect 67% of all the trees sampled in the field (with the 278 

exclusion of the trees present in the training and validation dataset) (Table 2). Small trees were harder to detect, a result that 279 

was reflected by the mean detection rate of 52%. As emphasised by DET% ab50, limiting the analysis to taller trees lead to 280 

higher detection rates, resulting in a DET% = 70, thus confirming our hypothesis that smaller trees have a strong negative 281 

effect on the detection rate.  Considering only ab50, Genevris was the site in which the best detection rates were registered 282 

(93%), followed by Valfurva, Devero, Bocche and Livigno, where the model correctly detected more than 78% of all the trees. 283 

Considering only tall trees we reached a mean detection rate of 86%, furtherly supporting the effect of size on detection rates. 284 

According to the IoU results, tall trees were the ones achieving the best performances, reaching a mean IoU value of 0.85. 285 

Medium and small trees achieved a mean IoU value of 0.73 and 0.69, respectively. The difference between tall trees’ IoU and 286 

the other two classes’ one was significantly different, as demonstrated through a Wilcoxon test (Fig. 4a).   287 
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Table 2. Single site detection rates and number of total predicted trees (n. pred trees) out of the totality of trees sampled in the field 288 
(n. test trees). DET% all = detection rate on the totality of individuals; DET% small = detection rate on small trees; DET% medium 289 
= detection rate on medium trees; DET% tall= detection rate on tall trees; DET% ab50 = detection rate on individuals taller than 290 
50 cm.  291 

site n. test trees n. pred trees 
DET% 

all small medium tall ab50 

Avic 42 14 33 12 56 75 37 

Becco 45 31 69 58 69 85 71 

Bocche 50 35 70 48 85 93 79 

Chianale 51 32 63 43 73 68 63 

Devero 40 33 83 71 86 94 83 

Genevris 40 37 93 86 1.00 92 93 

Livigno 50 39 78 85 63 89 78 

Rion 45 24 53 18 78 93 57 

Senales 47 24 51 16 40 83 58 

Valfurva 49 40 82 84 76 86 82 

Mean / / 67 52 73 86 70 

3.2 Tree attributes estimation  292 

The proposed method demonstrated that it was possible to accurately estimate tree positions and height. Trees' predicted 293 

position achieved a RMSE of 0.59 m and MAE of 0.49 m. For most of the predictions, the calculated Euclidean distance value 294 

was below one metre, with the majority of predictions recording a distance close to 30 cm (Fig. 3b). Position precision 295 

increased with the reduction of tree height, thus resulting in the two smaller classes (medium and small trees) having the lowest 296 

deviation values between predicted and reference centroids (Fig. 4b). Small and medium trees position prediction accuracy 297 

achieved a mean Euclidean distance value of 0.40 and 0.44 m, respectively. The Wilcoxon test highlighted a significant 298 

difference between the two smaller classes’ results and the one obtained for tall trees, for which the mean Euclidean distance 299 

value was 0.61 m. 300 

In regard to height estimations, despite some larger errors (outliers) between field and extracted values, a strong (R2 = 0.87) 301 

linear relationship between the two sets was observed (Fig. 3c). The coefficient of determination, the RMSE of 91.60 cm, and 302 

https://doi.org/10.5194/egusphere-2024-3757
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



15 
 

 
 

the MAE of 71.76 cm confirm that the SfM-derived point cloud can be used to accurately estimate tree heights. Almost all 303 

height predictions showed a relative deviation from ground truth values below one metre, and the highest frequency of 304 

predictions recorded a relative deviation close to 0.20 m (Fig. 3d). Tall trees’ height was better estimated than smaller ones’ 305 

(Fig. 4c). The mean deviation between predicted and real height showed its minimum for the tall class with a value of 0.23 m, 306 

followed by a 0.47 m value for the medium class, and had its lowest accuracy for the small class with a value of 0.62 m. 307 

308 
Figure 3. (a) Instance segmentation output with a comparison of crowns predicted by the model (shaded with orange outline) and 309 
manually delineated ground truth crowns (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees 310 
were harder to detect by the model, with some missing segmentations. Kernel density distribution of (b) relative deviation for position 311 
estimation and (d) deviation for height estimations. (c) Linear regression model between the field-measured crown heights and 312 
estimated heights in metres. The red dashed line represents the 1:1 line.  313 

https://doi.org/10.5194/egusphere-2024-3757
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



