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Abstract. Surface ozone, with its long enough lifetime, can travel far from its precursor emissions, affecting human health, 

vegetation, and ecosystems on an intercontinental scale. Recent decades have seen significant shifts in ozone precursor 

emissions: reductions in North America and Europe, increases in Asia, and a steady global rise in methane. Observations from 15 

North America and Europe show declining ozone trends, a  flattened seasonal cycle, a  shift in peak ozone from summer to 

spring, and increasing wintertime levels. To explain these changes, we use TOAST 1.0, a  novel ozone tagging technique 

implemented in the global atmospheric model CAM4-Chem which attributes ozone to its precursor emissions fully by NOX or 

VOC+CO+CH4 sources and perform multi-decadal model simulations for 2000-2018. Model-simulated maximum daily 8h 

ozone (MDA8 O3) agrees well with rural observations from the TOAR-II database. Our analysis reveals that declining local 20 

NOX contributions to peak-season ozone (PSO) in North America and Europe are offset by rising contributions from natural 

NOX (due to increased productivity), and foreign anthropogenic- and international shipping NOX due to increased emissions. 

Transported ozone dominates during spring. Methane is the largest VOC contributor to PSO, while natural NMVOCs become 

more important in summer. Contributions from anthropogenic NMVOCs remain smaller than those from anthropogenic NOX. 

Despite rising global methane levels, its contribution to PSO in North America and Europe has declined due to reductions in 25 

local NOX emissions.  

1 Introduction 

Ozone near the Earth’s surface is primarily formed by the photodissociation of NO2 molecules by sunlight - the NO2 molecule 

breaks down and furnishes atomic oxygen which combines with molecular oxygen in the air to form ozone. The naturally 

occurring NO2 concentration in the troposphere is low and cannot alone explain the high ozone observed in the troposphere 30 

(Jacobson, 2005; Seinfeld & Pandis, 2016). However, in the modern era especially towards the end of the 20th century, 

increased industrialization and motorization of society has led to increasing emissions of nitric oxide (NO) (Logan 1983; 
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Beaton et al., 1991; Calvert et al., 1993). NO can interact with peroxy radicals, chiefly produced from naturally and 

anthropogenically emitted non-methane volatile organic compounds (NMVOCs), carbon moNOXide (CO), and methane (CH4) 

in the presence of the hydroxyl radical (OH) to form NO2 which can then produce ozone through the pathway described above 35 

(Atkinson 1990, 1994, 1997; Seinfeld & Pandis, 2016). Unsurprisingly, with increasing anthropogenic activities emitting NO, 

CO, NMVOCs and CH4, the ozone concentrations in the troposphere and at the surface have risen substantially as compared 

to the pre-industrial or early-industrial times (Logan 1985; Crutzen 1988; Young et al., 2013). 

 

Ozone is a highly reactive pollutant that harms human health, vegetation, and the environment due to its oxidative properties . 40 

In humans, it causes respiratory inflammation, exacerbates chronic illnesses, and impairs lung function by gen erating reactive 

oxygen species that damage cellular structures (Lippmann 1989; Chen et al., 2007; Devlin et al., 1991; Brook et al., 2004). 

Ozone disrupts photosynthesis in plants and damages tissues, reducing crop yields and altering ecosystems (Ashmore 2005; 

Felzer et al., 2007; Grulke & Heath 2019). Moreover, it contributes to climate change by diminishing the carbon sequestration  

ability of vegetation and acting as a greenhouse gas (Oeschger & Dutsch 1989; Sitch et al, 2007). In light of these harmful 45 

effects, the World Health Organization (WHO) has set safe standards for short -term and long-term human exposure to ozone: 

on any day, the maximum 8h average ozone concentration (MDA8 O3) which must not exceed 100 µgm -3 (or ~51 ppb), and 

annually, the Peak Season Ozone (PSO), i.e., the maximum value of the six-month running average of MDA8 O3, must not 

exceed 60 µgm -3 (or ~30.61 ppb) (WHO 2021).  

 50 

In order to meet these safe health standards, various national governments - particularly in North America and Europe and 

more recently in China - have acted to reduce their industrial and vehicular emissions by adopting cleaner fuel and technologies 

and have successfully managed to bring down their national NOX and NMVOC emissions substantially (Goldberg et al., 2021; 

Shaw & Heyst 2022; Crippa et al., 2023). However, these national efforts of emission reductions have not fully translated into 

commensurate reductions in local ozone concentrations and health impacts (Seltzer et al., 2020; Parrish et al., 2022). This is 55 

due to the long-enough atmospheric lifetime of ozone (about 3-4 weeks) which allows it to traverse intercontinental distances 

and affect the air quality of regions far from the location of its chemical production or the location of the emission of its  

precursors. Therefore, air quality benefits in regions with declining emissions can be offset by an increasing share of 

transported ozone from far away regions where emissions are on the rise. Many previous observational-based studies have 

reported declining peak-ozone trends in North America towards the final decades of the 20th century and the beginning of the 60 

21st century (Wolffe et al., 2001; Cooper et al., 2014; Cooper et al., 2015; Chang et al., 2017; Fleming et al., 2018; Cooper  et 

al., 2020). However, some of these studies and many others - through novel statistical filtering of observational data - have 

also pointed out increasing trends in wintertime and background ozone concentrations at many sites in North America, 

particularly at the US west coast (Jaffe et al., 2003; Cooper et al., 2010; Simon et al., 2014; Parris & Ennis, 2019; Parrish et 

al., 2022). Some of these observational studies (e.g., Jaffe et al., 2003) have further correlated the increasing background ozone 65 

in western US to increasing emissions in Asia while others (e.g., Cooper et al., 2010) have also employed air mass back 

https://doi.org/10.5194/egusphere-2024-3752
Preprint. Discussion started: 13 December 2024
c© Author(s) 2024. CC BY 4.0 License.



3 

 

trajectory analysis to support their claims. A number of observational studies have also reported changes in the ozone seasonal 

cycle in North America, with shifting peaks from summer to springtime (Bloomer et al., 2010; Parrish et al., 2013; Cooper et 

al., 2014), a  reversal of the spring-to-summer shift in peak ozone during mid-twentieth century which was reported in earlier 

studies (e.g., Logan 1985) when anthropogenic emissions were increasing in North America. Similarly, for Europe, many 70 

studies have observed declining ozone trends since 2000 (Cooper et al., 2014; Chang et al., 2017; Fleming et al., 2018; EEA 

report 2020; Sicard 2021). For Europe too, there have been attempts of statistical filtering and analyses of observational data 

in innovative ways to highlight the increasing share of intercontinental transport and the consequent changes in ozone seasonal 

cycle in recent decades (Carslaw 2005; Parrish et al., 2013; Derwent & Parrish, 2022). 

 75 

Reliable, long-term, and publicly accessible monitoring stations across different continents form the backbone of an 

international consensus on ozone distributions, trends, and health impacts on various populations. These ob servational 

networks provide essential data for advanced statistical analyses, which can estimate both transported and locally produced 

ozone (as seen in many observational studies mentioned earlier). However, such statistical interpretations can be subjec t to 

dispute and must be corroborated by well-evaluated atmospheric chemical transport models which simulate atmospheric 80 

transport processes explicitly. The hemispheric-scale transport of "foreign" ozone is a phenomenon peculiar to longer-lived 

pollutants such as ozone. While short-lived pollutants like PM2.5, which are regional in nature, can be largely controlled 

through domestic policies, effective ozone mitigation requires international engagement and cooperation. Developing such 

cooperation requires a high-trust international dialogue, underpinned by confident estimates of ozone transport between 

regions on which there is international consensus. These estimates are vital to implementing effective policies in a world wh ere 85 

"foreign" ozone contributions are significant. 

 

Atmospheric chemical transport models simulate the emission, chemical production and loss, transport, and removal of various 

coupled species within the atmosphere and allow us to assess theory against observational evidence. Atmospheric m odels can 

also enable us to quantify various source contributions to concentrations of a particular chemical species in a given locatio n or 90 

region. This is achieved by using, broadly, one of the two methods - perturbation or tagging. In the perturbation method, 

several runs are conducted where certain emission sources are removed or reduced and the resulting concentration fields are 

subtracted from the baseline run with full emissions to yield the contribution of the removed source. In the tagging method, 

generally a single simulation yields source contributions from different tagged regions or emission sectors. The contributions 

derived from the perturbation method are not the true contributions operating under baseline conditions. Instead, they repres ent 95 

the response of all other sources to the removal of a particular source, which may be different from their contribution when a ll 

sources are present (Jonson et al., 2006; Burr & Zhang, 2011; Wild et al., 2012; Ansari et al., 2021). Therefore, perturbation 

experiments are best-suited to evaluate air quality policy interventions, when certain emission sources are actually removed 

(or reduced) or are planned to be removed in the real-world as part of policy. On the other hand, tagging techniques allow us 

to assess the contribution of various sources under a baseline scenario when no policy intervention has been made. We refer 100 
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the reader to Grewe et al. (2010) for a first-principles discussion on perturbation versus tagging methods and to Butler et al. 

(2018) for a review of different tagging techniques. 

