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Abstract. Treelines are sensitive indicators of global change, as their position, composition and pattern directly respond to 10 

ecological and anthropogenic factors. Treelines worldwide exhibit a great variability even within single landscapes, which 11 

limits the reliability and generalizability of locally measured patterns. Advancing methods to accurately map fine-scale treeline 12 

spatial patterns over large extents is crucial to overcome this limitation. Innovative approaches integrating remote sensing with 13 

uncrewed aerial vehicles (UAV) and deep learning offer a promising way to bridge the gap between field-based observations 14 

of fine-scale patterns and their large-scale implications, ultimately informing and supporting practices for the conservation of 15 

forest ecosystems in the face of ongoing and future ecological challenges. In this study, we combined field data and UAV-16 

based remote sensing with a deep learning model to retrieve individual tree-scale information across 90 ha in 10 study sites in 17 

the Italian Alps. Using the proposed methodology, we were able to correctly detect individual tree crowns of conifers taller 18 

than 50 cm with a detection rate of 70% and an F1 score of 0.76. Accuracy increased with tree height, reaching 86% for trees 19 

taller than 2 m. Canopy delineation was robust overall (Intersection over Union, IoU = 0.76) and excellent for tall trees (IoU 20 

= 0.85). Tree position and height estimates achieved RMSEs of 59 cm and 92 cm, respectively.  21 

Our results demonstrated that the proposed methodology effectively detects, delineates, georeferences, and measures the height 22 

of most trees across diverse Alpine treeline ecotones. The proposed methodology enables the analysis of fine-scale patterns in 23 

order to achieve an interpretation of underlying ecological processes over large ecotonal extents. The inclusion of 24 

heterogeneous study areas facilitates the transferability of the segmentation model to other mountain regions and offers a 25 

benchmark for developing a global network of fine-scale mapped treeline spatial patterns, bearing a great potential in 26 

monitoring the effects of global change on ecotone dynamics.   27 
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1 Introduction 28 

The elevational treeline is the transition zone from the uppermost closed montane forest (timberline) to the highest scattered 29 

trees (tree species line) (Holtmeier et al., 2003), and one of the most studied ecotones. Since the late 19th century, scientific 30 

studies largely focused on the diversity and complexity of factors affecting the ecotone spatial and temporal patterns at different 31 

scales (Hansson et al., 2021; Holtmeier, 2009). It is well known that temperature plays a crucial role in treeline positioning 32 

and dynamics from regional to global scales (Dirnböck et al., 2003; Gehrig-Fasel et al., 2007; Harsch et al., 2009; Körner & 33 

Paulsen 2004), but is not the only driving factor. Many other studies have emphasised the significant  role of other factors in 34 

treeline formation (Mienna et al., 2024), including water availability (Barros et al., 2017; Williams et al., 2013), site topography 35 

(Leonelli et al., 2016; Marquis et al., 2021; Müller et al., 2016), biotic drivers (Brown and Vellend, 2014; Cairns et al., 2007), 36 

and anthropogenic pressure (Gehrig-Fasel et al., 2007; Malandra et al., 2019; Vitali et al., 2019). 37 

Global change can trigger large-scale vegetation dynamics affecting the provision of ecosystem services - such as carbon 38 
sequestration (Hansson et al., 2021; Zierl and Bugmann, 2007). Climate alteration can induce upward migration of species, 39 
threatening a loss of habitat and biodiversity of high alpine communities (Kyriazopoulos et al., 2017). This sensitivity to 40 
climatic and anthropogenic factors makes high-elevation ecotones key indicators of global change (Dirnböck et al., 2011; 41 
Greenwood and Jump, 2014). Monitoring changes at elevational treelines is therefore of utmost importance to follow how 42 
forests are responding and to forecast how they will respond to a changing environment (Chan et al., 2024; Hansson et al., 43 
2023; Mottl et al., 2021) and ultimately to guide the definition of appropriate conservation strategies. However, understanding 44 
vegetation changes in response to the complex interplay of these drivers requires studying highly heterogeneous systems across 45 
broad spatial and temporal gradients (Holtmeier and Broll, 2007, 2017). 46 
An open question in many areas of ecology is how to infer processes from observed patterns. Tree maps act as a foundation 47 

towards this goal. In forest ecosystems, tree spatial distributions retain critical signatures of historical dynamics and can be 48 

used to derive insights into underlying ecological processes (Grimm et al., 2005; McIntire and Fajardo, 2009; Salazar Villegas 49 

et al., 2023). For instance, tree distribution can reveal species-specific coping strategies under stressful conditions, such as the 50 

ones found in the elevational treeline ecotones, where positive facilitative interactions may prevail (Callaway, 1995, 1998; 51 

Smith et al., 2003). Tree spatial patterns may reflect the result of intra- and interspecific interactions, encompassing both 52 

facilitative and competitive associations (Getzin et al., 2006; Salazar Villegas et al., 2023). Assessing these spatial association 53 

patterns among species can help to disentangle the mechanisms shaping treeline structure and dynamics. In this context, the 54 

great spatial heterogeneity observed in high-elevation ecotones provides a great opportunity to investigate pattern-process 55 

relationships. Such a high heterogeneity between treeline ecotones can be better tracked by mapping multiple sites with large 56 

spatial extents, allowing for a generalization of underlying processes. 57 

Field surveys remain the traditional methods used at treelines to observe patterns and link them to ecological processes. They 58 

involve measuring several tree parameters (e.g. stem DBH, height, position, health conditions) within small study areas like 59 

plots or transects (Mainali et al., 2020; Van Bogaert et al., 2011; Vitali et al., 2017, 2019). This approach provides high-60 
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resolution, high-quality data applicable to a broad array of ecological investigations. However, its time-intensive nature, 61 

coupled with the limited spatial extent and discontinuous distribution of plots or transects, may reduce the representativeness 62 

of the broader landscape.  63 

At this point, remote sensing (RS) techniques come into play. Although RS application in treeline studies dates back to the 64 

