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Very-high resolution aerial imagery and deep learning uncover the
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Abstract. Treelines are sensitive indicators of global change, as their position, composition and pattern directly respond to

ecological and anthropogenic factors. However, several tieeline studies‘remain case-specific, focusing ‘on local patferns and
spatial patterns. and the generalizability of findings based on case'studies| Advancing methods to accurately map fine-scale

treeline spatial patterns over large extents is crucial to overcome this limitation. Innovative approaches integrating remote

sensing with lnerewed acrial vehicles (UAV) and deep learning offer a promising way to bridge the gap between field-based
observations of fine-scale patterns and their large-scale implications, ultimately informing and supporting practices for the
conservation of forest ecosystems in the face of ongoing and future ecological challenges.

In this study, we combined field data and UAV-based remote sensing with a deep learning model to retrieve individual tree-
scale information across 90 ha in 10 study sites in the Italian Alps. Using the proposed methodology, we were able to correctly
detect individual tree crowns of conifers taller than 50 cm with a detection rate of 70% and an F1 score of 0.76. Accuracy
increased with tree height, reaching 86% for trees taller than 2 m. Canopy delineation was robust overall (Intersection over
Union, IoU = 0.76) and excellent for tall trees (IoU = 0.85). Tree position and height estimates achieved RMSEs of 59 cm and
92 cm, respectively.

Both univariate and bivariate Point Pattern Analysis (PPA) revealed clustering for scales <20 m and a strong spatial repulsion
between small and tall trees across all the tested spatial scales. Our results demonstrated that the proposed methodology
effectively detects, delineates, georeferences, and measures the height of most trees across diverse Alpine treeline ecotones.
This enables the analysis of fine-scale spatial patterns and enhances the interpretation of underlying ecological processes. The

inclusion of heterogeneous study areas facilitates the transferability of the segmentation model to other mountain regions and
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29 offers a benchmark for developing a global network of fine-scale mapped treeline spatial patterns to monitor the effects of

30 global change on ecotone dynamics.
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1 Introduction

The elevational treeline is the transition zone from the uppermost closed montane forest (timberline) to the highest scattered
trees (tree species line) (Holtmeier et al., 2003), and one of the most studied ecotones. Since the late 19th centuryl scientific
studies largely focused on the diversity and complexity of factors affecting the ecotone spatial and temporal patterns at different
scales (Hansson et al., 2021; Holtmeier, 2009). It is well known that temperature plays a crucial role in treeline positioning
and dynamics from regional to global scales (Dirnbock et al., 2003; Gehrig-Fasel et al., 2007; Harsch et al., 2009; -
_ but is not the only driving factor. Many other studies have emphasised the significant role of other factors in
treeline formation (Mienna et al., 2024), including water availability (Barros et al., 2017; Williams et al., 2013), site topography
(Leonelli et al., 2016; Marquis et al., 2021; Miiller et al., 2016), biotic drivers (Brown and Vellend, 2014; Cairns et al., 2007)
and anthropogenic pressure (Gehrig-Fasel et al., 2007; Malandra et al., 2019; Vitali et al., 2019).

Global change can trigger large-scale vegetation dynamics affecting the provision of ecosystem services - such as carbon
sequestration _ Climate alteration can induce upward migration of species,
threatening a loss of habitat and biodiversity of high alpine communities (Kyriazopoulos et al., 2017). This sensitivity to
climatic and anthropogenic factors makes high-elevation ecotones key indicators of global change (Dirnbock et al., 2011;
Greenwood and Jump, 2014). Monitoring changes at elevational treelines is therefore of utmost importance to follow how
forests are responding and to forecast how they will respond to a changing environment (Chan et al., 2024; Hansson et al.,

2023; Mottl et al., 2021) and ultimately to guide the definition of appropriate conservation strategies.

(Holtmeier and Broll, 2007, 2017).
An open question in many areas of ecology is how to infer processes from observed patterns.

In this context, the great spatial _

_ How to tackle the spatial heterogeneity issue is still an open question, and consequently the attribution of the
observed processes to specific drivers is still a challenge (Garbarino et al., 2023). Combining ground-based and remote sensing
(RS) data could be a winning venue to solve this compelling issue, especially if pursued with a flexible and efficient protocol.

Field surveys remain the traditional methods used also at treelines and involve measuring several tree parameters (e.g. stem

3
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DBH, height, position, health conditions) within small study areas — plots or transects (Mainali et al., 2020; Van Bogaert et

al., 2011; Vitali et al., 2017, 2019). [Fhisapproach provideshigh-resolution, high-quality'data applicable fo'a'broad array of

At this point, remote sensing techniques come into play. _ dates back to the 1980s

(Holmgren and Thuresson, 1998), it is only over the last two decades that RS has been widely adopted in treeline ecology