 

With growing observational evidence of the increasing importance of “foreign” transported ozone, there have been many 

attempts at confirming and quantifying these contributions using both perturbation -based and tagging-based model simulations 105 

for both North American and European receptor regions in recent years. For example, Reidmiller et al. (2009) used results 

from an ensemble of 16 models which conducted several regional perturbations for the year 2001, to repo rt that East Asian 

emissions are the largest foreign contributor to springtime ozone in western US while European emissions are the largest 

foreign contributor in eastern US. Lin et al., (2015) disentangled the role of meteorology from changing global emis sions in 

driving the ozone trends in the US by performing sensitivity simulations with fixed emissions over their simulation period of  110 

1995-2008. Strode et al. (2015) conducted a perturbation experiment where they only allowed domestic US emissions to vary  

over time but keep the remaining global emissions fixed at an initial year to better quantify the effect of changing foreign 

emissions on ozone in the US. Similarly, Lin et al. (2017) performed global model simulations with several perturbation 

experiments where emissions were fixed at the initial year over Asia and where US emissions were zeroed -out. They used the 

difference between the simulated concentrations in their perturbation and base simulations to quantify the influence of local  115 

and foreign emission changes on the ozone concentrations in the US. Mathur et al. (2022) calculated emission source 

sensitivities of different source regions for the year 2006 using a sensitivity -enabled hemispheric model and applied these 

sensitivities to multi-decadal simulations to compute the influence of foreign emissions on North American ozone levels. They 

found a declining influence of European emissions and an increasing influence of East - and Southeast Asian emissions along 

with shipping emissions on the spring- and summertime ozone in North America. Derwent et al. (2015) used an emissions-120 

tagging method in a global Lagrangian model for the base year 1998 to explain the changing ozone seasonal cycle in Europe. 

Garatachea et al. (2024) performed three-year long regional model simulations with emissions tagging to calculate the import 

and export of ozone between European countries. Building on previous work, Grewe et al. (2017) introduced a new tagging 

method which assigns different ozone precursors into a limited num ber of chemical ‘families’ and attributes ozone to multiple 

sources within each family. Mertens et al. (2020) used this tagging technique at a  regional scale to calculate the contribution 125 

of regional transport emissions on surface ozone within Europe. 

 

As pointed out earlier, perturbation-based estimates are more suited to evaluate an emissions policy intervention rather than to 

quantify baseline contributions of various sources (Grewe et al., 2010, 2017; Mertens et al., 2020). Tagging techniques, in 

calculating baseline source contributions, can also have limitations. For example, they often tag combined  NOX and VOC 130 

emissions over a tagged region or attribute ozone to the geographic location of its chemical production rather than the original 

location of its precursor emissions (as in Derwent et al., 2015) which can complicate policy-relevant interpretation of the model 

results. Some tagging techniques (as in Garatachea et al., 2024) tag ozone only to its limiting precursor in each grid  cell thereby 

complicating detailed chemical interpretation of the computed contributions. While others (e.g., Grewe et al., 2017; Mertens 
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et al., 2020) attribute ozone molecules to tagged NOX and VOC depending on their abundances relative to the total amount of 135 

NOX and VOC present in each grid cell at each time step.  

 

In this study, we use the TOAST tagging technique as described in Butler et al. (2018) which separately tags NOX and NMVOC 

emissions in two model simulations to provide separate NOX and VOC contributions from different regions and sectors to 

simulated ozone in each model grid cell. The results from NOX- and VOC-tagging can be compared side-by-side and the total 140 

contributions of all sources from both simulations add up to the same total baseline ozone. The TOAST tagging technique has 

been previously applied in both global (Butler et al., 2020; Li et al., 2023; Nalam et al., 2024) and regional models (Lupascu 

& Butler, 2019; Lupascu et al., 2022; Romero-Alvarez 2022; Hu et al., 2024) to calculate tagged ozone contributions over US, 

Europe, East Asia as well as the global troposphere. 

 145 

We describe our model configuration, simulation design, input emissions data, and observations from the TOAR -II database 

used for model evaluation in section 2. In section 3.1, we present region-specific model valuation for the policy-relevant MDA8 

O3 metric. Key results on attribution of trends and seasonal cycle to NOX and VOC sources are presented in sections 3.2 for 

North America and section 3.3 for Europe. We finally summarise our key findings along with potential future direc tions in 

section 4. 150 

 

2 Methodology 

2.1 Model description, tagged emissions, and simulation design: 

We perform two 20-year long (1999-2018) global model simulations, with 1999 used as a spin-up year, using a modified 

version of the Community Atmosphere Model version 4 with chemistry (CAM4 -Chem) which forms the atmospheric 155 

component of the larger Community Earth System Model version 1.2.2 (CESMv1.2.2; Lamarque et al., 2012; Tilmes et al., 

2015). The two simulations are identical in simulating the baseline chemical species including the total ozone mixing ratios,  

however, they are used to separately tag region- or sector-based NOX and VOC ozone precursor emissions respectively which 

ultimately allow us to break down ozone mixing ratios into their tagged NOX or VOC sources separately.  

 160 

The model is run at a  horizontal resolution of 1.9⁰×2.5⁰, a  relatively coarse resolution which essentially allows us to compensate 

for the added computational burden due to the introduction of many new chemical species in form of tags and to effectively 

carry out two multi-decadal simulations. Vertically, the model was configured with 56 vertical levels with the top layer at 

approximately 1.86 hPa and roughly the bottom half of the levels representing the troposphere. The model is run as an offline 

chemical transport model with a chemical time-step of 30 min and is meteorologica lly driven by prescribed fields from the 165 
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MERRA2 reanalysis (Molod et al., 2015) with no chemistry-meteorology feedback. The model is meteorologically nudged 

towards the MERRA2 reanalysis fields (temperature, horizontal winds, and surface fluxes) by 10% eve ry time step. 

 

We use the recently released Hemispheric Transport of Air Pollution  version 3 (HTAPv3) global emissions inventory (Crippa 

et al., 2023) to supply the temporally varying anthropogenic emissions input for NOX, CO, SO2, NH3, OC, BC and NMVOCs 170 

over 2000-2018 for our model runs. These include multiple sectors including several land-based sectors but also domestic and 

international shipping as well as aircraft emissions. We break down the global aircraft emissions spatially to denote three 

different flight phases based on EDGAR6.1: landing & take-off, ascent & descent, and cruising. Based on this spatial 

disaggregation of flight phases, we vertically redistribute the aircraft emissions at appropriate model levels for each fligh t  

phase following the recommended vertical distribution in Vukovich & Eyth (2019). We also speciated the lumped NMVOCs 175 

as provided by the HTAPv3 emissions dataset, first, into 25-categories of NMVOCs as defined by Huang et al. (2017). This 

was done by using the regional (North America, Europe, Asia, and Other regions) speciation ratios specified for each sector 

by Crippa et al. (2023) (see table here: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-

opendata/EDGAR/datasets/htap_v3/NMVOC_speciation_HTAP_v3.xls). After obtaining the 25-category region- and sector-

based NMVOC speciation, we further speciated them into the appropriate NMVOC species as required by the MOZART 180 

chemical mechanism, which included merging as well as bifurcation of certain species. Biomass burning emissions are taken 

from GFED-v4 inventory (van der Werf et al., 2010) which provide monthly emissions for boreal forest fires, tropical 

deforestation and degradation, peat emissions, savanna, grassland and shrubland fires, temperate forest fires, and agricultural 

waste burning. The biogenic NMVOC emissions are taken from CAMS-GLOB-BIO-v3.0 dataset (Sindelarova et al., 2021), 

while biogenic (soil) NOX is prescribed as in Tilmes et al. (2015). While we spatially interpolate the emissions from HTAPv3 185 

high-resolution (0.1⁰×0.1⁰) dataset to our coarser model resolution (1.9⁰×2.5⁰), it leads to some land -based emissions at coastal 

areas to spill into the ocean grid cells and vice versa, thereby creating a potential for misattribution of tagged emissions. To 

correct this, we move these wrongly allocated land-based emissions over ocean grid cells back to the nearest land grid cells 

(and similarly, wrongly moved ocea nic emissions to coasts back into the ocean) to make sure that the emissions are allocated 

to the correct region for the source attribution. We also ensure that small islands which are smaller than the model grid cell 190 

area are preserved and their emissions are not wrongly attributed as oceanic or shipping emissions.  

