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Abstract. Surface ozone, with its long enough lifetime, can travel far from its precursor emissions, affecting human health,
vegetation, and ecosystems on an intercontinental scale. Recent decades have seen significant shifts in ozone precursor
emissions: reductions in North America and Europe, increases in Asia, and a steady global rise in methane. Observations from
North America and Europe show declining ozone trends, a flattened seasonal cycle, a shift in peak ozone from summer to
spring, and increasing wintertime levels. To explain these changes, we use TOAST 1.0, a novel ozone tagging technique
implemented in the global atmospheric model CAM4-Chem which attributes ozone to its precursor emissions fully by NOx or
VOC+CO+CH4 sources and perform multi-decadal model simulations for 2000-2018. Model-simulated maximum daily 8h
ozone (MDAS8 Os) agrees well with rural observations from the TOAR-II database. Our analysis reveals that declining local
NOXx contributions to peak-season ozone (PSO) in North America and Europe are offset by rising contributions from natural
NOXx (due to increased O3 production), and foreign anthropogenic- and international shipping NOx due to increased emissions.
Transported ozone dominates during spring. Methane is the largest VOC contributor to PSO, while natural NMVOCs become
more important in summer. Contributions from anthropogenic NMVOCs remain smaller than those from anthropogenic NOx.
Despite rising global methane levels, its contribution to PSO in North America and Europe has declined due to reductions in
local NOx emissions. Our results highlight the evolving drivers of surface 0zone and emphasize the need for coordinated global

strategies that consider both regional emission trends and long-range pollutant transport.
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1 Introduction

Ozone near the Earth’s surface is primarily formed by the photodissociation of NO2 molecules by sunlight - the NO, molecule
breaks down and furnishes atomic oxygen which combines with molecular oxygen in the air to form ozone. The naturally
occurring NO; concentration in the troposphere is low and cannot alone explain the high ozone observed in the troposphere
(Jacobson, 2005; Seinfeld & Pandis, 2016). However, in the modern era especially during the last half of the 20th century,
increased industrialization and motorization of society has led to increasing emissions of nitric oxide (NO) (Logan 1983;
Beaton et al., 1991; Calvert et al., 1993). NO can interact with peroxy radicals, chiefly produced from naturally and
anthropogenically emitted non-methane volatile organic compounds (NMVOCs), carbon monoxide (CO), and methane (CHa)
in the presence of the hydroxyl radical (OH) to form NO which can then produce ozone through the pathway described above
(Atkinson 1990, 1994, 1997; Seinfeld & Pandis, 2016). Unsurprisingly, with increasing anthropogenic activities emitting NO,
CO, NMVOCs and CHy., the ozone concentrations in the troposphere and at the surface have risen substantially as compared
to the pre-industrial or early-industrial times (Logan 1985; Crutzen 1988; Young et al., 2013; UNEP and CCAC, 2021).

Ozone is a highly reactive pollutant that harms human health, vegetation, and the environment due to its oxidative properties.
In humans, it causes respiratory inflammation, exacerbates chronic illnesses, and impairs lung function by generating reactive
oxygen species that damage cellular structures (Lippmann 1989; Chen et al., 2007; Devlin et al., 1991; Brook et al., 2004) due
to long term exposure as well as short term exposure at high concentrations (Fleming et al., 2018). Ozone disrupts
photosynthesis in plants and damages tissues, reducing crop yields and altering ecosystems (Ashmore 2005; Felzer et al., 2007;
Grulke & Heath 2019; Cheesman et al., 2024); a recent assessment by Mills et al. (2018) shows persistent high levels of ozone
adversely affecting various types of crops and vegetation in northern hemispheric regions. Moreover, it contributes to climate
change by diminishing the carbon sequestration ability of vegetation and acting as a greenhouse gas (Oeschger & Dutsch 1989;
Sitch et al, 2007; Szopa et al., 2021). In light of these harmful effects, the World Health Organization (WHO) has set safe
standards for short-term and long-term human exposure to ozone: on any day, the maximum 8h average ozone concentration
(MDAS O3) which must not exceed 100 pugm (or ~51 ppb), and annually, the Peak Season Ozone (PSO), i.e., the maximum
value of the six-month running average of MDA8 O3, must not exceed 60 pugm- (or ~30.61 ppb) (WHO 2021).

In order to meet these safe health standards, various national governments - particularly in North America and Europe and
more recently in China - have acted to reduce their industrial and vehicular emissions by adopting cleaner fuel and technologies
and have successfully managed to bring down their national NOx and NMVOC emissions substantially (Goldberg et al., 2021;
Shaw & Heyst 2022; Crippa et al., 2023). However, these national efforts of emission reductions have not fully translated into
commensurate reductions in local 0zone concentrations and health impacts (Seltzer et al., 2020; Parrish et al., 2022). This is
due to the long-enough atmospheric lifetime of ozone which allows it to traverse intercontinental distances and affect the air

quality of regions far from the location of its chemical production or the location of the emission of its precursors. While the
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global average tropospheric lifetime of ozone is often cited as approximately 3-4 weeks, a figure largely influenced by more
rapid photochemical loss in warmer, humid tropical regions (e.g., Stevenson et al., 2006; Young et al., 2013), the effective
lifetime of ozone in air parcels transported within the cooler, drier free troposphere at northern midlatitudes is considerably
longer, on the order of several months (e.g., Jacob, 1999; Wang and Jacob, 1998; Fiore et al., 2009). This extended lifetime in
the primary transport pathway for intercontinental pollution allows ozone to traverse vast distances and enables the northern
mid-latitude free troposphere to act as a relatively well-mixed reservoir (Parrish et al., 2020). Moreover, Ssome 0zone precursors
(e.g., CO and less reactive NMVOCs) also possess atmospheric lifetimes sufficient for intercontinental transport, subsequently
contributing to ozone formation in downwind regions far from their original emission sources. Therefore, air quality benefits
in regions with declining emissions can be offset by an increasing share of transported ozone from far away regions where
emissions are on the rise. Many previous observational-based studies have reported declining peak-ozone trends in North
America towards the final decades of the 20th century and the beginning of the 21st century (Wolffe et al., 2001; Cooper et
al., 2014; Cooper et al., 2015; Chang et al., 2017; Fleming et al., 2018; Cooper et al., 2020). However, some of these studies
and many others - through novel statistical decomposition of observational data - have also pointed out increasing trends in
wintertime and background ozone concentrations at many sites in North America, particularly at the US west coast (Jaffe et
al., 2003; Cooper et al., 2010; Simon et al., 2014; Parris & Ennis, 2019; Parrish et al., 2022; Christiansen et al., 2022). Such
increases in ozone have also been identified throughout the background troposphere at northern midlatitudes including in the
free troposphere, with a peak attained in the first decade of the 2000s (e.g., Parrish et al., 2020; Derwent et al., 2024). Some of
these observational studies (e.g., Jaffe et al., 2003) have further correlated the increasing background ozone in western US to
increasing emissions in Asia while others (e.g., Cooper et al., 2010) have also employed air mass back trajectory analysis to
support their claims. Jaffe et al., (2018) performed a comprehensive knowledge assessment of background ozone in the US
and emphasized its growing relative importance and advocated for, among other things, a more strategic observational network
and new process-based modelling studies to better quantify background ozone in the US to support informed clean air policies.
A number of observational studies have also reported changes in the ozone seasonal cycle in North America, with shifting
peaks from summer to springtime (Bloomer et al., 2010; Parrish et al., 2013; Cooper et al., 2014), a reversal of the spring-to-
summer shift in peak ozone during mid-twentieth century which was reported in earlier studies (e.g., Logan 1985) when
anthropogenic emissions were increasing in North America. Similarly, for Europe, many studies have observed declining
ozone trends since 2000 (Cooper et al., 2014; Chang et al., 2017; Fleming et al., 2018; EEA report 2020; Sicard 2021). For
Europe too, there have been attempts of statistical decomposition and analyses of observational data in innovative ways to
highlight the increasing share of intercontinental transport and the consequent changes in ozone seasonal cycle in recent
decades (Carslaw 2005; Parrish et al., 2013; Derwent & Parrish, 2022).

Reliable, long-term, and publicly accessible monitoring stations across different continents form the backbone of an
international consensus on ozone distributions, trends, and health impacts on various populations. These observational

networks provide essential data for advanced statistical analyses, which can estimate both transported and locally produced
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ozone (as seen in many observational studies mentioned earlier). However, such statistical interpretations can be subject to
dispute and must be corroborated by well-evaluated atmospheric chemical transport models which simulate atmospheric
transport processes explicitly. Together, observational analyses and model-generated results can aid the theoretical
development and improvement of simpler conceptual models that capture the essence of the most salient physical and chemical

processes that control observed ozone abundances (Derwent et al., 2024).

The hemispheric-scale transport of "foreign" ozone is a phenomenon peculiar to longer-lived pollutants such as ozone. While
short-lived pollutants like PM2.5, which are regional in nature, can be largely controlled through domestic policies, effective
ozone mitigation requires international engagement and cooperation. Developing such cooperation requires a high-trust
international dialogue, underpinned by confident estimates of ozone transport between regions on which there is international
consensus. These estimates are vital to implementing effective policies in a world where "foreign" ozone contributions are

significant.