1980s (Holmgren and Thuresson, 1998), it is only over the last two decades that RS has been widely adopted in treeline ecology 65 

(Garbarino et al., 2023). The choice of the right RS tool depends on the spatial and temporal scale required to address a given 66 

research question. For instance, while satellite imagery can provide suitable data over large forest areas and long time periods 67 

(Garbarino et al., 2020; Nguyen et al., 2024), most optical sensors lack the spatial resolution necessary for individual tree 68 

mapping (Bennett et al., 2024; Morley et al., 2018; Simard et al., 2011). The limitations of field surveys (limited spatial and 69 

temporal extent) and satellite-based data (high spatial and temporal extent but low resolution) can be overcome by using 70 

Uncrewed Aerial Vehicle (UAV) platforms (Fromm et al., 2019; Qin et al., 2022; Xie et al., 2024). Their growing availability 71 

and ease of deployment make UAVs increasingly valuable for applications such as detailed tree mapping. In addition to wall-72 

to-wall mapping of relatively large and heterogeneous areas, UAVs survey enables the analysis of fine-scale drivers and the 73 

extraction of single-tree attributes and features (Nasiri et al., 2021; Panagiotidis et al., 2017; Shimizu et al., 2022; Xiang et al., 74 

2024). The combination of field sampling and high-resolution RS data could be a winning venue to increase the spatial extent 75 

of case studies while retaining the fine-scale level of details typical of the traditional approaches.  76 

Single-tree mapping approaches are crucial in treeline ecology, as they provide insights into the underlying ecological 77 
processes shaping treeline pattern and structure. Seedling establishment - a key driver of plant community dynamics - heavily 78 
depends on the presence and availability of microsites that provide suitable conditions for growth and survival (Frei et al., 79 
2018). Multiple local factors such as topography, vegetation, and herbivory influence tree recruitment and thus mediate treeline 80 
dynamics (Elliott and Kipfmueller, 2010; Lett and Dorrepaal, 2018; Ramírez et al., 2024). Neighbouring vegetation can either 81 
hinder or enhance tree recruitment through competitive or facilitation associations (Getzin et al., 2006; Getzin et al., 2006; 82 
Salazar Villegas et al., 2023; Smith et al., 2003). Whether these interactions result in a positive or negative feedback depends 83 
on the fine-scale interplay between biotic and abiotic factors. The resulting spatial patterns at the individual tree-scale provide 84 
a valuable perspective to both infer past processes and predict future trajectories. Accurate high-resolution single-tree maps 85 
are essential tools to capture these fine-scale patterns and investigate such tree–tree interactions. 86 
Convolutional Neural Networks (CNNs) combined with very-high-resolution images are a reliable and versatile tool for single-87 
tree scale analyses, enabling the accurate identification and representation of different plant species and communities as well 88 
as the detection of individual trees (Braga et al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn et al., 2021). The 89 
latter can be achieved through instance segmentation algorithms that enable the detection of individual objects on the input 90 
images, allowing to distinguish and separate individual interwoven tree canopies (Ball et al., 2023; Braga et al., 2020).  91 
The distinctive species composition, stratified horizontal and vertical structure, and complex terrain characteristics of treeline 92 
ecotones confer a unique ecological identity to these environments. Therefore, a framework for fine-scale tree mapping at 93 
treeline ecotones based on low-cost UAV imagery is needed. In this regard, the present study tests the following hypotheses: 94 
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(i) the integration of UAV derived very high-resolution RGB imagery with CNNs models achieves high performances in 95 
single-tree detection rates, and (ii) tree attributes estimation, and (iii) the trained model exhibits sufficient generalizability to 96 
perform reliably on heterogeneous datasets. Moreover, we expect (iv) the proposed workflow to achieve very good detection 97 
rates for tall trees and poorer ones for small trees without a critical drop in model performances, and (v) to achieve comparable 98 
detection performances on all sites despite the high heterogeneity present in the dataset.  99 

2 Materials and Methods 100 

2.1 Study Area  101 

We selected ten study sites across the Italian Alps (Fig. 1) spanning a broad longitudinal gradient representative of the Western, 102 

Central, and Eastern Italian Alps. This selection ensured a balanced dataset encompassing highly heterogeneous climatic, 103 

topographical, soil, and vegetational conditions (Appendix A). Introducing such heterogeneity allowed us to test the 104 

transferability of the protocol to several treeline conditions. The selected treelines present elevations ranging between 2100 105 

and 2400 m a.s.l., and variable slope aspects due to the differing orientations of the valleys. Above the closed forest there are 106 

both mesic and xeric regions and feature patches of grasslands, sparsely vegetated areas, screes, and surfaces shaped by 107 

gravitational events such as rill and gullies. All the selected landscapes experienced centuries of human land-use practices 108 

under varying intensities of management pressure. In general, land abandonment is more marked in the Western sector of the 109 

study area (Bätzing et al., 1996). Across all sites, the annual range of air temperature ranges between 2.8 C° and 3.1 C°, while 110 

the mean annual precipitation varies from 800 mm to 1800 mm.  Reflecting the typical species composition of the subalpine 111 

belt in the Alps, in all the studied treelines the dominant treeline-forming species are European larch (Larix decidua Mill.) and 112 

Swiss stone pine (Pinus cembra L.). Other species present include Norway spruce (Picea abies (L.) H.Karst.), dwarf mountain 113 

pine (Pinus mugo Turra), mountain pine (Pinus uncinata Miller), Scots pine (Pinus sylvestris L.), as well as few broadleaf 114 

species such as green alder (Alnus viridis (Ehrh.) K. Koch) and silver birch (Betula pendula Roth). Further details on the study 115 

sites are provided in Table 1.   116 
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117 
Figure 1. Geographic location of (a) the Alpine Convention Perimeter in Europe and (b) the ten study sites (brown diamonds) along with 118 
their names across the Alps. Detail in the UAV-derived orthomosaic of the study site (c) Devero and (d) same site overlayed with the canopy 119 
height model (CHM). (e) further details of the study area Devero and (f) its CHM. For further details see Sect. 2.2  120 
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 121 
Table 1. Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.l.), aspect, 122 
dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived from Chelsa 123 
Climate database (Karger et al. 2020), while position, elevation, and species from the field surveys.  124 