 

Our simulations do not resolve the full carbon cycle and do not have explicit methane emissions. Instead, methane 

concentration is imposed as a surface boundary condition. These methane concen trations are taken from the 2010–2018 

average mole fraction fields from the CAMS CH4 flux inversion product v18r1  195 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview) and is 

specified as a zonally and monthly varying transient lower boundary condition. For upper boundary conditions, annually 

varying stratospheric concentrations of NOX, O3, HNO3, N2O, CO and CH4 are prescribed from WACCM6 ensemble member 

of CMIP6 and are relaxed towards climatological values (Emmons et al., 2020).  
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 200 

Following the methodology of Butler et al. (2018 and 2020), as per the TOAST tagging system, we modify the MOZART 

chemical mechanism (Emmons et al., 2012) to include extra tagged species for the NOX tags and VOC tags, respectively, for 

the two simulations. This system allows us to attribute 100% of tropospheric ozone fully in terms of its NOX (+ stratosphere) 

sources and fully in terms of its VOC (+ methane + stratosphere) sources in two separate simulations. In the two simulations, 

aside from the full baseline emissions, we additionally provide regionally - and sectorally-disaggregated NOX and VOC 205 

emissions, respectively, which undergo the same chemical and physical transformations in the model as the full baseline 

emissions. The regional tags are based on the HTAP Tier1 regions (Galmarini et al., 2017; see Figure 1). Since the focus of 

this study is to study ozone trends and its sources in North America and Europe, and because ozone is primarily a hemispheric  

pollutant (with little inter-hemispheric contributions), we explicitly tagged the land-based NOX emissions in the northern 

hemisphere regions, namely, North America, Europe, East Asia, South Asia, Russia -Belarus-Ukraine, Mexico & Central 210 

America, Central Asia, Middle East, Northern Africa and Southeast Asia, while the southern hemisphere regions of South 

America, Southern Africa, Australia, New Zealand and Antarctica are tagged together as “rest -of-the-world”. The ocean is 

also divided into many zones and tagged separately. In  case of the VOC emissions, we use fewer explicitly tagged regions and 

some of the explicitly tagged NOX regions are aggregated with the “rest-of-the-world”. This is done to ensure computational 

efficiency given that tagging NMVOC means tagging several speciated NMVOCs within the MOZART chemical mechanism 215 

(as opposed to a single NO species in case of NOX tagging). In addition to the regional tags which carry anthropogenic 

emissions, we also tag other, mainly non-anthropogenic, global sectors separately: biogenic, biomass burning, lightning, 

aircraft, methane and stratosphere.  

 

We specify an additional tag for NOX emission generated from lightning parameterization (Price and Rind, 1992; Price et al., 220 

1997) in our NOX-tagged simulation, and for methane in our VOC-tagged simulation. We refer the reader to Figure 1 for the 

geographic definitions of the various source regions and to Table 1 for more details on the regional and global tags for the 

NOX and VOC-tagging runs. Based on these tags changes were made to the model source code following Butler et al. (2018) 

which allows for physical and chemical treatment of all tagged species within the model.  

 225 

Figure 2 shows the trends in NOX and VOC emissions for North America (NAM) and Europe (EUR) tagged source regions 

and for the northern hemisphere along with the global lightning NOX emissions and prescribed methane concentrations over 

the study period. We see a consistent decline in North American anthropogenic NOX emissions (Fig 2a) from ~250 Kg (N) s-

1 in 2000 down to ~100 Kg (N) s-1. We also see a decline in European anthropogenic NOX emissions (Fig 2c), although starting 

from a lower base in 2000, from ~140 Kg (N) s-1 down to 80 Kg (N) s-1. Similarly, the anthropogenic NMVOCs, or AVOCs, 230 

in the two regions (Figs 2b and d) have also declined substantially. These large emission changes reflect the strict and effe ctive 

emission control policies implemented in these regions (Clean Air Act 1963, Clean Air Act Amendments 1990; Council 

Directive 1996, 2008). The biogenic NOX emissions peak in summertime for both regions but remain much lower (up to 40 
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Kg (N) s-1 in North America and 20 Kg (N) s-1 in Europe) than the anthropogenic NOX emissions and exhibit no long-term 

trend. NOX emissions from fires remain extremely small. The biogenic NMVOCs, or natural VOCs, also peak during 235 

summertime for both regions. This is due to the larger leaf area in the summer season (Guenther et al., 2006; Lawrence a nd 

Chase, 2007). The natural VOCs for North America are higher than the AVOCs and show an increasing trend since 2013. The 

natural VOC emissions in Europe are comparable to the AVOC emissions especially in recent years. The biomass burning 

NMVOC emissions are the smallest but they show an increasing trend in North America. We have also plotted the total 

northern hemispheric (NH) NOX and NMVOC emissions which can provide some context in understanding foreign 240 

contributions to ozone in North America and Europe. Here, we see the NH anthropogenic NOX increasing from 2000 until 

2013 after which it declines to below 2000 levels. This increasing trend is primarily driven by increasing Chinese emissions,  

while the decline is driven by a decline in Chinese, North American and European emissions (not shown). We see a similar 

trend for NH AVOC as well. Summertime NH natural VOC emissions exceed the AVOC emissions. NH biomass burning 

NMVOC emissions are also significant, up to 5000 Kg C s-1, but they are lower than natura l VOC and AVOC emissions and 245 

do not show any significant trend. Global lightning NOX emissions show a declining trend from ~100 Kg (N) s-1 in 2000 to 

~90 Kg (N) s-1 in 2014 after which they increase to 95 Kg (N) s-1 in 2018. The global methane concentration remains consistent, 

around 1780 ppb, for 2000-2006 but rises steadily since 2007 reaching around 1880 ppb in 2018. Understanding these trends 

in regional emissions of different ozone precursors allows us to better interpret tagged contributions to simula ted ozone in later 

sections.  250 

   

2.2 Model runs and initial post-processing: 

We perform two separate 20-year long simulations for 1999-2018. The first year, 1999, is discarded as a spin-up year and only 

the outputs for 2000-2018 are used for further analyses. For the VOC-tagged run, the spin-up time was two years, such that 

the 1999 run was restarted with the conditions at the end of the first 1999 run. Introducing extra tagged species with full 255 

physical and chemical treatment in the model leads to a substa ntial increase in computational time (approx. 6x-8x) as compared 

to a basic model run without tagging. Therefore, such a model configuration typically needs a large number of CPU cores 

spread over multiple parallel nodes. We run our tagged simulations on 6 -nodes with 72 Intel Icelake cores each (432 cores in 

total) with a memory of 2048 GB per node. It takes approximately 24h and 36h wallclock time to complete a single year of 

simulation with NOX- and VOC-tagging, respectively, with our model configuration. The VOC-tagged simulations take longer 260 

despite having fewer land-based and oceanic tags because, unlike NOX-tagging, VOC-tagging involves all speciated NMVOCs 

to be tagged separately thereby increasing the total number of chemical species to be treated in  the model.  

 

We configure the model to write out key meteorological and chemical variables, including tagged O3 variables, as 3D output 

at monthly average frequency but also write out the tagged O3 variables at surface at an hourly frequency which allows us to 265 

assess key policy-relevant ozone metrics for further analyses. Before we proceed to analyses of the results, we convert the 
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model output into global MDA8 O3 (maximum daily 8h average) values along with its tagged contributions for each grid  cell 

in the model. The model writes-out the hourly ozone values in Universal Time Coordinates (UTC) for all locations. Therefore, 

we first, consider different time-zones (24 hourly zones based on longitude range) and select the 24 ozone values by applying 

the appropriate time-offset to reflect a “local day” for each grid cell. Once a 24h local-day has been selected, we perform 8h 270 

running averages spanning these 24 values and pick the maximum of these 8h averages as the MDA8 O3 value for that grid 

cell on a given day. We then use the selected time window for the MDA8 O3 value for the grid cell to also calculate the 8h-

average tagged contribution over this window. Using this methodology, we prepare global NetCDF files which contain daily 

MDA8 O3 values along with tagged contributions for each grid cell. We use these files for further analyses. 

 275 

Figure 3 shows the geographic definitions of various HTAP-Tier2 regions (Galmarini et al., 2017), out of which nine regions, 

five in North America and four in Europe, shown in various shades of magenta and green, are used as receptor regions to 

perform further analyses of trends and seasonality in section 3. We use these receptor regions to perform area -weighted spatial 

averaging of MDA8 O3 values before analysing the trends and contributions.  

 280 

2.3 TOAR Observations and related data processing:  

For model evaluation, we utilize ground-based observations of hourly ozone from many stations over North America and 

Europe which are part of the TOAR-II database of the Tropospheric Ozone Assessment Report (TOAR). We use the newly 

developed TOAR gridding tool (TOAR Gridding Tool 2024) to convert the point observations from individual stations into a 

global gridded dataset which matches our model resolution of 1.9⁰×2.5⁰. The  TOAR gridding tool allows for data selection 285 

including the variable name, statistical aggrega tion, temporal extent and a filtering capability according to the station metadata.  

 

We extract the Maximum Daily 8h Average (MDA8) metric for ozone from the TOAR-II database analysis service (TOAR -

II 2021) for the years 2000 to 2018 (as available until May 2024). The MDA8 values are only saved if at least 18 of the 24 

hourly values per day are valid (see, dma8epa_strict in TOAR-analysis 2023). Also, since our model resolution is coarse, we 290 

only include rural background stations in our analyses to avoid in fluences of urban chemistry which may not be resolved in 

our model.  

 

We use the type_of_area field of the station metadata to select the rural stations; this information is provided by the original 

data providers (see Acknowledgements for an exhaustive list of data providers). They cover about 20% of all stations in North 295 

America and Europe. We note that roughly a similar fraction of stations in these regions remains unclassified. In the final 

gridded product, which contains daily MDA8 O3 values over North America and Europe a grid cell has non-missing value if 

there is at least one rural station present within it. We obtain large parts of NAM and EUR regions with valid TOAR grid cells, 

although the number of these valid grid cells changes day-to-day and year-to-year. In North America, the number of valid 
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stations varies from 2-4 for Eastern Canada, 17-44 for NW US, 52-140 for SW US, 134-235 for NE US, 100-114 for SE US. 300 

In Europe, the number of rural stations varies from 201-236 for Western Europe, 57-223 for Southern Europe, 45-100 for 

Central & Eastern Europe, and 1-20 for SE Europe, with a general increase in the number of stations in each region with time, 

except for 2012 when there is an anomalous drop in the number of stations. Furthermore, the number of valid TOAR stations 

within each grid cell also varies for certain locations. To better understand the changes in the TOAR station network in each  

of the 9 receptor regions considered here, we have plotted a time-series of annual average number of stations within each 305 

receptor region. This is shown in Figure S8. 