16 
 

 
 

314 
Figure 4. Comparison of model performances in predicting trees (a) canopy surface and shape (measured through IoU), (b) position 315 
and (c) height in the three different size classes. Violin plots show the median (black line) and mean (dark red diamonds) values. 316 
Statistical differences were calculated through a pairwise Wicoxon test (*: significant difference; **: very significant difference; ***: 317 
highly significant difference; NS.: not significant difference) 318 

3.3 Treeline spatial patterns and tree-tree interactions 319 

The univariate analysis resulting from the “combine replicates” protocol (tree crown centroids) showed a strong aggregation 320 

over all the sites (Fig. 5a). For spatial scales <20 m there was a marked positive departure from the pair-correlation function 321 

indicating clusterization, which turned into a random pattern at 21 m under the HP null model (GoF: p < 0.05 in all sites). For 322 

spatial scales >35 m the combined replicates showed a slight negative departure from the null model, indicating a regular 323 
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distribution. All the sites, if considered separately, showed similar patterns to what resulted from their combination (see details 324 

in appendix C). The univariate analysis conducted on objects of finite size and real shape (tree crown polygons) generated 325 

slightly different results (Fig. 5b). Despite the results still pointing towards a clumped pattern throughout the entirety of the 326 

sites, it appears that the clusterization occurred for all spatial scales from 0 to 100 m. To understand if trees were clusterized 327 

also among the different size classes and not only when considered all simultaneously, we also performed a univariate PPA 328 

for all the tree size classes separately. The results highlighted a clear trend in forming groups at small spatial scales, among 329 

trees of the same size classes (Appendix E).  330 

The “combine replicates” protocol performed on the bivariate analyses (tree crown centroids), through the antecedent condition 331 

null model, evidenced a strong repulsion for small trees in respect to tall trees along all the spatial scales (Fig. 5c). Again, by 332 

analysing each site separately, they all showed similarities among each other and with the combined replicate result (see details 333 

in Appendix D). The bivariate analysis conducted on objects of finite size and real shape (tree crown polygons) led to similar 334 

results (Fig. 5d), suggesting the existence of a strong repulsion between small and tall trees. 335 
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336 
Figure 5. Univariate pair-correlation function g11(r) for (a) centroids and (b) crown polygons. The analysis allows for the definition 337 
of a spatial pattern as clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value is greater 338 
than, within, or lower than the confidence envelope (light grey area). The confidence envelope lines represent the upper and lower 339 
95% simulation envelopes. Black dashed lines indicate the expected pattern if the points showed a random spatial distribution. 340 
Correlation analysis of tall trees and small trees for (c) centroids and (d) crown polygons. Values of the g12(r) function that 341 
significantly deviates from the null model indicate a significant attraction (if positive) or repulsion (if negative) between the two 342 
patterns. 343 
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344 
Figure 6. Univariate and bivariate PPA results for all study sites along with the fine-scale mapped tree crowns. 345 

4 Discussion  346 

4.1 Detection performances  347 

We demonstrated that RGB imagery obtained from low-cost UAVs can be effectively used for accurate tree detection across 348 

large, heterogeneous areas at elevational treelines. Previous studies have conducted similar analyses employing different 349 

segmentation strategies in various forest types. Our model achieved precision and recall values that surpass those reported in 350 

other studies (Beloiu et al., 2023; Dietenberger et al., 2023). The average IoU across different size classes was 0.76, lower than 351 

results from plantation-based studies (Hao et al., 2021), but superior to those from mixed temperate forests (Dietenberger et 352 
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al., 2023). Regarding detection rates and F1 scores, our results fell within the average range recorded in comparable research 353 

(Table 3). 354 

However, direct comparisons with other studies are challenging due to the substantial variability in forest types and algorithms 355 

used. While our analysis outperformed others on certain metrics, it is important to note that our study was conducted in an 356 

environment where detection is facilitated by the reduced presence of intertwined canopies, unlike in tropical or temperate 357 

forests. Conversely, this advantage was offset by the inclusion of small trees in our analysis, a factor that negatively impacted 358 

the results and is often excluded in similar studies.  359 
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Table 3. Recent studies output on tree detection and crown delineation in forest ecosystems using UAV-derived data. DET% = 360 
detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.  361 

reference Forest type sensor 
crown detection 
algorithm DET% precision recall F1-score IoU AP 

Present 

Work 
mixed open 

woodland 
RGB Faster R-CNN 70 0.92 0.79 0.76 0.76 0.68 

Beloiu et al. 

