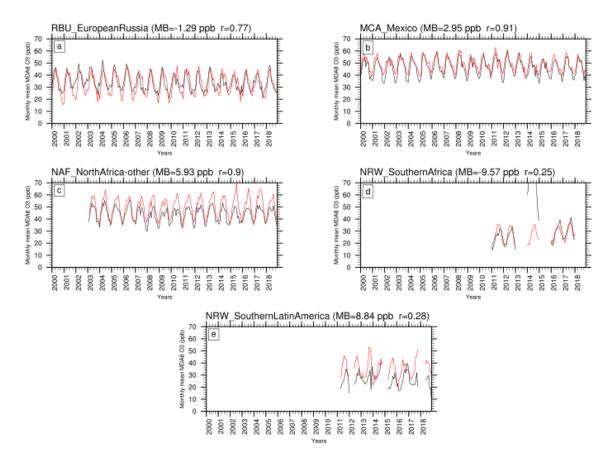
SUPPLEMENTARY MATERIAL FOR:

Explaining trends and changing seasonal cycles of surface ozone in North America and Europe over the 2000-2018 period: A global modelling study with NO_X and VOC tagging


5

Tabish Ansari¹, Aditya Nalam^{1,2}, Aurelia Lupaşcu³, Carsten Hinz⁴, Simon Grasse⁴, and Tim Butler^{1,2}

¹Research Institute for Sustainability - Helmholtz Centre Potsdam (RIFS), Potsdam, 14467, Germany ²Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany

³European Center for Medium Range Weather Forecasts (ECMWF), Bonn, 53175, Germany ⁴Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

Correspondence to: Tabish Ansari (tabish.ansari@rifs-potsdam.de)

15

Figure S1: Time series of observed versus simulated monthly mean MDA8 O₃ for various receptor regions. Only rural stations data were utilized from the TOAR database and model output was fetched only for those gridcells where observations were available.

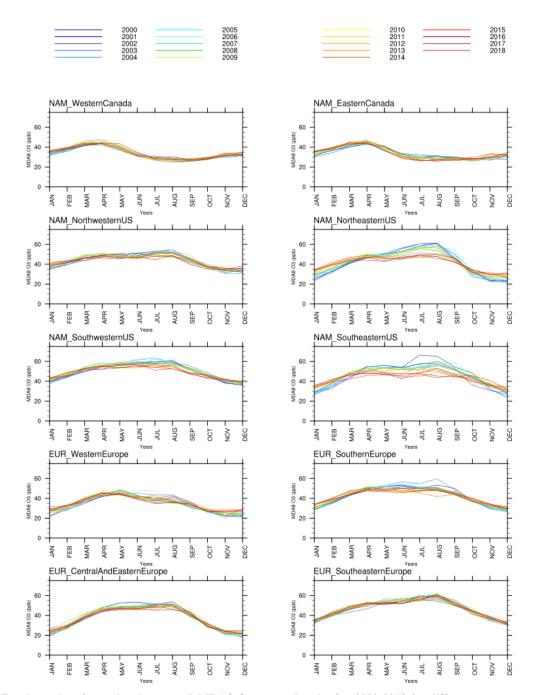


Figure S2: Envelope plots for regional averaged MDA8 O₃ seasonal cycles for 2000-2018 for different receptor regions in North America and Europe. Model output was sampled from all gridcells within the geographic definition of each receptor region.

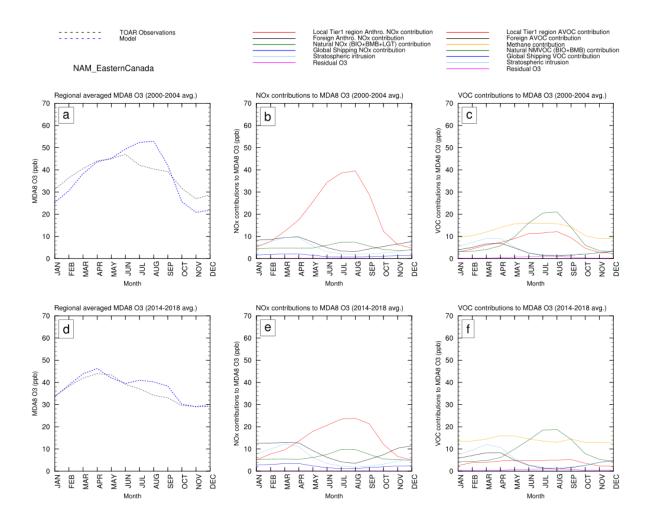


Figure S3: 5-year average MDA8 O₃ seasonal cycles for Eastern Canada for 2000-2004 (a) and 2014-2018 (b) along with their NO_X (b,e) and VOC contributions (c,f).