 

3. Results: 

3.1 Model Evaluation:  

The CAM4-Chem model has been evaluated for its ability of simulating the distribution and trends of tropospheric ozone by 310 

many previous studies (Lamarque et al., 2012; Tilmes et al., 2015) including its modified version with ozone tagging (Butler 

et al., 2020; Nalam et al., 2024). Generally, many atmospheric models including CAM4 -Chem have been shown to 

overestimate surface ozone in the Northern Hemisphere (Reidm iller et al., 2009; Fiore et al. 2009; Lamarque et al., 2012; 

Young et al., 2013; Tilmes et al., 2015; Young et al., 2018; Huang et al, 2021). In a recent study that utilized the same mod el 

simulations as those presented in this study, Nalam et al. (2024) evaluated model simulated monthly average surface ozone 315 

against gridded observations from the TOAR-I dataset (Schultz et al., 2017) over various HTAP Tier 2 regions (Galmarini et 

al., 2017)  in North America, Europe and East Asia for 2000-2014 and found a satisfactory performance, albeit with a general 

high bias of 4-12 ppb, similar to a reference CMIP6 model CESM2-WACCM6 (Emmons et al., 2020); see Figure 1 in Nalam 

et al., 2024 for more details. Furthermore, Nalam et al. (2024) have also evaluated the mode l simulated monthly mean ozone 

against the ozone sonde-based climatology compiled by Tilmes et al. (2012) for different latitude bands in the northern 320 

hemisphere at different pressure levels over the same period and found generally high correlations and lo w biases - see Figure 

2 in Nalam et al. (2024) for further details. 

 

One reason for a high bias as seen in Nalam et al., (2024) and other studies could be the use of all available stations (including 

many urban stations) for evaluating the model performance. Given the coarse model resolution, we expect the model not to 325 

resolve high NOX concentrations around the urban and industrial centres and therefore suffer from the lack of ozone titration. 

Therefore, here, we only evaluate the model against data from rural stations, wherever available. Also, in this study, we only 

work with policy-relevant metrics such as Maximum Daily 8h Average (MDA8) Ozone at the surface or other metrics derived 

from it, e.g., Peak Season Ozone (PSO). These metrics generally include only the daytime ozone, especially over land. 

Therefore, evaluating the model for these metrics also allows us to exclude nighttime ozone and avoid any large nighttime 330 
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biases which often arise due to improper simulation of the nighttime boundary layer which  has been a persistent issue in both 

global and regional models (Houweling et al., 2017; Du et al., 2020; Ansari et al., 2019).  

 

For model evaluation, we derive regionally averaged monthly mean MDA8 O3 for all HTAP tier 2 receptor regions for North 

America, Europe and Asia but sample the MDA8 O3 values only from those gridcells where rural TOAR observations were 335 

available. Figure 4 shows the time-series of monthly mean MDA8 O3 from the model and TOAR observations for the entire 

simulation period. We ask the reader to refer to the geographic extent of the receptor regions discussed here in Figure 3. 

 

In Eastern Canada (Figure 4a), the model reproduces the O3 seasonal cycle very well, especially between 2007-2018. It 

overshoots the maxima and undershoots the minima for the earlier years of 2000-2006. This could be due to inaccurate (higher) 340 

NOX emissions over the region in the HTAPv3 inventory for the earlier years which leads to higher summertime production 

and lower wintertime levels due to increased titration. The model also reproduces the flattening annual cycle well which is 

consistent with decreasing NOX emissions over this region (see Figures 3 and S3). For the Northwestern United States (Figure 

4b), the model reproduces the annual cycle very well, although it systematically overestimates the MDA8 O3 during peak 

season by up to 5 ppb. For the Northeastern United States (Figure 4c), the model captures the structure of the annual cycle o f 345 

MDA8 O3 very well for recent years but overestimates the summer peak and underestimates wintertime ozone for earlier years, 

similar to Eastern Canada, again pointing to high NOX emissions in the emission inventory over this region in the initial years. 

The model shows an extremely skilful simulation of MDA8 O3 in the Southern United States. In Southwestern US (Figure 4d), 

the model reproduces the gradual and steady decline in MDA8 O3 over time, albeit with a slight overprediction (~2ppb) in 

later years. Similarly, in the Southeastern US (Figure 4e), we note a very good reproduction of trends, with a decreasing 350 

summertime peak. For all North American regions, we see a high correlation between observed and modelled values with 

correlation coefficient r ranging from 0.86 to 0.98. Mean bias is positive for all regio ns but small, ranging from 0.68 ppb to 

3.65 ppb. 

 

The model reproduces the MDA8 O3 for Europe extremely well with very small mean biases (-1.54 ppb to 1.25 ppb) and very 355 

high r values ranging from 0.94 to 0.97 for various regions, except Southeastern Europ e. For Western Europe (Figure 4f), it 

captures both the trends and the structure of the seasonal cycle extremely well, for example, note the near-stagnant maxima 

and increasing minima over time in both observations and model output. Similarly for Southern Europe (Figure 4g), we again 

see a very skilful simulation of monthly mean MDA8 for the entire simulation period - this includes capturing the slightly  

decreasing summer maxima and increasing winter minima and an overall flattening of the seasonal cycle po st 2006. We see a 360 

very good reproduction of MDA8 O3 for Central & Eastern Europe (Figure 4h) particularly for the summer months. We see a 

small underprediction for the winter months in years up to 2012. However, it is the summertime MDA8 O3 values that 

constitute the peak season ozone metric which are ultimately utilized in our further policy -relevant analyses. Finally, for 

Southeastern Europe (Figure 4i), we notice an overprediction of MDA8 O3 for early years, until 2006, after which the model 
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captures the trends and particularly the summer peaks very well. The mean bias is 7.63 ppb and r value is 0.62. We have also 365 

included the Belarus & Ukraine region (Figure 4j) in our evaluation and here too we see a good simulation of MDA8 O3 for 

the entire period (with a small mean bias of 0.56 ppb and r value of 0.83), barring a couple of years (2014 and 2017) when the 

model overestimates the values. 

 

We have also evaluated the model for MDA8 O3 against observations from the TOAR-II database in other regions including 370 

Mexico, North Africa, Southern Africa, Latin America, and Eastern Russia, where the model has also captured the trends well, 

however, since we do not discuss these regions in further analyses, they are presented in the supplement (see, Figure S1).  

 

Overall, we obtain very good model-observations agreement, with low biases and high correlations, better than previous studies 

(e.g., Butler et al., 2020; Li et al., 2023; Garatachea et al., 2024). The possible reasons for such improved performance could 375 

be 1) the use of the newly developed HTAPv3 emissions inventory 2) using only rural stations for evaluation which avoids 

urban titration which may be in the observations but not in model output 3) improved treatment of spatial and temporal 

representativeness (including the treatment of missing values) of the stations through the TOAR gridding tool 4) evaluating 

the policy-relevant MDA8 O3 metric which avoids nighttime O3 which may not be well-simulated due to improper estimation 

of the nighttime boundary layer. 380 

 

After a satisfactory performance of the model across different world regions and, in particular, excellent performance in the 

simulation of MDA8 O3 against rural stations from the TOAR-II database, we proceed to further analyses of trends and source 

contributions to ozone in different receptor regions. First, to explain the year-to-year trends, we present the full 19-year time 

series of Peak Season Ozone (PSO) for North America and Europe along with their NOX- and VOC- source contributions 385 

derived from our two tagged simulations. After explaining the year-to-year trends in ozone in terms of the NOX and VOC 

contributions, we further calculated a 19-year month-centered average MDA8 O3 and its source contributions for each receptor 

region. This allows us to interpret the leading sources of ozone in each receptor region on a monthly basis averaged over the 

entire simulation period. We then break down this 19-year month-centered average MDA8 O3 seasonal cycle into a past (first 

five years) and recent (last five year) averaged seasonal cycle and explain the shifts in terms of tagged contributions for all 390 

receptor regions during these periods. In the next subsections, we present these results for North America and Europe.  

3.2 Ozone in North America: 

3.2.1 Peak Season Ozone in North America: Trends and Source Contributions: 

In this section we discuss the trends in and contributions to PSO in North America. The Peak Season Ozone for any location 

is defined as the highest of the 6-month running average of monthly mean MDA8 O3 values. In order to compute PSO, we 395 

performed the averaging over 6-month windows (Jan-Jun, Feb-July, Mar-Aug and so on) over the TOAR observations and the 
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same time window was imposed over the modelled values for calculating the 6 -month averaging (instead of independently 

selecting the peak 6-month time window for the model). This approach ensures temporal consistency between the observations 

and modelled values. Furthermore, for spatial consistency, the model values were sampled only from those grid  cells where at 

least one TOAR-II station was present. Finally, these values from multiple grid cells were spatially averaged over various 400 

receptor regions after weighting them with the grid cell areas to derive a single PSO value per region per year for ob servations 

and the model along with tagged contributions.  