(2023) 

mixed 

temperate 

forest 

RGB Faster R-CNN - 0.75 0.78 0.76 - - 

Dietenberger 

et al. (2023 

mixed 

temperate 

forest 

RGB Region growing - 0.68 0.61 0.64 0.44 - 

Weinstein et 

al. (2019) 

mixed open 

woodland 

RGB, 
LiDAR RetinaNet 82 - - - - - 

Xiang et al. 

(2024) 

several forest 
types LiDAR 3D CNN - - - 0.85 - - 

Dersch et al. 

(2023 

coniferous, 

deciduous, 

mixed stands 

LiDAR Mask R-CNN - - - 0.86 - - 

Jing et al. 

(2012) 

 

mixed forests 
LiDAR 

Multi-scale analysis , 

Marker-controlled 

watershed segmentation 

69 - - - - - 

Ball et al. 

(2023) 

tropical 

forests 
LiDAR Mask R-CNN - - - 0.64-0.74 - - 

Xie et al. 

(2024) 

Chinese fir 

plantation 
RGB Mask R-CNN - - - - - 0.55 

Hao et al. 

(2021) 

Chinese fir 

plantation 
RGB mask R-CNN - - - 0.85 0.91 - 

Our hypothesis was that tree height may have a strong impact on the model performance. Dividing trees with an height criteria 362 

allowed us to track detection performance, showing that accuracy improves with tree size across all study sites. In all the study 363 

sites, detection was high for taller trees (86%) but low for smaller ones (52%), confirming our hypothesis. In addition to being 364 

inherently more challenging to detect in the imagery due to their diminished size, smaller trees often present altered lighting 365 

conditions due to being partially obscured or completely concealed by taller ones (Beloiu et al., 2023; Dietenberger et al., 366 

2023; Hamraz et al., 2017), leading to missed detections (i.e., false negatives). This issue is exacerbated in dense clusters 367 

(Vauhkonen et al., 2012), highly present in most of our study sites. Another critical challenge in tree detection is the blending 368 
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of canopies colours with the background, a factor that largely depends on the tree, shrub and, herbaceous species on the site 369 

(Diez et al., 2021; Weinstein et al., 2019). Here, although the problem also affects tall trees, it was markedly more problematic 370 

for smaller ones.  371 

Despite the most recent advancements in AI tools for object detection and segmentation, the accurate detection of small trees 372 

in RGB images over large areas is still in its infancy and remains unfeasible without a drastic change in flight parameters (very 373 

low flight heights) resulting in significantly extended survey times (especially in mountainous areas where topography can 374 

represent a limit) (Fromm et al., 2019). Nevertheless, due to the harsh environmental conditions at the treeline ecotone, long-375 

term survival of small trees is jeopardised by factors such as unsuitable sites for survival (Davis and Gedalof, 2018; Marquis 376 

et al., 2021), failure to grow in harsh conditions (Crofts and Brown, 2020; Frei et al., 2018; Müller et al., 2016) and predation 377 

(Brown and Vellend, 2014; Cairns et al., 2007). Therefore, precise mapping of small trees can be considered of secondary 378 

importance if compared to taller and potentially permanent trees.  379 

With the present work we investigated how unique treeline characteristics influenced the model's performance. On Mont Avic 380 

treeline, where European larch is the dominant species, the leaf-off effect on detection rate was tested and the scarcity of green 381 

needles on the canopies resulted in evident worse performances (Table 2). This finding is consistent with previous works 382 

underscoring how leaf-off season surveys are often correlated with lower detection accuracies (Imangholiloo et al., 2019). In 383 

Rion, sunlight condition’s effects on the performances of the approach were tested. As already documented in other studies 384 

(Diez et al., 2021), the presence of large and elongated shadows led to a notable decline in detection rates, probably due to the 385 

substantial difference in the colours of the tree crowns in this site’s images. These results highlight limits of RGB-based 386 

approaches that still have to be tackled, underscoring the need of applying a standardised sampling protocol throughout all the 387 

study sites to augment results reliability or provide more input data to increase variability in the training dataset.  388 