 Study site date Latitude (°) Longitude (°) Elevation 
 (m a.s.l.) Aspect Species 

Annual 
range of air 
temperature 

(°C) 

Annual 
precipitati
on (mm) 

Genevris 26/07/2021 45.030 6.897 2,379 W L. decidua, P. cembra 2.96 1263 

 Chianale 29/06/2021 44.646 6.975 2,283 N L. decidua, P. cembra 2.82 829 

 Rion 22/09/2021 45.830 7.262 2,290 S-SE L. decidua, P. abies 2.92 1759 

 Avic 06/10/2021 45.697 7.593 2,184 SE L. decidua, P. abies,  
P. uncinata 2.91 1115 

 Devero 14/06/2021 46.316 8.294 2,186 NW L. decidua 2.92 1631 

 Livigno 22/07/2021 46.516 10.142 2,322 NW L. decidua, P. cembra,  
P. mugo 3.07 1067 

 Valfurva 21/07/2021 46.454 10.461 2,371 E L. decidua, P. abies,  
P. cembra 3.11 894 

 Senales 07/07/2021 46.727 10.898 2,319 S L. decidua, P. cembra, 
P. abies 3.03 923 

 Bocche 06/07/2021 46.338 11.744 2,245 SW P. cembra, L. decidua,  
P. abies 3.03 1225 

 Becco 28/09/2021 46.471 12.118 2,190 N-NE P. cembra, L. decidua, 
P. abies 3.00 1449 

2.2 Sampling design and data collection  125 

We selected ten treeline ecotones above 2,000 m a.s.l. along an east-west gradient across the Italian Alps, with a minimum 126 

distance of 25 km between sites. Site selection was stratified by administrative region with only fully accessible locations 127 

included, and edaphic treelines were explicitly avoided. In these ecotones, we placed ten 9-ha square plots (300 m x 300 m) 128 

with a side aligned parallel to the steepest slope of the mountainside so that the forestline occurred in the lower third of the 129 

plot. We defined forestline as the continuous line separating the closed forest (canopy cover > 10%) from the semi-open and 130 

open areas (canopy cover < 10%) (FAO, 1998). The canopy cover was assessed based on the pan-European Tree Cover Density 131 

(TCD) layer provided by Copernicus (https://land.copernicus.eu/en).  132 

Data collection included UAV and field surveys in summer 2021. We used a DJI Phantom 4 pro V2 quadcopter equipped with 133 

a RGB camera featuring a 1-inch CMOS sensor with 20 MP. Each UAV survey consisted of three flight paths: two of them 134 

with the camera in the nadiral position (one aligned along the contour lines and the other perpendicular), and one with an 135 

oblique camera perspective of 60° off-nadir, granting a more complete view of trees and terrain features.  136 

https://land.copernicus.eu/en
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 137 

To mitigate spatial resolution loss in the lower portion of the plot due to the slope steepness, each set of three flights was 138 

repeated two times. The first three flights covered the top half of the study area and were performed by deploying the drone 139 

from either the top-right or top-left corner of the study plot. The second set of three flights covered the bottom half of the plot 140 

and was performed by deploying the UAV from a point located on either the right or left side of the plot at approximately 150 141 

m from the plot bottom (half the side length of the study plot). Flight height was fixed at 30 m above the highest point of the 142 

300 × 300 m plot for the first set and above the middle of the study site for the second.  143 

All the flights were performed on sunny, windless days to minimise shadowing from clouds and image distortions due to UAV 144 

irregular motion. To assess how different phenological stages and light conditions affect canopy detection, we performed UAV 145 

flights in Avic and Rion during the late vegetative period and late afternoon, respectively (Table 1). Images were captured 146 

with 80% frontal and lateral overlaps to ensure high-quality structure-from-motion outputs. Prior to the UAV flights, 12 ground 147 

control points (GCPs) marked with bull’s eye targets were placed within the flight area. Their positions were recorded using 148 

Trimble R2 and Reach RS2 GNSS (Global Navigation Satellite Systems) antennas, providing both sub-metric horizontal and 149 

vertical positioning accuracies with a 10-minute static occupation time. GCP positions were post-processed for a final 150 

georeferencing correction. The acquired RGB aerial images were processed using Agisoft Metashape Pro software version 151 

1.5.1. A Structure-from-Motion procedure was employed to generate 3D point clouds, from which we derived digital surface 152 

models (DSMs), and orthomosaics with 5-cm spatial resolution. The classification of ground and non-ground points in the 153 

point clouds was based on a threshold of 10 cm height of DSMs points: points lower than 10 cm were considered ground and 154 

used to produce the DTM. Canopy height models (CHMs) were then produced by subtracting the DTM from the DSM. 155 

In the field, we recorded the position, height, and species of 50 randomly selected individual trees per study site, scattered 156 

across the plot. We used a sampling height threshold of 25 cm. In this study, we defined individual trees as individual tree 157 

crowns clearly separable from the other adjacent crowns. Due to its low abundance and specific growth form characteristics 158 

(Table 1), the dwarf mountain pine, the krummholz-forming species, was not considered as a tree in our analyses. Tree height 159 

was measured using a TruPulse 200b (Crisel srl) or a measuring tape for smaller individuals. Tree positions were recorded 160 

using the same GNSS antennas described above, with a 3- to 5-minute occupation time. The final ground-truth dataset included 161 

a total of 500 georeferenced trees across the ten sites.  162 

The entire workflow of the study, from data acquisition to final analyses, is reported in Figure 2. 163 
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164 
Figure 2. Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different 165 
methodological step of the study.  166 

