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Abstract. Treelines are sensitive indicators of global change, as their position, composition and pattern directly respond to 10 

ecological and anthropogenic factors. However, several treeline studies remain case-specific, focusing on local patterns and 11 

processes. Treelines worldwide exhibit a great variability even within single landscapes, which limits the reliability of modeled 12 

spatial patterns, and the generalizability of findings based on case studies. Advancing methods to accurately map fine-scale 13 

treeline spatial patterns over large extents is crucial to overcome this limitation. Innovative approaches integrating remote 14 

sensing with uncrewed aerial vehicles (UAV) and deep learning offer a promising way to bridge the gap between field-based 15 

observations of fine-scale patterns and their large-scale implications, ultimately informing and supporting practices for the 16 

conservation of forest ecosystems in the face of ongoing and future ecological challenges. 17 

In this study, we combined field data and UAV-based remote sensing with a deep learning model to retrieve individual tree-18 

scale information across 90 ha in 10 study sites in the Italian Alps. Using the proposed methodology, we were able to correctly 19 

detect individual tree crowns of conifers taller than 50 cm with a detection rate of 70% and an F1 score of 0.76. Accuracy 20 

increased with tree height, reaching 86% for trees taller than 2 m. Canopy delineation was robust overall (Intersection over 21 

Union, IoU = 0.76) and excellent for tall trees (IoU = 0.85). Tree position and height estimates achieved RMSEs of 59 cm and 22 

92 cm, respectively.  23 

Both univariate and bivariate Point Pattern Analysis (PPA) revealed clustering for scales < 20 m and a strong spatial repulsion 24 

between small and tall trees across all the tested spatial scales. Our results demonstrated that the proposed methodology 25 

effectively detects, delineates, georeferences, and measures the height of most trees across diverse Alpine treeline ecotones. 26 

This enables the analysis of fine-scale spatial patterns and enhances the interpretation of underlying ecological processes. The 27 

inclusion of heterogeneous study areas facilitates the transferability of the segmentation model to other mountain regions and 28 

mailto:erik.carrieri@unito.it


2 
 

 
 

offers a benchmark for developing a global network of fine-scale mapped treeline spatial patterns to monitor the effects of 29 

global change on ecotone dynamics.   30 
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1 Introduction 31 

The elevational treeline is the transition zone from the uppermost closed montane forest (timberline) to the highest scattered 32 

trees (tree species line) (Holtmeier et al., 2003), and one of the most studied ecotones. Since the late 19th century, scientific 33 

studies largely focused on the diversity and complexity of factors affecting the ecotone spatial and temporal patterns at different 34 

scales (Hansson et al., 2021; Holtmeier, 2009). It is well known that temperature plays a crucial role in treeline positioning 35 

and dynamics from regional to global scales (Dirnböck et al., 2003; Gehrig-Fasel et al., 2007; Harsch et al., 2009; Körner & 36 

Paulsen 2004), but is not the only driving factor. Many other studies have emphasised the significant  role of other factors in 37 

treeline formation (Mienna et al., 2024), including water availability (Barros et al., 2017; Williams et al., 2013), site topography 38 

(Leonelli et al., 2016; Marquis et al., 2021; Müller et al., 2016), biotic drivers (Brown and Vellend, 2014; Cairns et al., 2007) 39 

and anthropogenic pressure (Gehrig-Fasel et al., 2007; Malandra et al., 2019; Vitali et al., 2019). 40 

Global change can trigger large-scale vegetation dynamics affecting the provision of ecosystem services - such as carbon 41 
sequestration (Hansson et al., 2021; Zierl and Bugmann, 2007). Climate alteration can induce upward migration of species, 42 
threatening a loss of habitat and biodiversity of high alpine communities (Kyriazopoulos et al., 2017). This sensitivity to 43 
climatic and anthropogenic factors makes high-elevation ecotones key indicators of global change (Dirnböck et al., 2011; 44 
Greenwood and Jump, 2014). Monitoring changes at elevational treelines is therefore of utmost importance to follow how 45 
forests are responding and to forecast how they will respond to a changing environment (Chan et al., 2024; Hansson et al., 46 
2023; Mottl et al., 2021) and ultimately to guide the definition of appropriate conservation strategies. However, understanding 47 
vegetation changes in response to the complex interplay of these drivers requires studying highly heterogeneous systems across 48 
broad spatial and temporal gradients (Holtmeier and Broll, 2007, 2017). 49 
An open question in many areas of ecology is how to infer processes from observed patterns. In forest ecosystems, tree spatial 50 

distributions retain critical signatures of historical dynamics and can be used to derive insights into underlying ecological 51 

processes (Grimm et al., 2005; McIntire and Fajardo, 2009; Salazar Villegas et al., 2023). For instance, tree distribution can 52 

reveal species-specific coping strategies under stressful conditions, such as the ones found in the altitudinal treeline ecotones, 53 

where positive facilitative interactions may prevail (Callaway, 1995, 1998; Smith et al., 2003). Alternatively, tree spatial 54 

patterns may reflect the result of intra- and interspecific interactions, encompassing both facilitative and competitive 55 

associations (Getzin et al., 2006; Salazar Villegas et al., 2023). Assessing these spatial association patterns among species can 56 

help to disentangle the mechanisms shaping treeline structure and dynamics. In this context, the great spatial heterogeneity 57 

observed in high-elevation ecotones provides a great opportunity to investigate pattern-process relationships. However, this 58 

same heterogeneity constrains the extrapolation of case-specific observations, thereby limiting their broader ecological 59 

generalization. How to tackle the spatial heterogeneity issue is still an open question, and consequently the attribution of the 60 

observed processes to specific drivers is still a challenge (Garbarino et al., 2023). Combining ground-based and remote sensing 61 

(RS) data could be a winning venue to solve this compelling issue, especially if pursued with a flexible and efficient protocol. 62 

Field surveys remain the traditional methods used also at treelines and involve measuring several tree parameters (e.g. stem 63 
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DBH, height, position, health conditions) within small study areas – plots or transects (Mainali et al., 2020; Van Bogaert et 64 

al., 2011; Vitali et al., 2017, 2019). This approach provides high-resolution, high-quality data applicable to a broad array of 65 

ecological investigations. However, its time-intensive nature, coupled with the limited spatial extent and discontinuous 66 

distribution of plots or transects, may reduce the representativeness of the broader landscape.  67 

At this point, remote sensing techniques come into play. Although their application in treeline studies dates back to the 1980s 68 

(Holmgren and Thuresson, 1998), it is only over the last two decades that RS has been widely adopted in treeline ecology 69 

(Garbarino et al., 2023). The choice of the right RS tool depends on the spatial and temporal scale required to address a given 70 

research question. For instance, while satellite imagery can provide suitable data over large forest areas and long time periods 71 

(Garbarino et al., 2020; Nguyen et al., 2024), most optical sensors lack the spatial resolution necessary for individual tree 72 

mapping (Bennett et al., 2024; Morley et al., 2018; Simard et al., 2011). The limitations of field surveys (limited spatial and 73 

temporal extent) and satellite-based data (high spatial and temporal extent but low resolution) can be overcome by using 74 