Rion and Avic excluded, a clear waning trend in tree detection related to a specific terrain feature of the site - presence of rocks 389 

(Becco), herbaceous species (Chianale) or others - was not found. We therefore hypothesise that terrain characteristics had a 390 

negligible - or did not have any- influence on detection rates, supporting the generalizability and transferability of the approach 391 

to treeline displaying different features. 392 

4.2 Tree attributes estimation and transferability of the protocol 393 

The proposed approach has proved to be capable of accurate georeferencing and height estimation. Despite the high precision 394 

of the GNSS antenna employed, some small georeferencing errors are inevitable (e.g. due to limited sky view, precision can 395 

be limited). Additionally, during field data collection, GNSS points coordinates (tree’s location) are hardly collected directly 396 

below the real treetop, but rather near the corresponding tree locations, thus creating a second inevitable error that adds up to 397 

the previous one (Shimizu et al., 2022; Vauhkonen et al., 2012). Our tree position estimations were highly satisfying and 398 

comparable with results obtained in other recent studies employing similar or more sophisticated gears in environments with 399 

analogous open stands. Castilla et al. (2020) georeferenced coniferous species in a boreal forest using SfM point clouds 400 
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achieving an RMSE of 20 cm. Another consistent result is the one of Fernández-Guisuraga et al. (2018) who extracted tree 401 

position of coniferous species in a post-fire environment attaining a RMSE < 30 cm.  402 

Tree height estimations presented a trend skewed towards underestimation, an issue attributable to the low sharpness of the 403 

DSM generated through SfM, as also evidenced by Panagiotidis et al. (2017) and Wallace et al. (2016). Airborne laser scanning 404 

is the most well-known tool for DTM modelling due to its better capability in penetrating tree crowns, which often result in 405 

highly accurate estimation of tree features. However, in the present study we provide evidence that by means of 406 

photogrammetric point clouds it is possible to extract tree height with an accuracy as high as the one obtained through the 407 

employment of LiDAR sensors, which are still moderately expensive, thus limiting the feasibility of repeated surveys in many 408 

cases. Coops et al. (2013) assessed tree height over a Swiss treeline ecotone by employing LiDAR sensors with an RMSE= of 409 

0.70 m. Studies employing LiDAR technologies in boreal treelines documented a standard deviation of 0.11–0.73 m Næsset 410 

and Nelson (2007) and of 0.16–0.57 m Næsset (2009). A study that clearly surpasses our result is that of Wallace (2012), who 411 

determined a mean height standard deviation of 0.24 m in a stand with sparse trees. In contrast, our results are more accurate 412 

when compared to studies employing SfM point clouds to determine tree height. Wallace et al. (2016) investigated the 413 

differences between LiDAR and SfM point clouds in a stand characterised by spatially varying tree canopy cover. The former 414 

achieved an RMSE of 0.92 m, while the latter yielded an RMSE of 1.30 m, a slightly poorer result than ours. Brieger et al. 415 

(2019) estimated tree height in an open larch forest and reported a mean RMSE of 1.42 m, again confirming the higher accuracy 416 

shown by our results when estimating tree height in open stands through photogrammetry. 417 

4.3 Spatial pattern and trees’ interactions on the Italian alpine treeline 418 

To the best of our knowledge, there are no previous studies that have simultaneously investigated the patterns of multiple 419 

treelines throughout the Alpine range. Several recent studies have highlighted how tree spatial patterns vary along an 420 

elevational gradient within the treeline ecotone (Garbarino et al., 2020; Jia et al., 2022; Wang et al., 2021), however, a study 421 

investigating such patterns over large extents across multiple sites simultaneously is unprecedented.     422 

We found a discrepancy between the univariate analysis performed on centroids (point approximation) and tree crowns 423 

(polygons). The dissimilarities are potentially due to a systematic effect in the size of the objects (Wiegand personal 424 

communication). First of all, the polygon pattern analysis uses more data points (each cell belonging to an object is counted as 425 

a point), and therefore it is possible that the range of significant effects is larger. Furthermore, it is possible that having larger 426 

objects in a region of the observation window, as it is common in our study areas, may result in a greater clumping across the 427 

analysed spatial scale. Such differences in polygon and point summary functions have already been found in previous studies 428 

and are believed to be due to ecological processes (i.e. competition) instead of systematic effects (Vacchiano et al., 2011). 429 