(Garbarino et al., 2023). The choice of the right RS tool depends on the spatial and temporal scale required to address a given
research question. For instance, while satellite imagery can provide suitable data over large forest areas and _
(Garbarino et al., 2020; Nguyen et al., 2024), most optical sensors lack the spatial resolution necessary for individual tree
mapping (Bennett et al., 2024; Morley et al., 2018; Simard et al., 2011). _ of field surveys (limited spatial and
temporal extent) and satellite-based data (high spatial and temporal extent but low resolution) can be overcome by using
Uncrewed Aerial Vehicle (UAV) platforms (Fromm et al., 2019; Qin et al., 2022; Xie et al., 2024). Their growing availability
and ease of deployment make UAVs increasingly valuable for applications such as detailed tree mapping. In addition to wall-
to-wall mapping of relatively large and heterogeneous areas, UAVs survey enables the analysis of fine-scale drivers and the

extraction of tree attributes and features (Nasiri et al., 2021; Panagiotidis et al., 2017; Shimizu et al., 2022; Xiang et al., 2024).
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Convolutional Neural Networks (CNNs) combined with very-high-resolution images are a reliable and versatile tool for single-
tree scale analyses, enabling the accurate identification and representation of different plant species and communities as well
as the detection of individual trees (Braga et al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn et al., 2021). The
latter can be achieved through instance segmentation algorithms that enable the detection of individual objects on the input
images, allowing to distinguish and separate individual interwoven tree canopies (Ball et al., 2023; Braga et al., 2020). Despite
the widespread use of UAV for individual tree mapping and tree features detection in several forest ecosystems (Dietenberger

et al., 2023; Diez et al., 2021; Weinstein et al., 2019), fhedistinctive'species composition. stratified horizontal and vertical

|
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Therefore, a framework for mapping fine-scale tree spatial patterns at treeline ecotones based on low-cost UAV imagery is

needed.

2 Materials and Methods
2.1 Study Area

We selected ten study sites across the Italian Alps (Fig. 1) spanning a broad longitudinal gradient representative of the Western,
Central, and Eastern Italian Alps. This selection ensured a balanced dataset encompassing highly heterogeneous climatic,

topographical, soil, and vegetational conditions (Appendix A). Introducing such heterogeneity allowed us to test the

transferability of the protocol to several treeline conditions.

_ Reflecting the typical species composition of the subalpine belt in the

Alps, in all the studied treelines the dominant treeline-forming species are European larch (Larix decidua Mill.) and Swiss
stone pine (Pinus cembra L.). Other species present include Norway spruce (Picea abies (L.) H.Karst.), dwarf mountain pine
(Pinus mugo Turra), mountain pine (Pinus uncinata Miller), Scots pine (Pinus sylvestris L.), as well as few broadleaf species
such as green alder (Alnus viridis (Ehrh.) K. Koch) and silver birch (Betula pendula Roth). Further details on the study sites

are provided in Table 1.
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ABIE! Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.1.), aspect,
dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived from Chelsa
Climate database (Karger et al. 2020), while position, elevation, and species from the field surveys.

Mean annual Annual

Elevati
Study site date Latitude (°) Longitude (°) evation Aspect Species temperature precipitati
(m a.s.l.)
(&9} on (mm)
Genevris ~ 26/07/2021  45.030 6.897 2,379 W L. decidua, P. cembra 1.4 1263
Chianale 29/06/2021 44.646 6.975 2,283 N L. decidua, P. cembra 1.6 829
Rion  22/09/2021  45.830 7.262 2,290 S-SE L. decidua, P. abies 0.7 1759
Avic  06/10/2021  45.697 7.593 2,184 gp L decidua P abies, 1.9 1115
P. uncinata
Devero  14/06/2021  46.316 8.294 2,186 NW L. decidua 1.4 1631
Livigno  22/07/2021 46516 10.142 2,322 Nw L decidua, P cembra, 0.1 1067
P. mugo
Valfurva 21/07/2021  46.454 10.461 2371 g L decidua P. abies 12 894
P. cembra
Senales  07/07/2021  46.727 10.898 2,319 g L decidua, P. cembra, 02 923
P. abies
Bocche  06/07/2021  46.338 11.744 2,245 sw [rcembra, L. decidua, 0.7 1225
P. abies
Becco  28/09/2021  46.471 12.118 2,190 N-NE ? ZZZI; ra, L. decidua, 0.9 1449

2.2 Sampling design and data collection

We selected ten treeline ecotones above 2,000 m a.s.l. along an Gast-west gradient across the ltalian Alps, with a minimum
included; and edaphic freclines were explicitly avoided] In these ecotones, we placed ten 9-ha square plots (300 m x 300 m)
with a side aligned parallel to the _ so that the forestline occurred in the lower third of the

plot. We defined forestline as the continuous line separating the closed forest (canopy cover > 10%) from the semi-open and
open areas (canopy cover < 10%) (FAO, 1998). The canopy cover was assessed based on the pan-European Tree Cover Density

(TCD) layer provided by Copernicus (https://land.copernicus.eu/en).

Data collection included UAV and field surveys in summer 2021. We used a DJI Phantom 4 pro V2 quadcopter equipped with
a RGB camera featuring a 1-inch CMOS sensor with 20 MP. Each UAV survey consisted of three flight paths: two of them
with the camera in the nadiral position (one aligned along the contour lines and the other perpendicular), and one with an

oblique camera perspective of 60° off-nadir, granting a more complete view of trees and terrain features. To mitigate Spatial
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resolution loss in the lower portion of the plot due to the slope steepness, each set of three flights was repeated from a central
position of the plot, at approximately 150 m from the plot side, resulting in a total of six flights per study site. Flight height
was fixed at 30 m above the highest point of the 300 x 300 m plot for the first set and above the middle of the study site for the
§econd: All the flights were performed on sunny, windless days to minimise shadowing from clouds and image distortions due
to UAV irregular motion. To assess how different phenological stages and light conditions affect canopies detection, we
performed UAV flights in Avic and Rion during the late vegetative period and late afternoon, respectively (Table 1). Images
_ frontal and lateral overlaps _ Prior to the UAV

flights, 12 ground control points (GCPs) marked with bull’s eye targets were placed within the flight area. Their positions were

recorded using Trimble R2 and Reach RS2 GNSS (Global Navigation Satellite Systems) antennas, providing both sub-metric
horizontal and vertical positioning accuracies with a 10-minute static occupation time. GCP positions were post-processed for

a final georeferencing correction. The acquired RGB aerial images were processed using Agisoft Metashape Pro software
version 1.5.1. A Structure-from-Motion procedure was employed to generate 3D point clouds,_