Uncrewed Aerial Vehicle (UAV) platforms (Fromm et al., 2019; Qin et al., 2022; Xie et al., 2024). Their growing availability 75 

and ease of deployment make UAVs increasingly valuable for applications such as detailed tree mapping. In addition to wall-76 

to-wall mapping of relatively large and heterogeneous areas, UAVs survey enables the analysis of fine-scale drivers and the 77 

extraction of tree attributes and features (Nasiri et al., 2021; Panagiotidis et al., 2017; Shimizu et al., 2022; Xiang et al., 2024). 78 

Single-tree mapping approaches are crucial in treeline ecology, as they provide insights into the underlying ecological 79 

processes shaping treeline pattern and structure. Seedling establishment - a key driver of plant community dynamics - heavily 80 

depends on the presence and availability of microsites that provide suitable conditions for growth and survival (Frei et al., 81 

2018). Multiple local factors such as topography, vegetation, and herbivory influence tree recruitment and thus mediate treeline 82 

dynamics (Elliott and Kipfmueller, 2010; Lett and Dorrepaal, 2018; Ramírez et al., 2024). Neighbouring vegetation can either 83 

hinder or enhance tree recruitment through competitive or facilitation associations (Getzin et al., 2006; Getzin et al., 2006; 84 

Salazar Villegas et al., 2023; Smith et al., 2003). Whether these interactions result in a positive or negative feedback depends 85 

on the fine-scale interplay between biotic and abiotic factors. The resulting spatial patterns at the individual tree-scale provide 86 

a valuable perspective to both infer past processes and predict future trajectories. Accurate high-resolution single-tree maps 87 

are essential tools needed to capture these fine-scale patterns and investigate such tree–tree interactions.  88 

Convolutional Neural Networks (CNNs) combined with very-high-resolution images are a reliable and versatile tool for single-89 
tree scale analyses, enabling the accurate identification and representation of different plant species and communities as well 90 
as the detection of individual trees (Braga et al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn et al., 2021). The 91 
latter can be achieved through instance segmentation algorithms that enable the detection of individual objects on the input 92 
images, allowing to distinguish and separate individual interwoven tree canopies (Ball et al., 2023; Braga et al., 2020). Despite 93 
the widespread use of UAV for individual tree mapping and tree features detection in several forest ecosystems (Dietenberger 94 
et al., 2023; Diez et al., 2021; Weinstein et al., 2019), the distinctive species composition, stratified horizontal and vertical 95 
structure, and complex terrain characteristics of treeline ecotones confer a unique ecological identity to these environments. 96 
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Therefore, a framework for mapping fine-scale tree spatial patterns at treeline ecotones based on low-cost UAV imagery is 97 
needed.  98 
In this regard, the present study tests the following hypotheses: (i) the integration of UAV derived very high-resolution RGB 99 
imagery with CNNs models enables accurate single-tree level detection to infer ecological processes from treeline patterns; 100 
(ii) the trained model exhibits sufficient generalizability to perform reliably on heterogeneous datasets, maintaining high 101 
accuracy in detecting individual trees, delineating crown boundaries, and estimating their position and height; and (iii) that 102 
spatial patterns derived from the fine-scale treeline maps can reveal ecologically meaningful tree-to-tree interactions, thereby 103 
supporting their application in the study of treeline dynamics and underlying ecological processes. 104 

2 Materials and Methods 105 

2.1 Study Area  106 

We selected ten study sites across the Italian Alps (Fig. 1) spanning a broad longitudinal gradient representative of the Western, 107 

Central, and Eastern Italian Alps. This selection ensured a balanced dataset encompassing highly heterogeneous climatic, 108 

topographical, soil, and vegetational conditions (Appendix A). Introducing such heterogeneity allowed us to test the 109 

transferability of the protocol to several treeline conditions. The selected treelines present elevations ranging between 2100 110 

and 2400 m a.s.l., and variable slope aspects due to the differing orientations of the valleys. Above the closed forest, soils 111 

include both mesic and xeric regions and feature patches of grasslands, sparsely vegetated areas, screes, and surfaces shaped 112 

by gravitational events such as rill and gullies. All the selected landscapes experienced centuries of human land-use practices 113 

under varying intensities of management pressure. In general, land abandonment is more marked in the Western sector of the 114 

study area (Bätzing et al., 1996). Across all sites, the mean annual temperature ranges between 0 C° and 2 C°, while the mean 115 

annual precipitation varies from 800 mm to 1800 mm.  Reflecting the typical species composition of the subalpine belt in the 116 

Alps, in all the studied treelines the dominant treeline-forming species are European larch (Larix decidua Mill.) and Swiss 117 

stone pine (Pinus cembra L.). Other species present include Norway spruce (Picea abies (L.) H.Karst.), dwarf mountain pine 118 

(Pinus mugo Turra), mountain pine (Pinus uncinata Miller), Scots pine (Pinus sylvestris L.), as well as few broadleaf species 119 

such as green alder (Alnus viridis (Ehrh.) K. Koch) and silver birch (Betula pendula Roth). Further details on the study sites 120 

are provided in Table 1.   121 
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122 
Figure 1. Geographic location of (a) the Alpine Convention Perimeter in Europe and (b) the ten study sites (brown diamonds) along with 123 
their names across the Alps. Detail in the UAV-derived orthomosaic of the study site (c) Devero and (d) same site overlayed with the canopy 124 
height model (CHM). (e) further details of the study area Devero and (f) its CHM. For further details see Sect. 2.2  125 
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 126 
Table 1. Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.l.), aspect, 127 
dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived from Chelsa 128 
Climate database (Karger et al. 2020), while position, elevation, and species from the field surveys.  129 

 Study site date Latitude (°) Longitude (°) Elevation 
 (m a.s.l.) Aspect Species 

Mean annual 
temperature 

(°C) 

Annual 
precipitati
on (mm) 

Genevris 26/07/2021 45.030 6.897 2,379 W L. decidua, P. cembra 1.4 1263 

 Chianale 29/06/2021 44.646 6.975 2,283 N L. decidua, P. cembra 1.6 829 

 Rion 22/09/2021 45.830 7.262 2,290 S-SE L. decidua, P. abies 0.7 1759 

 Avic 06/10/2021 45.697 7.593 2,184 SE L. decidua, P. abies,  
P. uncinata 1.9 1115 

 Devero 14/06/2021 46.316 8.294 2,186 NW L. decidua 1.4 1631 

 Livigno 22/07/2021 46.516 10.142 2,322 NW L. decidua, P. cembra,  
P. mugo 0.1 1067 

 Valfurva 21/07/2021 46.454 10.461 2,371 E L. decidua, P. abies,  
P. cembra 1.2 894 

 Senales 07/07/2021 46.727 10.898 2,319 S L. decidua, P. cembra, 
P. abies 0.2 923 

 Bocche 06/07/2021 46.338 11.744 2,245 SW P. cembra, L. decidua,  
P. abies 0.7 1225 

 Becco 28/09/2021 46.471 12.118 2,190 N-NE P. cembra, L. decidua, 
P. abies 0.9 1449 