Whether the cause is one or another has to be further investigated. 430 
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Despite the discrepancy on the spatial scale, univariate PPA results revealed a tendency towards a clustered horizontal structure 431 

among all trees within our study areas. This is the typical behaviour within the sub-alpine altitudinal belt, as also consistently 432 

found in other studies conducted on elevational treelines in Europe (Beloiu and Beierkuhnlein, 2019), USA (Garbarino et al., 433 

2020) and China (Jia et al., 2022). Human impact has been the major driving force in shaping the investigated treelines, 434 

affecting patterns and reciprocal patterns of mature and young individuals. However, over the last few decades, the 435 

abandonment of remote areas has led to a decrease in human activities such as grazing and silviculture (Anselmetto et al., 436 

2024). As a consequence, recolonization processes driven by natural dynamics have become more important. Therefore, it is 437 

possible that the aggregation patterns found may be a result of a recolonization process (Didier, 2001) and of active niche 438 

selection (Maher et al., 2005). Various researchers emphasise how terrain features such as microtopography and soil spatial 439 

patterns can significantly influence tree distribution at the treeline (Feuillet et al., 2020; Marquis et al., 2021; Müller et al., 440 

2016). The great heterogeneity of terrain inherent to alpine treelines generates a great diversity of microsites, resulting in a 441 

mosaic of favourable and unfavourable niches (Davis and Gedalof, 2018; Marquis et al., 2021). Owing to this, trees can be 442 

rather diffuse on a favourable area but also clustered in small groups where better chances of survival are found. In addition 443 

to topography, competition and facilitation dynamics between tree species may exert an important role on the evolution of the 444 

treeline ecotone. The results of our bivariate tree-tree interaction analysis showed a repulsion between small – potentially 445 

younger – and tall - potentially older - trees at all the analysed spatial scales. This suggests that within the studied alpine 446 

treelines, favourable sites for germination may have undergone progressive recruitment by groups of seedlings over time, 447 

resulting in the different, evenly sized clusters found (Beloiu and Beierkuhnlein, 2019; Wang et al., 2021). This hypothesis is 448 

also supported by the results of the univariate PPA for the separated size classes, which show how trees belonging to the same 449 

size class are organised in clusters in the landscape. The abrupt spatial segregation between tall and small trees suggests that 450 

the dynamics of tree establishment in the studied areas is significantly driven by competition, with small trees favouring sites 451 

far from existing clusters of tall trees. How biotic interactions may play a dominant role in driving treeline encroachment 452 

dynamics has been discussed in previous studies (Frei et al., 2018; Neuschulz et al., 2018). It is broadly known that in 453 

temperature limited environments tree patches can improve microsite conditions, by influencing snow thickness, soil 454 

properties, microclimate and offering physical support and protection from herbivores  (D’Odorico et al., 2013; Germino et 455 

al., 2002). These positive effects, however, can be offset by competition for vital resources such as light, soil moisture and 456 

nutrients (Frei et al., 2018; Moir et al., 1999), which ultimately hinders seedling growth and survival. Although our bivariate 457 

analysis result suggests the presence of competition between size classes – potentially age classes - in high altitude 458 
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environments in the Alps, and is in line with previous studies findings (Carrer et al., 2013), further analyses are needed to 459 

advance our understanding of the effects of biotic interactions on tree spatial pattern at the treeline. 460 

4.4 Limits and perspectives 461 

We show that by combining low-cost UAV and sensors with open AI libraries, it is possible to accurately map and extract 462 

single tree attributes at a fine-scale. Our detection rates were comparable or superior to many other DL-based classification 463 

studies in natural forests. Nevertheless, recognising small individuals with high accuracy in RGB images remains a challenge. 464 