[EHAIHOdEISDTMS) digital surface models (DSMs), and orthomosaics WitliSCinlSpatial FesOlutiOn. The Classification of
_, we _, height, and species of 50 randomly selected individual trees per study site, scattered
across the plot. In this study, we defined individual trees as individual tree crowns clearly separable from the other adjacent
8s'a free in our analyses: Tree height was measured using a TruPulse 200b (Crisel stl) or a measuring tape for smaller
individuals. [ree positions'were recorded using the'same GNSS antennas described above, with a 3- to S-minute occupafion
fime. The final ground Ul dataset included a total of 500 georeferenced trees actoss the ten sites,

The entire workflow of the study, from data acquisition to final analyses, is reported in Figure 2.
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Figure’2! Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different

methodological step of the study.

2.3 Deep learning modelling

To perform tree detection and segmentation we used a pre-trained deep learning (DL) model based on the Mask R-CNN

algorithm  implemented in  the “Detectron2”  library  from  Meta Al and  available at
https://github.com/facebookresearch/detectron2. Mask R-CNN is a DL framework which performs instance segmentation by
combining semantic segmentation and object detection (Kattenborn et al., 2021). Its framework involves the generation of
region of interest proposals by a deep fully convolutional network, and then there is a classification of the object of interest
within each generated region proposal. Our methodology consisted of the following steps: i) cropping the RGB orthomosaic

of each study site into adjacent tiles of 512 x 512 pixels; ii) systematically selecting 10 tiles per each study site to create the

reference dataset; iii) semi-automatic classification of tree crowns; iv) hyperparameter tuning and model calibration using a
{ransferability through spatial cross-validation] Each of the steps is furtherly explained in the following chapters. We selected

tiles of 512 x 512 pixels (equivalent to 25.6 x 25.6 m at 5 cm spatial resolution) as this size resulted in models with higher

detection rates and accuracy across all sites compared to smaller tiles of 128 x 128 and 256 x 256 pixels.

9
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2.3.1 Training, validation, and test data

We here used only §% of the total amount of tiles for training, with the purpose of testing the limits of using a low number of

training images on a pre-trained DL model. To build a strong reference dataset we fine-tuned the model using a Meta Al

Segment Anything for the creation of _ (https://github.com/facebookresearch/segment-
anything). _ out by visual interpretation of RGB images, resulting in non-overlapping binary masks.
To minimise operator biases photo interpretation was conducted by a single operator. The semi-automatically delineated

_ were used to evaluate the model performances in delineating tree crowns (see Section 2.3..). At the end
of the process, we obtained a dataset with a total of 1,016 individual canopies of different coniferous species (larch trees n =
885, pine trees n = 131). All the segmented _ were classified and labelled as trees" regardless of the species
due 1o the similar spectral information.

To generate the training, validation and test datasets, the reference dataset of 100 tiles (512 x 512) was split into 70 % of
images for training, 20 % for validation, and 10 % for testing. The split in the three datasets was performed by systematically
sampling the 512-pixel tiles in the reference dataset. The tiles were sampled diagonally in order to cover a larger surface of

the study area and to minimise spatial autocorrelation. Finally, we assessed the performance of the model using the test dataset,

consisting of tiles with which the model was not familiar. The model trained in this way was used to perform predictions on

_The outputs of the ten iterations through the entire dataset were finally

averaged to achieve a mean F1 score, precision, recall, and average precision - value.

2.3.2 Model development and hyper-parameter configuration

During training we used the Adam optimizer with a learning rate of 0.00025, 128 ROIs per image, 1500 epochs, and a batch
size of 30. We used the R101-FPN configuration as it offers a good balance between training speed and segmentation accuracy
(https://github.com/facebookresearch/detectron2/blob/main/MODEL ZOO.md). To prevent overfitting, we monitored the
validation loss in the F1-score every 100 iterations and implemented early stopping if the F1-score declined for more than five
evaluations. The model was trained with data augmentation consisting in random resizing and rotation of the input images.

We predicted tree crowns contours using the tiling process developed by Ball et al. (2023), which consists of creating a buffer

around each tile to avoid splitting crowns located at the edges of the tiles. The overlapping crowns resulting from this operation

10
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were then filtered by removing those with the lowest confidence value assigned during the prediction. Classified maps were

then post-processed to reduce noise and correct evident misclassifications. Crowns remaining after this cleaning process were

Considered valid free detections. Model evaluation was computed prior to the cleaning process for all the evaluation metrics

exceptdetection rate (DET%) and 1o, fwhich'were calculated affer the post-processing(see Section 2.3.4 for details).

2.3.3 Model performance assessment

To assess the performances of the DL model, we selected four evaluation metrics commonly used in individual tree detection
studies (Beloiu et al., 2023; Dersch et al., 2023; Dietenberger et al., 2023; Xie et al., 2024): (i) precision (1), recall (2), F1
score (3), and average precision (4). The F1 score, a measure of test accuracy, _e of precision and recall;
Values closer to'one indicate higher Classification accuracy. The average precision is computed as the area under the precision-
recall curve. It evaluates the quality of the classifier in retrieving the relevant instances.

