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Abstract. Treelines are sensitive indicators of global change, as their position, composition and pattern directly respond to
ecological and anthropogenic factors. Treelines worldwide exhibit a great variability even within single landscapes, which
limits the reliability and generalizability of locally measured patterns. Advancing methods to accurately map fine-scale treeline
spatial patterns over large extents is crucial to overcome this limitation. Innovative approaches integrating remote sensing with
uncrewed aerial vehicles (UAV) and deep learning offer a promising way to bridge the gap between field-based observations
of fine-scale patterns and their large-scale implications, ultimately informing and supporting practices for the conservation of
forest ecosystems in the face of ongoing and future ecological challenges. In this study, we combined field data and UAV-
based remote sensing with a deep learning model to retrieve individual tree-scale information across 90 ha in 10 study sites in
the Italian Alps. Using the proposed methodology, we were able to correctly detect individual tree crowns of conifers taller
than 50 cm with a detection rate of 70% and an F1 score of 0.76. Accuracy increased with tree height, reaching 86% for trees
taller than 2 m. Canopy delineation was robust overall (Intersection over Union, IoU = 0.76) and excellent for tall trees (IoU
= (.85). Tree position and height estimates achieved RMSEs of 59 cm and 92 cm, respectively.

Our results demonstrated that the proposed methodology effectively detects, delineates, georeferences, and measures the height
of most trees across diverse Alpine treeline ecotones. The proposed methodology enables the analysis of fine-scale patterns in
order to achieve an interpretation of underlying ecological processes over large ecotonal extents. The inclusion of
heterogeneous study areas facilitates the transferability of the segmentation model to other mountain regions and offers a
benchmark for developing a global network of fine-scale mapped treeline spatial patterns, bearing a great potential in

monitoring the effects of global change on ecotone dynamics.
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1 Introduction

The elevational treeline is the transition zone from the uppermost closed montane forest (timberline) to the highest scattered
trees (tree species line) (Holtmeier et al., 2003), and one of the most studied ecotones. Since the late 19th century, scientific
studies largely focused on the diversity and complexity of factors affecting the ecotone spatial and temporal patterns at different
scales (Hansson et al., 2021; Holtmeier, 2009). It is well known that temperature plays a crucial role in treeline positioning
and dynamics from regional to global scales (Dirnbock et al., 2003; Gehrig-Fasel et al., 2007; Harsch et al., 2009; Korner &
Paulsen 2004), but is not the only driving factor. Many other studies have emphasised the significant role of other factors in
treeline formation (Mienna et al., 2024), including water availability (Barros et al., 2017; Williams et al., 2013), site topography
(Leonelli et al., 2016; Marquis et al., 2021; Miiller et al., 2016), biotic drivers (Brown and Vellend, 2014; Cairns et al., 2007),
and anthropogenic pressure (Gehrig-Fasel et al., 2007; Malandra et al., 2019; Vitali et al., 2019).

Global change can trigger large-scale vegetation dynamics affecting the provision of ecosystem services - such as carbon
sequestration (Hansson et al., 2021; Zierl and Bugmann, 2007). Climate alteration can induce upward migration of species,
threatening a loss of habitat and biodiversity of high alpine communities (Kyriazopoulos et al., 2017). This sensitivity to
climatic and anthropogenic factors makes high-elevation ecotones key indicators of global change (Dirnbock et al., 2011;
Greenwood and Jump, 2014). Monitoring changes at elevational treelines is therefore of utmost importance to follow how
forests are responding and to forecast how they will respond to a changing environment (Chan et al., 2024; Hansson et al.,
2023; Mottl et al., 2021) and ultimately to guide the definition of appropriate conservation strategies. However, understanding
vegetation changes in response to the complex interplay of these drivers requires studying highly heterogeneous systems across
broad spatial and temporal gradients (Holtmeier and Broll, 2007, 2017).

An open question in many areas of ecology is how to infer processes from observed patterns. Tree maps act as a foundation
towards this goal. In forest ecosystems, tree spatial distributions retain critical signatures of historical dynamics and can be
used to derive insights into underlying ecological processes (Grimm et al., 2005; Mclntire and Fajardo, 2009; Salazar Villegas
et al., 2023). For instance, tree distribution can reveal species-specific coping strategies under stressful conditions, such as the
ones found in the elevational treeline ecotones, where positive facilitative interactions may prevail (Callaway, 1995, 1998;
Smith et al., 2003). Tree spatial patterns may reflect the result of intra- and interspecific interactions, encompassing both
facilitative and competitive associations (Getzin et al., 2006; Salazar Villegas et al., 2023). Assessing these spatial association
patterns among species can help to disentangle the mechanisms shaping treeline structure and dynamics. In this context, the
great spatial heterogeneity observed in high-elevation ecotones provides a great opportunity to investigate pattern-process
relationships. Such a high heterogeneity between treeline ecotones can be better tracked by mapping multiple sites with large
spatial extents, allowing for a generalization of underlying processes.

Field surveys remain the traditional methods used at treelines to observe patterns and link them to ecological processes. They
involve measuring several tree parameters (e.g. stem DBH, height, position, health conditions) within small study areas like

plots or transects (Mainali et al., 2020; Van Bogaert et al., 2011; Vitali et al., 2017, 2019). This approach provides high-
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resolution, high-quality data applicable to a broad array of ecological investigations. However, its time-intensive nature,
coupled with the limited spatial extent and discontinuous distribution of plots or transects, may reduce the representativeness
of the broader landscape.