2.3 Deep learning modelling 167 

To perform tree detection and segmentation we used a pre-trained deep learning (DL) model based on the Mask R-CNN 168 

algorithm implemented in the “Detectron2” library from Meta AI and available at 169 

https://github.com/facebookresearch/detectron2. Mask R-CNN is a DL framework which performs instance segmentation by 170 

combining semantic segmentation and object detection (Kattenborn et al., 2021). Its framework involves the generation of 171 

region of interest proposals by a deep fully convolutional network, and then there is a classification of the object of interest 172 

within each generated region proposal. Our methodology consisted of the following steps: i) cropping the RGB orthomosaic 173 

of each study site into adjacent tiles of 512 x 512 pixels; ii) systematically selecting 10 tiles per each study site to create the 174 

reference dataset; iii) semi-automatic classification of tree crowns; iv) hyperparameter tuning and model calibration using a 175 

dataset randomly split into training, validation, and testing subsets; v) performance evaluation; vi) separate validation and 176 

evaluation of model transferability through spatial cross-validation. Each of the steps is furtherly explained in the following 177 

sections. We selected tiles of 512 x 512 pixels (equivalent to 25.6 x 25.6 m at 5 cm spatial resolution) as this size resulted in 178 

models with higher detection rates and accuracy across all sites compared to smaller tiles of 128 x 128 and 256 x 256 pixels. 179 
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2.3.1 Training, validation, and test data  180 

We here used only 5% of the total amount of tiles for training, with the purpose of testing the limits of using a low number of 181 

training images on a pre-trained DL model. To build a strong reference dataset we fine-tuned the model using a Meta AI  182 

Segment Anything for the creation of individual validation polygons samples (https://github.com/facebookresearch/segment-183 

anything). Annotations were carried out by visual interpretation of RGB images, resulting in non-overlapping binary masks. 184 

To minimise operator biases photo interpretation was conducted by a single operator. The semi-automatically delineated 185 

validation polygons were used to evaluate the model performances in delineating tree crowns (see Section 2.3.3). At the end 186 

of the process, we obtained a dataset with a total of 1,016 individual canopies of different coniferous species (larch trees n = 187 

885, pine trees n = 131). All the segmented validation polygons were classified and labelled as ”trees'' regardless of the species 188 

due to the similar spectral information.  189 

To generate the training, validation and test datasets, the reference dataset of 100 tiles (512 x 512) was split into 70 % of 190 

images for training, 20 % for validation, and 10 % for testing. The split in the three datasets was performed by systematically 191 

sampling the 512-pixel tiles in the reference dataset. The tiles were sampled diagonally in order to cover a larger surface of 192 

the study area and to minimise spatial autocorrelation. Finally, we assessed the performance of the model using the test dataset, 193 

consisting of tiles with which the model was not familiar. The model trained in this way was used to perform predictions on 194 

the rest of the tiles to generate tree maps. However, this type of dataset partitioning does not guarantee model transferability 195 

since images from all sites are included in each phase of training, validation, and testing. Hence, we performed a separate 196 

spatial cross validation to evaluate model generalizability. A k-fold spatial cross-validation was performed using training and 197 

validation datasets partitioned according to their geographic distribution. The dataset was partitioned into ten folds based on 198 

study sites. In each iteration, images from nine sites were used for training, while the remaining site's images were reserved 199 

exclusively for testing. This procedure was repeated across ten iterations, such that each site served as the test set once, thereby 200 

ensuring a leave-one-site-out cross-validation scheme. The outputs of the ten iterations through the entire dataset were finally 201 

averaged to achieve a mean F1 score, precision, recall, and average precision (AP) value.   202 

2.3.2 Model development and hyper-parameter configuration  203 

During training we used the Adam optimizer with a learning rate of 0.00025, 128 ROIs per image, 1500 epochs, and a batch 204 

size of 30. We used the R101-FPN configuration as it offers a good balance between training speed and segmentation accuracy 205 

(https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md). To prevent overfitting, we monitored the 206 

validation loss in the F1-score every 100 iterations and implemented early stopping if the F1-score declined for more than five 207 

evaluations. The model was trained with data augmentation consisting in random resizing and rotation of the input images. 208 

We predicted tree crowns contours using the tiling process developed by Ball et al. (2023), which consists of  creating a buffer 209 

around each tile to avoid splitting crowns located at the edges of the tiles. The overlapping crowns resulting from this operation 210 

https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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were then filtered by removing those with the lowest confidence value assigned during the prediction. Classified maps were 211 

then post-processed to reduce noise and correct evident misclassifications. Crowns remaining after this cleaning process were 212 

considered valid tree detections. Model evaluation was computed prior to the cleaning process for all the evaluation metrics 213 

except detection rate (DET%) and IoU, which were calculated after the post-processing (see Section 2.4 for details). 214 

2.3.3 Model performance assessment  215 

To assess the performances of the DL model, we selected four evaluation metrics commonly used in  individual tree detection 216 

studies (Beloiu et al., 2023; Dersch et al., 2023; Dietenberger et al., 2023; Xie et al., 2024): (i) precision (1), recall (2), F1 217 

score (3), and average precision (4). The F1 score, a measure of test accuracy, is the weighted average of precision and recall; 218 

values closer to one indicate higher classification accuracy. The average precision is computed as the area under the precision-219 

recall curve. It evaluates the quality of the classifier in retrieving the relevant instances.  220 

To evaluate model transferability, we corroborated the results with a spatial cross-validation procedure. Metrics (1)-(4) were 221 

computed after each cross-validation fold and the results were averaged to achieve a mean estimate. 222 

In addition, tree maps were evaluated in terms of two spatially explicit metrics: detection rate (DET%), and delineation 223 

accuracy (IoU). DET% is the ratio between the predicted number of trees and the number of trees measured in the field (5). It 224 

is computed to evaluate how many objects were correctly classified out of all the ground truth data. For the evaluation we used 225 

only field-sampled trees that did not belong to the training and validation datasets. The IoU is measured as the ratio between 226 

the area of overlap and the area of union of the ground truth crown and predicted crown (6), providing an estimate of the 227 

segmentation and delineation accuracy. Semi-automatically delineated validation polygons were used as ground truth for IoU 228 

assessment. 229 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

= %&''(%)*+	-'(./%)(.	)'((0
1**	)'((0	-'(./%)/&20

	,	 (1)		