To evaluate model transferability, we corroborated the results with a spatial cross-validation procedure. _ were
computed after each _and the - were averaged to achieve a mean estimate.

In addition, tree maps were evaluated in terms of _: detection rate (DET%), and delineation
accuracy (IoU). DET% is the ratio between the predicted number of trees and the number of trees measured in the field (5). It
is computed to evaluate how many objects were correctly classified out of all the ground truth data. For the evaluation we used
only field-sampled trees that did not belong to the training and validation datasets. The IoU is measured as the ratio between
the area of overlap and the area of union of the ground truth crown and predicted crown (6), _

TP _ correctly predicted trees

Precision = = — , €Y)
TP+FP all trees predictions
TP correctly predicted trees
Recall = = >P —, (2)
TP+FN all ground—truthed tree predictions

where TP are the true positives instances; FP are the false positive instances; FN are the false negatives (number of ground

truth trees that the model did not detect).

precision* recall
precision+recall 7 (3)
2

F1 score =

AP = n(R, — R,_;)Pn AP=n)(Rn—Rn—1)-Pn, 4)

where 7 is the number of thresholds; Rn is the recall at the n-th threshold; Pr is the precision at the n-th threshold.

11



233

234
235
236
237
238
239
240
241
242
243
244
245

246
247
248
249
250
251

number of predicted trees

DET% =
% actual number of trees (5)
area of overla
foy =2eeoloverlep, 6)
area of union

2.3.4 Tree attributes assessment

Tree position estimation accuracy was _ the field-collected coordinates of - with the centroid
_ predicted crowns. For height estimation, we compared the value of the CHM at the predicted

centroid with the height measured in the field. The evaluation metrics chosen for evaluating the accuracy in tree height and
position were root mean square error (RMSE) and mean absolute error (MAE), both calculated in centimetres. RMSE is a
standard deviation of prediction errors or residuals (7). The MAE shows how close the ground truth values and predicted
values are to each other (8). It is obtained as the average absolute difference between the predicted value and the real value;
hence, it gives an overall estimation of the eror in terms of standard SI (International System) units. Position accuracy was
also evaluated using the Euclidean distance between the centroid of each predicted crown and the orresponding stem position
_(9). For tree height estimation accuracy, we also computed the deviation between real and predicted
values calculated both in absolute and relative terms. RMSE, MAE, Euclidean distance and tree height accuracy were
computed only for correctly predicted trees (n = 343) with the exclusion of the trees that fell within tiles used for training and

validation of the neural network (n = 157).

’ n )2
RMSE = Zl=1(x+xr) , (7)

_ Sl

MAE ===2-0— (8)

Euclidean distance =,/ (X, —X,)? + (Y, —Y,)?, 9

where #n is the number of observations; xp, yp are the predicted values; xr, yr are the actual values.
We tested tree height influence on the results accuracy by grouping trees into three size classes: small (height < 130 cm),
medium (130 cm < height < 200 cm), and tall (height > 200 cm). Statistical differences in accuracy among these groups were

evaluated using a Wilcoxon test with pairwise comparison. To investigate how the inclusion in the analysis of trees smaller

than 50 cm impacted on the position and height estimation accuracies, _
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2.4 Spatial pattern analysis

Tree maps and extracted tree heights were used to investigate tree spatial patterns. We assessed tree distribution patterns by
applying a univariate PPA computed through the software Programita (2014) (Wiegand and A. Moloney, 2004). We used a
pair-correlation function g(r), a second-order statistic that is non-cumulative and uses only points separated by a distance r,
thus allowing the identification of spatial scales where there are significant interactions among points. We analysed patterns
across a distance ranging from 0 to 100 m, that is one-third of the width of the study sites (Rosenberg, 2015). The observed
univariate patterns were compared with simulation patterns and confidence envelopes generated by a Heterogeneous Poisson
(HP) null model. This null model distributes the points (tree centroids from the tree maps) on the study area with a probability
proportional to the intensity map but relaxes the assumption of complete spatial randomness and allows the intensity of the
point pattern to vary across the study area. For the generation of the intensity function to be employed in the HP null model
we employed an Epanecnikov kernel with enabled edge correction and we set the ring width of the moving window to 5, and
allowed only one point per cell.

To test significant departure from the null model, for each analysis we performed 99 Monte Carlo simulations which generated
99% confidence limits (Carrer et al., 2018; Getzin et al., 2006; Petritan et al., 2015). The spatial pattern was defined as
randomised, clustered or regular if the g(r) values were respectively equal, greater or lower than the confidence envelopes
calculated using Monte Carlo simulations at specific spatial scales. To verify the robustness and significance of the departure,
and to avoid incurring in Type I error (if the value of g(r) is close to a simulation envelope the null model may be rejected even
if it is true) we used the Goodness-of-Fit (GoF) over the given distance interval (Loosmore and Ford, 2006).

Additional univariate PPAs were also performed for each tree size category in order to gain insights on tree spatial distribution
within each dimension class.

To assess the relationship existing between tall and small trees we applied a bivariate point pattern analysis (Wiegand e A.
Moloney 2004). We extended the pair-correlation function used before for a bivariate analysis (g/2(7)), thus allowing us to
detect the interactions between the two different classes of trees. The interaction was defined as independent, attraction or
repulsion if the g/2(r) values were respectively equal, greater or lower than the confidence envelopes at specific spatial scales.
For the bivariate analysis we used the antecedent condition null model, with points of pattern 1 (tall trees) fixed, and points of
pattern 2 (small trees) distributed in accordance with a HP null model, where small trees are randomly distributed in the
neighbourhood of the tall trees.