 

Figure 5 shows the observed versus model-simulated time series of Peak Season Ozone along with its NOX- and VOC-source 

contributions for five different receptor regions within North America (see Figure 2 for geographic definitions). We note that, 405 

for all regions in North America, the observed PSO exceeds the WHO guidelines throughout the 2000 -2018 period. For each 

row, the left and right panels show the same observed and model-derived PSO in dotted lines for a given receptor region but 

break it down in terms of the NOX contributions and VOC contributions respectively, thereby providing us two distinct 

perspectives of seeing ozone in terms of its contributors. In terms of NOX contributions, PSO is broken down in terms of local 

anthropogenic NOX contribution, foreign anthropogenic NOX contribution which also includes global aircraft contribution, 410 

natural NOX contribution which is a sum of biogenic, fire and lightning NOX contribution, global shipping NOX contribution, 

and stratospheric intrusion, regardless of the origin of the VOCs that interacted with them. It describes 100% of ozone at any 

given receptor wholly in terms of its NOX sources only. Similarly, the right-hand panels describe the same ozone in terms of 

its VOC sources + global methane irrespective of its NOX sources. Here, the different contributors are, local anthropogenic 

VOC sources, foreign anthropogenic VOC sources (including global aircraft VOC), natural VOC which is a combination of 415 

global biogenic VOCs and fire VOCs, global shipping VOC contribution, methane contribution, and stratospheric intrusion, 

which again explains the entire 100% of ozone abundance for any given receptor region. Analysing these contributions side-

by-side can also provide qualitative insights into possible interactions between different NOX and VOC sources along with 

some insights into plausible regional control measures. 

 420 

Figures 5 a & b show PSO for Eastern Canada in terms of NOX and VOC contributions respectively. Overall, we see a slight  

negative trend in the observed PSO (-0.24 ppb/yr, (1.0)) with magnitudes in the range of 40-45 ppb. The model captures the 

PSO magnitude well but overestimates the trend (-0.35 ppb/yr, (0.99)). From the NOX source perspective (Fig 5a), we see that 

the largest contribution is from local anthropogenic NOX sources although with a declining trend of (-0.75 ppb/yr, (1.0)) over 

the 19-year period. The declining trend in the local NOX contributions is sharper than the trend in overall PSO because all 425 

other sources show a small positive trend (see table S1 for details) which partially compensates the negative trend in local NOX 

contributions. Despite declining trends, local NOX remains the largest contributor (~15ppb) to PSO while each of the remaining 

contributions, though increasing, remain below 10 ppb. In terms of VOC contributions (Fig 5b), methane contribution is 

largest, at around 15 ppb. This is followed by natural VOC and local AVOC contributions. The declining trend in overall PSO 

is explained by declining trends in local AVOC contributions (-0.32 ppb/yr, (1.0)) and natural VOC contributions (-0.17 ppb/yr, 430 
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(0.89)), partially offset by an increasing trend in stratospheric (0.12 ppb/yr, (0.99)) and foreign AVOC contributions (0.09 

ppb/yr, (0.99)). It is worth noting that the year-to-year peaks and troughs in the local NOX contributions correspond neatly 

with the natural VOC contributions and are also reflected in the overall shape of the PSO time series. This suggests a large 

interaction between local anthropogenic NOX and local natural VOCs in the region.  

 435 

Figures 5 c and d show PSO time series for the Northwestern United States. We see PSO values around 45 ppb throughout the 

period but with a slight decreasing trend (-0.11 ppb/yr, (0.82)). The model overestimates the magnitude, for reasons discussed 

in the previous section, but reproduced the small declining trend very well (-0.11 ppb/yr, (0.97)). In the early years, local 

anthropogenic NOX contribution remains the largest but declines steadily (-0.38 ppb/yr, (1.0)) to become comparable to foreign 

NOX contributions by 2011. In recent years, the foreign NOX contribution exceeds the local NOX contributions. The declining 440 

contribution of local NOX can be linked with the large decline in local NOX emissions in this region along with a steady 

increase in northern hemispheric anthropogenic NOX emissions (see Figure 3). In terms of VOC contributions, methane 

remains the largest contributor with a steady contribution at around 20 ppb. This is followed by natural VOC contributions 

(10-12 ppb). Here, the overall decline in PSO is almost single handedly associated with the declining trend in local AVOC 

contributions (-0.15 ppb/yr, (1.0)). This decline can be linked to a combination of the decline in the North American AVOC 445 

and NOX emissions (see Figure 3). There is also a small declining trend (-0.03 ppb/yr, (0.97)) in natural VOC contributions. 

 

Figures 5 e and f show PSO for Southwestern US. Here we see the highest PSO of any other region considered in our analysis, 

with concentrations reaching 60 ppb in the early years declining at (-0.34 ppb/yr, (1.0)) to reach 55 ppb in 2018, still well 

above the WHO guideline of 31 ppb. The model slightly overestimates the magnitude but captures the decreasing trend 450 

reasonably well (-0.25 ppb/yr, (1.0)). There is a very sharp downward trend (-0.71 ppb/yr, (1.0)) in local NOX contributions 

which is partially offset by an increasing trend in foreign anthropogenic NOX contributions (0.2 ppb/yr, (1.0)). These two 

together explain the decreasing trend in overall PSO. This region has seen a dramatic reduction in local NOX emissions such 

that they were the single largest contributor to ozone in the initial years (up to 27 ppb) with more than double the contributions 

of foreign NOX, but in recent years the local NOX contributions have declined to 16 ppb which is comparable to foreign NOX 455 

and natural NOX contributions. In terms of VOC contributions, methane remains the largest contributor, at around 25 ppb 

albeit with a very small decreasing trend (-0.09 ppb/yr, (1.0)). This is remarkable given the rapidly increasing background 

concentration of methane, but is consistent with the lower availability of local NOX during methane oxidation for producing 

ozone. Given the arid climate and sparse vegetation of this region, natural VOC contribution is much lower, at around 14 -18 

ppb. Similar to Eastern Canada, the stratosphere contributes up to 6 -8 ppb, while foreign and local AVOC contributions remain 460 

low, beginning at equal strengths at around 5 ppb but followed by a steady decline in local AVOC contribution (-0.25 ppb/yr) 

as also seen in other parts of the United States.  
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Figures 5 g and h show PSO time series for Northeastern United States along with its NOX and VOC contributions respectively. 

Here, we see a substantial decline in observed PSO (-0.43 ppb/yr, (1.0)) from around 50 ppb in early 2000s down to 45 ppb in 465 

2018. The model overestimates the magnitude but reproduces the declining trend well (-0.52 ppb/yr, (1.0)). From a NOX source 

perspective, the PSO decline in this region is driven by a dramatic decline in local NOX contributions from ~40 ppb to ~20 

ppb (-0.94 ppb/yr, (1.0)) which is partially offset by a steadily increasing foreign NOX (0.17 ppb/yr, (1.0)) and natural NOX 

contribution (0.13 ppb/yr, (1.0)). It is notable that the natural NOX contribution is increasing despite no increase in natural 

NOX emissions (see Figure 2) which is consistent with the natural NOX emissions becoming more productive due to overall 470 

lower NOX levels (Liu et al., 1987). Stratospheric contribution remains low between 4-7 ppb and the ship NOX contribution is 

the lowest, 0-2 ppb, albeit with an increasing trend consistent with the increasing shipping NOX emissions. In terms of VOC 

contributions, we see comparable contributions from methane and natural VOC, around 18 ppb. The higher natural VOC 

contribution in this region suggests ample availability of natural VOC through vegetation  and also ample local NOX nearby 

the natural VOC sources. The peaks and troughs in local NOX contributions and natural VOC contributions are coincident 475 

which also points to their interaction in this region. The declining trend in PSO can be explained by th e declining local AVOC 

contribution (-0.37 ppb/yr), natural VOC (-0.25 ppb/yr) and methane contributions (-0.11 ppb/yr) which shows that the ozone 

produced through the oxidation of VOCs is responding to the declining local NOX emissions, especially because the natural 

VOC emissions and methane concentrations, themselves, are rising (Figure 2). 

 480 

Finally, Figures 5i and j show the PSO time series for the Southeastern US. This region shows the sharpest decline in observe d 

PSO than any other receptor region in North America (-0.47 ppb/yr, (1.0)). The contributions are similar to those in 

Northeastern US: a sharp decline in local NOX contribution (38 ppb to 20 ppb; -1.07 ppb/yr, (1.0)) which remains the largest 

contributor even after the decline, and modest increases in foreign NOX, natural NOX and ship NOX contributions (see Table 

S1 for quantitative trends). Natural NOX and foreign NOX contributions remain around 10 ppb while stratospheric and ship 485 

NOX contributions are under 5 ppb. In terms of VOC contributions, methane and natural VOC contributions are comparable 

and explain part of the declining trend in PSO (-0.16 ppb/yr, (1.0)) and (-0.33 ppb/yr, (0.9)). The remaining part of the declining 

trend is captured by a steady decline in local AVOC contribution which reduces from 10 ppb to under 4 ppb over the 19-year 

period; (-0.33 ppb/yr, (1.0)). Again, the peaks and troughs in natural VOC contribution coincide with those in the local NOX 

contribution suggesting their interaction in ozone formation in this region. The quantitative Thiel-Sen trends for observed and 490 

modelled PSO in all receptor regions and their tagged contributions are included along with their significance in Table S1.   