2.2 Sampling design and data collection  130 

We selected ten treeline ecotones above 2,000 m a.s.l. along an east-west gradient across the Italian Alps, with a minimum 131 

distance of 25 km between sites. Site selection was stratified by administrative region with only fully accessible location 132 

included, and edaphic treelines were explicitly avoided. In these ecotones, we placed ten 9-ha square plots (300 m x 300 m) 133 

with a side aligned parallel to the steepest slope of the mountainside so that the forestline occurred in the lower third of the 134 

plot. We defined forestline as the continuous line separating the closed forest (canopy cover > 10%) from the semi-open and 135 

open areas (canopy cover < 10%) (FAO, 1998). The canopy cover was assessed based on the pan-European Tree Cover Density 136 

(TCD) layer provided by Copernicus (https://land.copernicus.eu/en).  137 

Data collection included UAV and field surveys in summer 2021. We used a DJI Phantom 4 pro V2 quadcopter equipped with 138 

a RGB camera featuring a 1-inch CMOS sensor with 20 MP. Each UAV survey consisted of three flight paths: two of them 139 

with the camera in the nadiral position (one aligned along the contour lines and the other perpendicular), and one with an 140 

oblique camera perspective of 60° off-nadir, granting a more complete view of trees and terrain features. To mitigate spatial 141 

https://land.copernicus.eu/en
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resolution loss in the lower portion of the plot due to the slope steepness, each set of three flights was repeated from a central 142 

position of the plot, at approximately 150 m from the plot side, resulting in a total of six flights per study site. Flight height 143 

was fixed at 30 m above the highest point of the 300 × 300 m plot for the first set and above the middle of the study site for the 144 

second. All the flights were performed on sunny, windless days to minimise shadowing from clouds and image distortions due 145 

to UAV irregular motion. To assess how different phenological stages and light conditions affect canopies detection, we 146 

performed UAV flights in Avic and Rion during the late vegetative period and late afternoon, respectively (Table 1). Images 147 

were captured with 80% frontal and lateral overlaps to ensure high-quality structure-from-motion outputs. Prior to the UAV 148 

flights, 12 ground control points (GCPs) marked with bull’s eye targets were placed within the flight area. Their positions were 149 

recorded using Trimble R2 and Reach RS2 GNSS (Global Navigation Satellite Systems) antennas, providing both sub-metric 150 

horizontal and vertical positioning accuracies with a 10-minute static occupation time. GCP positions were post-processed for 151 

a final georeferencing correction. The acquired RGB aerial images were processed using Agisoft Metashape Pro software 152 

version 1.5.1. A Structure-from-Motion procedure was employed to generate 3D point clouds, from which we derived digital 153 

terrain models (DTMs), digital surface models (DSMs), and orthomosaics with 5-cm spatial resolution. The classification of 154 

ground and non-ground points in the point clouds was based on a threshold of 10 cm height: points lower than 10 cm were 155 

considered ground and used to produce the DTM. Canopy height models (CHMs) were then produced by subtracting the DTM 156 

from the DSM. 157 

In the field, we recorded the position, height, and species of 50 randomly selected individual trees per study site, scattered 158 

across the plot. In this study, we defined individual trees as individual tree crowns clearly separable from the other adjacent 159 

crowns. Due to its low abundance and specific growth form characteristics (Table 1), dwarf mountain pine was not considered 160 

as a tree in our analyses. Tree height was measured using a TruPulse 200b (Crisel srl) or a measuring tape for smaller 161 

individuals. Tree positions were recorded using the same GNSS antennas described above, with a 3- to 5-minute occupation 162 

time. The final ground-truth dataset included a total of 500 georeferenced trees across the ten sites.  163 

The entire workflow of the study, from data acquisition to final analyses, is reported in Figure 2. 164 
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165 
Figure 2. Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different 166 
methodological step of the study.  167 

2.3 Deep learning modelling 168 

To perform tree detection and segmentation we used a pre-trained deep learning (DL) model based on the Mask R-CNN 169 

algorithm implemented in the “Detectron2” library from Meta AI and available at 170 

https://github.com/facebookresearch/detectron2. Mask R-CNN is a DL framework which performs instance segmentation by 171 

combining semantic segmentation and object detection (Kattenborn et al., 2021). Its framework involves the generation of 172 

region of interest proposals by a deep fully convolutional network, and then there is a classification of the object of interest 173 

within each generated region proposal. Our methodology consisted of the following steps: i) cropping the RGB orthomosaic 174 

of each study site into adjacent tiles of 512 x 512 pixels; ii) systematically selecting 10 tiles per each study site to create the 175 

reference dataset; iii) semi-automatic classification of tree crowns; iv) hyperparameter tuning and model calibration using a 176 

dataset randomly split into training, validation, and testing subsets; v) performance evaluation; vi) separate validation of model 177 

transferability through spatial cross-validation. Each of the steps is furtherly explained in the following chapters. We selected 178 

tiles of 512 x 512 pixels (equivalent to 25.6 x 25.6 m at 5 cm spatial resolution) as this size resulted in models with higher 179 

detection rates and accuracy across all sites compared to smaller tiles of 128 x 128 and 256 x 256 pixels. 180 
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2.3.1 Training, validation, and test data  181 

We here used only 5% of the total amount of tiles for training, with the purpose of testing the limits of using a low number of 182 

training images on a pre-trained DL model. To build a strong reference dataset we fine-tuned the model using a Meta AI  183 

Segment Anything for the creation of individual ground truth crowns samples (https://github.com/facebookresearch/segment-184 

anything). Annotations were carried out by visual interpretation of RGB images, resulting in non-overlapping binary masks. 185 

To minimise operator biases photo interpretation was conducted by a single operator. The semi-automatically delineated 186 

ground truth crowns were used to evaluate the model performances in delineating tree crowns (see Section 2.3.3). At the end 187 

of the process, we obtained a dataset with a total of 1,016 individual canopies of different coniferous species (larch trees n = 188 

885, pine trees n = 131). All the segmented ground truth crowns were classified and labelled as ”trees'' regardless of the species 189 

due to the similar spectral information.  190 

To generate the training, validation and test datasets, the reference dataset of 100 tiles (512 x 512) was split into 70 % of 191 

images for training, 20 % for validation, and 10 % for testing. The split in the three datasets was performed by systematically 192 

sampling the 512-pixel tiles in the reference dataset. The tiles were sampled diagonally in order to cover a larger surface of 193 

the study area and to minimise spatial autocorrelation. Finally, we assessed the performance of the model using the test dataset, 194 

consisting of tiles with which the model was not familiar. The model trained in this way was used to perform predictions on 195 

the rest of the tiles to generate tree maps. However, this type of dataset partitioning does not guarantee model transferability 196 

since images from all sites are included in each phase of training, validation, and testing. Hence, we performed a spatial cross 197 

validation from start to evaluate model generalizability. A k-fold spatial cross-validation was performed using training and 198 

validation datasets partitioned according to their geographic distribution. The dataset was partitioned into ten folds based on 199 

study sites. In each iteration, images from nine sites were used for training, while the remaining site's images were reserved 200 

exclusively for testing. This procedure was repeated across ten iterations, such that each site served as the test set once, thereby 201 

ensuring a leave-one-site-out cross-validation scheme. The outputs of the ten iterations through the entire dataset were finally 202 

averaged to achieve a mean F1 score, precision, recall, and average precision (AP) value.   203 