Atmospheric chemical transport models simulate the emission, chemical production and loss, transport, and removal of various
coupled species within the atmosphere and allow us to assess theory against observational evidence. Atmospheric models can
also enable us to quantify various source contributions to concentrations of a particular chemical species in a given location or
region. This is achieved by using, broadly, one of the two methods - perturbation or tagging. In the perturbation method,
several runs are conducted where certain emission sources are removed or reduced and the resulting concentration fields are
subtracted from the baseline run with full emissions to yield the contribution of the removed source. In the tagging method,
generally a single simulation yields source contributions from different tagged regions or emission sectors. The contributions
derived from the perturbation method are not the true contributions operating under baseline conditions. Instead, they represent
the response of all other sources to the removal of a particular source, which may be different from their contribution when all
sources are present (Jonson et al., 2006; Burr & Zhang, 2011; Wild et al., 2012; Ansari et al., 2021). Therefore, perturbation
experiments are best-suited to evaluate air quality policy interventions, when certain emission sources are actually removed
(or reduced) or are planned to be removed in the real-world as part of policy. On the other hand, tagging techniques, which
track the fate of emissions from designated sources as they undergo transport and chemical transformation within the
unperturbed baseline atmosphere, allow us to assess the contribution of various sources under a baseline scenario when no
policy intervention has been made. We refer the reader to Grewe et al. (2010) for a first-principles discussion on perturbation

versus tagging methods and to Butler et al. (2018) for a review of different tagging techniques.

With growing observational evidence of the increasing importance of “foreign” transported ozone, there have been many
attempts at confirming and quantifying these contributions using both perturbation-based and tagging-based model simulations
for both North American and European receptor regions in recent years. For example, Reidmiller et al. (2009) used results

from an ensemble of 16 models which conducted several regional perturbations for the year 2001, to report that East Asian
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emissions are the largest foreign contributor to springtime ozone in western US while European emissions are the largest
foreign contributor in eastern US. Lin et al., (2015) disentangled the role of meteorology from changing global emissions in
driving the ozone trends in the US by performing sensitivity simulations with fixed emissions over their simulation period of
1995-2008. Strode et al. (2015) conducted a perturbation experiment where they only allowed domestic US emissions to vary
over time but keep the remaining global emissions fixed at an initial year to better quantify the effect of changing foreign
emissions on ozone in the US. Similarly, Lin et al. (2017) performed global model simulations with several perturbation
experiments where emissions were fixed at the initial year over Asia and where US emissions were zeroed-out. They used the
difference between the simulated concentrations in their perturbation and base simulations to quantify the influence of local
and foreign emission changes on the ozone concentrations in the US. Mathur et al. (2022) calculated emission source
sensitivities of different source regions for the year 2006 using a sensitivity-enabled hemispheric model and applied these
sensitivities to multi-decadal simulations to compute the influence of foreign emissions on North American ozone levels. They
found a declining influence of European emissions and an increasing influence of East- and Southeast Asian emissions along
with shipping emissions on the spring- and summertime ozone in North America. Derwent et al. (2015) used an emissions-
tagging method in a global Lagrangian model for the base year 1998 to explain the changing ozone seasonal cycle in Europe.
Garatachea et al. (2024) performed three-year long regional model simulations with emissions tagging to calculate the import
and export of ozone between European countries. Building on previous work, Grewe et al. (2017) introduced a new tagging
method which assigns different ozone precursors into a limited number of chemical ‘families’ and attributes ozone to multiple
sources within each family. Mertens et al. (2020) used this tagging technique at a regional scale to calculate the contribution

of regional transport emissions on surface ozone within Europe.

As pointed out earlier, perturbation-based estimates are more suited to evaluate an emissions policy intervention rather than to
quantify baseline contributions of various sources (Grewe et al., 2010, 2017; Mertens et al., 2020). Tagging techniques, in
calculating baseline source contributions, can also have limitations. For example, they often tag combined NOx and VOC
emissions over a tagged region or attribute 0zone to the geographic location of its chemical production rather than the original
location of its precursor emissions (as in Derwent et al., 2015) which can complicate policy-relevant interpretation of the model
results. Some tagging techniques (as in Garatachea et al., 2024) tag ozone only to its limiting precursor in each grid cell thereby
complicating detailed chemical interpretation of the computed contributions. While others (e.g., Grewe et al., 2017; Mertens
et al., 2020) attribute ozone molecules to tagged NOx and VOC depending on their abundances relative to the total amount of

NOx and VOC present in each grid cell at each time step.

In this study, we use the TOAST tagging technique as described in Butler et al. (2018) which separately tags NOx and NMVOC
emissions in two model simulations to provide separate NOx and VOC contributions from different regions and sectors to
simulated ozone in each model grid cell. The results from NOx- and VOC-tagging can be compared side-by-side and the total

contributions of all sources from both simulations add up to the same total baseline ozone. The TOAST tagging technique has
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been previously applied in both global (Butler et al., 2020; Li et al., 2023; Nalam et al., 2025) and regional models (Lupascu
& Butler, 2019; Lupascu et al., 2022; Romero-Alvarez 2022; Hu et al., 2024) to calculate tagged ozone contributions over US,

Europe, East Asia as well as the global troposphere.

We describe our model configuration, simulation design, input emissions data, and observations from the TOAR-I11 database
used for model evaluation in section 2. In section 3.1, we present region-specific model valuation for the policy-relevant MDA8
O3 metric. Key results on attribution of trends and seasonal cycle to NOx and VOC sources are presented in sections 3.2 for
North America and section 3.3 for Europe. We finally summarise our key findings along with potential future directions in

section 4.

2 Methodology
2.1 Model description, tagged emissions, and simulation design:

We perform two 20-year long (1999-2018) global model simulations, with 1999 used as a spin-up year, using a modified
version of the Community Atmosphere Model version 4 with chemistry (CAM4-Chem) which forms the atmospheric
component of the larger Community Earth System Model version 1.2.2 (CESMv1.2.2; Lamarque et al., 2012; Tilmes et al.,
2015). The gas-phase chemical mechanism employed in this study is based on the Model for Ozone and Related chemical
Tracers, version 4 (MOZART-4) (Emmons et al., 2010) which includes detailed Ox-NOx-HO4-CO-CHa chemistry, along with
the oxidation schemes for a range of non-methane volatile organic compounds (NMVOCs). Specifically, MOZART-4 treats
85 gas-phase species involved in 39 photolytic and 157 gas-phase reactions. NMVOCs are represented using a lumped species
approach, where, for example, alkanes larger than ethane are lumped as a single species (e.g., BIGALK for C4+ alkanes), and
alkenes larger than ethene are lumped (e.g., BIGENE), with specific treatments for aromatics, isoprene, and terpenes. The
oxidation products of these lumped and explicit VOCs are also tracked. Further details on the MOZART-4 chemical
mechanism, including the full list of species and reactions, can be found in Emmons et al. (2010). The two simulations are
identical in simulating the baseline chemical species including the total ozone mixing ratios, however, they are used to
separately tag region- or sector-based NOx and VOC ozone precursor emissions respectively which ultimately allow us to

break down ozone mixing ratios into their tagged NOx or VOC sources separately.

The model is run at a horizontal resolution of 1.9°x2.5°, a relatively coarse resolution which essentially allows us to compensate
for the added computational burden due to the introduction of many new chemical species in form of tags and to effectively
carry out two multi-decadal simulations. Vertically, the model was configured with 56 vertical levels with the top layer at
approximately 1.86 hPa and roughly the bottom half of the levels representing the troposphere. The model is run as an offline

chemical transport model with a chemical time-step of 30 min and is meteorologically driven by prescribed fields from the
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MERRAZ2 reanalysis (Molod et al., 2015) with no chemistry-meteorology feedback. The model is meteorologically nudged

towards the MERRAZ2 reanalysis fields (temperature, horizontal winds, and surface fluxes) by 10% every time step.

We use the recently released Hemispheric Transport of Air Pollution version 3 (HTAPv3) global emissions inventory (Crippa
et al., 2023) to supply the temporally varying anthropogenic emissions input for NOx, CO, SO,, NH3, OC, BC and NMVOCs
over 2000-2018 for our model runs. These include multiple sectors including several land-based sectors but also domestic and
international shipping as well as aircraft emissions. We break down the global aircraft emissions spatially to denote three
different flight phases based on EDGARG.1: landing & take-off, ascent & descent, and cruising. Based on this spatial
disaggregation of flight phases, we vertically redistribute the aircraft emissions at appropriate model levels for each flight
phase following the recommended vertical distribution in Vukovich & Eyth (2019). We also speciated the lumped NMVOCs
as provided by the HTAPv3 emissions dataset, first, into 25-categories of NMVOCs as defined by Huang et al. (2017). This
was done by using the regional (North America, Europe, Asia, and Other regions) speciation ratios specified for each sector
by Crippa et al. (2023) (see table here: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-
opendata/EDGAR/datasets/htap v3/NMVOC _speciation_ HTAP_v3.xls). After obtaining the 25-category region- and sector-

based NMVOC speciation, we further speciated them into the appropriate NMVOC species as required by the MOZART
chemical mechanism, which included merging as well as bifurcation of certain species. Biomass burning emissions are taken
from GFED-v4 inventory (van der Werf et al., 2010) which provide monthly emissions for boreal forest fires, tropical
deforestation and degradation, peat emissions, savanna, grassland and shrubland fires, temperate forest fires, and agricultural
waste burning. The biogenic NMVOC emissions are taken from CAMS-GLOB-BI0O-v3.0 dataset (Sindelarova et al., 2021),
while biogenic (soil) NOx is prescribed as in Tilmes et al. (2015). While we spatially interpolate the emissions from HT APv3
high-resolution (0.1°x0.1°) dataset to our coarser model resolution (1.9°%x2.5°), it leads to some land-based emissions at coastal
areas to spill into the ocean grid cells and vice versa, thereby creating a potential for misattribution of tagged emissions. To
correct this, we move these wrongly allocated land-based emissions over ocean grid cells back to the nearest land grid cells
(and similarly, wrongly moved oceanic emissions to coasts back into the ocean) to make sure that the emissions are allocated
to the correct region for the source attribution. We also ensure that small islands which are smaller than the model grid cell

area are preserved and their emissions are not wrongly attributed as oceanic or shipping emissions.