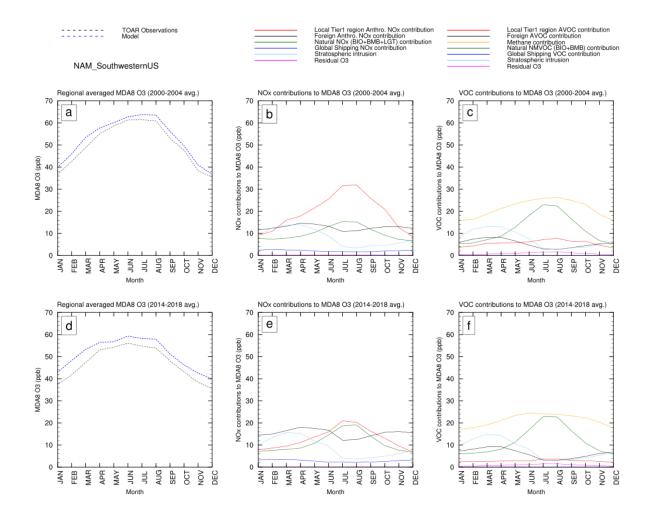


Figure S4: 5-year average MDA8 O₃ seasonal cycles for Southwestern US for 2000-2004 (a) and 2014-2018 (b) along with their NO_X (b,e) and VOC contributions (c,f).

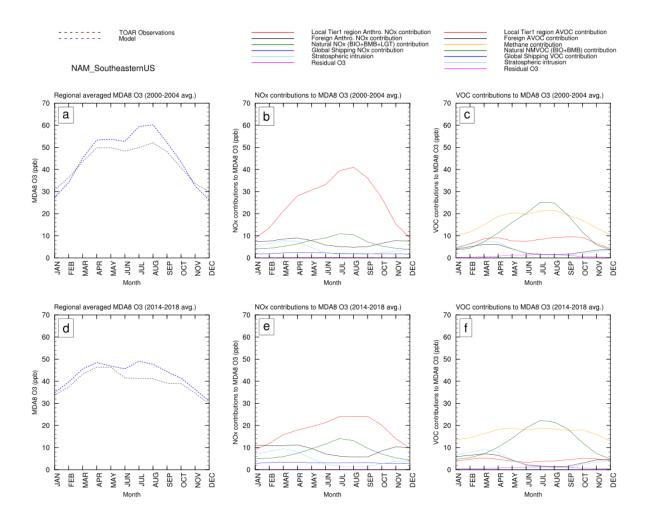


Figure S5: 5-year average MDA8 O₃ seasonal cycles for Southeastern US for 2000-2004 (a) and 2014-2018 (b) along with their NO_X (b,e) and VOC contributions (c,f).

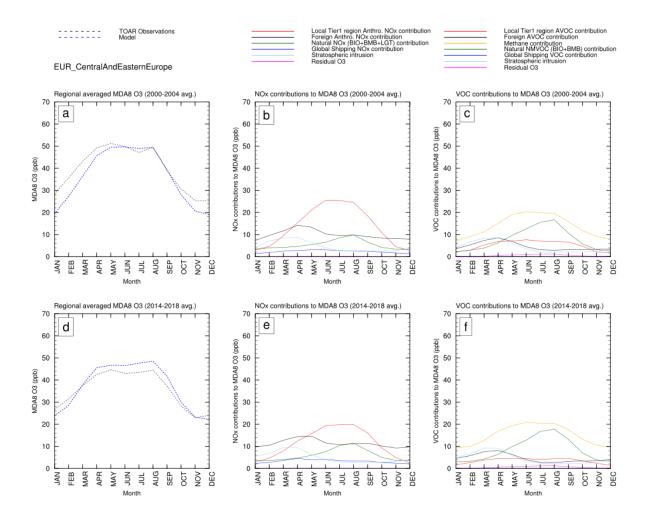
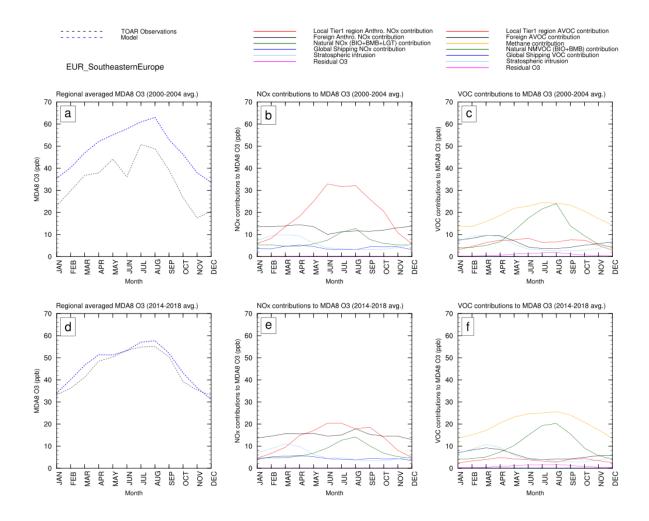



Figure S6: 5-year average MDA8 O_3 seasonal cycles for Central & Eastern Europe for 2000-2004 (a) and 2014-2018 (b) along with their NO_X (b,e) and VOC contributions (c,f).