2.3.2 Model development and hyper-parameter configuration  204 

During training we used the Adam optimizer with a learning rate of 0.00025, 128 ROIs per image, 1500 epochs, and a batch 205 

size of 30. We used the R101-FPN configuration as it offers a good balance between training speed and segmentation accuracy 206 

(https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md). To prevent overfitting, we monitored the 207 

validation loss in the F1-score every 100 iterations and implemented early stopping if the F1-score declined for more than five 208 

evaluations. The model was trained with data augmentation consisting in random resizing and rotation of the input images. 209 

We predicted tree crowns contours using the tiling process developed by Ball et al. (2023), which consists of  creating a buffer 210 

around each tile to avoid splitting crowns located at the edges of the tiles. The overlapping crowns resulting from this operation 211 

https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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were then filtered by removing those with the lowest confidence value assigned during the prediction. Classified maps were 212 

then post-processed to reduce noise and correct evident misclassifications. Crowns remaining after this cleaning process were 213 

considered valid tree detections. Model evaluation was computed prior to the cleaning process for all the evaluation metrics 214 

except detection rate (DET%) and IoU, which were calculated after the post-processing (see Section 2.3.4 for details). 215 

2.3.3 Model performance assessment  216 

To assess the performances of the DL model, we selected four evaluation metrics commonly used in  individual tree detection 217 

studies (Beloiu et al., 2023; Dersch et al., 2023; Dietenberger et al., 2023; Xie et al., 2024): (i) precision (1), recall (2), F1 218 

score (3), and average precision (4). The F1 score, a measure of test accuracy, is the weighted average of precision and recall; 219 

values closer to one indicate higher classification accuracy. The average precision is computed as the area under the precision-220 

recall curve. It evaluates the quality of the classifier in retrieving the relevant instances.  221 

To evaluate model transferability, we corroborated the results with a spatial cross-validation procedure. Metrics (1)-(4) were 222 

computed after each cross-validation fold and the results were averaged to achieve a mean estimate. 223 

In addition, tree maps were evaluated in terms of two spatially explicit metrics: detection rate (DET%), and delineation 224 

accuracy (IoU). DET% is the ratio between the predicted number of trees and the number of trees measured in the field (5). It 225 

is computed to evaluate how many objects were correctly classified out of all the ground truth data. For the evaluation we used 226 

only field-sampled trees that did not belong to the training and validation datasets. The IoU is measured as the ratio between 227 

the area of overlap and the area of union of the ground truth crown and predicted crown (6), providing an estimate of the 228 

segmentation and delineation accuracy. Semi-automatically delineated crowns were used as ground truth for IoU assessment. 229 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

= %&''(%)*+	-'(./%)(.	)'((0
1**	)'((0	-'(./%)/&20

	,	 (1)		

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#$3

= %&''(%)*+	-'(./%)(.	)'((0
1**	4'&52.6)'5)7(.	)'((	-'(./%)/&20

	,	 (2)		

where TP are the true positives instances; FP are the false positive instances; FN are the false negatives (number of ground 230 

truth trees that the model did not detect). 231 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	 -'(%/0/&2∗	'(%1**!"#$%&%'()"#$*++
,

	,		 (3)		

𝐴𝑃 = 	𝑛(𝑅2 − 𝑅269)𝑃𝑛	AP=n∑(Rn−Rn−1)⋅Pn	,	 (4)	

where n is the number of thresholds; Rn is the recall at the n-th threshold; Pn is the precision at the n-th threshold. 232 
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IoU	=	0&%0	()	(2%&10*	
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,	 (6)	

2.3.4 Tree attributes assessment  233 

Tree position estimation accuracy was assessed by comparing the field-collected coordinates of each tree with the centroid 234 

coordinates of the corresponding predicted crowns. For height estimation, we compared the value of the CHM at the predicted 235 

centroid with the height measured in the field. The evaluation metrics chosen for evaluating the accuracy in tree height and 236 

position were root mean square error (RMSE) and mean absolute error (MAE), both calculated in centimetres. RMSE is a 237 

standard deviation of prediction errors or residuals (7). The MAE shows how close the ground truth values and predicted 238 

values are to each other (8). It is obtained as the average absolute difference between the predicted value and the real value; 239 

hence, it gives an overall estimation of the error in terms of standard SI (International System) units. Position accuracy was 240 

also evaluated using the Euclidean distance between the centroid of each predicted crown and the corresponding stem position 241 

as recorded in the field (9). For tree height estimation accuracy, we also computed the deviation between real and predicted 242 

values calculated both in absolute and relative terms. RMSE, MAE, Euclidean distance and tree height accuracy were 243 

computed only for correctly predicted trees (n = 343) with the exclusion of the trees that fell within tiles used for training and 244 

validation of the neural network (n = 157).  245 

𝑅𝑀𝑆𝐸 = F	
∑ (<!6<"),(
%	./ 	

2
		,	 (7)		

𝑀𝐴𝐸 =	∑ ><!6<">(
%	./

2
,	 (8)		

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =	L		(𝑋- − 𝑋')? 	+ (𝑌- − 𝑌')?		,	 (9)		

where n is the number of observations; xp, yp are the predicted values; xr, yr are the actual values. 246 

We tested tree height influence on the results accuracy by grouping trees into three size classes: small (height ≤ 130 cm), 247 

medium (130 cm < height ≤ 200 cm), and tall (height > 200 cm). Statistical differences in accuracy among these groups were 248 

evaluated using a Wilcoxon test with pairwise comparison. To investigate how the inclusion in the analysis of trees smaller 249 

than 50 cm impacted on the position and height estimation accuracies, we conducted a separate analysis excluding individuals 250 

shorter than 50 cm (i.e., considering only trees with height > 50 cm). 251 
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2.4 Spatial pattern analysis  252 

Tree maps and extracted tree heights were used to investigate tree spatial patterns. We assessed tree distribution patterns by 253 

applying a univariate PPA computed through the software Programita (2014) (Wiegand and A. Moloney, 2004). We used a 254 

pair-correlation function g(r), a second-order statistic that is non-cumulative and uses only points separated by a distance r, 255 

thus allowing the identification of spatial scales where there are significant interactions among points. We analysed patterns 256 

across a distance ranging from 0 to 100 m, that is one-third of the width of the study sites (Rosenberg, 2015). The observed 257 

univariate patterns were compared with simulation patterns and confidence envelopes generated by a Heterogeneous Poisson 258 

(HP) null model. This null model distributes the points (tree centroids from the tree maps) on the study area with a probability 259 

proportional to the intensity map but relaxes the assumption of complete spatial randomness and allows the intensity of the 260 

point pattern to vary across the study area. For the generation of the intensity function to be employed in the HP null model 261 

we employed an Epanecnikov kernel with enabled edge correction and we set the ring width of the moving window to 5, and 262 

allowed only one point per cell. 263 

To test significant departure from the null model, for each analysis we performed 99 Monte Carlo simulations which generated 264 