At this point, remote sensing (RS) techniques come into play. Although RS application in treeline studies dates back to the
1980s (Holmgren and Thuresson, 1998), it is only over the last two decades that RS has been widely adopted in treeline ecology
(Garbarino et al., 2023). The choice of the right RS tool depends on the spatial and temporal scale required to address a given
research question. For instance, while satellite imagery can provide suitable data over large forest areas and long time periods
(Garbarino et al., 2020; Nguyen et al., 2024), most optical sensors lack the spatial resolution necessary for individual tree
mapping (Bennett et al., 2024; Morley et al., 2018; Simard et al., 2011). The limitations of field surveys (limited spatial and
temporal extent) and satellite-based data (high spatial and temporal extent but low resolution) can be overcome by using
Uncrewed Aerial Vehicle (UAV) platforms (Fromm et al., 2019; Qin et al., 2022; Xie et al., 2024). Their growing availability
and ease of deployment make UAVs increasingly valuable for applications such as detailed tree mapping. In addition to wall-
to-wall mapping of relatively large and heterogeneous areas, UAVs survey enables the analysis of fine-scale drivers and the
extraction of single-tree attributes and features (Nasiri et al., 2021; Panagiotidis et al., 2017; Shimizu et al., 2022; Xiang et al.,
2024). The combination of field sampling and high-resolution RS data could be a winning venue to increase the spatial extent
of case studies while retaining the fine-scale level of details typical of the traditional approaches.

Single-tree mapping approaches are crucial in treeline ecology, as they provide insights into the underlying ecological
processes shaping treeline pattern and structure. Seedling establishment - a key driver of plant community dynamics - heavily
depends on the presence and availability of microsites that provide suitable conditions for growth and survival (Frei et al.,
2018). Multiple local factors such as topography, vegetation, and herbivory influence tree recruitment and thus mediate treeline
dynamics (Elliott and Kipfmueller, 2010; Lett and Dorrepaal, 2018; Ramirez et al., 2024). Neighbouring vegetation can either
hinder or enhance tree recruitment through competitive or facilitation associations (Getzin et al., 2006; Getzin et al., 2006;
Salazar Villegas et al., 2023; Smith et al., 2003). Whether these interactions result in a positive or negative feedback depends
on the fine-scale interplay between biotic and abiotic factors. The resulting spatial patterns at the individual tree-scale provide
a valuable perspective to both infer past processes and predict future trajectories. Accurate high-resolution single-tree maps
are essential tools to capture these fine-scale patterns and investigate such tree—tree interactions.

Convolutional Neural Networks (CNNs) combined with very-high-resolution images are a reliable and versatile tool for single-
tree scale analyses, enabling the accurate identification and representation of different plant species and communities as well
as the detection of individual trees (Braga et al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn et al., 2021). The
latter can be achieved through instance segmentation algorithms that enable the detection of individual objects on the input
images, allowing to distinguish and separate individual interwoven tree canopies (Ball et al., 2023; Braga et al., 2020).

The distinctive species composition, stratified horizontal and vertical structure, and complex terrain characteristics of treeline
ecotones confer a unique ecological identity to these environments. Therefore, a framework for fine-scale tree mapping at

treeline ecotones based on low-cost UAV imagery is needed. In this regard, the present study tests the following hypotheses:
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(1) the integration of UAV derived very high-resolution RGB imagery with CNNs models achieves high performances in
single-tree detection rates, and (ii) tree attributes estimation, and (iii) the trained model exhibits sufficient generalizability to
perform reliably on heterogeneous datasets. Moreover, we expect (iv) the proposed workflow to achieve very good detection
rates for tall trees and poorer ones for small trees without a critical drop in model performances, and (v) to achieve comparable

detection performances on all sites despite the high heterogeneity present in the dataset.

2 Materials and Methods
2.1 Study Area

We selected ten study sites across the Italian Alps (Fig. 1) spanning a broad longitudinal gradient representative of the Western,
Central, and Eastern Italian Alps. This selection ensured a balanced dataset encompassing highly heterogeneous climatic,
topographical, soil, and vegetational conditions (Appendix A). Introducing such heterogeneity allowed us to test the
transferability of the protocol to several treeline conditions. The selected treelines present elevations ranging between 2100
and 2400 m a.s.1., and variable slope aspects due to the differing orientations of the valleys. Above the closed forest there are
both mesic and xeric regions and feature patches of grasslands, sparsely vegetated areas, screes, and surfaces shaped by
gravitational events such as rill and gullies. All the selected landscapes experienced centuries of human land-use practices
under varying intensities of management pressure. In general, land abandonment is more marked in the Western sector of the
study area (Bétzing et al., 1996). Across all sites, the annual range of air temperature ranges between 2.8 C° and 3.1 C°, while
the mean annual precipitation varies from 800 mm to 1800 mm. Reflecting the typical species composition of the subalpine
belt in the Alps, in all the studied treelines the dominant treeline-forming species are European larch (Larix decidua Mill.) and
Swiss stone pine (Pinus cembra L.). Other species present include Norway spruce (Picea abies (L.) H.Karst.), dwarf mountain
pine (Pinus mugo Turra), mountain pine (Pinus uncinata Miller), Scots pine (Pinus sylvestris L.), as well as few broadleaf
species such as green alder (4/nus viridis (Ehrh.) K. Koch) and silver birch (Betula pendula Roth). Further details on the study

sites are provided in Table 1.
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Table 1. Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.l.), aspect,
dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived from Chelsa
Climate database (Karger et al. 2020), while position, elevation, and species from the field surveys.