 

3.2.2 Ozone seasonal cycle in North America: Trends and Source Contributions: 

Figure 6 shows the 2000-2018 average seasonal cycle of MDA8 O3 over the different receptor regions within North America 

along with its source contributions. We see elevated levels of MDA8 O3 in spring and summer and lower levels in winter, in 495 

line with the scientific understanding of ozone photochemistry (Logan 1985; Seinfeld & Pandis 2016). The model reproduces 

the 19-year average seasonal cycle over different parts of North America very well. For western regions, we see a consistent 
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systematic positive bias of 2-4 ppb. For eastern regions we see a very good reproduction of the seasonal cycle during winter 

and spring but a notable overestimation during summertime.  

 500 

Figure 6a and b shows the average seasonal cycle of MDA8 O3 in Eastern Canada along with its NOX and VOC source 

contributions respectively. The MDA8 O3 seasonal cycle in this region is characterized by a springtime peak (Mar - Apr; ~44 

ppb) and a decline in the summertime (Jul - Sep; ~35 ppb). The springtime peak is driven by peaks in foreign anthropogenic 

NOX contribution and stratospheric intrusion along with high local NOX contribution. The summertime peak in the model (not 

seen in observations) is composed of peaks in local NOX and natural NOX. This modelled but not observed peak is likely the 505 

reason for the high model bias in this region seen in figure 4. And since the mo del performs well for springtime, this 

summertime high bias points to nearby emissions being too high, or alternatively, an overactive photochemistry (see also NE 

and SE US). In terms of VOC contribution, the springtime peak is composed of methane contribu tion (12-14 ppb), stratospheric 

intrusion (up to 10 ppb), foreign AVOC contribution peak (8 ppb) and an increasing share of local AVOC contribution (~6ppb). 

natural VOC contribution peaks in the summertime, when there are more leaves and emissions of natural VOC - this also 510 

drives the summer peak in modelled PSO which is not seen in observations. The summertime model-observations gap warrants 

further investigation into uncertainties in local anthropogenic NOX as well as local natural VOC emissions to further attribute 

this mismatch. Methane remains the highest overall contributor in terms of VOCs with slightly higher levels than foreign NOX 

contributions suggesting its substantial interaction with both local and foreign NOX in production of local as well as transported 

ozone in this region.  515 

 

Figures 6c and d show the average seasonal cycle of MDA8 O3 in Northwestern US in terms of NOX and VOC source 

contributions respectively. Here, we see high MDA8 O3 from spring through summer in observations. The shape of  the seasonal 

cycle is skilfully captured by the model albeit with a high bias. In contrast to the eastern regions, the bias here is high a ll year. 

This points to an overestimation of the background ozone rather than a high bias in local emissions and phot ochemistry. The 520 

spring peak is primarily driven by peaks in foreign NOX and stratospheric intrusion. Ship NOX contributions, although small, 

peak during springtime. Summer highs are driven by highs in local NOX and natural NOX contributions. A peculiar fea ture is 

a sustained high foreign anthropogenic NOX contribution throughout the year which only dips in the summertime. This 

summertime dip in foreign contribution is likely because ozone lifetime is reduced at higher temperatures due to the increase d 

ability of air to hold water vapour (Stevenson et al., 2006) and long-range transported ozone can be destroyed when it 525 

encounters moisture (Real et al., 2007). Thus, the overall long-range transport efficiency of ozone is reduced during 

summertime. In terms of VOC contributions, springtime peak is primarily composed of methane, stratospheric, foreign AVOC 

contributions with smaller contributions from natural VOC and local AVOC. Summertime peak is composed of a peak in 

methane contribution and natural VOC peak. A natural VOC peak is expected during summertime due to a high leaf area 

during this time of the year. All other VOC contributions are very small during summertime in this region. 530 
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Figures 6e and f show the average seasonal cycle of MDA8 O3 in Southwestern US which is similar to that for the Northwestern 

US and is well reproduced by the model. Springtime peak is dominated by foreign NOX and stratospheric contributions but 

also composed of an increasing local NOX and natural NOX component. Summertime peak is driven by local NOX and natural 

NOX contributions. In terms of VOC contributions, methane, stratosphere and foreign AVOC drive the springtime peak while 535 

methane and natural VOC contributions drive the summertime peak.  

 

Figures 6g and h show the average seasonal cycle of MDA8 O3 in Northeastern US which is characterized by a major 

springtime peak which declines over the summer until the winter months. The model skilfully captures the seasonal cycle for 

the first five months but overestimates the summertime ozone. Both the NOX and VOC contributions show a similar cycle as 540 

in western US regions except for a very large local NOX peak (and a corresponding natural VOC contribution peak) which 

drives the modelled summertime peak not seen in observations. Unlike the western regions, the summertime natural VOC 

contribution exceeds the methane contribution by a large margin and reaches up to 25 ppb. The higher natural VOC and lower 

methane contributions broadly correspond with the higher local NOX and lower remote NOX contributions. The accuracy of 

natural VOC emissions in this region is a matter of further investigation. There is also a sustained higher local AVOC 545 

contribution (> 5ppb) than in western US.  

 

Figures 6i and j show the average seasonal cycle of MDA8 O3 in the Southeastern US which is very similar to that in the 

Northeastern US. The model reproduces the observed seasonal cycle well although with an overestimation of the summer 

peak. The shape of the seasonal cycle is primarily driven by local anthropogenic NOX contributions from a NOX perspective 550 

and by methane and natural VOC contributions from the VOC perspective. Foreign anthropogenic NOX contributions are high, 

up to 10 ppb, during spring and winter but dip to around 5 ppb in the summer. 

 

 

3.2.3 Changes in seasonal cycle of ozone in United States: Role of Local vs Remote contributions 555 

A careful analysis of the dominant contributors to MDA8 O3 seasonal cycle for different months alongside the changing 

dominant contributors to PSO over the two decades suggests that the seasonal cycle as well as its composition must be changin g 

significantly over the years. This led us to plot full envelopes of MDA8 O3 cycles (instead of averages) to fully assess the 

changes in the shape of the O3 seasonal cycle for different receptor regions. These envelope plots are shown in the supplement 

(Figure S2) which reveal the changes in the MDA8 O3 seasonal cycle year-to-year. In Figure S2, we note that generally the 560 

spring and summertime MDA8 O3 is decreasing while the wintertime O3 is increasing for many regions which is consistent 

with decreasing local anthropogenic NOX emissions reducing titration in winter and local production in summer. The 

wintertime ozone increase could also be partly due to increasing transported ozone from foreign contributions.  
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To better understand how the seasonal cycle has changed over these two decades, we present the initial and final 5 -year 565 

averaged MDA8 O3 seasonal cycles (over 2000-2004 and 2014-2018, respectively) along with their NOX and VOC 

contributions. Figures 7 a and d show the observed and modelled initial 5 -year and final 5-year average seasonal cycles for 

Northwestern US. We see that between these two periods, the spring and summertime ozone has decreased while the 

wintertime ozone has increased. The model reproduces these seasonal changes reasonably well but with a high bias of up to 4 

ppb. We see (in Figs 7b and e) that these changes in the seasonal cycle are driven by a substantial drop in local NOX 570 

contributions especially in the summer along with an increase in summertime natural NOX contribution which partially 

compensates for the drop in local anthropogenic NOX contributions. As noted in the previous sections, there is no increase in 

the natural NOX emissions in these two decades (Figure 2) however, under lower NOX conditions, the same natural NOX 

becomes more productive in forming ozone during summer (see Liu et al., 1987). The wintertime increases are primarily driven 

by an increased foreign NOX contribution along with a small increase in ship NOX contribution. From a VOC perspective (Figs 575 

7c and f), the biggest changes occur in the local AVOC contributions which have dec lined throughout the year (probably in 

response to the declining local NOX emissions but also a decline in their own emissions; see figure 2). Wintertime increase in 

MDA8 O3 is composed of increases in methane and foreign AVOC contributions in winter. Summ ertime decrease is associated 

with a decrease in methane and local AVOC contributions in the summer.  

 580 

Figure 8 shows a similar analysis but for Northeastern US. Here, in the observed seasonal cycle, we see a small decrease in 

springtime ozone (~48 ppb to ~45 ppb), a  large decrease in summertime (~48 ppb to ~40 ppb), and an increase in wintertime 

ozone (28-32 ppb to 30-36 ppb). For the initial 5-year period, the model overestimates the summertime peak by a large margin 

(~10 ppb) and underestimates the wintertime levels by 4-8 ppb. This is likely due to high anthropogenic NOX over this region  

in the HTAPv3 emissions dataset and has also been discussed in the model evaluation section (see section 3.1 and Figure 3c). 585 

The model captures the seasonal cycle for the final 5-year period much better over the winter and spring seasons but the 

summertime overestimation remains. However, the model is able to capture the directional changes in the seasonal cycle: small 

decrease in spring, large decrease in summer and an increase in winter. These changes can be understood in terms of decreasing 

summertime local NOX contributions and increasing wintertime and springtime foreign NOX contributions (Figs 8b and e). 