To investigate potential dynamics of attraction/repulsion among individuals of different sizes we performed the analysis by
using the same classes (tall, medium and small trees) previously created. The middle class was used as a dividing element
between tall and low trees in order to avoid overlapping groups, and was hence not used in the analysis.

One of the assumptions of the PPA is that objects (trees) are considered as points. However, we decided to test whether the

point approximation (canopies centroids) was somehow hindering the spatial relationships between trees. To investigate this

13
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aspect all the above mentioned analyses were performed again using as input data the crowns’ shapes taken from the generated
tree maps, hence using the setting for objects of finite size and real shape (Wiegand et al., 2000).
Univariate and bivariate analyses on points approximation and on objects of finite size and real shape were performed for each

site using the same settings and were ultimately combined with the “combine replicates” protocol.

3 Results
3.1 Tree detection rate, delineation performances and transferability of the protocol

Throughout the evaluation process, the DL model achieved an F1 score of 0.76, precision of 0.92, recall of 0.79, and AP of
0.68. Spatial cross-validation confirmed the DL model generalizability to yet-unseen data, yielding an F1 score 0.68, precision
0f 0.90,recall of 0.56, and AP of 0.36 (appendix B).

According to DET% results, the DL model detected 67% of all the trees sampled in the field not included in the training and
validation datasets (Table 2). Detection performance was lower for small trees, with a mean detection rate of 52%. As -
limiting the analysis to trees taller than 50 cm (DET% ab50) led to higher detection rates, resulting in a DET% = 70, thus
confirming that smaller trees have a strong negative effect on the detection rate. _
we teached a mean detection rate of 86%, furtherly supporting the effect of size on detection rates. Among the sty sitcs.

Genevris was the site in which the best detection rates were registered (_ followed by Valfurva,
Devero, Bocche and Livigno, where the model correctly detected more than 78% of all the trees.
IoU results also showed a similar pattern, with tall trees achieving the best performances (IoU = 0.85). Medium and small trees
achieved a mean IoU value of 0.73 and 0.69, respectively. The difference between tall trees’ IoU and the other two classes’

one was significantly different, as confirmed by a Wilcoxon test (Fig. 4a).
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Table 2. Single site detection rates and number of total predicted trees (n. pred trees) out of the totality of trees sampled in the field (n. test
trees). DET% all = detection rate on the totality of individuals; DET% small = detection rate on small trees; DET% medium = detection rate
on medium trees; DET% tall= detection rate on tall trees; DET% ab50 = detection rate on individuals taller than 50 cm.

DET%
site n. test trees  n. pred trees
all small medium tall ab50
Avic 42 14 33 12 56 75 37
Becco 45 31 69 58 69 85 71
Bocche 50 35 70 48 85 93 79
Chianale 51 32 63 43 73 68 63
Devero 40 33 &3 71 86 94 83
Genevris 40 37 93 86 1.00 92 93
Livigno 50 39 78 85 63 89 78
Rion 45 24 53 18 78 93 57
Senales 47 24 51 16 40 83 58
Valfurva 49 40 82 84 76 86 82
Mean / / 67 52 73 86 70

3.2 Tree attributes estimation

The proposed method demonstrated that it was possible to accurately estimate tree positions and height. Trees' predicted
position achieved a RMSE of 0.59 m and a MAE of 0.49 m. For most of the predictions, the Euclidean distance between
predicted and reference points was less than one metre, with the majority of values around 30 cm (Fig. 3b). Interestingly,
position accuracy increased with reducing tree height, resulting in lower deviation values for the two smaller classes (medium
and small trees) (mean Euclidean distance value of 0.40 and 0.44 m, respectively; Fig. 4b). The Wilcoxon test highlighted a
significant difference between the two smaller classes’ results and the one obtained for tall trees, for which the mean Euclidean
distance value was 0.61 m.

In regard to height estimations, despite some outliers, we observed a strong (R? = 0.87) linear relationship between predictions
and ground-truths (Fig. 3c). The coefficient of determination, the RMSE of 91.6 cm, and the MAE of 71.8 cm confirm that the

SfM-derived point cloud can be used to accurately estimate tree heights. Nearly all height predictions deviated by less than
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one metre from ground truth values, with the most frequent relative deviation around 20 cm (Fig. 3d). _
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Figur 3. (a) Instance egmentatin otput with a comprison of crowns predice by the model (shaded with orange outline) and manually

delineated ground truth crowns (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees were harder to

detect by the model, with some missing segmentations. Kernel densi
deviation for height estimations

distribution of (b) relative deviation for position estimation and (d)

. (¢) Linear regression

model between the field-measured crown heights and estimated heights in metres. The red dashed line represents the 1:1 line.
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3.3 Treeline spatial patterns and tree-tree interactions

The univariate analysis resulting from the “combine replicates” protocol using tree crown centroids revealed a strong
aggregation across all study sites (Fig. 5a). At spatial scales < 20 m, there was a marked positive departure from the pair-

correlation function indicating clustefiig, which turned into a random pattern at 21 m under the HP null model (GoF: p < 0.05
17
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in all sites). For spatial scales > 35 m, a slight negative departure from the null model _
distribution, When considered separately, all the ten sites showed similar patterns consistent with the combined result (see

details in appendix C). The univariate analysis conducted on tree crown polygons showed slightly different results (Fig. 5b).
Despite the overall results indicated a clumped pattern throughout the entirety of the sites, it appears that the clustering occurred
for all spatial scales from 0 to 100 m. To understand _ also within size classes, we performed
univariate PPAs for all the tree size classes (iien smally medium, and tall) separately. The results highlighted a clear trend in
forming groups at small spatial scales, among trees of the same size classes (Appendix E).