Our simulations do not resolve the full carbon cycle and do not have explicit methane emissions. Instead, methane
concentration is imposed as a surface boundary condition. These methane concentrations are taken from the 2010-2018
average mole fraction fields from the CAMS CH, flux inversion product v18rl

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview) and is
specified as a zonally and monthly varying transient lower boundary condition. For upper boundary conditions, annually
varying stratospheric concentrations of NOx, Oz, HNO3, N2O, CO and CH, are prescribed from WACCM®6 ensemble member

of CMIP6 and are relaxed towards climatological values (Emmons et al., 2020).
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Following the methodology of Butler et al. (2018 and 2020), as per the TOAST tagging system, we modify the MOZART
chemical mechanism (Emmons et al., 2012) to include extra tagged species for the NOx tags and VOC tags, respectively, for
the two simulations. This system allows us to attribute almost 100% of tropospheric ozone in terms of its NOXx (+ stratosphere)
sources and in terms of its VOC (+ methane + stratosphere) sources in two separate simulations. In the troposphere, almost all
ozone production can be attributed to reactions between peroxy radicals and NO, producing NO2, which ultimately photolyzes
to produce ozone. Only a small fraction (typically less than 1 ppb of ozone at the surface) can not be clearly attributed to either
NOx or VOC precursors, for example the ozone production from O atoms formed through the self-reaction of hydroxyl
radicals (Butler et al., 2018) which is labelled as “residual ozone” in our study . In the two simulations, aside from the full
baseline emissions, we additionally provide regionally- and sectorally-disaggregated NOx and VOC emissions, respectively,
which undergo the same chemical and physical transformations in the model as the full baseline emissions. The regional tags
are based on the HTAP2 Tierl regions (Galmarini et al., 2017; see Figure 1, S12 and Table 1). Since the focus of this study is
to study ozone trends and its sources in North America and Europe, and because ozone is primarily a hemispheric pollutant
(with little inter-hemispheric contributions), we explicitly tagged the land-based NOx emissions in the northern hemisphere
regions, namely, North America, Europe, East Asia, South Asia, Russia-Belarus-Ukraine, Mexico & Central America, Central
Asia, Middle East, Northern Africa and Southeast Asia, while the southern hemisphere regions of South America, Southern
Africa, Australia, New Zealand and Antarctica are tagged together as “rest-of-the-world”. The ocean is also divided into
multiple zones, mainly in the northern hemisphere, and tagged separately (see Figure S12). In case of the VOC emissions, we
use fewer explicitly tagged regions and some of the explicitly tagged NOX regions are aggregated with the “rest-of-the-world”.
This is done to ensure computational efficiency given that tagging NMVOC means tagging several speciated NMVOCs within
the MOZART chemical mechanism (as opposed to a single NO species in case of NOx tagging). In addition to the regional
tags which carry anthropogenic emissions, we also tag other, mainly non-anthropogenic, global sectors separately: biogenic,

biomass burning, lightning, aircraft, methane and stratosphere.

We specify an additional tag for NOx emission generated from lightning parameterization (Price and Rind, 1992; Price et al.,
1997) in our NOx-tagged simulation, and for methane in our VOC-tagged simulation. We refer the reader to Figure 1 for the
geographic definitions of the various source regions and to Table 1 for more details on the regional and global tags for the
NOx and VOC-tagging runs. Based on these tags changes were made to the model source code following Butler et al. (2018)

which allows for physical and chemical treatment of all tagged species within the model.

Figure 2 shows the trends in NOx and VOC emissions for North America (NAM) and Europe (EUR) tagged source regions
and for the northern hemisphere along with the global lightning NOx emissions and prescribed methane concentrations over
the study period. We see a consistent decline in North American anthropogenic NOx emissions (Fig 2a) from ~250 Kg (N) s

1in 2000 down to ~100 Kg (N) s. We also see a decline in European anthropogenic NOx emissions (Fig 2c), although starting
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from a lower base in 2000, from ~140 Kg (N) s* down to 80 Kg (N) s. Similarly, the anthropogenic NMVOCs, or AVOCs,
in the two regions (Figs 2b and d) have also declined substantially. These large emission changes reflect the strict and effective
emission control policies implemented in these regions (Clean Air Act 1963, Clean Air Act Amendments 1990; Council
Directive 1996, 2008). The biogenic NOx emissions peak in summertime for both regions but remain much lower (up to 40
Kg (N) stin North America and 20 Kg (N) s in Europe) than the anthropogenic NOx emissions and exhibit no long-term
trend. NOx emissions from fires remain extremely small. The biogenic NMVOCs, or natural VOCs, also peak during
summertime for both regions. This is due to the larger leaf area in the summer season (Guenther et al., 2006; Lawrence and
Chase, 2007). The natural VOCs for North America are higher than the AVOCs and show an increasing trend since 2013. The
natural VOC emissions in Europe are comparable to the AVOC emissions especially in recent years. The biomass burning
NMVOC emissions are the smallest but they show an increasing trend in North America. We have also plotted the total
northern hemispheric (NH) NOx and NMVOC emissions which can provide some context in understanding foreign
contributions to ozone in North America and Europe. Here, we see the NH anthropogenic NOXx increasing from 2000 until
2013 after which it declines to below 2000 levels. This increasing trend is primarily driven by increasing Chinese emissions,
while the decline is driven by a decline in Chinese, North American and European emissions (not shown). We see a similar
trend for NH AVOC as well. Summertime NH natural VOC emissions exceed the AVOC emissions. NH biomass burning
NMVOC emissions are also significant, up to 5000 Kg C s, but they are lower than natural VOC and AVOC emissions and
do not show any significant trend. Global lightning NOx emissions show a declining trend from ~100 Kg (N) s in 2000 to
~90 Kg (N) s in 2014 after which they increase to 95 Kg (N) s* in 2018. The global methane concentration remains consistent,
around 1780 ppb, for 2000-2006 but rises steadily since 2007 reaching around 1880 ppb in 2018. Understanding these trends
in regional emissions of different ozone precursors allows us to better interpret tagged contributions to simulated ozone in later

sections.

2.2 Model runs and initial post-processing:

We perform two separate 20-year long simulations for 1999-2018. The first year, 1999, is discarded as a spin-up year and only
the outputs for 2000-2018 are used for further analyses. For the VOC-tagged run, the spin-up time was two years, such that
the 1999 run was restarted with the conditions at the end of the first 1999 run. Introducing extra tagged species with full
physical and chemical treatment in the model leads to a substantial increase in computational time (approx. 6x-8x) as compared
to a basic model run without tagging. Therefore, such a model configuration typically needs a large number of CPU cores
spread over multiple parallel nodes. We run our tagged simulations on 6-nodes with 72 Intel Icelake cores each (432 cores in
total) with a memory of 2048 GB per node. It takes approximately 24h and 36h wallclock time to complete a single year of
simulation with NOx- and VOC-tagging, respectively, with our model configuration. The VOC-tagged simulations take longer
despite having fewer land-based and oceanic tags because, unlike NOx-tagging, VOC-tagging involves all speciated NMVOCs

to be tagged separately thereby increasing the total number of chemical species to be treated in the model.
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We configure the model to write out key meteorological and chemical variables, including tagged Os variables, as 3D output
at monthly average frequency but also write out the tagged O3 variables at surface at an hourly frequency which allows us to
assess key policy-relevant ozone metrics for further analyses. Before we proceed to analyses of the results, we convert the
model output into global MDAS8 O3 (maximum daily 8h average) values along with its tagged contributions for each grid cell
in the model. The model writes-out the hourly ozone values in Universal Time Coordinates (UTC) for all locations. Therefore,
we first, consider different time-zones (24 hourly zones based on longitude range) and select the 24 ozone values by applying
the appropriate time-offset to reflect a “local day” for each grid cell. Once a 24h local-day has been selected, we perform 8h
running averages spanning these 24 values and pick the maximum of these 8h averages as the MDA8 O3 value for that grid
cell on a given day. We then use the selected time window for the MDA8 O3 value for the grid cell to also calculate the 8h-
average tagged contribution over this window. Using this methodology, we prepare global NetCDF files which contain daily

MDAS8 O3 values along with tagged contributions for each grid cell. We use these files for further analyses.

Figure 3 shows the geographic definitions of various HTAP-Tier2 regions (Galmarini et al., 2017), out of which nine regions,
five in North America, namely Eastern Canada, Northwest United States (NW US), Southwest United States (SW US),
Northeast United States (NE US), and Southeast United States (SW US), and four in Europe,namely Western Europe, Southern
Europe, C&E Europe, and SE Europe, shown in various shades of magenta and green, are used as receptor regions to perform
further analyses of trends and seasonality in section 3. We use these receptor regions to perform area-weighted spatial
averaging of MDA8 O3 values before analysing the trends and contributions. Area-weighted spatial averaging is needed
because different model grid cells cover different areas on the ground based on the rectangular lat-long coordinate system,
with high-latitude grid cells covering smaller areas and low-latitude and equatorial grid cells covering larger areas. So, a simple
spatial averaging will overrepresent the concentrations of high-latitude gridcells and underrepresent lower-latitude gridcell
concentrations in the receptor region average. So, we derive dimensionless coefficients for all grid cells within each receptor
region based on their relative size to the average grid cell area in that region. We scale the gridded MDA8 O3 with these area-
coefficients before spatial averaging, ensuring a proportionate representation of the MDA8 O3 value over the entire receptor

region.