Annual
Elevation range of air Annual
Study site date Latitude (°) Longitude (°) Aspect Species precipitati
(m a.s.l) temperature on (mm)
(°O)
Genevris ~ 26/07/2021  45.030 6.897 2,379 W L. decidua, P. cembra 2.96 1263
Chianale 29/06/2021  44.646 6.975 2,283 N L decidua, P. cembra 2.82 829
Rion  22/09/2021  45.830 7.262 2,290 S-SE L. decidua, P. abies 2.92 1759
Avic  06/1022021  45.697 7.593 2,184 g L decidua, P. abies, 291 1115
P. uncinata
Devero  14/06/2021 46316 8.294 2,186 NW L. decidua 2.92 1631
Livigno 22/07/2021  46.516 10.142 2,322 Nw L decidua, P cembra, 3.07 1067
P. mugo
Valfurva 21/07/2021  46.454 10.461 2371 g L decidua P.abies 311 894
P. cembra
Senales  07/07/2021  46.727 10.898 2319 g  Ldecidua, P. cembra, 3.03 923
P. abies
Bocche  06/07/2021  46.338 11.744 2,245 gw D cembra, L. decidua, 3.03 1225
P. abies
Becco  28/09/2021  46.471 12.118 2,190 N-NE IIZ‘ Z‘Z’l';lz ra, L. decidua, 3.00 1449

2.2 Sampling design and data collection

We selected ten treeline ecotones above 2,000 m a.s.l. along an east-west gradient across the Italian Alps, with a minimum
distance of 25 km between sites. Site selection was stratified by administrative region with only fully accessible locations
included, and edaphic treelines were explicitly avoided. In these ecotones, we placed ten 9-ha square plots (300 m x 300 m)
with a side aligned parallel to the steepest slope of the mountainside so that the forestline occurred in the lower third of the
plot. We defined forestline as the continuous line separating the closed forest (canopy cover > 10%) from the semi-open and
open areas (canopy cover < 10%) (FAO, 1998). The canopy cover was assessed based on the pan-European Tree Cover Density

(TCD) layer provided by Copernicus (https://land.copernicus.eu/en).

Data collection included UAV and field surveys in summer 2021. We used a DJI Phantom 4 pro V2 quadcopter equipped with
a RGB camera featuring a 1-inch CMOS sensor with 20 MP. Each UAV survey consisted of three flight paths: two of them
with the camera in the nadiral position (one aligned along the contour lines and the other perpendicular), and one with an

oblique camera perspective of 60° off-nadir, granting a more complete view of trees and terrain features.
6
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To mitigate spatial resolution loss in the lower portion of the plot due to the slope steepness, each set of three flights was
repeated two times. The first three flights covered the top half of the study area and were performed by deploying the drone
from either the top-right or top-left corner of the study plot. The second set of three flights covered the bottom half of the plot
and was performed by deploying the UAV from a point located on either the right or left side of the plot at approximately 150
m from the plot bottom (half the side length of the study plot). Flight height was fixed at 30 m above the highest point of the
300 x 300 m plot for the first set and above the middle of the study site for the second.

All the flights were performed on sunny, windless days to minimise shadowing from clouds and image distortions due to UAV
irregular motion. To assess how different phenological stages and light conditions affect canopy detection, we performed UAV
flights in Avic and Rion during the late vegetative period and late afternoon, respectively (Table 1). Images were captured
with 80% frontal and lateral overlaps to ensure high-quality structure-from-motion outputs. Prior to the UAV flights, 12 ground
control points (GCPs) marked with bull’s eye targets were placed within the flight area. Their positions were recorded using
Trimble R2 and Reach RS2 GNSS (Global Navigation Satellite Systems) antennas, providing both sub-metric horizontal and
vertical positioning accuracies with a 10-minute static occupation time. GCP positions were post-processed for a final
georeferencing correction. The acquired RGB aerial images were processed using Agisoft Metashape Pro software version
1.5.1. A Structure-from-Motion procedure was employed to generate 3D point clouds, from which we derived digital surface
models (DSMs), and orthomosaics with 5-cm spatial resolution. The classification of ground and non-ground points in the
point clouds was based on a threshold of 10 cm height of DSMs points: points lower than 10 cm were considered ground and
used to produce the DTM. Canopy height models (CHMs) were then produced by subtracting the DTM from the DSM.

In the field, we recorded the position, height, and species of 50 randomly selected individual trees per study site, scattered
across the plot. We used a sampling height threshold of 25 cm. In this study, we defined individual trees as individual tree
crowns clearly separable from the other adjacent crowns. Due to its low abundance and specific growth form characteristics
(Table 1), the dwarf mountain pine, the krummholz-forming species, was not considered as a tree in our analyses. Tree height
was measured using a TruPulse 200b (Crisel srl) or a measuring tape for smaller individuals. Tree positions were recorded
using the same GNSS antennas described above, with a 3- to 5S-minute occupation time. The final ground-truth dataset included
a total of 500 georeferenced trees across the ten sites.

The entire workflow of the study, from data acquisition to final analyses, is reported in Figure 2.
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Figure 2. Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different

methodological step of the study.