45 Figure S7: 5-year average MDA8 O₃ seasonal cycles for Southeastern Europe for 2000-2004 (a) and 2014-2018 (b) along with their NO_X (b,e) and VOC contributions (c,f).

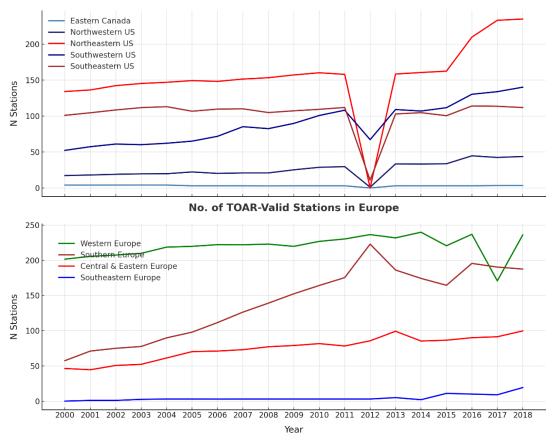


Figure S8: Average number of TOAR rural stations available per year within each receptor region for North America (top) and Europe (bottom) for the 2000-2018 period.

70 Table S1: Thiel-Sen trends in ppb/yr and their significance (shown in brackets) for Peak Season Ozone and its tagged source contributions for various receptor regions.

Region	TOAR	Model	Local Ant. NOx	Foreig n Ant. NOx	Natur al NOx	Ship NOx	Local AVO C	Foreig n AVO C	Metha ne	natura l VOC	Ship AVO C	Strat.
Eastern	-0.24	-0.35	-0.75	0.2(1)	0.06	0.08	-0.32	0.09	0.02	-0.17	0	0.12
Canada	(1)	(0.99)	(1)		(0.97)	(1)	(1)	(0.99)	(0.47)	(0.89)	(0.33)	(0.99)
Northwes	-0.11	-0.11	-0.38	0.12	0.07	0.04	-0.15	0.02	0.03	-0.03	0(1)	0.02
tern US	(0.82)	(0.97)	(1)	(1)	(0.95)	(1)	(1)	(0.91)	(0.97)	(0.97)		(0.38)
Southwes tern US	-0.34 (1)	-0.25 (1)	-0.71 (1)	0.2(1)	0.05 (0.91)	0.05 (1)	-0.25 (1)	0.11 (1)	-0.09 (1)	-0.12 (0.79)	0(1)	0.13 (0.99)
Northeast	-0.43	-0.52	-0.94	0.17	0.13	0.06	-0.37	0.08	-0.11	-0.25	-0	0.12
ern US	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(0.99)	(1)	(0.97)	(0.92)	(0.99)
Southeast	-0.47	-0.6	-1.07	0.17	0.11	0.08	-0.33	0.09	-0.16	-0.33	0	0.14
ern US	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(0.99)	(0.94)	(1)
Western	-0.13	-0.01	-0.26	0.06	0.06	0.12	-0.16	-0	0.08	0.07	0	0.04
Europe	(0.96)	(0.22)	(1)	(0.99)	(1)	(1)	(1)	(0.47)	(1)	(0.97)	(0.56)	(0.82)
Southern	-0.04	-0.17	-0.51	0.07	0.06	0.16	-0.22	-0.02	0.01	0.01	0	0.04
Europe	(0.52)	(0.98)	(1)	(0.98)	(0.94)	(1)	(1)	(0.77)	(0.11)	(0.11)	(0.88)	(0.67)
Central & Eastern Europe	-0.43 (1)	-0.04 (0.47)	-0.27 (1)	0.1 (0.99)	0.07 (1)	0.07 (1)	-0.18 (1)	-0.02 (0.94)	0.1 (1)	0.09 (0.92)	0 (0.78)	0.01 (0.17)
Southeast ern Europe	0.98 (0.99)	0.01 (0)	-0.57 (1)	0.29 (1)	0.22 (1)	0.05 (0.99)	-0.24 (1)	-0.02 (0.67)	0.23 (0.97)	0.01 (0)	0 (0.86)	0.06 (0.47)