2.3 TOAR Observations and related data processing:

For model evaluation, we utilize ground-based observations of hourly ozone from many stations over North America and
Europe which are part of the TOAR-II database of the Tropospheric Ozone Assessment Report (TOAR). We use the newly
developed TOAR gridding tool (TOAR Gridding Tool 2024) to convert the point observations from individual stations into a
global gridded dataset which matches our model resolution of 1.9°x2.5°. The TOAR gridding tool allows for data selection

including the variable name, statistical aggregation, temporal extent and a filtering capability according to the station metadata.
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We extract the Maximum Daily 8h Average (MDAS8) metric for ozone from the TOAR-I1I database analysis service (TOAR-
11 2021) for the years 2000 to 2018 (as available until May 2024). The MDAS values are only saved if at least 18 of the 24
hourly values per day are valid (see, dma8epa_strict in TOAR-analysis 2023). This allows us to minimize any discrepancies
between the observed and model-derived MDAB8 O3 values. Also, since our model resolution is coarse, we only include rural

background stations in our analyses to avoid influences of urban chemistry which may not be resolved in our model.

We use the type_of_area field of the station metadata to select the rural stations; this information is provided by the original
data providers (see Acknowledgements for an exhaustive list of data providers). They cover about 20% of all stations in North
America and Europe. We note that roughly a similar fraction of stations in these regions remains unclassified. In the final
gridded product, which contains daily MDA8 O3 values over North America and Europe a grid cell has non-missing value if
there is at least one rural station present within it. We obtain large parts of NAM and EUR regions with valid TOAR grid cells,
although the number of these valid grid cells changes day-to-day and year-to-year. In North America, the number of valid
stations varies from 3-4 for Eastern Canada, 17-34 for NW US, 53-139 for SW US, 178-207 for NE US, 116-139 for SE US.
In Europe, the number of rural stations varies from 140-154 for Western Europe, 50-185 for Southern Europe, 36-86 for C&E
Europe, and 1-19 for SE Europe, with a general increase in the number of stations in each region with time. Furthermore, the
number of valid TOAR stations within each grid cell also varies for certain locations. To better understand the changes in the
TOAR station network in each of the 9 receptor regions considered here, we have plotted a time-series of annual average
number of stations within each receptor region. This is shown in Figure S11. We note that sparse spatiotemporal sampling can
introduce uncertainty in identifying true long-term trends of ozone and refer the reader to a technical note on this issue by
Chang et al. (2024) for more details.

3. Results:
3.1 Model Evaluation:

The CAM4-Chem model has been evaluated for its ability of simulating the distribution and trends of tropospheric ozone by
many previous studies (Lamarque et al., 2012; Tilmes et al., 2015) including its modified version with ozone tagging (Butler
et al., 2020; Nalam et al., 2025). Generally, many atmospheric models including CAM4-Chem have been shown to
overestimate surface ozone in the Northern Hemisphere (Reidmiller et al., 2009; Fiore et al. 2009; Lamarque et al., 2012;
Young et al., 2013; Tilmes et al., 2015; Young et al., 2018; Huang et al, 2021). In a recent study that utilized the same model
simulations as those presented in this study, Nalam et al. (2025) evaluated model simulated monthly average surface ozone
against gridded observations from the TOAR-I dataset (Schultz et al., 2017) over various HTAP Tier 2 regions (Galmarini et

al., 2017) in North America, Europe and East Asia for 2000-2014 and found a satisfactory performance, albeit with a general
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high bias of 4-12 ppb, similar to a reference CMIP6 model CESM2-WACCM®6 (Emmons et al., 2020); see Figure 1 in Nalam
et al., 2025 for more details. Furthermore, Nalam et al. (2025) have also evaluated the model simulated monthly mean ozone
against the ozone sonde-based climatology compiled by Tilmes et al. (2012) for different latitude bands in the northern
hemisphere at different pressure levels over the same period and found generally high correlations and low biases - see Figure
2 in Nalam et al. (2025) for further details.

One reason for a high bias as seen in Nalam et al., (2025) and other studies could be the use of all available stations (including
many urban stations) for evaluating the model performance. Given the coarse model resolution, we expect the model not to
resolve high NOx concentrations around the urban and industrial centres and therefore suffer from the lack of ozone titration.
Therefore, here, we only evaluate the model against data from rural stations, wherever available. Also, in this study, we only
work with policy-relevant metrics such as Maximum Daily 8h Average (MDAS8) Ozone at the surface or other metrics derived
from it, e.g., Peak Season Ozone (PSO). These metrics generally include only the daytime ozone, especially over land.
Therefore, evaluating the model for these metrics also allows us to exclude nighttime ozone and avoid any large nighttime
biases which often arise due to improper simulation of the nighttime boundary layer which has been a persistent issue in both

global and regional models (Houweling et al., 2017; Du et al., 2020; Ansari et al., 2019).

For model evaluation, we derive regionally averaged monthly mean MDAS8 O3 for all HTAP tier 2 receptor regions for North
America, Europe and Asia but sample the MDAS8 Os values only from those gridcells where rural TOAR observations were
available. Figure 4 shows the time-series of monthly mean MDAS8 O3 from the model and TOAR observations for the entire

simulation period. We ask the reader to refer to the geographic extent of the receptor regions discussed here in Figure 3.

In Eastern Canada (Figure 4a), the model reproduces the O3 seasonal cycle very well, especially between 2007-2018. It
overshoots the maxima and undershoots the minima for the earlier years of 2000-2006. This could be due to inaccurate (higher)
NOx emissions over the region in the HTAPV3 inventory for the earlier years which leads to higher summertime production
and lower wintertime levels due to increased titration. The model also reproduces the flattening annual cycle well which is
consistent with decreasing NOx emissions over this region (see Figures 3 and S6). For the Northwestern United States (Figure
4b), the model reproduces the annual cycle well, although it systematically overestimates the MDAS8 O3 during peak season
by up to 5 ppb. For the Northeastern United States (Figure 4c), the model captures the structure of the annual cycle of MDA8
O3 very well for recent years but overestimates the summer peak and underestimates wintertime ozone for earlier years, similar
to Eastern Canada, again pointing to high NOx emissions in the emission inventory over this region in the initial years. The
model shows an extremely skilful simulation of MDA8 Os in the Southern United States. In SW US (Figure 4d), the model
reproduces the gradual and steady decline in MDAS8 O3 over time, albeit with a slight overprediction (~2ppb) in later years.
Similarly, in the SE US (Figure 4e), we note a very good reproduction of trends, with a decreasing summertime peak. For all

North American regions, we see a high correlation between observed and modelled monthly mean MDA8 O3 values with
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correlation coefficient r ranging from 0.86 to 0.98. Correlations at the annual average timescale are lower and driven by
interannual variability rather than seasonality of ozone. Mean bias is positive for all regions and ranges from 0.68 ppb to 3.65

ppb. Mean absolute bias ranges from 3.35 ppb to 4.37 ppb.

Since the MDA8 03 seasonal cycle is a subject of further analysis in this study and forms a key part of our results, it is
imperative to perform a more rigorous evaluation of the model’s ability to capture its various features quantitatively. Parrish
etal. (2016) provide a good precedent for such an evaluation where they break down the observed and modelled ozone seasonal
cycle into a y-intercept (detrended annual average) and two sinusoidal harmonics using a Fourier transform and then
statistically compare the fit parameters that define these harmonics (i.e. amplitudes and phase angles) for the observed and
modelled data. They argue that the first harmonic, with its large amplitude and phase angle, broadly represents the local
photochemical production of ozone, while the generally out-of-phase second harmonic, with a smaller amplitude and phase
angle, is related to the photolytic loss of O3, driven by j(O'D) - a hypothesis supported by the finding that the second harmonic
is small in the free troposphere but grows more significant in the marine boundary layer (MBL), at least for alpine and remote
sites analyzed (Parrish et al., 2020). Thus comparing these Fourier parameters for the observed and modelled data can unveil
specific model skill or lack thereof in capturing different aspects of atmospheric chemistry which ultimately determine the
shape of O3 seasonal cycle (Bowdalo et al., 2016; Parrish et al., 2016; Bowman et al., 2022). We performed a quantitative
evaluation of the seasonal cycles following the same approach. Figure S3 presents scatterplots for these five essential fourier
parameters, y0 in ppb (y-intercept representing annual average MDA8 O3 derived from detrended data), Al in ppb (amplitude
of the first or fundamental harmonic), @1 in radians (phase angle of the fundamental harmonic), A2 in ppb (amplitude of the
second harmonic), and @2 in radians (phase angle of the second harmonic). In terms of y0, the correlation coefficient r ranges
from 0.34 to 0.95, with higher values for southern US but lower values for NW US and Eastern Canada, reflecting lower model
skill in capturing the interannual variability of MDAS8 O3 in these regions. The model is more skilful in capturing the amplitude
of the fundamental harmonic (r values from 0.72-0.93) than in capturing the amplitude of the second harmonic (r values from
0.09-0.90). In terms of phase angles too, the model is more skilful in capturing the phase angles for the fundamental harmonic
(r values from 0.63-0.93) than for the second harmonic (r values from 0.41-0.74). The model generally overestimates y0, A1,
A2, and @1 but underestimates @2. In general we can state that the first harmonic which is related to local photochemistry is
well captured by the model for most of North America. The second harmonic, in our case, might be related to all other processes
that modify the near-sinusoidal shape of the O3 seasonal cycle (e.g., long range transport of 0zone from other regions and from
stratosphere and photolytic losses), and these processes are relatively less well captured by the model. All Fourier fit parameters
for the observed and modelled MDAS8 O3 seasonal cycles have been tabulated in Tables S2-S6 for different North American
receptor regions.