2.3 Deep learning modelling

To perform tree detection and segmentation we used a pre-trained deep learning (DL) model based on the Mask R-CNN

algorithm  implemented in  the “Detectron2”  library  from  Meta Al and  available at
https://github.com/facebookresearch/detectron2. Mask R-CNN is a DL framework which performs instance segmentation by
combining semantic segmentation and object detection (Kattenborn et al., 2021). Its framework involves the generation of
region of interest proposals by a deep fully convolutional network, and then there is a classification of the object of interest
within each generated region proposal. Our methodology consisted of the following steps: i) cropping the RGB orthomosaic
of each study site into adjacent tiles of 512 x 512 pixels; ii) systematically selecting 10 tiles per each study site to create the
reference dataset; iii) semi-automatic classification of tree crowns; iv) hyperparameter tuning and model calibration using a
dataset randomly split into training, validation, and testing subsets; v) performance evaluation; vi) separate validation and
evaluation of model transferability through spatial cross-validation. Each of the steps is furtherly explained in the following
sections. We selected tiles of 512 x 512 pixels (equivalent to 25.6 x 25.6 m at 5 cm spatial resolution) as this size resulted in
models with higher detection rates and accuracy across all sites compared to smaller tiles of 128 x 128 and 256 x 256 pixels.

8
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2.3.1 Training, validation, and test data

We here used only 5% of the total amount of tiles for training, with the purpose of testing the limits of using a low number of
training images on a pre-trained DL model. To build a strong reference dataset we fine-tuned the model using a Meta Al
Segment Anything for the creation of individual validation polygons samples (https://github.com/facebookresearch/segment-
anything). Annotations were carried out by visual interpretation of RGB images, resulting in non-overlapping binary masks.
To minimise operator biases photo interpretation was conducted by a single operator. The semi-automatically delineated
validation polygons were used to evaluate the model performances in delineating tree crowns (see Section 2.3.3). At the end
of the process, we obtained a dataset with a total of 1,016 individual canopies of different coniferous species (larch trees n =
885, pine trees n = 131). All the segmented validation polygons were classified and labelled as “’trees" regardless of the species
due to the similar spectral information.

To generate the training, validation and test datasets, the reference dataset of 100 tiles (512 x 512) was split into 70 % of
images for training, 20 % for validation, and 10 % for testing. The split in the three datasets was performed by systematically
sampling the 512-pixel tiles in the reference dataset. The tiles were sampled diagonally in order to cover a larger surface of
the study area and to minimise spatial autocorrelation. Finally, we assessed the performance of the model using the test dataset,
consisting of tiles with which the model was not familiar. The model trained in this way was used to perform predictions on
the rest of the tiles to generate tree maps. However, this type of dataset partitioning does not guarantee model transferability
since images from all sites are included in each phase of training, validation, and testing. Hence, we performed a separate
spatial cross validation to evaluate model generalizability. A k-fold spatial cross-validation was performed using training and
validation datasets partitioned according to their geographic distribution. The dataset was partitioned into ten folds based on
study sites. In each iteration, images from nine sites were used for training, while the remaining site's images were reserved
exclusively for testing. This procedure was repeated across ten iterations, such that each site served as the test set once, thereby
ensuring a leave-one-site-out cross-validation scheme. The outputs of the ten iterations through the entire dataset were finally

averaged to achieve a mean F1 score, precision, recall, and average precision (AP) value.

2.3.2 Model development and hyper-parameter configuration

During training we used the Adam optimizer with a learning rate of 0.00025, 128 ROIs per image, 1500 epochs, and a batch
size of 30. We used the R101-FPN configuration as it offers a good balance between training speed and segmentation accuracy
(https://github.com/facebookresearch/detectron2/blob/main/MODEL ZOO.md). To prevent overfitting, we monitored the
validation loss in the F1-score every 100 iterations and implemented early stopping if the F1-score declined for more than five
evaluations. The model was trained with data augmentation consisting in random resizing and rotation of the input images.

We predicted tree crowns contours using the tiling process developed by Ball et al. (2023), which consists of creating a buffer

around each tile to avoid splitting crowns located at the edges of the tiles. The overlapping crowns resulting from this operation

9
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were then filtered by removing those with the lowest confidence value assigned during the prediction. Classified maps were
then post-processed to reduce noise and correct evident misclassifications. Crowns remaining after this cleaning process were
considered valid tree detections. Model evaluation was computed prior to the cleaning process for all the evaluation metrics

except detection rate (DET%) and IoU, which were calculated after the post-processing (see Section 2.4 for details).

2.3.3 Model performance assessment

To assess the performances of the DL model, we selected four evaluation metrics commonly used in individual tree detection
studies (Beloiu et al., 2023; Dersch et al., 2023; Dietenberger et al., 2023; Xie et al., 2024): (i) precision (1), recall (2), F1
score (3), and average precision (4). The F1 score, a measure of test accuracy, is the weighted average of precision and recall;
values closer to one indicate higher classification accuracy. The average precision is computed as the area under the precision-
recall curve. It evaluates the quality of the classifier in retrieving the relevant instances.

To evaluate model transferability, we corroborated the results with a spatial cross-validation procedure. Metrics (1)-(4) were
computed after each cross-validation fold and the results were averaged to achieve a mean estimate.