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#$3

= %&''(%)*+	-'(./%)(.	)'((0
1**	4'&52.6)'5)7(.	)'((	-'(./%)/&20

	,	 (2)		

where TP are the true positives instances; FP are the false positive instances; FN are the false negatives (number of ground 230 

truth trees that the model did not detect). 231 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	 -'(%/0/&2∗	'(%1**!"#$%&%'()"#$*++
,

	,		 (3)		

𝐴𝑃 = 	𝑛(𝑅2 − 𝑅269)𝑃𝑛	AP=n∑(Rn−Rn−1)⋅Pn	,	 (4)	

where n is the number of thresholds; Rn is the recall at the n-th threshold; Pn is the precision at the n-th threshold. 232 
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To test our hypothesis on the effect of tree height on detection, delineation and attributes extraction performances trees 233 

were grouped into three size classes: small (height ≤ 130 cm), medium (130 cm < height ≤ 234 

200 cm), and tall (height > 200 cm).  235 

Thresholds for smaller and larger trees were chosen based on broadly accepted definitions of forest regeneration (130 cm; 236 

(Dullinger et al., 2005; Wesche et al., 2008) and of  “tree” at the treeline ecotone (200 cm; Holtmeier and Broll, 2017; Wieser 237 

et al., 2009), respectively.  238 

Statistical differences in accuracy among these groups were evaluated using a Wilcoxon test with pairwise comparison.  239 

To further investigate how small trees impacted the model performances we conducted a separate analysis excluding 240 

individuals shorter than 50 cm (i.e., considering only trees with height > 50 cm). In this sense, we selected this threshold as 241 

the crown of these individuals occupied few pixels in the orthomosaics and were indistinguishable from the background.  242 

2.4 Tree attributes assessment  243 

Tree position estimation accuracy was assessed by comparing the field-collected coordinates of each tree with the centroid 244 

coordinates of the corresponding predicted crowns. For height estimation, we compared the value of the CHM at the predicted 245 

centroid with the height measured in the field. The evaluation metrics chosen for evaluating the accuracy in tree height and 246 

position were root mean square error (RMSE) and mean absolute error (MAE), both calculated in centimetres. RMSE is a 247 

standard deviation of prediction errors or residuals (7). The MAE shows how close the ground truth values and predicted 248 

values are to each other (8). It is obtained as the average absolute difference between the predicted value and the real value; 249 

hence, it gives an overall estimation of the error in terms of standard SI (International System) units. Position accuracy was 250 

also evaluated using the Euclidean distance between the centroid of each predicted crown and the corresponding stem position 251 

as recorded in the field (9). For tree height estimation accuracy, we also computed the deviation between real and predicted 252 

values calculated both in absolute and relative terms. RMSE, MAE, Euclidean distance and tree height accuracy were 253 

computed only for correctly predicted trees (n = 343) with the exclusion of the trees that fell within tiles used for training and 254 

validation of the neural network (n = 157). Tree attributes extraction accuracy assessment was performed using the same size 255 

classes listed in section 2.3.3.  256 
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𝑀𝐴𝐸 =	∑
(
%	./ ><!6<">

2
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𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =	L		(𝑋- − 𝑋')? 	+ (𝑌- − 𝑌')?		,	 (9)		

where n is the number of observations; xp, yp are the predicted values; xr, yr are the actual values. 257 

3 Results 258 

3.1 Tree detection rate, delineation performances and transferability of the protocol  259 

Our methodology allowed us to produce tree maps of the 10 treeline sites that reveal the treeline patterns of the study sites 260 

(Fig. 3). Overall, we mapped 14737 trees. The Valfurva site was the densest, with 2990 trees, whereas Rion contained the 261 

fewest, with 499 trees. On average, each site contained 1474 trees. Across all sites, we mapped 7246 small trees, 1364 medium 262 

trees, and 6127 tall trees. 263 
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 264 

Figure 3. Fine-scale stem-mapped treeline ecotones overlapped with the 9 ha orthophoto as a background image (a) Avic, (b) Becco, (c) 265 
Bocche, (d) Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva. Trees belonging to the small, medium, 266 
and tall tree‐height classes (Small: ≤ 130 cm; Medium: >130 cm and <=200 cm; Tall: > 200 cm) are in orange, pink, and red, respectively.  267 
 268 
 Throughout the evaluation process, the DL model achieved an F1 score of 0.76, precision of 0.92, recall of 0.79, and AP of 269 

0.68. Spatial cross-validation confirmed the DL model generalizability to yet-unseen data, yielding an F1 score 0.68, precision 270 

of 0.90, recall of 0.56, and AP of 0.36 (appendix B).  271 

According to DET% results, the DL model detected 67% of all the trees sampled in the field not included in the training and 272 

validation datasets (Table 2). Detection performance was lower for small trees, with a mean detection rate of 52%. As expected, 273 

limiting the analysis to trees taller than 50 cm (DET% ab50) led to higher detection rates, resulting in a DET% = 70, thus 274 

confirming that smaller trees have a strong negative effect on the detection rate. When considering only tall trees (>200 cm) 275 

we reached a mean detection rate of 86%, further demonstrating the effect of size on detection rates. Among the study sites, 276 

Genevris was the site in which the best detection rates were registered (93% for trees taller than 50 cm), followed by Valfurva, 277 

Devero, Bocche and Livigno, where the model correctly detected more than 78% of all the trees. 278 