The model reproduces the monthly mean MDAS8 O3 for Europe extremely well with very small mean biases (-1.54 ppb to 1.25

ppb), small mean absolute biases (2.18 to 3.54), and very high r values ranging from 0.94 to 0.97 for various regions, except
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SE Europe. For Western Europe (Figure 4f), it captures both the trends and the structure of the seasonal cycle extremely well,
for example, note the near-stagnant maxima and increasing minima over time in both observations and model output. Similarly
for Southern Europe (Figure 4g), we again see a very skilful simulation of monthly mean MDAZS for the entire simulation
period - this includes capturing the slightly decreasing summer maxima and increasing winter minima and an overall flattening
of the seasonal cycle post 2006. We see a very good reproduction of MDAB8 O3 for C&E Europe (Figure 4h) particularly for
the summer months. We see a small underprediction for the winter months in years up to 2012. However, it is the summertime
MDAS8 O3 values that constitute the peak season ozone metric which are ultimately utilized in our further policy-relevant
analyses. Finally, for SE Europe (Figure 4i), we notice an overprediction of MDAS8 Os for early years, until 2006, after which

the model captures the trends and particularly the summer peaks very well. The mean bias is 7.63 ppb and r value is 0.62.

Similar to North America, we also performed a Fourier transform analysis for European regions which provides a quantitative
basis for assessing model skill in reproducing various aspects of the MDA8 O3 seasonal cycle across the 19 year study period.
Scatterplots in Figure S4 show high correlations between observed and modelled amplitudes and phase angles for both
harmonics. The general high biases, as seen in North American regions, are also not present except for the first harmonic
parameters for Western Europe and C&E Europe. This highlights a very high model skill in reproducing the fundamental local
ozone photochemistry as well as transport and loss processes in Europe. The y-intercept y0, representing interannual variability
of ozone, shows lowest correlations which suggests that year-to-year meteorological changes remain a source of model bias
and uncertainty in this region. All Fourier fit parameters for the observed and modelled MDA8 O3 seasonal cycles have been

tabulated in Tables S7-S10 for different European receptor regions.

We have also included the Belarus & Ukraine region (Figure 4j; with 1-2 valid stations) in our evaluation and here too we see
a good simulation of MDAS8 O; for the entire period (with a small mean bias of 0.56 ppb and r value of 0.83), barring a couple
of years (2014 and 2017) when the model overestimates the values. We have also evaluated the model for MDA8 O3 against
rural observations from the TOAR-I1 database in other regions including Mexico (11-14 stations), North Africa (1-3 stations),
Southern Africa (1 station), Southern Latin America (1-2 stations), and European Russia (2 stations; see Figure 3 for region
definitions), where the model has also captured the trends well, however, since we do not discuss these regions in further
analyses, they are presented in the supplement (see, Figure S1). Here too, the model output is extracted only from those grid

cells where at least one TOAR station exists, ensuring representative co-sampling.

We also evaluate the model in the context of potential overestimation of ozone production from ship plumes. This
is because in our modelling setup, ship NOx emissions are instantaneously diluted within the 1.9°X2.5° model grid
cell which can lead to an overestimation of ozone production efficiency from ship NOx. In the real world, the more
localized, high-NOx conditions within a concentrated young plume, the titration effects and NOXx self-reactions can

be more dominant and the true ship NOx contribution might be somewhat lower than simulated (Kasibhatla et al.,
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2000; Chen et al., 2005; Huszar et al., 2010). Such overestimated ship NOx contribution to ozone shows up, for example, in
terms of a lower simulated vertical gradient than the observed vertical profile of 0zone especially at remote coastal locations.
To assess this, we plot observed and model simulated ozone vertical profiles at Trinidad Head, off the coast of California, for
the month of July (a representative month for peak season) for all 19 years (see Figure S5). The monthly mean modelled
vertical O3 profile over Trinidad Head generally falls within the envelope of daily observational profiles within the MBL (say,
below 850 hPa). Although, for multiple years, the vertical drop in modelled O3 concentration towards the surface is less sharp
than that seen in observations, thereby suggesting a potential overproduction of O3 near the ocean surface in the model due to
instantaneous distribution of ship NOx emissions in the model gridcell. This particular feature of our modelling system can

partly explain the positive bias in simulated ozone.

Overall, we obtain very good model-observations agreement, with low biases and high correlations, better than previous studies
(e.g., Butler et al., 2020; Li et al., 2023; Garatachea et al., 2024). The possible reasons for such improved performance could
be 1) the use of the newly developed HTAPv3 emissions inventory 2) using only rural stations for evaluation which avoids
urban titration which may be in the observations but not in model output 3) improved treatment of spatial and temporal
representativeness (including the treatment of missing values) of the stations through the TOAR gridding tool 4) evaluating
the policy-relevant MDA8 O3 metric which avoids nighttime Oz which may not be well-simulated due to improper estimation
of the nighttime boundary layer. We note that our model evaluation is based on model results and observations of time series
of MDAS8 O3 that are averaged, both temporally (monthly) and spatially (first over model grid cells and then over receptor
regions) but such an evaluation is valid because all our subsequent analyses and conclusions depend on the same spatial and

temporal scales.

After a satisfactory performance of the model across different world regions and, in particular, excellent performance in the
simulation of MDAS8 O3 against rural stations from the TOAR-I1 database, we proceed to further analyses of trends and source
contributions to ozone in different receptor regions. First, to explain the year-to-year trends, we present the full 19-year time
series of Peak Season Ozone (PSO) for North America and Europe along with their NOx- and VOC- source contributions
derived from our two tagged simulations. After explaining the year-to-year trends in ozone in terms of the NOx and VOC
contributions, we further calculated a 19-year month-centered average MDAS8 O3 and its source contributions for each receptor
region. This allows us to interpret the leading sources of ozone in each receptor region on a monthly basis averaged over the
entire simulation period. We also present the first five year (2000-2004) and last five year (2014-2018) month-centered average
MDAZ8 O seasonal cycle and explain the shifts in terms of tagged contributions for all receptor regions during these periods.

In the next subsections, we present these results for North America and Europe.
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3.2 Ozone in North America:
3.2.1 Peak Season Ozone in North America: Regional Trends and Source Contributions:

In this section we discuss the trends in and contributions to PSO in North America. The Peak Season Ozone for any location
is defined as the highest of the 6-month running average of monthly mean MDAS8 O3 values. In order to compute PSO, we
performed the averaging over 6-month windows (Jan-Jun, Feb-July, Mar-Aug and so on) over the TOAR observations and the
same time window was imposed over the modelled values for calculating the 6-month averaging (instead of independently
selecting the peak 6-month time window for the model). This approach ensures temporal consistency between the observations
and modelled values. Furthermore, for spatial consistency, the model values were sampled only from those grid cells where at
least one TOAR-II station was present. Finally, these values from multiple grid cells were spatially averaged over various
receptor regions after weighting them with the grid cell areas to derive a single PSO value per region per year for observations

and the model along with tagged contributions.

Before examining the detailed temporal trends and source contributions to PSO in specific North American receptor regions,
it is instructive to visualize the spatial distribution of NOx emissions and their impact on PSO. Figure 5 illustrates the gridded
local anthropogenic NOx emissions (panels a, d), the total modelled PSO (panels b, e), and the modeled contribution of local
anthropogenic NOx to PSO (panels c, f) for the initial (2000) and final (2018) years of our analysis. The NOx emissions, for
each grid cell, are calculated for the same 6-month window as the PSO for the grid cell. In 2000 (Figure 5a), high NOx
emissions were concentrated over the Eastern United States, particularly the Ohio River Valley and the Northeast corridor, as
well as in California and other major urban centers. By 2018 (Figure 5d), these emissions had substantially decreased across
most of the continent, with the most dramatic reductions evident in the aforementioned historical hotspot regions. This
widespread decline in local NOx emissions directly translated to changes in ozone levels. The spatial distribution of total PSO
(Figure 5b, €) shows a corresponding general decrease between 2000 and 2018, particularly in the eastern and central US. The
spatial features of PSO for both years are very similar to bias-corrected maps of PSO for 2000 and 2017 presented in Becker
et al. (2023). More specifically, the contribution of local anthropogenic NOx to PSO (Figure 5¢, f) shows a marked reduction
in magnitude across the continent. In 2000, local NOx contributed significantly to PSO over large swathes of the eastern and
southern US, whereas by 2018, this direct local contribution had diminished considerably, becoming more confined to residual
emission hotspots. These spatial changes provide a crucial backdrop for understanding the regionally averaged trends discussed

below.

Figure 6 presents the time series of observed and model-simulated total PSO (panels a, d, g, j, m), alongside the attributed
contributions from NOx sources (panels b, e, h, k, n) and VOC sources (panels ¢, f, i, I, 0). On a visual inspection of observed
and modelled PSO trends (left column panels) we decided to fit Generalized Least Squares (GLS) linear trends to these data

points. We note that some previous studies have fitted higher order functions to ozone data over North America as necessitated
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by their longer period of analysis where ozone concentrations increased, stagnated, and then decreased (Logan et al., 2012;
Parrish et al., 2025; Parrish et al. 2020). However, a linear fit is appropriate for the period considered in this study when local
emissions have only declined (Figure 2). Quantitative details of the trends and their significance for all contributions are
provided in Table 2. A consistent observation across all North American regions is that the observed PSO levels generally

exceed the WHO guideline (31 ppb) throughout the study period.