In addition, tree maps were evaluated in terms of two spatially explicit metrics: detection rate (DET%), and delineation
accuracy (IoU). DET% is the ratio between the predicted number of trees and the number of trees measured in the field (5). It
is computed to evaluate how many objects were correctly classified out of all the ground truth data. For the evaluation we used
only field-sampled trees that did not belong to the training and validation datasets. The IoU is measured as the ratio between
the area of overlap and the area of union of the ground truth crown and predicted crown (6), providing an estimate of the

segmentation and delineation accuracy. Semi-automatically delineated validation polygons were used as ground truth for IoU

assessment.
. . TP correctly predicted trees
Precision = = L — €y
TP+FP all trees predictions
TP correctly predicted trees
Recall = = — (2)

TP+FN  all ground—truthed tree predictions’

where TP are the true positives instances; FP are the false positive instances; FN are the false negatives (number of ground

truth trees that the model did not detect).

precision* recall
precision+recall 7 (3)
2

F1 score =

AP = n(R, — R,_;)Pn AP=n)(Rn—Rn—1)-Pn, 4)

where 7 is the number of thresholds; Rn is the recall at the n-th threshold; Pr is the precision at the n-th threshold.
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number of predicted trees

DET% =

)

actual number of trees

JoU = area of overlap (6)

. 7
area of union

To test our hypothesis on the effect of tree height on detection, delineation and attributes extraction performances trees
were grouped into three size classes: small (height < 130 cm), medium (130 cm < height <
200 cm), and tall (height > 200 cm).

Thresholds for smaller and larger trees were chosen based on broadly accepted definitions of forest regeneration (130 cm;
(Dullinger et al., 2005; Wesche et al., 2008) and of “tree” at the treeline ecotone (200 cm; Holtmeier and Broll, 2017; Wieser
et al., 2009), respectively.

Statistical differences in accuracy among these groups were evaluated using a Wilcoxon test with pairwise comparison.
To further investigate how small trees impacted the model performances we conducted a separate analysis excluding
individuals shorter than 50 cm (i.e., considering only trees with height > 50 cm). In this sense, we selected this threshold as

the crown of these individuals occupied few pixels in the orthomosaics and were indistinguishable from the background.

2.4 Tree attributes assessment

Tree position estimation accuracy was assessed by comparing the field-collected coordinates of each tree with the centroid
coordinates of the corresponding predicted crowns. For height estimation, we compared the value of the CHM at the predicted
centroid with the height measured in the field. The evaluation metrics chosen for evaluating the accuracy in tree height and
position were root mean square error (RMSE) and mean absolute error (MAE), both calculated in centimetres. RMSE is a
standard deviation of prediction errors or residuals (7). The MAE shows how close the ground truth values and predicted
values are to each other (8). It is obtained as the average absolute difference between the predicted value and the real value;
hence, it gives an overall estimation of the error in terms of standard SI (International System) units. Position accuracy was
also evaluated using the Euclidean distance between the centroid of each predicted crown and the corresponding stem position
as recorded in the field (9). For tree height estimation accuracy, we also computed the deviation between real and predicted
values calculated both in absolute and relative terms. RMSE, MAE, Euclidean distance and tree height accuracy were
computed only for correctly predicted trees (n = 343) with the exclusion of the trees that fell within tiles used for training and
validation of the neural network (n = 157). Tree attributes extraction accuracy assessment was performed using the same size

classes listed in section 2.3.3.
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3 Results
3.1 Tree detection rate, delineation performances and transferability of the protocol

Our methodology allowed us to produce tree maps of the 10 treeline sites that reveal the treeline patterns of the study sites
(Fig. 3). Overall, we mapped 14737 trees. The Valfurva site was the densest, with 2990 trees, whereas Rion contained the
fewest, with 499 trees. On average, each site contained 1474 trees. Across all sites, we mapped 7246 small trees, 1364 medium

trees, and 6127 tall trees.
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Figure 3. Fine-scale stem-mapped treeline ecotones overlapped with the 9 ha orthophoto as a background image (a) Avic, (b) Becco, (¢)
Bocche, (d) Chianale, (¢) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva. Trees belonging to the small, medium,

and tall tree-height classes (Small: < 130 cm; Medium: >130 ¢cm and <=200 cm; Tall: > 200 cm) are in orange, pink, and red, respectively.

Throughout the evaluation process, the DL model achieved an F1 score of 0.76, precision of 0.92, recall of 0.79, and AP of
0.68. Spatial cross-validation confirmed the DL model generalizability to yet-unseen data, yielding an F1 score 0.68, precision
0f 0.90, recall of 0.56, and AP of 0.36 (appendix B).

According to DET% results, the DL model detected 67% of all the trees sampled in the field not included in the training and
validation datasets (Table 2). Detection performance was lower for small trees, with a mean detection rate of 52%. As expected,
limiting the analysis to trees taller than 50 cm (DET% ab50) led to higher detection rates, resulting in a DET% = 70, thus
confirming that smaller trees have a strong negative effect on the detection rate. When considering only tall trees (>200 cm)
we reached a mean detection rate of 86%, further demonstrating the effect of size on detection rates. Among the study sites,
Genevris was the site in which the best detection rates were registered (93% for trees taller than 50 cm), followed by Valfurva,
Devero, Bocche and Livigno, where the model correctly detected more than 78% of all the trees.
IoU results also showed a similar pattern, with tall trees achieving the best performances (IoU = 0.85). Medium and small trees
achieved a mean IoU value of 0.72 and 0.70, respectively. The difference between tall trees’ IoU and the other two classes’

one was significantly different, as confirmed by a Wilcoxon test (Fig. 5a).
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Table 2. Single site detection rates and number of total predicted trees (n. pred trees) out of the totality of trees sampled in the field (n. test
trees). DET% all = detection rate on the totality of individuals; DET% small = detection rate on small trees; DET% medium = detection rate
on medium trees; DET% tall= detection rate on tall trees; DET% ab50 = detection rate on individuals taller than 50 cm.