99% confidence limits (Carrer et al., 2018; Getzin et al., 2006; Petritan et al., 2015). The spatial pattern was defined as 265 

randomised, clustered or regular if the g(r) values were respectively equal, greater or lower than the confidence envelopes 266 

calculated using Monte Carlo simulations at specific spatial scales. To verify the robustness and significance of the departure, 267 

and to avoid incurring in Type I error (if the value of g(r) is close to a simulation envelope the null model may be rejected even 268 

if it is true) we used the Goodness-of-Fit (GoF) over the given distance interval (Loosmore and Ford, 2006).   269 

Additional univariate PPAs were also performed for each tree size category in order to gain insights on tree spatial distribution 270 

within each dimension class. 271 

To assess the relationship existing between tall and small trees we applied a bivariate point pattern analysis (Wiegand e A. 272 

Moloney 2004). We extended the pair-correlation function used before for a bivariate analysis (g12(r)), thus allowing us to 273 

detect the interactions between the two different classes of trees. The interaction was defined as independent, attraction or 274 

repulsion if the g12(r) values were respectively equal, greater or lower than the confidence envelopes at specific spatial scales.  275 

For the bivariate analysis we used the antecedent condition null model, with points of pattern 1 (tall trees) fixed, and points of 276 

pattern 2 (small trees) distributed in accordance with a HP null model, where small trees are randomly distributed in the 277 

neighbourhood of the tall trees.  278 

To investigate potential dynamics of attraction/repulsion among individuals of different sizes we performed the analysis by 279 

using the same classes (tall, medium and small trees) previously created. The middle class was used as a dividing element 280 

between tall and low trees in order to avoid overlapping groups, and was hence not used in the analysis.  281 

One of the assumptions of the PPA is that objects (trees) are considered as points. However, we decided to test whether the 282 

point approximation (canopies centroids) was somehow hindering the spatial relationships between trees. To investigate this 283 
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aspect all the above mentioned analyses were performed again using as input data the crowns’ shapes taken from the generated 284 

tree maps, hence using the setting for objects of finite size and real shape (Wiegand et al., 2006).  285 

Univariate and bivariate analyses on points approximation and on objects of finite size and real shape were performed for each 286 

site using the same settings and were ultimately combined with the “combine replicates” protocol. 287 

3 Results 288 

3.1 Tree detection rate, delineation performances and transferability of the protocol  289 

Throughout the evaluation process, the DL model achieved an F1 score of 0.76, precision of 0.92, recall of 0.79, and AP of 290 

0.68. Spatial cross-validation confirmed the DL model generalizability to yet-unseen data, yielding an F1 score 0.68, precision 291 

of 0.90,recall of 0.56, and AP of 0.36 (appendix B).  292 

According to DET% results, the DL model detected 67% of all the trees sampled in the field not included in the training and 293 

validation datasets (Table 2). Detection performance was lower for small trees, with a mean detection rate of 52%. As expected, 294 

limiting the analysis to trees taller than 50 cm (DET% ab50) led to higher detection rates, resulting in a DET% = 70, thus 295 

confirming that smaller trees have a strong negative effect on the detection rate. When considering only tall trees (>200 cm) 296 

we reached a mean detection rate of 86%, furtherly supporting the effect of size on detection rates. Among the study sites, 297 

Genevris was the site in which the best detection rates were registered (93% for trees taller than 50 cm), followed by Valfurva, 298 

Devero, Bocche and Livigno, where the model correctly detected more than 78% of all the trees. 299 

IoU results also showed a similar pattern, with tall trees achieving the best performances (IoU = 0.85). Medium and small trees 300 

achieved a mean IoU value of 0.73 and 0.69, respectively. The difference between tall trees’ IoU and the other two classes’ 301 

one was significantly different, as confirmed by a Wilcoxon test (Fig. 4a).   302 
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Table 2. Single site detection rates and number of total predicted trees (n. pred trees) out of the totality of trees sampled in the field (n. test 303 
trees). DET% all = detection rate on the totality of individuals; DET% small = detection rate on small trees; DET% medium = detection rate 304 
on medium trees; DET% tall= detection rate on tall trees; DET% ab50 = detection rate on individuals taller than 50 cm.  305 

site n. test trees n. pred trees 
DET% 

all small medium tall ab50 

Avic 42 14 33 12 56 75 37 

Becco 45 31 69 58 69 85 71 

Bocche 50 35 70 48 85 93 79 

Chianale 51 32 63 43 73 68 63 

Devero 40 33 83 71 86 94 83 

Genevris 40 37 93 86 1.00 92 93 

Livigno 50 39 78 85 63 89 78 

Rion 45 24 53 18 78 93 57 

Senales 47 24 51 16 40 83 58 

Valfurva 49 40 82 84 76 86 82 

Mean / / 67 52 73 86 70 

3.2 Tree attributes estimation  306 

The proposed method demonstrated that it was possible to accurately estimate tree positions and height. Trees' predicted 307 

position achieved a RMSE of 0.59 m and a MAE of 0.49 m. For most of the predictions, the Euclidean distance between 308 

predicted and reference points was less than one metre, with the majority of values around 30 cm (Fig. 3b). Interestingly, 309 

position accuracy increased with reducing tree height, resulting in lower deviation values for the two smaller classes (medium 310 

and small trees) (mean Euclidean distance value of 0.40 and 0.44 m, respectively; Fig. 4b). The Wilcoxon test highlighted a 311 

significant difference between the two smaller classes’ results and the one obtained for tall trees, for which the mean Euclidean 312 

distance value was 0.61 m. 313 

In regard to height estimations, despite some outliers, we observed a strong (R2 = 0.87) linear relationship between predictions 314 

and ground-truths (Fig. 3c). The coefficient of determination, the RMSE of 91.6 cm, and the MAE of 71.8 cm confirm that the 315 

SfM-derived point cloud can be used to accurately estimate tree heights. Nearly all height predictions deviated by less than 316 
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one metre from ground truth values, with the most frequent relative deviation around 20 cm (Fig. 3d). Prediction accuracy 317 

increased with tree height: tall trees had the lowest mean deviation (0.23 m), followed by medium (0.47 m) and small trees 318 

(0.62 m) (Fig. 4c). 319 

320 
Figure 3. (a) Instance segmentation output with a comparison of crowns predicted by the model (shaded with orange outline) and manually 321 
delineated ground truth crowns (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees were harder to 322 
detect by the model, with some missing segmentations. Kernel density distribution of (b) relative deviation for position estimation and (d) 323 
deviation for height estimations with the smoothed, continuous approximation of the kernel‐density estimate in orange. (c) Linear regression 324 
model between the field-measured crown heights and estimated heights in metres. The red dashed line represents the 1:1 line.  325 
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326 
Figure 4. Comparison of model performance for three tree‐height classes (Small: ≤ 130 cm; Medium: >130 cm and <=200 cm; Tall: > 200 327 
cm) in predicting trees (a) canopy surface and shape, measured as Intersection-over-Union (IoU) between predicted and reference crown 328 
polygons, (b) position deviation, measured as Euclidean distance (m) between predicted and reference tree centroids and, (c) height relative 329 
deviation, measured as absolute difference between predicted and reference height divided by the reference height. Violin plots width at a 330 
given value shows the kernel‐density estimate of the distribution; the overlaid boxplot displays the interquartile range with the median (black 331 
line) and mean (dark-red diamonds). Statistical significance (pairwise Wilcoxon tests) is indicated as: NS = not significant; * p < 0.05; 332 
** p < 0.01; *** p < 0.001. 333 