IoU results also showed a similar pattern, with tall trees achieving the best performances (IoU = 0.85). Medium and small trees 279 

achieved a mean IoU value of 0.72 and 0.70, respectively. The difference between tall trees’ IoU and the other two classes’ 280 

one was significantly different, as confirmed by a Wilcoxon test (Fig. 5a).   281 
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Table 2. Single site detection rates and number of total predicted trees (n. pred trees) out of the totality of trees sampled in the field (n. test 282 
trees). DET% all = detection rate on the totality of individuals; DET% small = detection rate on small trees; DET% medium = detection rate 283 
on medium trees; DET% tall= detection rate on tall trees; DET% ab50 = detection rate on individuals taller than 50 cm.  284 

site n. test trees n. pred trees 
DET% 

all small medium tall ab50 

Avic 42 14 33 12 56 75 37 

Becco 45 31 69 58 69 85 71 

Bocche 50 35 70 48 85 93 79 

Chianale 51 32 63 43 73 68 63 

Devero 40 33 83 71 86 94 83 

Genevris 40 37 93 86 100 92 93 

Livigno 50 39 78 85 63 89 78 

Rion 45 24 53 18 78 93 57 

Senales 47 24 51 16 40 83 58 

Valfurva 49 40 82 84 76 86 82 

Mean / / 67 52 73 86 70 

3.2 Tree attributes estimation  285 

The proposed method demonstrated that it was possible to accurately estimate tree positions and height. Trees' predicted 286 

position achieved a RMSE of 0.59 m and a MAE of 0.49 m. For most of the predictions, the Euclidean distance between 287 

predicted and reference points was less than one metre, with the majority of values around 30 cm (Fig. 4b). Interestingly, 288 

position accuracy increased with reducing tree height, resulting in lower deviation values for the two smaller classes (medium 289 

and small trees) (mean Euclidean distance value of 0.40 and 0.44 m, respectively; Fig. 5b). The Wilcoxon test highlighted a 290 

significant difference between the two smaller classes’ results and the one obtained for tall trees, for which the mean Euclidean 291 

distance value was 0.61 m. 292 

In regard to height estimations, despite some outliers, we observed a strong (R2 = 0.87) linear relationship between predictions 293 

and ground-truths (Fig. 4c). The coefficient of determination, the RMSE of 91.6 cm, and the MAE of 71.8 cm confirm that the 294 

SfM-derived point cloud can be used to accurately estimate tree heights. Nearly all height predictions deviated by less than 295 
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one metre from ground truth values, with the most frequent relative deviation around 20 cm (Fig. 4d). Prediction accuracy 296 

increased with tree height: tall trees had the lowest mean deviation (0.23 m), followed by medium (0.47 m) and small trees 297 

(0.62 m) (Fig. 5c). 298 

 299 

Figure 4. (a) Instance segmentation output with a comparison of crowns predicted by the model (shaded with orange outline) and validation 300 
polygons (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees were harder to detect by the model, with 301 
some missing segmentations. Frequency and smoothed kernel density distribution of (b) relative deviation for position estimation and (d) 302 
deviation for height estimations with the smoothed, continuous approximation of the kernel‐density estimate in orange. (c) Linear regression 303 
model between the field-measured crown heights and estimated heights in metres. The red dashed line represents the 1:1 line.  304 
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305 
Figure 5. Comparison of model performance for three tree‐height classes (Small: ≤ 130 cm; Medium: >130 cm and <=200 cm; Tall: > 200 306 
cm) in predicting trees (a) canopy surface and shape, measured as Intersection-over-Union (IoU) between predicted and reference crown 307 
polygons, (b) position deviation, measured as Euclidean distance (m) between predicted and reference tree centroids and, (c) height relative 308 
deviation, measured as absolute difference between predicted and reference height divided by the reference height. Violin plots width at a 309 
given value shows the kernel‐density estimate of the distribution; the overlaid boxplot displays the interquartile range with the median (black 310 
line) and mean (dark-red diamonds). Statistical significance (pairwise Wilcoxon tests) is indicated as: NS = not significant; * p < 0.05; ** p 311 
< 0.01; *** p < 0.001.  312 
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4 Discussion  313 

4.1 Detection performances  314 

We demonstrated that RGB imagery from low-cost UAVs used in combination with a CNN model can be used for accurate 315 

tree detection across large, heterogeneous areas at elevational treelines. Previous studies have conducted similar analyses 316 

employing different segmentation strategies in various forest types. Our model achieved precision and recall values that surpass 317 

those reported in other studies (Beloiu et al., 2023; Dietenberger et al., 2023). The average IoU across different tree size classes 318 

was 0.76, lower than results from plantation-based studies (Hao et al., 2021), but superior to those from mixed temperate 319 

forests (Dietenberger et al., 2023). Regarding detection rates and F1 scores, our results fell within the typical range reported 320 

in comparable research (Table 3). 321 

However, direct comparisons with other studies are challenging due to substantial differences in forest types, UAV data 322 

acquisition protocols, flight parameters, and the image classification algorithms employed. While our analysis outperformed 323 

others on certain metrics, it is important to note that our study was conducted in an environment where individual tree detection 324 

is facilitated by the reduced presence of intertwined canopies, unlike in tropical or temperate forests. Conversely, this 325 

advantage was offset by the inclusion of small trees in our analysis, a factor that negatively impacted the results and is often 326 

excluded in similar studies.  327 
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Table 3. Performances of recent studies focused on tree detection and crown delineation in forest ecosystems using UAV-derived data. 328 
DET% = detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.  329 

reference Forest type sensor 
crown detection 
algorithm DET% precision recall F1-score IoU AP 

Present Work 
mixed open 

woodland 
RGB Faster R-CNN 70 0.92 0.79 0.76 0.76 0.68 

Beloiu et al. 

(2023) 

mixed 

temperate 

forest 

RGB Faster R-CNN - 0.75 0.78 0.76 - - 

Dietenberger et 

al. (2023 

mixed 

temperate 

forest 

RGB Region growing - 0.68 0.61 0.64 0.44 - 

Weinstein et 

al. (2019) 

mixed open 

woodland 

RGB, 
LiDAR RetinaNet 82 - - - - - 

Xiang et al. 

(2024) 

several forest 
types LiDAR 3D CNN - - - 0.85 - - 

Dersch et al. 

(2023 

coniferous, 

deciduous, 

mixed stands 

LiDAR Mask R-CNN - - - 0.86 - - 

Jing et al. 