DET%
site n. test trees  n. pred trees
all small medium tall ab50
Avic 42 14 33 12 56 75 37
Becco 45 31 69 58 69 85 71
Bocche 50 35 70 48 85 93 79
Chianale 51 32 63 43 73 68 63
Devero 40 33 &3 71 86 94 83
Genevris 40 37 93 86 100 92 93
Livigno 50 39 78 85 63 89 78
Rion 45 24 53 18 78 93 57
Senales 47 24 51 16 40 83 58
Valfurva 49 40 82 84 76 86 82
Mean / / 67 52 73 86 70

3.2 Tree attributes estimation

The proposed method demonstrated that it was possible to accurately estimate tree positions and height. Trees' predicted
position achieved a RMSE of 0.59 m and a MAE of 0.49 m. For most of the predictions, the Euclidean distance between
predicted and reference points was less than one metre, with the majority of values around 30 cm (Fig. 4b). Interestingly,
position accuracy increased with reducing tree height, resulting in lower deviation values for the two smaller classes (medium
and small trees) (mean Euclidean distance value of 0.40 and 0.44 m, respectively; Fig. 5b). The Wilcoxon test highlighted a
significant difference between the two smaller classes’ results and the one obtained for tall trees, for which the mean Euclidean
distance value was 0.61 m.

In regard to height estimations, despite some outliers, we observed a strong (R? = 0.87) linear relationship between predictions
and ground-truths (Fig. 4c). The coefficient of determination, the RMSE of 91.6 cm, and the MAE of 71.8 cm confirm that the

SfM-derived point cloud can be used to accurately estimate tree heights. Nearly all height predictions deviated by less than
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one metre from ground truth values, with the most frequent relative deviation around 20 cm (Fig. 4d). Prediction accuracy

increased with tree height: tall trees had the lowest mean deviation (0.23 m), followed by medium (0.47 m) and small trees

(0.62 m) (Fig. 5c).
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Figure 4. (2) Instance segmentation output with a comparison of crowns predicted by the model (shaded with orange outline) and validation
polygons (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees were harder to detect by the model, with
some missing segmentations. Frequency and smoothed kernel density distribution of (b) relative deviation for position estimation and (d)
deviation for height estimations with the smoothed, continuous approximation of the kernel-density estimate in orange. (c) Linear regression
model between the field-measured crown heights and estimated heights in metres. The red dashed line represents the 1:1 line.
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Figure S. Comparison of model performance for three tree-height classes (Small: < 130 cm; Medium: >130 cm and <=200 cm; Tall: > 200
cm) in predicting trees (a) canopy surface and shape, measured as Intersection-over-Union (IoU) between predicted and reference crown
polygons, (b) position deviation, measured as Euclidean distance (m) between predicted and reference tree centroids and, (c) height relative
deviation, measured as absolute difference between predicted and reference height divided by the reference height. Violin plots width at a
given value shows the kernel-density estimate of the distribution; the overlaid boxplot displays the interquartile range with the median (black
line) and mean (dark-red diamonds). Statistical significance (pairwise Wilcoxon tests) is indicated as: NS = not significant; * p <0.05; ** p
<0.01; *** p <0.001.

16



313

314

315
316
317
318
319
320
321
322
323
324
325
326
327

4 Discussion
4.1 Detection performances

We demonstrated that RGB imagery from low-cost UAVs used in combination with a CNN model can be used for accurate
tree detection across large, heterogeneous areas at elevational treelines. Previous studies have conducted similar analyses
employing different segmentation strategies in various forest types. Our model achieved precision and recall values that surpass
those reported in other studies (Beloiu et al., 2023; Dietenberger et al., 2023). The average loU across different tree size classes
was 0.76, lower than results from plantation-based studies (Hao et al., 2021), but superior to those from mixed temperate
forests (Dietenberger et al., 2023). Regarding detection rates and F1 scores, our results fell within the typical range reported
in comparable research (Table 3).

However, direct comparisons with other studies are challenging due to substantial differences in forest types, UAV data
acquisition protocols, flight parameters, and the image classification algorithms employed. While our analysis outperformed
others on certain metrics, it is important to note that our study was conducted in an environment where individual tree detection
is facilitated by the reduced presence of intertwined canopies, unlike in tropical or temperate forests. Conversely, this
advantage was offset by the inclusion of small trees in our analysis, a factor that negatively impacted the results and is often

excluded in similar studies.
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Table 3. Performances of recent studies focused on tree detection and crown delineation in forest ecosystems using UAV-derived data.
DET% = detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.

crown detection

reference  Forest type sensor . DET%  precision recall F1-score IoU AP
algorithm
Present Work  XedoPen - pGR Faster R-CNN 70 0.92 0.79 0.76 076 0.68
woodland
Beloi | mixed
cloiu et al.
temperate RGB Faster R-CNN - 0.75 0.78 0.76 B B
(2023)
forest
Dietenb mixed
ietenberger et
g temperate RGB Region growing - 0.68 0.61 0.64 0.44 -
al. (2023
forest
Weinstein et mixed open RGB, 2
LiDAR RetinaNet h h h - -
al. (2019) woodland
Xiang et al. feveral forest LiDAR 3D CNN i} ; _ 0.85 - -
(2024) ypes
Dersch et al coniferous,
ersch et al. .
deciduous, LIDAR  Mask R-CNN - - - 0.86 - -
(2023
mixed stands
Multi-scale analysis ,
Jing et al. ) ) 69
mixed forests LiDAR Marker-controlled - - B B -
(2012)
watershed segmentation
Ball et al. tropical
P LiDAR  Mask R-CNN - - - 0.64-0.74 - -
(2023) forests
Xie et al. Chinese fir 0.55
RGB Mask R-CNN - - - - T :
(2024) plantation
Hao et al. Chinese fir
_ RGB mask R-CNN - - - 0.85 091 -
(2021) plantation

We expected tree height to have a negative influence on model performance. By categorising trees in different size classes, we

were able to track detection performance, confirming that accuracy improves with tree size in almost all study sites. Across all

the study sites, detection was high for taller trees (86%) but decreased for smaller ones (52%), meeting our expectations.