3.3 Treeline spatial patterns and tree-tree interactions 334 

The univariate analysis resulting from the “combine replicates” protocol using tree crown centroids revealed a strong 335 

aggregation across all study sites (Fig. 5a). At spatial scales < 20 m, there was a marked positive departure from the pair-336 

correlation function indicating clustering, which turned into a random pattern at 21 m under the HP null model (GoF: p < 0.05 337 
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in all sites). For spatial scales > 35 m, a slight negative departure from the null model suggested a tendency toward regular 338 

distribution. When considered separately, all the ten sites showed similar patterns consistent with the combined result (see 339 

details in appendix C). The univariate analysis conducted on tree crown polygons showed slightly different results (Fig. 5b). 340 

Despite the overall results indicated a clumped pattern throughout the entirety of the sites, it appears that the clustering occurred 341 

for all spatial scales from 0 to 100 m. To understand whether clustering occurred also within size classes, we performed 342 

univariate PPAs for all the tree size classes (i.e., small, medium, and tall) separately. The results highlighted a clear trend in 343 

forming groups at small spatial scales, among trees of the same size classes (Appendix E).  344 

The 'combine replicates' protocol applied to the bivariate analyses of tree crown centroids revealed a strong spatial repulsion 345 

of small trees relative to tall trees across all examined spatial scales (Fig. 5c). Again, by analysing each site separately, they 346 

all showed similarities among each other and with the combined replicate result (see details in Appendix D). The bivariate 347 

analysis conducted on objects of finite size and real shape (tree crown polygons) led to similar results (Fig. 5d), suggesting the 348 

existence of a strong repulsion between small and tall trees. 349 
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350 
Figure 5. Univariate pair-correlation function g11(r) for (a) centroids and (b) crown polygons. The analysis allows for the definition of a 351 
spatial pattern as clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value is greater than, within, 352 
or lower than the confidence envelope (light grey area). The confidence envelope lines represent the upper and lower 95% simulation 353 
envelopes. Black dashed lines indicate the expected pattern if the points showed a random spatial distribution. Correlation analysis of tall 354 
trees and small trees for (c) centroids and (d) crown polygons. Values of the g12(r) function that significantly deviates from the null model 355 
indicate a significant attraction (if positive) or repulsion (if negative) between the two patterns. 356 
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357 
Figure 6. Univariate and bivariate PPA results for all study sites along with the fine-scale mapped tree crowns overlapped with the 9 ha 358 
orthophoto as a background image. 359 

4 Discussion  360 

4.1 Detection performances  361 

We demonstrated that RGB imagery from low-cost UAVs can be effectively used for accurate tree detection across large, 362 

heterogeneous areas at elevational treelines. Previous studies have conducted similar analyses employing different 363 

segmentation strategies in various forest types. Our model achieved precision and recall values that surpass those reported in 364 

other studies (Beloiu et al., 2023; Dietenberger et al., 2023). The average IoU across different tree size classes was 0.76, lower 365 

than results from plantation-based studies (Hao et al., 2021), but superior to those from mixed temperate forests (Dietenberger 366 
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et al., 2023). Regarding detection rates and F1 scores, our results fell within the typical range reported in comparable research 367 

(Table 3). 368 

However, direct comparisons with other studies are challenging due to substantial differences in forest types, UAV data 369 

acquisition protocols, flight parameters, and the image classification algorithms employed. While our analysis outperformed 370 

others on certain metrics, it is important to note that our study was conducted in an environment where individual tree detection 371 

is facilitated by the reduced presence of intertwined canopies, unlike in tropical or temperate forests. Conversely, this 372 

advantage was offset by the inclusion of small trees in our analysis, a factor that negatively impacted the results and is often 373 

excluded in similar studies.  374 
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Table 3. Performances of recent studies  focused on tree detection and crown delineation in forest ecosystems using UAV-derived data. 375 
DET% = detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.  376 

reference Forest type sensor 
crown detection 
algorithm DET% precision recall F1-score IoU AP 

Present Work 
mixed open 

woodland 
RGB Faster R-CNN 70 0.92 0.79 0.76 0.76 0.68 

Beloiu et al. 

(2023) 

mixed 

temperate 

forest 

RGB Faster R-CNN - 0.75 0.78 0.76 - - 

Dietenberger et 

al. (2023 

mixed 

temperate 

forest 

RGB Region growing - 0.68 0.61 0.64 0.44 - 

Weinstein et 

al. (2019) 

mixed open 

woodland 

RGB, 
LiDAR RetinaNet 82 - - - - - 

Xiang et al. 

(2024) 

several forest 
types LiDAR 3D CNN - - - 0.85 - - 

Dersch et al. 

(2023 

coniferous, 

deciduous, 

mixed stands 

LiDAR Mask R-CNN - - - 0.86 - - 

Jing et al. 

(2012) 
mixed forests LiDAR 

Multi-scale analysis , 

Marker-controlled 

watershed segmentation 

69 - - - - - 

Ball et al. 

(2023) 

tropical 

forests 
LiDAR Mask R-CNN - - - 0.64-0.74 - - 

Xie et al. 

(2024) 

Chinese fir 

plantation 
RGB Mask R-CNN - - - - - 0.55 

Hao et al. 

(2021) 

Chinese fir 

plantation 
RGB mask R-CNN - - - 0.85 0.91 - 

 377 

We hypothesized that tree height would significantly influence model performance. By categorising trees in different size 378 

classes, we were able to track detection performance, confirming that accuracy improves with tree size across all study sites. 379 

In all the study sites, detection was high for taller trees (86%) but dropped for smaller ones (52%), confirming our hypothesis. 380 

In addition to being inherently more challenging to detect in the imagery due to their diminished size, smaller trees often 381 

present altered lighting conditions due to being partially obscured or completely concealed by taller ones (Beloiu et al., 2023; 382 

Dietenberger et al., 2023; Hamraz et al., 2017), leading to missed detections (i.e., false negatives). This problem is exacerbated 383 
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in dense clusters (Vauhkonen et al., 2012), common in most of our study sites. Another critical challenge in tree detection is 384 

the blending of canopies colours with the background, a factor that largely depends on the tree, shrub, and herbaceous species 385 

on the site (Diez et al., 2021; Weinstein et al., 2019). Here, although the problem also affects tall trees, it was markedly more 386 

problematic for smaller ones.  387 

Despite recent advancements in AI tools for object detection and segmentation, accurately identifying small trees in RGB 388 

images over large and complex areas is still in its infancy. Moreover, such improvement would remain unfeasible without 389 

significantly lowering flight height, which results in increasing extended survey times in mountainous terrain (Fromm et al., 390 