From a VOC point of view, the summertime drop is primarily due to a large drop in local AVOC contributions and to a lesser 590 

extent in natural VOC contributions, while the wintertime increase is due to an increase in methane contributions. We have 

performed a similar analysis for other receptor regions within North America which can be found in the supplement (Figures 

S3-S5). Our results are in agreement with observational studies which have also reported a decline in summer peaks and a shift 

in peak ozone to the springtime in North America (Bloomer et al., 2010; Parrish  et al., 2013; Cooper et al., 2014). For the first 

time, through our tagging technique, we are able to explain these changes in terms of NOX and VOC source contributions from 595 

local and remote regions. It is crucial to note the increased share of foreign NOX contributions to springtime ozone which 

coincides with the growing season and highlights the increasing impact of transported ozone on crop yields (Dingenen et al., 

2009; Avnery et al., 2011). 
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3.3 Ozone in Europe: 600 

Here, we present the observed and model-derived results for different sub-regions in Europe: Western Europe, Southern 

Europe, Central & Eastern Europe, and Southeastern Europe (see Figure 2 for geographical extents). We first present trends 

in PSO along with their NOX and VOC contributions and then show the 19-year average seasonal cycle of MDA8 O3 and its 

source contributions, and finally present changes in the seasonal cycle between initial and the final 5 -years. Europe has 

undergone significant reductions in NOX emissions over the past decades (see Figure 3), particularly in Western and Southern 605 

Europe. However, some countries in Central and Eastern Europe have not yet achieved the same level of reductions, suggesting 

potential variability in ozone trends across the continent. This raises impo rtant questions about how these uneven NOX 

reductions might influence ozone formation dynamics in different sub-regions, which we will explore in detail in this section 

using our tagged model results. 

 610 

3.3.1 Peak Season Ozone in Europe: Trends and Source Contributions: 

Figure 9 shows the observed and modelled PSO in different regions of Europe along with the corresponding NOX and VOC 

source contributions. We note that despite the large decline in European anthropogenic NOX and NMVOC emissions (Figure 

2) over the two decades, the observed PSO values exceed the WHO guidelines in all regions. 

 615 

Figures 9 a and b show the observed and modelled PSO for Western Europe along with its NOX and VOC contributions 

respectively. The model does a near-perfect job of reproducing the magnitude and trend of the observed PSO (see Table S1 

for quantitative trends). It also captures the high PSO for 2003 and 2006 which were associated with summertime heatwaves 

in Europe (Vautard et al., 2005; Solberg et al., 2008; Struzewska & Kaminski, 2008). We do not see any significant trends in 

the PSO for this region over the 19-year period. There is a decline in the local NOX contribution (-0.26 ppb/yr, (1.0)) but it is 620 

partially compensated by small increasing trends in foreign NOX (0.06 ppb/yr, (0.99)) and ship NOX (0.12 ppb/yr, (1.0)) 

contributions. These results demonstrate that the local NOX emission controls did not translate into the local air quality 

improvement in this region, at least in terms of the policy-relevant PSO metric. Although, other studies have highlighted that 

summertime ozone extremes have been reduced in recent decades (Yan et al., 2018; Crespo -Miguel et al., 2024). From the 

VOC perspective, methane is the largest contributor at around 18 ppb with an increasing trend (0.08 ppb/yr, (1.0)) which is 625 

followed by natural VOC, stratosphere, foreign AVOC and local AVOC contributions in that order, all contributing between 

4-10 ppb. The small declining trend in PSO is mainly captured by a declining trend in the local AVOC contributions (-0.16 

ppb/yr, (1.0)) while other VOC contributions show modest trends (see Table S1 for details).  

 

Figures 9 c and d show the observed and model-derived PSO for Southern Europe along with its NOX and VOC contributions 630 

respectively. The model captures the magnitude and trend of PSO extremely well. Here, we see a gentle decline in observed 
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PSO (0.04 ppb/yr, (0.52)) from ~50 ppb in early years to ~46 ppb in 2016, albeit  with an uptick in the final two years. The 

model captures the trend well for a large part of the time series but overestimates the overall decline (-0.17 ppb/yr, (0.98)). 

This declining trend is driven by a noticeable decline in local NOX contribution (-0.51 ppb/yr, (1.0)) partially compensated by 

increasing trends in foreign NOX (0.07 ppb/yr, (0.98)) and ship NOX (0.16 ppb/yr, (1.0)) contributions. Despite the decline, 635 

local NOX remains the largest contributor throughout the year, at 25 ppb in 2000 and 19  ppb in 2018. The large gap between 

the local NOX and foreign NOX contributions in early years has narrowed in recent years - and foreign anthropogenic NOX 

contributions are becoming an important source of transported ozone in this region. In terms of VOC contributions, methane 

and natural VOC remain the largest contributors. The variability in the PSO time series corresponds with the variability in 

local NOX contributions in the left panel and natural VOC contributions in the right panel, suggesting their interaction. From 640 

a VOC perspective, the declining PSO trend is mainly associated with declining local AVOC contributions (-0.22 ppb/yr, 

(1.0)).  

 

For Central & Eastern Europe (Figures 9 e and f), we see a noticeable negative trend of -0.43 ppb/yr (1.0) in the observed PSO. 

The model captures the PSO magnitude well but with a small underestimation for the early years and overestimation for the 645 

later years, which leads to a smaller negative modelled trend of -0.04 ppb/yr (0.47). Similar to Southern Europe, local NOX 

contributions are the largest contributor but with a consistent decline (-0.27 ppb/yr, (1.0)) while foreign NOX contributions are 

increasing (0.1 ppb/yr, (0.99)). Other contributions remain small. The VOC contributions are very similar to those se en in 

Southern Europe where the declining PSO trend is primarily captured by a decline in local AVOC contributions (-0.18 ppb/yr, 

(1.0)) which is consistent with both decreasing emissions of AVOC and decreasing availability of NOX for ozone production 650 

(Figure 2). 

 

Finally, Figures 9 g and h show PSO time series for Southeastern Europe along with its NOX and VOC contributions 

respectively. Here, we see a large model-observations gap for the early years which narrows and closes towards the later years. 

There is considerable year-to-year variability in the observations which is not reproduced in the modelled results. This could 655 

be due to the complicated nature of model sampling from TOAR-valid grid cells which are changing from year-to-year while 

the number of stations within a grid cell are also changing rapidly in the region. We have explored the TOAR station -network 

for each of the receptor regions and plotted the number of valid stations per region as a time series in Figure S8. We see that 

Southeastern Europe only had 1-3 rural stations in the initial years which increased to up to 20 stations towards the end. Such 

a rapidly changing station network, especially when happening within a model grid cell, can complicate the model-observation 660 

agreement and interpretation. Due to these sampling issues, we do not overinterpret the results for this region. Instead, we refer 

the reader to Lin et al., (2015) for a discussion on the dependence of the modelled ozone trends on the co -sampling with 

observations. 
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3.3.2 Ozone seasonal cycle in Europe: Trends and Source Contributions: 665 

Figure 10 shows the 19-year average seasonal cycle of MDA8 O3 for different sub-regions of Europe along with its NOX and 

VOC source contributions. The observed seasonal cycle is distinct in each  receptor region: we see a major spring peak in 

Western Europe, a sustained spring-to-summer peak in Southern Europe and Central & Eastern Europe, and a major summer 

peak in Southeastern Europe. The model reproduces the average seasonal cycles in these regions extremely well, particularly 

in Western and Southern Europe. The model underestimates the MDA8 O3 for Central & Eastern Europe in winter months and 670 

systematically overestimates the full seasonal cycle for Southeastern Europe.  

 

For all regions, we see that, in the left panels, the local anthropogenic NOX and natural NOX contributions peak in the 

summertime, along with methane and natural VOC contributions in the right panels. The foreign NOX and stratospheric 

contributions peak in the springtime. In all sub-regions, the springtime peak is composed of a peaking contribution from foreign 675 

NOX and stratosphere along with an increasing local NOX contribution. Methane remains the highest contributor throughout 

the year in terms of VOC contributions for all sub-regions. The lack of a summer peak for Western Europe is explained by 

lower local NOX contributions as compared to other regions. For all regions, the wintertime MDA8 O3 levels are sustained by 

high foreign NOX contributions, mostly greater than 10 ppb. Ship NOX contribution remains low, but can reach up to 5 ppb in 

spring and summer. Foreign AVOC contributions remain low, below 10 ppb, much lower than the foreign NOX contributions, 680 

pointing to their low interaction and potentially a higher interaction of foreign  NOX with natural VOC and methane globally.  

 

3.3.3 Changes in seasonal cycle of ozone in Europe: Role of Local vs Remote contributions 

A long-term average of the ozone seasonal cycle as shown in the previous section provides us with a general sense of mon thly 

contributions from various sources but it may conceal the (possibly large) year-to-year variations within the cycle. Therefore, 685 

in this section we compare the early 5-year average seasonal cycle with the recent 5-year seasonal cycle to understand the 

changing shape of the cycle and its contributing factors in terms of NOX and VOC sources. Figure 11 presents the observed 

and modelled 5-year averaged MDA8 O3 seasonal cycles for the initial (2000-2004) and final (2014-2018) periods along with 

their NOX and VOC contributions for Western Europe. The model captures both the spring and summer peaks and their changes 

in this region extremely well. Between these initial and final periods, we see a significant drop in the summer peak (from 44 690 

ppb to 40 ppb) along with an increase in the wintertime ozone levels. The summertime drop is due to a drop in local NOX 

contributions while the wintertime increase is due to an increase in foreign NOX contributions (Figs 11b and e). It is noteworthy 

that the summertime drop in the local NOX contributions is larger than the overall drop in summertime PSO. For example, for 

the month of August, the observed PSO dropped by 3.86 ppb between the two periods. This drop is 4.63 ppb in the model. 