Observed PSO exhibits a decreasing trend in most North American regions (Figure 6, panels a, d, g, j, m). For instance, Eastern
Canada shows a slight decline (-0.19 (0.01) [-0.32, -0.06] ppb/yr), while more substantial decreases are seen in the SW US (-
0.33 (<0.01) [-0.45, -0.21] ppb/yr), NE US (-0.34 (<0.01) [-0.50, -0.18] ppb/yr), and SE US (-0.46 (<0.01) [-0.63, -0.28]
ppb/yr). The NW US shows the smallest, albeit still decreasing, trend (-0.09 (0.11) [-0.20, 0.02] ppb/yr). The model generally
captures these decreasing trends and the interannual variability reasonably well, though with some regional differences in
magnitude (e.g., an overestimation in the NW US, but good trend reproduction with -0.11 (0.03) [-0.21, -0.01] ppb/yr).

The contributions from various NOx sources show distinct regional patterns in their temporal evolution (Figure 6, panels b, e,
h, k, n; Table 2). The most significant driver of change is the local anthropogenic NOx contribution, which has declined steeply
across all regions, reflecting successful emission control policies. This decline is particularly sharp in the eastern US regions:
NE US (from ~35 ppb to ~22 ppb; trend of -0.97 (<0.01) [-1.19, -0.76] ppb/yr) and SE US (from ~38 ppb to ~20 ppb; trend of
-1.09 (<0.01) [-1.25, -0.94] ppb/yr). SW US also shows considerable decline in the local NOx contribution (from ~27 ppb to
~16 ppb; trend of -0.72 (<0.01) [-0.83, -0.62] ppb/yr) . Despite these reductions, local anthropogenic NOx often remained a
dominant contributor, especially in the earlier part of the study period, though its share has notably diminished. These results
are consistent with findings from Simon et al. (2024) who analysed observational trends over 51 sites in the US over roughly
the same period (2002-2019) and found the marked impact of clean air policies across the US such that the difference between
the weekend (lower NOx) and weekday (higher NOx) MDA8 O3 has diminished and become negative in recent years reflecting

a transition from NOx-saturated to NOx-limited ozone formation regime.

To further quantify the relationship between these local emissions and their impact on ozone, we performed a gridded
correlation analysis for the 2000-2018 period (Figure 7). Figure 7a reveals the temporal correlation between local
anthropogenic NOx emissions and total PSO. Positive correlations are widespread, particularly strong (r > 0.6-0.8) over much
of the central and eastern US, indicating that in these locations, year-to-year variations in local emissions significantly drive
the variability in total PSO levels. However, in other areas, such as parts of the western US and more remote regions, these
correlations are weaker or even negative. This suggests a greater relative importance of factors like intercontinental transport
of ozone and its precursors, or the influence of natural emissions, in driving total PSO variability in those areas, especially as

local anthropogenic emissions have decreased. This lack of correlation between local NOx emissions and observed MDA8 O3
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has been reported by Simon et al. (2024) for rural California even at a higher temporal frequency through disappearing day -

of-week activity patterns indicating an increasing role of transported ozone in this region.

More directly, Figure 7b demonstrates a very strong and spatially ubiquitous positive correlation (r > 0.8-0.9 in most populated
areas) between local anthropogenic NOx emissions and the modeled contribution of these local emissions to PSO. This high
correlation is an expected outcome and serves to validate that the model's attribution of ozone to local NOx sources is directly
and robustly responsive to changes in those local emissions themselves. It underscores that reductions in local NOx emissions
translate directly and proportionally to reductions in the ozone specifically formed from those local emissions within the model
framework. The slightly weaker correlations in very remote northern areas likely reflect the minimal anthropogenic emissions
and thus lower signal-to-noise for this specific contribution. These spatial analyses highlight that while local NOx emission
reductions have been effective in decreasing their direct contribution to PSO across large areas, the impact on total PSO can

be spatially heterogeneous due to the varying influence of other ozone sources and transport processes.

Conversely, the contribution from foreign anthropogenic NOx (including aircraft) has generally increased across all regions
(Figure 6, panels b, e, h, k, n; Table 2). This increase is most prominent in the western US regions. In the NW US, where its
contribution has grown at 0.12 (<0.01) [0.09, 0.16] ppb/yr (see Table 1) to become comparable to, and in recent years exceed,
that of local anthropogenic NOx. Similarly, in SW US, the foreign NOXx contribution has grown at 0.19 (<0.01) [0.15, 0.24]
ppb/yr to match the local NOx contribution in recent years. Other regions like Eastern Canada and the NE US also show a
discernible rise in foreign NOx influence. The contribution from natural NOx sources (biogenic, fire, and lightning) shows a
slightly increasing trend in most regions (e.g., 0.12 (<0.01) [0.08, 0.16] ppb/yr in NE US). This increase in contribution despite
stable natural emissions (Figure 2) indicates an enhanced ozone production efficiency from these natural NOx sources in
environments with lower overall anthropogenic NOXx levels, consistent with previous findings (e.g., Liu et al., 1987). Global
shipping NOx contributions, while smaller in absolute terms (typically <2-3 ppb), exhibit a consistent increasing trend across
all receptor regions, reflecting rising emissions from this sector. Stratospheric intrusion provides a baseline ozone contribution

with some interannual variability and small increasing trends in eastern regions (see Table 2).

The attribution of PSO to VOC sources (including methane) also reveals important trends and regional differences (Figure 6,
panels ¢, f, i, I, 0; Table 2). Methane is consistently the largest single VOC contributor to PSO across most North American
regions, typically contributing 15-25 ppb. Interestingly, despite the global increase in methane concentrations (Figure 2h), the
methane contribution to PSO has remained relatively stable or even slightly decreased in some regions like the SW US (-0.10
(<0.01) [-0.15, -0.06] ppb/yr), NE US (-0.09 (<0.01) [-0.15, -0.03] ppb/yr) and SE US (-0.15 (<0.01) [-0.20, -0.11] ppb/yr).
This is likely due to the reduced availability of local NOx, which limits the efficiency of ozone production from methane

oxidation. Contributions from local AVOC have generally declined across all regions, reflecting the reductions in their
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emissions as well as the local NOx emission reductions. For example, the NE US saw a local AVOC contribution trend of -
0.36 (<0.01) [-0.41, -0.31] ppb/yr, and the SE US experienced a similar decline (-0.33 (<0.01) [-0.37, -0.29] ppb/yr).

The role of natural VOCs (biogenic and fire) varies regionally. In forested regions like Eastern Canada and the NE US, natural
VOCs make a substantial contribution (e.g., ~10-18 ppb). The trend in their contribution is often negative (e.g., -0.17 (0.10) [-
0.39, 0.04] ppb/yr in Eastern Canada, -0.24 (0.01) [-0.42, -0.06] ppb/yr in NE US), which, similar to methane, may reflect the
decreasing local NOx rather than a decrease in natural VOC emissions themselves (which, for North America, Figure 2 shows
variability and some recent increases). For all regions, the year-to-year variability in local anthropogenic NOx contributions
often mirrors that of natural VOC contributions, suggesting strong chemical coupling between these local precursor pools. In
arid regions like the NW US and SW US, the natural VOC contribution is understandably lower (~14-18 ppb initially,
declining) than the methane contribution. Contributions from foreign AVOCs, shipping VOCs, and stratospheric intrusion
(VOC perspective) are generally smaller and show modest trends, with foreign AVOCs and stratospheric intrusion showing a

slight increasing trend in some regions (see Table 1 for p-values and 95% confidence intervals).

Our model-based findings of declining local anthropogenic contributions to PSO in North America differ quantitatively with
recent observation-based studies such as Parrish et al. (2025), which also document a significant waning of local influence
using different metrics and inferential techniques. For example, Parrish et al. (2025) estimate a local anthropogenic
enhancement to Ozone Design Values (ODVSs) in the SW US of typically <6 ppb in recent years. Our direct tagging method
quantifies a larger local anthropogenic NOx contribution to average PSO in this region (~16 ppb in 2014-2018, Figure 6h).
This quantitative difference likely arises from several factors. First, PSO represents a 6-month seasonal average of MDAS8 O3,
while ODVs target specific high-percentile episodic conditions, and direct contributions to seasonal averages can be expected
to differ from enhancements during specific episodes (although episodic contributions could be expected to have a higher share
of local photochemistry than seasonal contributions). Second, and perhaps more fundamentally, inferential methods based on
subtracting an estimated 'baseline’ from total observed ozone may systematically underestimate the full impact of local
anthropogenic emissions. Such approaches often define the baseline based on remote sites or specific statistical filtering, which
may not fully account for the ozone produced from local emissions that is then regionally dispersed (as we also see indications
of anthropogenic NOx and BVOC interactions in the tagged output) or the non-linear chemical feedbacks that occur when
local emissions are present. In contrast, our emissions tagging technique directly attributes ozone formation to its original
precursor sources as they undergo transport and chemical transformation within the model's complete and consistent chemical
framework. This provides a mechanistic quantification of source contributions to the specific PSO metric under baseline
conditions. While inferential methods provide valuable observational constraints, our tagging approach offers a
complementary, process-explicit view of how different source categories contribute to the ozone burden, particularly
illuminating the partitioning between local, regional, and intercontinental sources in the complex, evolving atmospheric

environment
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In summary, declining PSO trends across North America are primarily driven by substantial reductions in local anthropogenic
NOx and, to a lesser extent, local AVOC contributions. However, these reductions are partially offset by increasing
contributions from foreign anthropogenic NOX, shipping NOXx, and, in some cases, an enhanced role of natural NOXx in ozone
formation under lower ambient NOXx conditions. Methane remains a cornerstone of VOC-attributed ozone, but its contribution
to PSO trends is heavily modulated by NOx availability. The interplay between declining local NOx and the ozone-forming
potential of both natural VOCs and methane is a key feature influencing regional PSO trajectories. The NW US stands out as
a region where foreign NOx contributions now rival or exceed local sources, highlighting the growing importance of

intercontinental transport for this region.