2019). Nevertheless, due to the harsh environmental conditions at the treeline ecotone, long-term survival of small trees is 391 

jeopardised by factors such as unsuitable sites for survival (Davis and Gedalof, 2018; Marquis et al., 2021), failure to grow in 392 

harsh conditions (Crofts and Brown, 2020; Frei et al., 2018; Müller et al., 2016) and predation (Brown and Vellend, 2014; 393 

Cairns et al., 2007). Thus, while the precise mapping of small trees may be of secondary importance compared to taller, 394 

potentially permanent trees when evaluating survival rates and seed distribution, small trees are crucial when investigating the 395 

encroachment process.  396 

With the present work, we investigated how unique treeline characteristics influenced model performance. At the Mont Avic 397 

treeline, where European larch is the dominant species, we tested the leaf-off effect on detection rate. Scarcity of green needles 398 

on the canopies resulted in lower performances (Table 2). This finding is consistent with previous studies underscoring how 399 

leaf-off season surveys are often correlated with lower detection accuracies (Imangholiloo et al., 2019).  400 

The poor cross validation results from the Rion site highlight the substantial influence of illumination conditions on detection 401 

performances. As noted by Diez et al. (2021), low sun angles lead to variations in canopy color and the formation of long, 402 

distorted shadows, which can significantly impair detection accuracy.  403 

These results reveal some of the main limitations of RGB-based approaches, underscoring the need of applying a standardised 404 

sampling protocol throughout all the study sites to augment results reliability or provide more input data to increase variability 405 

in the training dataset.  406 

With the exception of Rion and Avic, a clear waning trend in tree detection related to a specific terrain feature of the site - 407 

presence of rocks (Becco), herbaceous species (Chianale) or others - was not found. These findings suggest that terrain 408 

characteristics had a negligible effect on detection rates, supporting the generalizability and transferability of the approach to 409 

treeline environments with differing features. 410 

4.2 Tree attributes estimation and transferability of the protocol 411 

The proposed approach has demonstrated the ability to accurately georeference individual trees (RMSE = 0.59m; MAE= 412 

0.49m) and estimate their height (RMSE = 91.6 cm; MAE = 71.8 cm); some of the observed deviations may in fact be 413 

attributable to inaccuracies in the ground control data rather than the UAV images. Despite the high precision of the GNSS 414 

antenna employed, some small georeferencing errors are inevitable (e.g. due to limited sky view, positional accuracy can be 415 
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limited). Additionally, during field surveys, GNSS points coordinates of tree locations are recorded near the base of the tree 416 

rather than directly below the real treetop, introducing further spatial errors (Shimizu et al., 2022; Vauhkonen et al., 2012). 417 

Nevertheless, our tree position estimations were highly satisfying and comparable with results obtained in other recent studies 418 

employing similar or more sophisticated gears in environments with analogous open stands. For instance, Castilla et al. (2020) 419 

georeferenced coniferous species in a boreal forest using SfM point clouds achieving an RMSE of 20 cm, while Fernández-420 

Guisuraga et al. (2018) extracted tree position of coniferous species in a post-fire environment attaining a RMSE < 30 cm.  421 

Tree height estimations presented a trend skewed towards underestimation (Fig. 3c), an issue attributable to the low sharpness 422 

of the DSM generated through SfM, as also evidenced by Panagiotidis et al. (2017) and Wallace et al. (2016). Airborne laser 423 

scanning is the most well-known tool for DTM modelling due to its better capability in penetrating tree crowns, which often 424 

result in highly accurate estimation of tree features. However, in the present study we provide evidence that by means of 425 

photogrammetric point clouds it is possible to extract tree height with an accuracy comparable to that achieved using LiDAR 426 

sensors, which are still moderately expensive, thus limiting the feasibility of repeated surveys in many cases. Coops et al. 427 

(2013) assessed tree height over a Swiss treeline ecotone by employing LiDAR sensors with an RMSE of 0.70 m. Studies 428 

employing LiDAR technologies in boreal treelines documented a standard deviation of 0.11–0.73 m (Næsset and Nelson, 429 

2007) and of 0.16–0.57 m (Næsset, 2009). Using LiDAR, Wallace (2012) reported a mean height standard deviation of 0.24 m 430 

in a stand with sparse trees—a level of precision that clearly surpasses our results. However, when compared to studies using 431 

SfM point clouds for tree height estimation, our results demonstrate higher accuracy. For instance, Wallace et al. (2016) 432 

compared LiDAR and SfM-derived point clouds in a stand with spatially variable canopy cover, finding RMSE values of 433 

0.92 m and 1.30 m, respectively—the latter being higher than ours. Similarly, Brieger et al. (2019) estimated tree heights in an 434 

open larch forest and reported a mean RMSE of 1.42 m, further supporting the comparatively greater accuracy of our 435 

photogrammetric approach for tree height estimation in open stands. 436 

4.3 Spatial patterns and tree interactions in the Italian alpine treeline ecotone 437 

Several recent studies have highlighted how tree spatial patterns vary along an elevational gradient within the treeline ecotone 438 

(Garbarino et al., 2020; Jia et al., 2022; Wang et al., 2021). Other works have investigated tree recruitment at different sites at 439 

broad spatial scales (Nicoud et al., 2025), and others investigated spatial patterns on multiple sites in the Pyrenees (Birre et al., 440 

2023). However, to the best of our knowledge, there are no previous studies that have simultaneously investigated the patterns 441 

of multiple treelines at the same level of spatial extent (90 ha) and resolution (5cm) as presented in this work. 442 

We found a discrepancy between the univariate analysis performed on centroids (point approximation) and tree crowns 443 

(polygons). The dissimilarities are potentially due to a systematic effect in the size of the objects (Wiegand personal 444 

communication). First of all, the polygon pattern analysis uses more data points (each cell belonging to an object is counted as 445 

a point), and therefore it is possible that the range of significant effects is larger. Furthermore, it is possible that having larger 446 
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objects in a region of the observation window, as it is common in our study areas, may result in a greater clumping across the 447 

analysed spatial scale. Such differences in polygon and point summary functions have already been found in previous studies 448 

and are believed to be due to ecological processes (i.e. competition) instead of methodological bias (Vacchiano et al., 2011). 449 

Whether the cause is one or another has to be further investigated.  450 

Despite the discrepancy on the spatial scale, univariate PPA results revealed a tendency towards a clustered horizontal structure 451 

among all trees within our study areas. This is the typical behaviour within the sub-alpine altitudinal belt, as also consistently 452 

found in other studies conducted on elevational treelines in Europe (Beloiu and Beierkuhnlein, 2019), USA (Garbarino et al., 453 

2020) and China (Jia et al., 2022). Human impact has been the major driving force in shaping the investigated treelines, 454 

affecting patterns and reciprocal patterns of mature and young individuals. However, over the last few decades, the 455 

abandonment of remote areas has led to a decrease in human activities such as grazing and silviculture (Anselmetto et al., 456 

2024). As a consequence, recolonization processes driven by natural dynamics have become more important.  457 