The 'combine replicates' protocol applied to the bivariate analyses of tree crown centroids revealed a strong spatial repulsion
_ (Fig. 5¢). Again, by analysing each site separately, they
all showed similarities among each other and with the combined replicate result (see details in Appendix D). The bivariate
analysis conducted on objects of finite size and real shape (tree crown polygons) led to similar results (Fig. 5d), suggesting the

existence of a strong repulsion between small and tall trees.
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Figure 5. Univariate pair-correlation function g11(r) for (a) centroids and (b) crown polygons. The analysis allows for the definition of a
spatial pattern as clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value is greater than, within,
or lower than the confidence envelope (light grey area). The confidence envelope lines represent the upper and lower 95% simulation
envelopes. Black dashed lines indicate the expected pattern if the points showed a random spatial distribution. Correlation analysis of tall
trees and small trees for (c) centroids and (d) crown polygons. Values of the gl12(r) function that significantly deviates from the null model
indicate a significant attraction (if positive) or repulsion (if negative) between the two patterns.
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4 Discussion
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4.1 Detection performances

We demonstrated that RGB imagery from low-cost UAVs can be effectively used for accurate tree detection across large,
heterogeneous areas at elevational treelines. Previous studies have conducted similar analyses employing different
segmentation strategies in various forest types. Our model achieved precision and recall values that surpass those reported in
other studies (Beloiu et al., 2023; Dietenberger et al., 2023). The average IoU across different tree size classes was 0.76, lower

than results from plantation-based studies (Hao et al., 2021), but superior to those from mixed temperate forests (Dietenberger
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et al., 2023). Regarding detection rates and F1 scores, our results fell within the typical range reported in comparable research
(Table 3).

However, direct comparisons with other studies are challenging due to substantial differences in forest types, _
acquisition protocols, flight parameters, and the image classification algorithms employed] While our analysis outperformed
others on certain metrics, it is important to note that our study was conducted in an environment where individual tree detection
is facilitated by the reduced presence of intertwined canopies, unlike in tropical or temperate forests. Conversely, this
advantage was offset by the inclusion of small trees in our analysis, a factor that negatively impacted the results and is often

excluded in similar studies.
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Table 3. Performances of recent studies focused on tree detection and crown delineation in forest ecosystems using UAV-derived data.
DET% = detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.

crown detection

reference  Forest type sensor . DET%  precision recall F1-score IoU AP
algorithm
Present Work  XedoPen - pGR Faster R-CNN 70 0.92 0.79 0.76 076 0.68
woodland
Beloi | mixed
cloiu et al.
temperate RGB Faster R-CNN - 0.75 0.78 0.76 B B
(2023)
forest
Dietenb mixed
ietenberger et
g temperate RGB Region growing - 0.68 0.61 0.64 0.44 -
al. (2023
forest
Weinstein et~ mixed open RGB, RetinaN 2
; etinaNet - - - - B
al.2019)  woodland LIDAR
Xiang et al. feveral forest LiDAR 3D CNN i} ; _ 0.85 - -
(2024) ypes
Dersch et al coniferous,
ersch et al. .
deciduous, LIDAR  Mask R-CNN - - - 0.86 - -
(2023
mixed stands
Multi-scale analysis ,
Jing et al. ) ) 69
mixed forests LiDAR Marker-controlled - B B B -
(2012) )
watershed segmentation
Ball et al. tropical
P LiDAR  Mask R-CNN - - - 0.64-0.74 - -
(2023) forests
Xie et al. Chinese fir 0.55
RGB Mask R-CNN - - - - T :
(2024) plantation
Hao et al. Chinese fir
_ RGB mask R-CNN - - - 0.85 091 -
(2021) plantation

We hypothesized that tree height would significantly influence model performance. By categorising trees in different size

classes, we were able to track detection performance, confirming that accuracy improves with tree size across all study sites.

In all the study sites, detection was high for taller trees (86%) but dropped for smaller ones (52%), confirming our hypothesis.

In addition to being inherently more challenging to detect in the imagery due to their diminished size, smaller trees often

present altered lighting conditions due to being partially obscured or completely concealed by taller ones (Beloiu et al., 2023;

Dietenberger et al., 2023; Hamraz et al., 2017), leading to missed detections (i.c., false negatives). This problem is exacerbated
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in dense clusters (Vauhkonen et al., 2012), common in most of our study sites. Another critical challenge in tree detection is
the blending of canopies colours with the background, a factor that largely depends on the tree, shrub, and herbaceous species
on the site (Diez et al., 2021; Weinstein et al., 2019). Here, although the problem also affects tall trees, it was markedly more
problematic for smaller ones.

Despite recent advancements in Al tools for object detection and segmentation, accurately identifying small trees in RGB
images over large and complex areas is still in its infancy. Moreover, such improvement would remain unfeasible without
Significantly lowering flight height, Which results in inereasing cxtended survey times in mountainous fefrainl (Fromm et al.,
2019). Nevertheless, due to the harsh environmental conditions at the treeline ecotone, long-term survival of small trees is
jeopardised by factors such as unsuitable sites for survival (Davis and Gedalof, 2018; Marquis et al., 2021), failure to grow in
harsh conditions (Crofts and Brown, 2020; Frei et al., 2018; Miiller et al., 2016) and predation (Brown and Vellend, 2014;

Caimns et al., 2007). Thus, while the precise mapping of small trees may be of secondary importance compared to taller,
potentially permanent trees when evaluating survival rates and seed distribution, small trees are crucial when investigating the
encroachment process.