3.2.2 Ozone seasonal cycle in North America: Quantitative Characterization and Source Contributions:

To characterize the climatological seasonal cycle of MDAS8 O3 in North America and assess the model's ability to reproduce
it, we performed a Fourier analysis (as detailed in section 3.1) on the 19-year (2000-2018) averaged month-centered mean
MDAS8 Os time series for both observations and model output in each receptor region. This analysis decomposes the
climatological seasonal cycle into its annual mean (y0), the amplitude (A1) and phase (¢1) of the fundamental annual harmonic
(related to local ozone photochemistry), and the amplitude (A2) and phase (¢2) of the second harmonic (semi-annual cycle;
related to long-range transport, stratospheric intrusion and loss processes). The phase ¢: indicates the timing of the annual
peak, with numerically larger values typically corresponding to a later peak in the year (Bowdalo et al., 2016; Parrish et al.,
2016; Bowman et al., 2022). These parameters are presented in the last rows of Tables S2-S6, while Figure 8 illustrates the
19-year average seasonal cycle of total MDAS O:s and its attributed NOx and VOC source contributions.

The observed annual mean MDAS Os (y0) varies across North American regions, ranging from approximately 37 ppb in
Eastern Canada to a notably higher 48.5 ppb in the SW US, reflecting differing baseline ozone levels and regional influences
(Tables S2-S6). The model generally captures these mean levels, though with a tendency for overestimation. For instance, in
Eastern Canada, the modeled y0 (37.66 ppb) is very close to observed (36.93 ppb). However, in western regions, the model
exhibits a consistent positive bias of approximately 3-4 ppb in y0 (e.g., 44.09 ppb modeled vs. 40.83 ppb observed in NW US).
This suggests a potential overestimation of background ozone or the combined influence of persistent remote/natural source
contributions by the model in these regions. Indeed, Figure 8 (panels d, f) shows sustained contributions from foreign
anthropogenic NOx and methane in the NW US throughout the year, which could contribute to this higher baseline in the

model.

The amplitude of the primary annual cycle (Al) signifies the magnitude of the seasonal swing in 0zone concentrations.
Observed Al is largest in the SW US (11.25 ppb) and the NE US (9.3 ppb), indicating strong seasonal variation driven by
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photochemistry and precursor availability. Eastern Canada shows the smallest observed Al (5.86 ppb). The model tends to
overestimate A: in most regions, particularly in the eastern regions. For example, in the NE US, the modeled A1 (14.89 ppb)
is substantially larger than observed (9.3 ppb), and in Eastern Canada, modeled Al (9.89 ppb) is also significantly higher than
observed (5.86 ppb). This overestimation of Al in eastern regions is due to the model simulating an overly pronounced summer
peak, likely due to an overestimation of summertime local photochemical production, as suggested by the pronounced summer
peaks in modeled local NOx and natural VOC contributions (Figure 8a,b for E.Canada; 8g,h for NE US) which are not as
prominent in the observed seasonal cycle implied by the total ozone. In contrast, for SW US, the modeled Al (10.66 ppb) is

slightly lower than observed (11.25 ppb), suggesting a slightly damped seasonal cycle in the model for this high-ozone region.

The phase of the annual cycle (¢1), which dictates the timing of the seasonal maximum, shows regional differences. Observed
@1 values range from 4.82 radians in Eastern Canada to 5.44 radians in SW US (Tables S2-S6, last rows). Higher ¢: values
suggest a later seasonal peak. The model generally reproduces the phase well, with modeled ¢: values closely tracking the
observed ones, indicating that the model captures the relative timing of the ozone maximum across regions correctly. For
instance, in Eastern Canada, the observed (4.82 rad) and modeled (5.36 rad) ¢: values, while differing, both point towards an
earlier peak (spring, as seen in Figure 8a) compared to SW US (observed 5.44 rad, modeled 5.47 rad) which exhibits a clear
summer maximum (Figure 8e). The springtime peak in Eastern Canada (Figure 8a) is driven by significant contributions from
foreign anthropogenic NOx and stratospheric intrusion, while the summertime peak in SW US (Figure 8e) is dominated by
local NOx and natural NOx contributions. The model's ability to capture these phase differences reflects its capacity to simulate

the varying dominance of these seasonally distinct drivers.

The amplitude of the second harmonic (A2), representing semi-annual variations driven by processes other than the local ozone
photochemistry, is generally smaller than A1 but provides insights into deviations from a simple sinusoidal annual cycle, such
as the presence of distinct spring and summer maxima or a flattened peak. Observed A2 is most prominent in the SE US (3.32
ppb) and Eastern Canada (1.89 ppb), suggesting more complex seasonality than a single peak. The model tends to reproduce
or even slightly overestimate A (e.g., 3.78 ppb vs. 3.32 ppb in SE US; 2.07 ppb vs. 1.89 ppb in E. Canada). A significant A2
can indicate a broadening of the peak ozone season or the influence of multiple processes peaking at different times (e.g., a
spring transport peak and a summer photochemical peak). The model's higher A2 in regions like NE US (3.11 ppb modeled
vs. 1.58 ppb observed) may again be linked to its overestimation of the summer photochemical peak, which, when combined
with a reasonably simulated spring shoulder, could enhance the semi-annual component. The phase of the second harmonic
(p2) varies, and its interpretation is complex, but model agreement with observed ¢: is mixed, indicating varying skill in

capturing these finer details of seasonal shape.

The quantitative Fourier parameters align well with the qualitative features observed in the source contributions (Figure 8).
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For Eastern Canada (Fig 8a,b), the relatively low y0 and A1 (observed) are consistent with lower overall photochemical activity
and a seasonal cycle strongly influenced by springtime transport (foreign NOx and stratosphere; ~10 ppb each) rather than a
dominant summer photochemical peak. The model's overestimation of A: here is driven by a simulated summer peak in local
NOx and natural NOx/VOC contributions not evident in the overall observed seasonal structure, leading to the noted

summertime bias.

For NW US (Fig 8c,d), the moderate y0 and A1 reflect a balance of influences: the model captures the year-round high foreign
NOx contribution, with a summertime dip, contributing to y0, while local NOx and natural NOx/VVOCs drive the summer high,
contributing to Al. The summertime dip in foreign NOx contribution (also seen in other sub-regions) is likely due to shorter
lifetime of ozone at higher temperatures, which is associated with increased water vapor content in the atmosphere (Stevenson
et al., 2006). Water vapor promotes ozone loss via photochemical pathways involving HOy radicals, and transported 0zone is
more likely to be destroyed under moist conditions (Real et al., 2007). Consequently, the efficiency of long-range ozone
transport decreases in summer. The consistent positive bias in y0 in the model suggests an overestimation of these baseline
contributions. For SW US (Fig 8e,f), the highest observed y0 and a large Al are characteristic of this photochemically active
region with significant local precursor influence in summer (local and natural NOx driving the summer peak). Methane is a
dominant VOC contributor throughout the year. The model reproduces this structure well, including the dominance of
local/natural NOx in summer. For NE US (Fig 8g,h), a large observed A1l reflects strong seasonality. The model overestimates
this Al due to a very pronounced modeled summer peak in local NOx and, consequently, natural VOC contributions, leading
to summertime overestimations. Unlike western regions, natural VOCs play a more significant role than methane during the
summer peak in this region according to the model, likely due to higher BVOC emissions in these regions as well as more
local NOx availability enhancing their ozone production efficiency. SE US (Fig 8i,j), similar to NE US, shows a strong seasonal
cycle (large Al). The model again overestimates Al due to an exaggerated summer peak driven by local NOx and associated
natural VOC chemistry. The significant A2 in observations and model suggests a broader ozone season or influences from

both spring transport and summer photochemistry.

Overall, the model successfully reproduces the primary features of the 19-year average MDAS8 Os seasonal cycle across North
America, including the relative annual mean levels (y0) and the timing of the annual peak (¢:). However, it tends to
overestimate the amplitude of the annual cycle (Ai) in eastern regions, linked to summertime photochemical production. In
western regions, a modest positive bias in the annual mean (y0) is observed. These findings highlight areas for further model
refinement, particularly concerning the simulation of summer photochemistry and baseline ozone levels in different continental

sub-regions.
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3.2.3 Changes in seasonal cycle of ozone in United States: Role of Local vs Remote contributions

The preceding analyses of 19-year average seasonal cycles (Figure 8) and long-term PSO trends (Figure 6) suggest significant
evolution in the seasonality of surface ozone over the two decades (see Figure S2 for seasonal cycle envelopes over the entire
period). To investigate these changes more quantitatively, we compare the 5-year averaged MDA8 O3 seasonal cycles for an
initial period (2000-2004) and a recent period (2014-2018). This section focuses on two illustrative regions, the NW US and
NE US, with Fourier analysis parameters for these periods detailed in Tables S3 and S4, respectively (and for other regions in
Tables S2, S5-S6 in the Supplement). Figures 9 and 10 present these comparative seasonal cycles for NW US and NE US,
respectively, alongside their attributed NOx and VOC source contributions. Results for Eastern Canada, SW US and SE US
are included in the supplement (Figures S6-S8; Tables S1, S4-S5).