Various researchers emphasise how terrain features such as microtopography and soil spatial patterns can significantly 458 

influence tree distribution at the treeline (Feuillet et al., 2020; Marquis et al., 2021; Müller et al., 2016). The great heterogeneity 459 

of terrain inherent to alpine treelines generates a great diversity of microsites, resulting in a mosaic of favourable and 460 

unfavourable microsites (Davis and Gedalof, 2018; Marquis et al., 2021). Owing to this, trees can be rather diffuse on a 461 

favourable area but also clustered in small groups where better chances of survival are found. In addition to topography, 462 

competition and facilitation dynamics between tree species may exert an important role on the evolution of the treeline ecotone. 463 

The results of our bivariate tree-tree interaction analysis showed a repulsion between small – potentially younger – and tall - 464 

potentially older - trees at all the analysed spatial scales.  465 

The abrupt spatial segregation between tall and small trees suggests that tree establishment dynamics within the studied areas 466 

are potentially driven by inter-size class competition, and intra-size class facilitation, with small trees favouring sites far from 467 

existing clusters of tall trees. Furtherly underpinning this hypothesis is the results of the univariate PPA for the separated size 468 

classes, which show how trees belonging to the same size class are organised in clusters in the landscape. How biotic 469 

interactions may play a dominant role in driving treeline encroachment dynamics has been discussed in previous studies 470 

(Callaway, 2002; Frei et al., 2018; Neuschulz et al., 2018). It is broadly known that in temperature limited environments tree 471 

patches can improve microsite conditions, by influencing snow thickness, soil properties, microclimate and offering physical 472 

support and protection from herbivores (D’Odorico et al., 2013; Germino et al., 2002). These positive effects, however, can 473 

be offset by competition for vital resources such as light, soil moisture and nutrients (Frei et al., 2018; Moir et al., 1999), which 474 

ultimately hinders seedling growth and survival. Although our bivariate analysis result suggests the presence of inter-class 475 
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competition in high-elevation environments in the Alps, and is in line with previous studies findings (Carrer et al., 2013), 476 

further analyses are needed to advance our understanding of the effects of biotic interactions on tree spatial pattern at the 477 

treeline. 478 

4.4 Limits and perspectives 479 

Our results demonstrate that combining low-cost UAV and sensors with open-source AI libraries enables accurate fine-scale 480 

mapping and extraction of individual attributes. Our detection rates were comparable or superior to many other DL-based 481 

classification studies in natural forests. However, recognising small individuals with high accuracy in RGB images remains a 482 

challenge. As highlighted in recent scientific literature, LiDAR-informed segmentation approaches could provide a valuable 483 

alternative for comprehensive mapping of individual trees, filling the gap left by our methodology. Another crucial feature of 484 

great importance for many ecological analyses is the species composition of the community. The use of multi or hyperspectral 485 

sensors would solve this issue by enabling the classification of tree species and thus the analysis of species composition, 486 

interactions among individuals, and spatial patterns of individual and interacting species. Alternatively, species-level analyses 487 

are also possible with very-high-resolution RGB images acquired through low-elevation UAV flights achieving a very fine 488 

ground sampling density (~ 1.6 cm/px (Egli and Höpke, 2020)), as they can reveal species-specific crown architecture and 489 

morphology. 490 

Due to their dynamic nature, it is of great importance to study treeline ecotones  in long-term monitoring research. For this 491 

task, we envision future research activities to apply the presented approach to simultaneously map and detect tree species at 492 

the treeline. The final goal is creating a global network of accurately mapped treeline datasets to monitor the effects of global 493 

change on treeline dynamics and explain the position and pattern of the treeline at different scales.  494 

5 Conclusions  495 

We tested the performance of a Mask R-CNN deep learning model in capturing single-tree attributes across sprawling, remote, 496 

and heterogeneous treeline ecotones, using UAV-derived structure-from-motion point clouds. UAV employment allowed us 497 

to conduct surveys in a more labour and time efficient manner compared to traditional ground-based methods while also 498 

increasing the spatial extent of the study area. This enhanced the reliability of ecological inference on treeline processes. Our 499 

results showed that the proposed approach can effectively produce fine-scale tree maps over 90 ha of treeline ecotones. The 500 

model successfully identified  70% of trees taller than 50 cm and 86% of trees taller than 2 m across the ten study sites in the 501 

Italian Alps. Beyond its success in detecting tree crowns, the approach also performed well in delineation tasks. We 502 
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demonstrated the potential of applying the resulting dataset in treeline ecology by analysing spatial patterns and interactions 503 

among trees of different size classes.  504 

The present work underpins the possibility of using UAVs to advance treeline research, bridging the gap left by limited-in-505 

scale and labor-intensive field surveys and less accurate satellite imagery. The ability to achieve such results with the low-cost 506 

equipment used in this study, combined with the flexibility of the protocol to site-specific conditions with minimal data 507 

preparation requirements, makes this approach both accessible to a wide range of scientists and forest managers and reliable. 508 

These features showcase the methodology as a valuable tool for several applications in forest assessment, ecological 509 

restoration, and conservation planning.  510 
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Appendix A:  511 

Figure A1. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (c) Bocche, (d) Chianale, (e) Devero, (f) Genevris, 512 
(g) Livigno, (h) Rion, (i) Senales and (j) Valfurva.  513 

  514 
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Appendix B:  515 

Table B1. Results of spatial cross-validation analysis.  516 

site F1-score precision recall AP 

Avic 0.60 0.83 0.48 0.14 

Becco 0.81 0.80 0.87 0.45 

Bocche 0.48 1.00 0.35 0.34 

Chianale 0.73 0.85 0.40 0.36 

Devero 0.63 0.93 0.54 0.27 

Genevris 0.76 0.97 0.66 0.45 

Livigno 0.78 0.94 0.50 0.58 

Rion 0.62 1.00 0.50 0.34 

Senales 0.60 0.88 0.49 0.41 

Valfurva 0.78 0.76 0.84 0.32 

Mean 0.68 0.90 0.56 0.37 

  517 
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Appendix C:  518 

Figure C1. single sites’ results of the univariate pair-correlation function g11(r) in (a) Avic, (b) Becco, (c) Bocche, (d) 519 
Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The 520 
confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. The found spatial 521 
pattern is considered clumped, random or regular (hyperdispersed) if the summary statistics (black continue line) value 522 
is greater than, within, or lower than the confidence envelope.   523 

   524 
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Appendix D:  525 

Figure D1. single sites’ results of the bivariate pair-correlation function g12(r) on (a) Avic, (b) Becco, (c) Bocche, (d) 526 
Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva using point approximation. The 527 
confidence envelope (light grey area) represents the upper and lower 95% simulation envelopes. Deviation from the 528 
null model (simulation envelope) of the summary statistics (black continue line) indicates a significant attraction (if 529 
positive) or repulsion (if negative) between the two patterns. 530 
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Appendix E:  532 

Figure E1. Univariate pair-correlation function g11(r) for centroids of (a) tall trees, (b) medium trees and (c) small 533 
trees. The analysis allows for the definition of a spatial pattern as clumped, random or regular (hyperdispersed) if the 534 
summary statistics (black continue line) value is greater than, within, or lower than the confidence envelope (light grey 535 
area). The confidence envelope lines represent the upper and lower 95% simulation envelopes. Black dashed lines 536 
indicate the expected pattern if the points showed a random spatial distribution. 537 
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