With the present work, we investigated how unique treeline characteristics influenced model performance. At the Mont Avic
treeline, where European larch is the dominant species, we tested the leaf-off effect on detection rate. Scarcity of green needles
on the canopies resulted in lower performances (Table 2). This finding is consistent with previous studies underscoring how

leaf-off season surveys are often correlated with lower detection accuracies (Imangholiloo et al., 2019).

performances. As noted by Diez et al. (2021), low!sun‘angles lead o variations in canopy color and the formation of long]
These results/Téveal some of the main limitations of R GB-based approaches, underscoring the need of applying a standardised
sampling protocol throughout all the study sites to augment results reliability or provide more input data to increase variability

in the training dataset.
_ of Rion and Avic, a clear waning trend in tree detection related to a specific terrain feature of the site -
presence of rocks (Becco), herbaceous species (Chianale) or others - was not found. These findings suggest that terrain

characteristics had a negligible effect on detection rates, supporting the generalizability and transferability of the approach to

4.2 Tree attributes estimation and transferability of the protocol

The proposed approach has demonstrated the ability to accurately georeference individual trees_

0:49m) and estimate their height (RIMSES 16 emi MAE =718 cm)s some of the observed deviations may in fact be
atfribufable to inaccuracies inthe ground control data rather than the UAVimages] Despite the high precision of the GNSS

antenna employed, some small georeferencing errors are inevitable (e.g. due to limited sky view, positional accuracy can be
23
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limited). Additionally, during field surveys, GNSS points coordinates of tree locations are
rather'than directly below the real treetop, introducing further spatial errors|(Shimizu et al., 2022; Vauhkonen et al., 2012).
Nevertheless, our tree position estimations were highly satisfying and comparable with results obtained in other recent studies
employing similar or more sophisticated gears in environments with analogous open stands. For instance, Castilla et al. (2020)
georeferenced coniferous species in a boreal forest using SfM point clouds achieving an RMSE of 20 ¢cm, while Fernandez-
Guisuraga et al. (2018) extracted tree position of coniferous species in a post-fire environment attaining a RMSE < 30 cm.

Tree height estimations presented a trend skewed towards underestimation - an issue attributable to the low sharpness
of the DSM generated through SfM, as also evidenced by Panagiotidis et al. (2017) and Wallace et al. (2016). Airborne laser
scanning is the most well-known tool for DTM modelling due to its better capability in penetrating tree crowns, which often
result in highly accurate estimation of tree features. However, in the present study we provide evidence that by means of
photogrammetric point clouds it is possible to extract tree height with an accuracy _
-, which are still moderately expensive, thus limiting the feasibility of repeated surveys in many cases. Coops et al.

(2013) assessed tree height over a Swiss treeline ecotone by employing LiDAR sensors with an RMSE of 0.70 m. Studies

employing LiDAR technologies in boreal treelines documented a standard deviation of 0.11-0.73 m (Nasset and Nelson,

2007) and of 0.16-0.57 m (Neesset, 2009). Using IDAR; Wallace|(2012) reported a mean height standard deviation 0f 0:24'm

4.3 Spatial patterns and tree interactions in the Italian alpine treeline ecotone

We found a discrepancy between the univariate analysis performed on centroids (point approximation) and tree crowns

(

communication). First of all, the polygon pattern analysis uses more data points (each cell belonging to an object is counted as

polygons). The dissimilarities are potentially due to a systematic effect in the size of the objects (Wiegand personal

a point), and therefore it is possible that the range of significant effects is larger. Furthermore, it is possible that having larger
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objects in a region of the observation window, as it is common in our study areas, may result in a greater clumping across the
analysed spatial scale. Such differences in polygon and point summary functions have already been found in previous studies
and are believed to be due to ecological processes (i.e. competition) instead Of methodological bias (Vacchiano et al., 2011).
Whether the cause is one or another has to be further investigated.

Despite the discrepancy on the spatial scale, univariate PPA results revealed a tendency towards a clustered horizontal structure
among all trees within our study areas. This is the typical behaviour within the sub-alpine altitudinal belt, as also consistently
found in other studies conducted on elevational treelines in Europe (Beloiu and Beierkuhnlein, 2019), USA (Garbarino et al.,
2020) and China (Jia et al., 2022). Human impact has been the major driving force in shaping the investigated treelines,
affecting patterns and reciprocal patterns of mature and young individuals. However, over the last few decades, the
abandonment of remote areas has led to a decrease in human activities such as grazing and silviculture (Anselmetto et al.,
2024). As a consequence, recolonization processes driven by natural dynamics have become more important.