Although small trees detection is more cumbersome if compared to bigger trees, in some study sites (Devero, Genevris,

Livigno, Valfurva) a considerable percentage of them was successfully delineated. The substantial difference in small trees

detection across different sites can be linked back to several reasons. As already highlighted in recent studies, in addition to
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being inherently more challenging to detect in the imagery due to their diminished size, smaller trees often present altered
lighting conditions due to being partially obscured or completely concealed by taller ones (Beloiu et al., 2023; Dietenberger et
al., 2023; Hamraz et al., 2017), thus potentially leading to missed detections (i.e., false negatives). This problem is exacerbated
in dense clusters (Vauhkonen et al., 2012), common in most of our study sites. Another critical challenge in tree detection is
the blending of canopies colours with the background, a factor that largely depends on the tree, shrub, and herbaceous species
on the site (Diez et al., 2021; Weinstein et al., 2019). Here, although the problem also affects tall trees, it was markedly more
problematic for smaller ones. All above-mentioned issues are directly linked to the aerial dataset quality and features. Due to
the high heterogeneity of ecotonal characteristics present in our study sites, it is possible that an interplay of all the above-
mentioned issues affected detection rates and is thus responsible of the found inter-sites detection rate discrepancies.
Nonetheless, according to our results, small trees detection using the proposed approach is feasible and brought to overall
satisfying results which contributed to the generation of accurate treeline maps (Figure 3).

Despite recent advancements in Al tools for object detection and segmentation, accurate identification of small trees in RGB
images over large and heterogeneous areas is still cumbersome. Moreover, such improvement would remain unfeasible without
significantly lowering flight height, which results in increasing extended survey times (Fromm et al., 2019). Nevertheless, due
to the harsh environmental conditions at the treeline ecotone, long-term survival of small trees is jeopardised by factors such
as unsuitable sites for survival (Davis and Gedalof, 2018; Marquis et al., 2021), failure to grow in harsh conditions (Crofts and
Brown, 2020; Frei et al., 2018; Miiller et al., 2016) and predation (Brown and Vellend, 2014; Cairns et al., 2007). While the
precise mapping of small trees may be of secondary importance compared to taller, potentially permanent, trees when
evaluating survival rates and seed distribution, small trees are crucial when investigating the encroachment process. As a
consequence, small tree detection is of utmost importance in treeline ecology research and field surveys remain a valid and
valuable approach over small study areas.

With the present work, we investigated how unique treeline characteristics influenced model performance. At the Mont Avic
treeline, where European larch is the dominant species, we tested the leaf-off effect on detection rate. Scarcity of green needles
on the canopies resulted in lower performances (Table 2). This finding is consistent with previous studies underscoring how
leaf-off season surveys are often correlated with lower detection accuracies (Imangholiloo et al., 2019).

The poor cross validation results from the Rion site highlight the substantial influence of illumination conditions on detection
performances. As noted by Diez et al. (2021), low sun angles lead to variations in canopy color and the formation of long,
distorted shadows, which can significantly impair detection accuracy.

These results reveal some of the main limitations of RGB-based approaches, underscoring the need of applying a standardised
sampling protocol throughout all the study sites to augment results reliability or provide more input data to increase variability
in the training dataset.

With the exception of Rion and Avic, a clear waning trend in tree detection related to a specific terrain feature of the site -

presence of rocks (Becco), herbaceous species (Chianale) or others - was not found. These findings suggest that terrain
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characteristics had a negligible effect on detection rates, thus meeting our expectations and supporting the generalizability and

transferability of the approach to treeline environments with differing features.

4.2 Tree attributes estimation and transferability of the protocol

The proposed approach has demonstrated the ability to accurately georeference individual trees (RMSE = 0.59m; MAE=
0.49m) and estimate their height (RMSE = 91.6 cm; MAE = 71.8 cm); some of the observed deviations may in fact be
attributable to inaccuracies in the ground control data rather than the UAV images. Despite the high precision of the GNSS
antenna employed, some small georeferencing errors are inevitable (e.g. due to limited sky view, positional accuracy can be
limited). Additionally, during field surveys, GNSS points coordinates of tree locations are recorded near the base of the tree
rather than directly below the real treetop, introducing further spatial errors (Shimizu et al., 2022; Vauhkonen et al., 2012).
Nevertheless, our tree position estimations were highly satisfying and comparable with results obtained in other recent studies
employing similar or more sophisticated equipment in environments with analogous open stands. For instance, Castilla et al.
(2020) georeferenced coniferous species in a boreal forest using SfM point clouds achieving an RMSE of 20 c¢cm, while
Fernandez-Guisuraga et al. (2018) extracted tree position of coniferous species in a post-fire environment attaining a RMSE <
30 cm.