(2012) 
mixed forests LiDAR 

Multi-scale analysis , 

Marker-controlled 

watershed segmentation 

69 - - - - - 

Ball et al. 

(2023) 

tropical 

forests 
LiDAR Mask R-CNN - - - 0.64-0.74 - - 

Xie et al. 

(2024) 

Chinese fir 

plantation 
RGB Mask R-CNN - - - - - 0.55 

Hao et al. 

(2021) 

Chinese fir 

plantation 
RGB mask R-CNN - - - 0.85 0.91 - 

 330 

We expected tree height to have a negative influence on model performance. By categorising trees in different size classes, we 331 

were able to track detection performance, confirming that accuracy improves with tree size in almost all study sites. Across all 332 

the study sites, detection was high for taller trees (86%) but decreased for smaller ones (52%), meeting our expectations. 333 

Although small trees detection is more cumbersome if compared to bigger trees, in some study sites (Devero, Genevris, 334 

Livigno, Valfurva) a considerable percentage of them was successfully delineated. The substantial difference in small trees 335 

detection across different sites can be linked back to several reasons. As already highlighted in recent studies, in addition to 336 
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being inherently more challenging to detect in the imagery due to their diminished size, smaller trees often present altered 337 

lighting conditions due to being partially obscured or completely concealed by taller ones (Beloiu et al., 2023; Dietenberger et 338 

al., 2023; Hamraz et al., 2017), thus potentially leading to missed detections (i.e., false negatives). This problem is exacerbated 339 

in dense clusters (Vauhkonen et al., 2012), common in most of our study sites. Another critical challenge in tree detection is 340 

the blending of canopies colours with the background, a factor that largely depends on the tree, shrub, and herbaceous species 341 

on the site (Diez et al., 2021; Weinstein et al., 2019). Here, although the problem also affects tall trees, it was markedly more 342 

problematic for smaller ones. All above-mentioned issues are directly linked to the aerial dataset quality and features. Due to 343 

the high heterogeneity of ecotonal characteristics present in our study sites, it is possible that an interplay of all the above-344 

mentioned issues affected detection rates and is thus responsible of the found inter-sites detection rate discrepancies. 345 

Nonetheless, according to our results, small trees detection using the proposed approach is feasible and brought to overall 346 

satisfying results which contributed to the generation of accurate treeline maps (Figure 3). 347 

Despite recent advancements in AI tools for object detection and segmentation, accurate identification of small trees in RGB 348 

images over large and heterogeneous areas is still cumbersome. Moreover, such improvement would remain unfeasible without 349 

significantly lowering flight height, which results in increasing extended survey times (Fromm et al., 2019). Nevertheless, due 350 

to the harsh environmental conditions at the treeline ecotone, long-term survival of small trees is jeopardised by factors such 351 

as unsuitable sites for survival (Davis and Gedalof, 2018; Marquis et al., 2021), failure to grow in harsh conditions (Crofts and 352 

Brown, 2020; Frei et al., 2018; Müller et al., 2016) and predation (Brown and Vellend, 2014; Cairns et al., 2007). While the 353 

precise mapping of small trees may be of secondary importance compared to taller, potentially permanent, trees when 354 

evaluating survival rates and seed distribution, small trees are crucial when investigating the encroachment process. As a 355 

consequence, small tree detection is of utmost importance in treeline ecology research and field surveys remain a valid and 356 

valuable approach over small study areas.  357 

With the present work, we investigated how unique treeline characteristics influenced model performance. At the Mont Avic 358 

treeline, where European larch is the dominant species, we tested the leaf-off effect on detection rate. Scarcity of green needles 359 

on the canopies resulted in lower performances (Table 2). This finding is consistent with previous studies underscoring how 360 

leaf-off season surveys are often correlated with lower detection accuracies (Imangholiloo et al., 2019).  361 

The poor cross validation results from the Rion site highlight the substantial influence of illumination conditions on detection 362 

performances. As noted by Diez et al. (2021), low sun angles lead to variations in canopy color and the formation of long, 363 

distorted shadows, which can significantly impair detection accuracy.  364 

These results reveal some of the main limitations of RGB-based approaches, underscoring the need of applying a standardised 365 

sampling protocol throughout all the study sites to augment results reliability or provide more input data to increase variability 366 

in the training dataset.  367 

With the exception of Rion and Avic, a clear waning trend in tree detection related to a specific terrain feature of the site - 368 

presence of rocks (Becco), herbaceous species (Chianale) or others - was not found. These findings suggest that terrain 369 
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characteristics had a negligible effect on detection rates, thus meeting our expectations and supporting the generalizability and 370 

transferability of the approach to treeline environments with differing features.  371 

4.2 Tree attributes estimation and transferability of the protocol 372 

The proposed approach has demonstrated the ability to accurately georeference individual trees (RMSE = 0.59m; MAE= 373 

0.49m) and estimate their height (RMSE = 91.6 cm; MAE = 71.8 cm); some of the observed deviations may in fact be 374 

attributable to inaccuracies in the ground control data rather than the UAV images. Despite the high precision of the GNSS 375 

antenna employed, some small georeferencing errors are inevitable (e.g. due to limited sky view, positional accuracy can be 376 

limited). Additionally, during field surveys, GNSS points coordinates of tree locations are recorded near the base of the tree 377 

rather than directly below the real treetop, introducing further spatial errors (Shimizu et al., 2022; Vauhkonen et al., 2012). 378 

Nevertheless, our tree position estimations were highly satisfying and comparable with results obtained in other recent studies 379 

employing similar or more sophisticated equipment in environments with analogous open stands. For instance, Castilla et al. 380 

(2020) georeferenced coniferous species in a boreal forest using SfM point clouds achieving an RMSE of 20 cm, while 381 

Fernández-Guisuraga et al. (2018) extracted tree position of coniferous species in a post-fire environment attaining a RMSE < 382 