As highlighted in several recent studies, LiDAR-informed segmentation strategies could provide a valuable alternative for 465 

comprehensive mapping of individual trees, filling the gap left by our methodology. Another crucial feature that is of great 466 

importance for many ecological analyses is the species composition of the community. The use of multi or hyperspectral 467 

sensors enables the detection of tree species and thus analyses of the species composition of stands, interactions among 468 

individuals and spatial patterns of individual and interacting species.  469 

Although in alpine environments natural dynamics have become predominant as a consequence of land abandonment, the 470 

current treelines pattern and structure are legacies of the past human activities. We therefore stress the importance of studying 471 

these human shaped environments in long-term monitoring research. For this task, we envision future research activities to 472 

apply the presented approach to simultaneously map and detect tree species at the treeline. The final goal is creating a global 473 

network of accurately mapped treeline datasets to monitor the effects of global change on treeline dynamics and explain the 474 

position and pattern of the treeline at different scales. 475 

5 Conclusions  476 

We tested the performance of a Mask R-CNN deep learning model in capturing single-tree scale attributes in sprawling, remote, 477 

heterogeneous treeline ecotones on UAV derived structure-from-motion point clouds. UAV employment allowed us to conduct 478 

surveys in a more labour and time efficient manner than pure ground-based ones. Retrieving such data over large areas 479 

enhances the representativeness of the investigated sites and thus the reliability of the results regarding ecological processes at 480 

the treeline. Our results showed that the proposed approach can effectively produce fine-scale tree maps over 90 ha of treeline 481 

ecotones. The model performed well by identifying 70% of trees taller than 50 cm and 86% of trees taller than 2 m across the 482 

10 study sites in the Italian Alps. Beyond its success in detecting tree crowns, the approach also performed well in delineation 483 

tasks. We demonstrated the potential of applying the resulting dataset in ecological applications by analysing spatial patterns 484 

and interactions among trees of different size classes.  485 
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The present work underpins the possibility of using UAVs to foster treeline studies and thus move away from reliance on data 486 

collected on the ground. The ability to achieve such results with the low-cost equipment used here makes this approach 487 

accessible to a wide range of scientists and forest managers. The adaptability of the protocol to unique study sites’ features 488 

with minimal data preparation procedures further enhances its flexibility and versatility, making the methodology valuable for 489 

numerous applications such as forest assessment, restoration and conservation projects.  490 
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Appendix A:  491 

Figure A1. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (c) Bocche, (d) Chianale, (e) Devero, (f) Genevris, 492 
(g) Livigno, (h) Rion, (i) Senales and (j) Valfurva.  493 
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Appendix B:  495 

Table B1. Results of spatial cross-validation analysis.  496 

site F1-score precision recall AP 

Avic 0.60 0.83 0.48 0.14 

Becco 0.81 0.80 0.87 0.45 

Bocche 0.48 1.00 0.35 0.34 

Chianale 0.73 0.85 0.40 0.36 

Devero 0.63 0.93 0.54 0.27 

Genevris 0.76 0.97 0.66 0.45 

Livigno 0.78 0.94 0.50 0.58 

Rion 0.62 1.00 0.50 0.34 

Senales 0.60 0.88 0.49 0.41 

Valfurva 0.78 0.76 0.84 0.32 

Mean 0.68 0.90 0.56 0.37 
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Appendix C:  498 

Figure C1. single sites’ results of the univariate pair-correlation function g11(r) in (a) Avic, (b) Becco, (c) Bocche, (d) 499 
Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The 500 
confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. The found spatial 501 
pattern is considered clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value 502 
is greater than, within, or lower than the confidence envelope.   503 
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Appendix D:  505 

Figure D1. single sites’ results of the bivariate pair-correlation function g12(r) on (a) Avic, (b) Becco, (c) Bocche, (d) 506 
Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The 507 
confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. Deviation from the 508 
null model (simulation envelope) of the summary statistics (black continue line) indicates a significant attraction (if 509 
positive) or repulsion (if negative) between the two patterns. 510 

   511 
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Appendix E:  512 

Figure E1. Univariate pair-correlation function g11(r) for centroids of (a) tall trees, (b) medium trees and (c) small 513 
trees. The analysis allows for the definition of a spatial pattern as clumped, random or regular (hyperdispersed) if the 514 
summary statistics (black continue line) value is greater than, within, or lower than the confidence envelope (light grey 515 
area). The confidence envelope lines represent the upper and lower 95% simulation envelopes. Black dashed lines 516 
indicate the expected pattern if the points showed a random spatial distribution. 517 
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