Tree height estimations presented a trend skewed towards underestimation (Fig. 5c¢), an issue attributable to the low sharpness
of the DSM generated through SfM, as also evidenced by Panagiotidis et al. (2017) and Wallace et al. (2016). Airborne laser
scanning is the most well-known tool for DTM modelling due to its better capability in penetrating tree crowns, which often
result in highly accurate estimation of tree features. However, in the present study we provide evidence that by means of
photogrammetric point clouds it is possible to extract tree height with an accuracy comparable to that achieved using LiDAR
sensors, which are still moderately expensive, thus limiting the feasibility of repeated surveys in many cases. Coops et al.
(2013) assessed tree height over a Swiss treeline ecotone by employing LiDAR sensors with an RMSE of 0.70 m. Studies
employing LiDAR technologies in boreal treelines documented a standard deviation of 0.11-0.73 m (Nasset and Nelson,
2007) and of 0.16-0.57 m (Neesset, 2009). Using LIDAR, Wallace (2012) reported a mean height standard deviation of 0.24 m
in a stand with sparse trees—a level of precision that clearly surpasses our results. However, when compared to studies using
SfM point clouds for tree height estimation, our results demonstrate higher accuracy. For instance, Wallace et al. (2016)
compared LiDAR and SfM-derived point clouds in a stand with spatially variable canopy cover, finding RMSE values of
0.92 m and 1.30 m, respectively—the latter being higher than ours. Similarly, Brieger et al. (2019) estimated tree heights in an
open larch forest and reported a mean RMSE of 1.42 m, further supporting the comparatively greater accuracy of our

photogrammetric approach for tree height estimation in open stands.
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4.3 Limits and perspectives

We adapted an off-the-shelf model for a single-tree detection task at the treeline ecotone and employed Al-powered tools to
generate training data. The presented procedure enabled fast and efficient dataset preparation, ultimately yielding accurate
results. Our results show that combining low-cost UAV and sensors with open-source Al libraries allows for precise treeline
mapping and the extraction of individual tree attributes across large areas, spanning wide latitudinal gradients and featuring
diverse environmental conditions. The speed and accuracy of the analyses are further enhanced by the potential use of tree
maps to support ecological studies in these sensitive transition zones. Although previous studies have investigated forested
areas using Al and remote sensing data, to the best of our knowledge, none have examined an ecotonal surface as extensive as
the one presented here (90 ha) using a high-resolution (5 cm) remote sensing approach.

Our detection rates were comparable to, or even exceeded, those reported in many other DL-based classification studies in
natural forests. Nonetheless, despite the strong performance achieved, accurately recognising small individuals in RGB images
remains a major challenge and a key limitation of RS-based approaches. As highlighted in recent scientific literature, LIDAR-
informed segmentation approaches could provide a valuable alternative for comprehensive mapping of individual trees, filling
the gap left by our methodology. Another crucial feature of great importance for many ecological analyses is the species
composition of the community. The use of multi or hyperspectral sensors would solve this issue by enabling the classification
of tree species and thus the analysis of species composition and interactions among individuals. Alternatively, species-level
analyses are also possible with very-high-resolution RGB images acquired through low-elevation UAV flights achieving a
very fine ground sampling density (~ 1.6 cm/px (Egli and Hopke, 2020)), as they can reveal species-specific crown architecture
and morphology.

Due to their dynamic nature, it is of great importance to study treeline ecotones in long-term monitoring research. For this
task, we envision future research activities to apply the presented approach to simultaneously map and detect tree species at
the treeline. The final goal is creating a global network of accurately mapped treeline datasets to monitor the effects of global

change on treeline dynamics and explain the position and pattern of the treeline at different scales.

5 Conclusions

We tested the performance of a Mask R-CNN deep learning model in capturing single-tree attributes across 10 heterogeneous
treeline ecotones, using UAV-derived structure-from-motion point clouds. UAV employment allowed us to conduct surveys
in a more labour and time efficient manner compared to traditional ground-based methods while also increasing the spatial

extent of the study area. Our results showed that the proposed approach can effectively produce fine-scale tree maps over 90
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ha of treeline ecotones. The model successfully identified 70% of trees taller than 50 cm and 86% of trees taller than 2 m
across the ten study sites in the Italian Alps. Beyond its success in detecting tree crowns, the approach also performed well in
delineation tasks.

The present work underpins the possibility of using UAVs to advance treeline research, bridging the gap left by limited-in-
scale and labor-intensive field surveys and less accurate satellite imagery. The ability to achieve such results with the low-cost
equipment used in this study, combined with the flexibility of the protocol to site-specific conditions with minimal data
preparation requirements, makes this approach both accessible to a wide range of scientists and forest managers and reliable.
These features showcase the methodology as a valuable tool for enhanced ecological analyses of treeline processes, and several

applications in forest assessment, ecological restoration, and conservation planning
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436  Appendix A:

437 Figure Al. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (¢) Bocche, (d) Chianale, (e) Devero, (f) Genevris, (g) Livigno,
438 (h) Rion, (i) Senales and (j) Valfurva.
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Appendix B:

Table B1. Results of spatial cross-validation analysis.

site Fl-score precision recall AP
Avic 0.60 0.83 0.48 0.14
Becco 0.81 0.80 0.87 0.45
Bocche 0.48 1.00 0.35 0.34
Chianale 0.73 0.85 0.40 0.36
Devero 0.63 0.93 0.54 0.27
Genevris 0.76 0.97 0.66 0.45
Livigno 0.78 0.94 0.50 0.58
Rion 0.62 1.00 0.50 0.34
Senales 0.60 0.88 0.49 0.41
Valfurva 0.78 0.76 0.84 0.32
Mean 0.68 0.90 0.56 0.37
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