However, the drop in the local NOX contributions is larger (7.06 ppb) and there is also a drop in foreign NOX contribution 695 

(0.25 ppb). These combined decreases in local and foreign NOX contributions (7.31 ppb) are offset by increases in contributions 

from shipping NOX (1.65 ppb), natural NOX (0.96 ppb) and stratosphere (0.06 ppb) such that the overall drop in PSO in August 

is smaller. While the increase in shipping NOX contribution is consistent with an increase in the northern hemispheric shipping 
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NOX emissions (Figure 2e), there is no significant increase in natural NOX between the two periods, which shows the increasing 

ozone producing efficiency of natural NOX when overall NOX emissions are decreasing. In terms of VOCs, the summertime 700 

drop is associated with a drop in local AVOC contributions and the wintertime increase is primarily due to increased share of 

methane contribution as well as some foreign AVOC contribution.   

 

Figure 12 presents the changes in the MDA8 O3 seasonal cycle for Southern Europe. The model reproduces the seasonal cycles 

for both the initial and final periods extremely well. We broadly see a flattening of the ozone seasonal cycle in this region  705 

between the two periods, with the summertime peak coming down (due to reduced local NOX contribution partially offset by 

increases in natural and ship NOX contributions) and wintertime levels rising due to increase in wintertime foreign NOX 

contributions, same as in Western Europe. From a VOC perspective, the summertime drop is associated with a decrease in 

local AVOC contributions and a small drop in methane contributions. The wintertime increase is associated with an increase 

in methane and foreign AVOC contributions but also stratospheric intrusion. 710 

 

4. Conclusion, Limitations and Future Outlook: 

In this study we explain the trends and changes in the seasonal cycle of surface ozone in Europe and North America through 

the use of an ozone tagging system in a global chemical transport model for the period 2000 -2018. While both regions have 

experienced rapid reductions in locally-emitted ozone precursors in recent decades, we note that the Peak Season Ozone (PSO) 715 

in both regions exceeds the WHO guidelines for the entire study period. 

 

Our model is generally in good agreement with ground observations from rural stations in the newly -developed TOAR-II 

database, allowing us to attribute the observed trends in terms of the changing contributions from local and foreign emission  

sources of NOX and VOC. While anthropogenic NMVOC emissions contribute a relatively small fraction of the total PSO, 720 

anthropogenic NOX emissions have a much stronger influence. The decreasing trend in NOX emissions in both North America 

and Europe leads to a lower fraction of the PSO attributable to these local NOX emissions towards the recent years, however 

the total modelled decrease in PSO in both regions is partially offset by increasing contributions from natural NOX, foreign 

anthropogenic NOX, and international shipping. 

 725 

While the increasing trend in ozone attributable to international shipping is consistent with  increasing emissions from this 

sector, the increasing contribution of natural NOX emissions we find in our study, especially during the summertime,  is most 

likely due to the increasing ozone productivity of these emissions. The decreases in local NOX emissions in both regions lead 

to strong reductions in summertime ozone, but have a smaller effect in the springtime, when long-range transport of ozone 

produced from foreign anthropogenic NOX emissions is more important. All regions show a modest increasing trend in the 730 
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foreign anthropogenic NOX contribution to the peak season ozone over the study period. Especially in the western sub -regions 

of Europe and North America, the foreign anthropogenic NOX contribution to PSO has become comparable in magnitude to 

the local NOX contribution. 

 

Due to the nature of our ozone tagging system, we perform two separate source attributions, one for NOX emissions, and 735 

another for VOC emissions. When attributing ozone to VOC emissions, we note the strong contribution of BVOC emissions 

to the summertime peak ozone, which is clearly linked with the strong contribution of local anthropogenic NOX emissions to 

summertime ozone. In all of the sub-regions in our study except for the eastern parts of the United States, the contribution of 

methane to ozone is greater than that of BVOC. While global methane concentrations have risen from 1787 ppb to 1875 ppb 

during our study period (an increase of about 5%), this has only led to a modest increasing trend in methane contributions to 740 

PSO in Europe. In all regions of the US except NW US, the methane contribution to PSO has slightly decreased over this time. 

This is consistent with the large reductions in local NOX emissions, leading to a lower efficiency of ozone production during 

methane oxidation over both regions.  

 

While our ozone source attribution is capable of determining the contributions of different local and remote emission sources  745 

to the ozone as simulated in our model, it is only of limited usefulness in predicting the response of ozone levels to any future 

emission reductions. For such an assessment, it is necessary to perform model sensitivity studies reflecting the actual polic y 

interventions aimed at reducing ozone. Studies like ours can however identify the major contributing emission sources. We 

have shown here that local anthropogenic NOX emissions still contribute significantly to PSO in both Europe and North 

America. As an emission source which can be controlled with policy interventions, future policy should continue to target 750 

these emissions. Given the strong role of methane as an ozone precursor, as noted in this study and consistent with previous 

work, targeted reductions of methane along with other anthropogenic NMVOC can also be expected to contribute to the 

reductions in PSO needed to comply with the WHO guideline value. 
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Figure 1: HTAP Tier 1 regions which form the basis for source regions NOX and VOC tagging. See Table1 for more details on 

tagged regions. 

 

https://doi.org/10.5194/egusphere-2024-3752
Preprint. Discussion started: 13 December 2024
c© Author(s) 2024. CC BY 4.0 License.



40 

 

 

Figure 2: Time-series of NOX- (left panels) and VOC-emissions (right panels) for North America (a, b), and Europe (c, d) source 1280 

regions along with Northern Hemispheric totals (e, f) and global totals of lightning NOX and background CH4 concentrations over 

the study period. 
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Figure 3: HTAP Tier 2 receptor regions. 
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Figure 4: Time series of observed versus simulated monthly mean MDA8 O3 along with mean bias and correlation coefficients for 1295 

various receptor regions. Only rural stations data were utilized from the TOAR database and model output was fetched only for 

those grid cells where observations were available. 
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Figure 5: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in North America for 2000-1300 

2018 and its source contributions in terms of NOX sources (left panels) and VOC sources (right panels). Model output was sampled 

from TOAR-valid grid cells only. 
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 1305 

 

Figure 6: Month-centered average MDA8 O3 over the 2000-2018 period for various receptor regions in North America and its source 

contributions in terms of NOX sources (left panels) and VOC sources (right panels). Model output was sampled from TOAR-valid 

grid cells only. 
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Figure 7: 5-year average MDA8 O3 seasonal cycles for Northwestern US for 2000-2004 (a) and 2014-2018 (b) along with their NOX 

(b,e) and VOC contributions (c,f).  
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Figure 8: 5-year average MDA8 O3 seasonal cycles for Northeastern US for 2000-2004 (a) and 2014-2018 (b) along with their NOX 

(b,e) and VOC contributions (c,f).  1325 
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Figure 9: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in Europe for 2000-2018 and 

its source contributions in terms of NOX sources (left panels) and VOC sources (right panels). Model output was sampled from 

TOAR-valid grid cells only. 1340 
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 1345 

Figure 10: Month-centered average MDA8 O3 over the 2000-2018 period for various receptor regions in Europe and its source 

contributions in terms of NOX sources (left panels) and VOC sources (right panels). Model output was sampled from TOAR-valid 

grid cells only. 
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Figure 11: 5-year average MDA8 O3 seasonal cycles for Western Europe for 2000-2004 (a) and 2014-2018 (b) along with their NOX 

(b,e) and VOC contributions (c,f).  
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 1365 

Figure 12: 5-year average MDA8 O3 seasonal cycles for Southern Europe for 2000-2004 (a) and 2014-2018 (b) along with their NOX 

(b,e) and VOC contributions (c,f).  
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Table 1: Various emission tags for NOX- and VOC-tagged simulations. The geographic definition of the land-based tags corresponds 

to the HTAP tier 1 regions as shown in Figure 1. For NOX-tagging, “Rest of the World” corresponds to the tier 1 regions of South 

America, Oceania, and Middle & Southern Africa combined. For VOC-tagging, the regions: Arctic, Central Asia, Mexico & Central 

America, North Africa, and Southeast Asia were also combined into the “Rest of the World”. The regional oceanic tags are only  1380 

applicable for NOX-tagging and their geographic definitions can be seen in Figure 3. For VOC-tagging we use a single oceanic tag 

representing NMVOCs from shipping and natural DMS emissions. Lightning tag is only applicable for NOX-tagging. 

 

Regional land-based Tags Regional oceanic tags Global sector/process-based tags 

Arctic North Atlantic Aircraft 

Central Asia Eastern North Atlantic Biogenic 

East Asia North American East-Coastal zone Biomass Burning 

Europe North American West-Coastal zone Lightning 

Mexico & Central America North Pacific Stratosphere 

Middle East Baltic and North Seas  

North Africa Hudson Bay  

North America Indian Ocean  

Russia-Belarus-Ukraine Mediterranean, Black, and Caspian 

Seas 

 

South Asia Southern Hemisphere Oceans  

Southeast Asia   

Rest of the World   
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