Various researchers emphasise how terrain features such as microtopography and soil spatial patterns can significantly
influence tree distribution at the treeline (Feuillet et al., 2020; Marquis et al., 2021; Miiller et al., 2016). The great heterogeneity
of terrain inherent to alpine treelines generates a great diversity of microsites, resulting in a mosaic of favourable and
unfavourable microsites (Davis and Gedalof, 2018; Marquis et al., 2021). Owing to this, trees can be rather diffuse on a
favourable area but also clustered in small groups where better chances of survival are found. In addition to topography,
competition and facilitation dynamics between tree species may exert an important role on the evolution of the treeline ecotone.
The results of our bivariate tree-tree interaction analysis showed a repulsion between small — potentially younger — and tall -

potentially older - trees at all the analysed spatial scales.

are potentially driven by infersize class competifion, and infra-size class facilifation. with small trees favouring sites far from
existing clusters of tall trees. _ the results of the univariate PPA for the separated size

classes, which show how trees belonging to the same size class are organised in clusters in the landscape. How biotic
interactions may play a dominant role in driving treeline encroachment dynamics has been discussed in previous studies
(Callaway, 2002; Frei et al., 2018; Neuschulz et al., 2018). It is broadly known that in temperature limited environments tree
patches can improve microsite conditions, by influencing snow thickness, soil properties, microclimate and offering physical
support and protection from herbivores (D’Odorico et al., 2013; Germino et al., 2002). These positive effects, however, can
be offset by competition for vital resources such as light, soil moisture and nutrients (Frei et al., 2018; Moir et al., 1999), which

ultimately hinders seedling growth and survival. Although our bivariate analysis result suggests the presence of_
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Gompetition|in high-clevation environments in the Alps, and is in line with previous studies findings (Carrer et al., 2013),
further analyses are needed to advance our understanding of the effects of biotic interactions on tree spatial pattern at the

treeline.

4.4 Limits and perspectives

_ low-cost UAV and sensors with open-source Al libraries _
_ of _ attributes. Our detection rates were comparable or superior to many other DL-based
classification studies in natural forests. -, recognising small individuals with high accuracy in RGB images remains a
challenge. As highlighted in recent Scientific literature, LiDAR-informed segmentation Approaches could provide a valuable
alternative for comprehensive mapping of individual trees, filling the gap left by our methodology. Anothe_f
great importance for many ecological analyses is the species composition of the community. The use of multi or hyperspectral
sensors would solve this issue_of tree species and thus the analysis of species composition,

interactions among individuals, and spatial patterns of individual and interacting species. _
Due to their dynamic nature, it is of great importance to study treeline ecotones in long-term monitoring research. For this
task, we envision future research activities to apply the presented approach to simultaneously map and detect tree species at

the treeline. The final goal is creating a global network of accurately mapped treeline datasets to monitor the effects of global

change on treeline dynamics and explain the position and pattern of the treeline at different scales.

5 Conclusions

We tested the performance of a Mask R-CNN deep learning model in capturing single-tree attributes BGr0ss sprawling, remote,
and heterogeneous treeline ecotones, BSing UAV-derived structure-from-motion point clouds. UAV employment allowed us
to conduct surveys in a more labour and time efficient manner ompared to traditional ground-based methods while also
increasing the spatial extent of the study area. This enhanced the reliability of ecological inference on treeline processes. Our
results showed that the proposed approach can effectively produce fine-scale tree maps over 90 ha of treeline ecotones. The
model successfully identified 70% of trees taller than 50 cm and 86% of trees taller than 2 m across the ten study sites in the

Italian Alps. Beyond its success in detecting tree crowns, the approach also performed well in delineation tasks. We
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demonstrated the potential of applying the resulting dataset in_by analysing spatial patterns and interactions
among trees of different size classes.

The present work underpins the possibility of using UAVs to _
§cale'and labortintensive field surveys and less accurate satellite imagerys The ability to achieve such results with the low-cost
equipment used in this study, combined with the flexibility of the protocol to site-specific conditions with minimal data
preparation requirements) makes this approach both accessible to a wide range of scientists and forest managers and reliable.
These features showcase the methodology as a valuable tool for several applications in forest assessment, ecological

restoration, and conservation planning.
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511 Appendix A:

512 Figure Al. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (c) Bocche, (d) Chianale, (¢) Devero, (f) Genevris,
513 (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva.

(g)Livigno

514
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Appendix B:

Table B1. Results of spatial cross-validation analysis.

site Fl-score precision recall AP
Avic 0.60 0.83 0.48 0.14
Becco 0.81 0.80 0.87 0.45
Bocche 0.48 1.00 0.35 0.34
Chianale 0.73 0.85 0.40 0.36
Devero 0.63 0.93 0.54 0.27
Genevris 0.76 0.97 0.66 0.45
Livigno 0.78 0.94 0.50 0.58
Rion 0.62 1.00 0.50 0.34
Senales 0.60 0.88 0.49 0.41
Valfurva 0.78 0.76 0.84 0.32
Mean 0.68 0.90 0.56 0.37
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Appendix C:

Figure C1. single sites’ results of the univariate pair-correlation function gl1(r) in (a) Avic, (b) Becco, (c) Bocche, (d)
Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The
confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. The found spatial
pattern is considered clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value
is greater than, within, or lower than the confidence envelope.
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Appendix D:

Figure D1. single sites’ results of the bivariate pair-correlation function g12(r) on (a) Avic, (b) Becco, (¢) Bocche, (d)

Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The

confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. Deviation from the

null model (simulation envelope) of the summary statistics (black continue line) indicates a significant attraction (if

positive) or repulsion (if negative) between the two patterns.
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Appendix E:

Figure E1. Univariate pair-correlation function gl1(r) for centroids of (a) tall trees, (b) medium trees and (c) small
trees. The analysis allows for the definition of a spatial pattern as clumped, random or regular (hyperdispersed) if the
summary statistics (black continue line) value is greater than, within, or lower than the confidence envelope (light grey
area). The confidence envelope lines represent the upper and lower 95% simulation envelopes. Black dashed lines
indicate the expected pattern if the points showed a random spatial distribution.
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