30 cm.  383 

Tree height estimations presented a trend skewed towards underestimation (Fig. 5c), an issue attributable to the low sharpness 384 

of the DSM generated through SfM, as also evidenced by Panagiotidis et al. (2017) and Wallace et al. (2016). Airborne laser 385 

scanning is the most well-known tool for DTM modelling due to its better capability in penetrating tree crowns, which often 386 

result in highly accurate estimation of tree features. However, in the present study we provide evidence that by means of 387 

photogrammetric point clouds it is possible to extract tree height with an accuracy comparable to that achieved using LiDAR 388 

sensors, which are still moderately expensive, thus limiting the feasibility of repeated surveys in many cases. Coops et al. 389 

(2013) assessed tree height over a Swiss treeline ecotone by employing LiDAR sensors with an RMSE of 0.70 m. Studies 390 

employing LiDAR technologies in boreal treelines documented a standard deviation of 0.11–0.73 m (Næsset and Nelson, 391 

2007) and of 0.16–0.57 m (Næsset, 2009). Using LiDAR, Wallace (2012) reported a mean height standard deviation of 0.24 m 392 

in a stand with sparse trees—a level of precision that clearly surpasses our results. However, when compared to studies using 393 

SfM point clouds for tree height estimation, our results demonstrate higher accuracy. For instance, Wallace et al. (2016) 394 

compared LiDAR and SfM-derived point clouds in a stand with spatially variable canopy cover, finding RMSE values of 395 

0.92 m and 1.30 m, respectively—the latter being higher than ours. Similarly, Brieger et al. (2019) estimated tree heights in an 396 

open larch forest and reported a mean RMSE of 1.42 m, further supporting the comparatively greater accuracy of our 397 

photogrammetric approach for tree height estimation in open stands. 398 
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4.3 Limits and perspectives 399 

We adapted an off-the-shelf model for a single-tree detection task at the treeline ecotone and employed AI-powered tools to 400 

generate training data. The presented procedure enabled fast and efficient dataset preparation, ultimately yielding accurate 401 

results. Our results show that combining low-cost UAV and sensors with open-source AI libraries allows for precise treeline 402 

mapping and the extraction of individual tree attributes across large areas, spanning wide latitudinal gradients and featuring 403 

diverse environmental conditions. The speed and accuracy of the analyses are further enhanced by the potential use of tree 404 

maps to support ecological studies in these sensitive transition zones. Although previous studies have investigated forested 405 

areas using AI and remote sensing data, to the best of our knowledge, none have examined an ecotonal surface as extensive as 406 

the one presented here (90 ha) using a high-resolution (5 cm) remote sensing approach.  407 

Our detection rates were comparable to, or even exceeded, those reported in many other DL-based classification studies in 408 

natural forests. Nonetheless, despite the strong performance achieved, accurately recognising small individuals in RGB images 409 

remains a major challenge and a key limitation of RS-based approaches. As highlighted in recent scientific literature, LiDAR-410 

informed segmentation approaches could provide a valuable alternative for comprehensive mapping of individual trees, filling 411 

the gap left by our methodology. Another crucial feature of great importance for many ecological analyses is the species 412 

composition of the community. The use of multi or hyperspectral sensors would solve this issue by enabling the classification 413 

of tree species and thus the analysis of species composition and interactions among individuals. Alternatively, species-level 414 

analyses are also possible with very-high-resolution RGB images acquired through low-elevation UAV flights achieving a 415 

very fine ground sampling density (~ 1.6 cm/px (Egli and Höpke, 2020)), as they can reveal species-specific crown architecture 416 

and morphology. 417 

Due to their dynamic nature, it is of great importance to study treeline ecotones  in long-term monitoring research. For this 418 

task, we envision future research activities to apply the presented approach to simultaneously map and detect tree species at 419 

the treeline. The final goal is creating a global network of accurately mapped treeline datasets to monitor the effects of global 420 

change on treeline dynamics and explain the position and pattern of the treeline at different scales.  421 

5 Conclusions  422 

We tested the performance of a Mask R-CNN deep learning model in capturing single-tree attributes across 10 heterogeneous 423 

treeline ecotones, using UAV-derived structure-from-motion point clouds. UAV employment allowed us to conduct surveys 424 

in a more labour and time efficient manner compared to traditional ground-based methods while also increasing the spatial 425 

extent of the study area. Our results showed that the proposed approach can effectively produce fine-scale tree maps over 90 426 
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ha of treeline ecotones. The model successfully identified 70% of trees taller than 50 cm and 86% of trees taller than 2 m 427 

across the ten study sites in the Italian Alps. Beyond its success in detecting tree crowns, the approach also performed well in 428 

delineation tasks. 429 

The present work underpins the possibility of using UAVs to advance treeline research, bridging the gap left by limited-in-430 

scale and labor-intensive field surveys and less accurate satellite imagery. The ability to achieve such results with the low-cost 431 

equipment used in this study, combined with the flexibility of the protocol to site-specific conditions with minimal data 432 

preparation requirements, makes this approach both accessible to a wide range of scientists and forest managers and reliable. 433 

These features showcase the methodology as a valuable tool for enhanced ecological analyses of treeline processes, and several 434 

applications in forest assessment, ecological restoration, and conservation planning  435 
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Appendix A:  436 

Figure A1. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (c) Bocche, (d) Chianale, (e) Devero, (f) Genevris, (g) Livigno, 437 
(h) Rion, (i) Senales and (j) Valfurva.  438 

  439 
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Appendix B:  440 

Table B1. Results of spatial cross-validation analysis.  441 

site F1-score precision recall AP 

Avic 0.60 0.83 0.48 0.14 

Becco 0.81 0.80 0.87 0.45 

Bocche 0.48 1.00 0.35 0.34 

Chianale 0.73 0.85 0.40 0.36 

Devero 0.63 0.93 0.54 0.27 

Genevris 0.76 0.97 0.66 0.45 

Livigno 0.78 0.94 0.50 0.58 

Rion 0.62 1.00 0.50 0.34 

Senales 0.60 0.88 0.49 0.41 

Valfurva 0.78 0.76 0.84 0.32 

Mean 0.68 0.90 0.56 0.37 

  442 
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