In the NW US (Figure 9, Table S2), the evolution of the seasonal cycle from 2000-2004 to 2014-2018 is characterized by
subtle but distinct changes. The observed annual mean ozone (y0) decreased slightly from 41.43 ppb to 40.64 ppb, while the
modeled y0 remained relatively stable at a higher level (43.54 ppb to 43.87 ppb), maintaining the positive bias noted earlier.

More significantly, the amplitude of the primary annual cycle (A1) shows a marked decrease in both observations (from 6.50
ppb to 5.24 ppb) and the model (from 9.01 ppb to 5.33 ppb). This indicates a notable damping of the seasonal swing.
Concurrently, the observed phase of the annual peak (1) shifted slightly earlier, from 5.22 radians to 5.18 radians, a trend also
captured by the model (5.43 to 5.33 radians). The amplitude of the second harmonic (A2) also decreased, particularly in the

observations (1.08 ppb to 0.29 ppb), suggesting a smoother, less complex seasonal shape in the recent period.

These quantitative changes are driven by shifts in precursor contributions (Figure 9b,c,e,f). The most prominent change is the
substantial reduction in the summertime peak of local anthropogenic NOx contributions between the two periods (Figure 9b
vs. 9e). This directly contributes to the decreased Al. While this local contribution shrinks, the foreign anthropogenic NOx
contribution remains a significant and relatively stable component throughout the year, becoming proportionally more
important, especially during spring; a finding consistent with a long line of previous studies (Berntsen et al., 1999; Jacob et
al., 1999; Jaffe et al., 1999; Fiore et al., 2002; Jaffe et al., 2003; Parrish et al., 2004; Cooper et al., 2010; Simon et al., 2014;
Parris & Ennis, 2019; Parrish et al., 2022; Christiansen et al., 2022). The wintertime ozone levels show a slight increase (Figure
9a vs. 9d), primarily linked to an increase in the modeled foreign NOx contribution during these months in the later period.
The springtime (March-May) ozone has seen increases in both foreign NOx contributions (13.16 ppb to 14.81 ppb) as well as
stratospheric contributions (12.02 ppb to 12.55 ppb; see Table 3 for a comparison across regions). Springtime mean
stratospheric contribution is 12.55 ppb in the recent period (even higher in SW US at 14.25 ppb; Figure S7; Table 3). Previous
studies have reported modelled stratospheric contributions in North America during observationally-identified episodes with

higher values (e.g., 20-40 ppb; Lin et al., 2012) as well as seasonal mean contributions (6-18 ppb; Mathur et al. 2022b). Our
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seasonal mean values are lower likely because we do not sample the model output extensively from the mountainous region

of western US, where stratospheric contributions are highest, due to lack of TOAR observations in those regions.

From a VOC perspective (Figure 9c vs. 9f), the local AVOC contribution declined across all seasons, further contributing to
the damping of the seasonal cycle (reduced Al). Methane remains a dominant VOC contributor, but its absolute contribution
shows little change between the periods, suggesting its impact on seasonal amplitude is more modulated by NOx availability
than by its own concentration changes over this timeframe. The decrease in natural VOC contribution, particularly in summer,
also plays a role in reducing Al. The overall effect is a flattening of the summer peak and a slight elevation of winter/spring

troughs, leading to the observed and modeled decrease in Al.

The NE US (Figure 10, Table S3) experienced more dramatic changes in its 0zone seasonal cycle. The observed annual mean
(y0) decreased from 40.35 ppb to 38.29 ppb. In contrast, the modeled yo remained remarkably stable (41.06 ppb to 41.13 ppb),
causing the model's initial slight positive bias to increase in the later period, particularly as observed wintertime values
increased more than modeled ones. The most striking change is the substantial reduction in the amplitude of the annual cycle
(A1), both in observations (from 11.85 ppb to 6.70 ppb) and even more so in the model (from a highly overestimated 20.01
ppb to 9.26 ppb). This signifies a major reduction in the summer peak. The phase of the annual peak (¢:) also shifted
significantly earlier in observations (from 5.40 radians to 5.01 radians), indicating a pronounced shift of the seasonal maximum
from summer towards spring. The model also simulates an earlier peak (5.59 to 5.44 radians), though the shift is less
pronounced than observed, and the model still peaks later than observations in the recent period. The amplitude of the second
harmonic (A2) increased in observations (1.31 ppb to 2.17 ppb) but decreased in the model (3.94 ppb to 2.31 ppb), suggesting

evolving complexity in the seasonal shape that the model captures with mixed success.

These transformations are clearly linked to changes in NOx and VVOC contributions (Figure 10b,c,e,f). The dramatic decrease
in Al is primarily due to a large reduction in the summertime contribution from local anthropogenic NOx (Figure 10b vs. 10e).
This local NOx peak, which was very pronounced in 2000-2004 (contributing ~35-45 ppb in the model during summer), is
significantly curtailed in 2014-2018 (contributing ~15-20 ppb in summer). While the model still appears to overestimate this
summer local NOx contribution in the later period (as suggested by a visual inspection of Figure 10d as well as the still present
overestimation of Al), the reduction is substantial. Concurrently, winter and spring ozone levels have increased (Figure 10a
vs. 10d). This is partly due to reduced wintertime titration by lower local NOXx, but also, as seen in the model (Figure 10e), an
increase in the foreign anthropogenic NOx contribution during spring (8.30 ppb t010.83 ppb) and winter months (see section
3.4 for a detailed analysis) as well as an increase in the stratospheric contributions (7.58 ppb to 11.00 ppb; see Table 3). This
increased foreign and stratospheric influx in spring, combined with the diminished summer photochemical peak, explains the

observed shift in ¢: towards an earlier (springtime) maximum.
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From the VOC perspective (Figure 10c vs. 10f), the summertime drop is driven by a large decrease in local AVOC
contributions and a significant reduction in the contribution from natural VOCs. The latter is likely a consequence of the
reduced local NOx, making the natural VOCs less efficient at producing ozone, given that there is no correspondingly large
decreasing trend in the BVOCs (Figure 2). The wintertime increase in ozone is associated with an increased modeled

contribution from methane, alongside the foreign AVOCs.

The quantitative analysis of seasonal cycle changes in NW US and NE US highlights the profound impact of declining local
anthropogenic NOx emissions. In both regions, this has led to a significant reduction in the amplitude of the annual ozone
cycle (A1), particularly by lowering summer peaks. Wintertime ozone levels have generally increased, partly due to reduced
titration and partly due to increased contributions from remote sources like foreign anthropogenic NOx and methane. The NE
US exhibits a more pronounced shift, with a dramatic decrease in the summer peak and a clear move towards a spring-
dominated seasonal maximum (earlier ¢1), a finding also reported by previous observation-based studies (Bloomer et al., 2010;
Parrish et al., 2013; Cooper et al., 2014). This underscores the increasing relative importance of long-range transport in spring
as local summer production wanes. This transition in the ozone seasonal cycle in the NE US, towards a springtime maximum,
is expected to continue with future emissions changes, as discussed by Clifton et al. (2014). While the NW US also sees a
damped cycle, its baseline remains more consistently influenced by foreign NOx throughout the year. Our tagging technique,
combined with Fourier analysis, allows for a quantitative attribution and evaluation of these changes. The increased share of
foreign NOx and methane in contributing to springtime ozone, which coincides with the agricultural growing season, highlights
the impacts of intercontinental transported ozone on crop yields (Dingenen et al., 2009; Avnery et al., 2011) and ecosystem

health, even as local emissions are successfully reduced.

3.3 Ozone in Europe:

Here, we present the observed and model-derived results for different sub-regions in Europe: Western Europe, Southern
Europe, C&E Europe, and SE Europe (see Figure 2 for geographical extents). We first present trends in PSO along with their
NOx and VOC contributions, then show the 19-year average seasonal cycle of MDAS8 O3 and its source contributions, and
finally present changes in the seasonal cycle between initial and the final five years. Europe has undergone significant
reductions in NOx emissions over the past decades (see Figure 2), particularly in Western and Southern Europe (see Figure
11). However, some countries in Central and Eastern Europe have not yet achieved the same level of reductions, suggesting
potential variability in ozone trends across the continent. This raises important questions about how these uneven NOx
reductions might influence ozone formation dynamics in different sub-regions, which we explore in detail in this section using

our tagged model results.
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3.3.1 Peak Season Ozone in Europe: Trends and Source Contributions:

Figure 12 shows the observed and modelled PSO in different sub-regions of Europe along with the corresponding NOx and
VOC source contributions. We note that despite the large decline in European anthropogenic NOx and NMVOC emissions
(Figure 2) over the two decades, the observed PSO values exceed the WHO guidelines (31 ppb) in all regions. To understand
the geographical backdrop of PSO changes, Figure 11 presents a spatial map of local anthropogenic NOx emissions (panels a,
d), total PSO (panels b, e), and the modeled contribution of local anthropogenic NOx to PSO (panels c, f) for the initial (2000)
and final year (2018). In 2000 (Figure 11a), prominent NOx emission hotspots were evident (e.g., Benelux, Germany, Po
Valley), parts of the UK, and major urban agglomerations across the continent. By 2018 (Figure 11d), substantial emission
reductions occurred, particularly in Western and Central Europe. However, this decline is not obviously reflected in the spatial
patterns of total PSO (Figure 11b, e), which generally decreased in the southern regions but not in northern regions, especially
over areas with the largest emission cuts, as also seen in bias-corrected PSO maps by Becker et al. (2023). The direct
contribution of local anthropogenic NOx to PSO (Figure 11c, ) mirrors these emission reductions more closely, with clear
reductions from 2000 to 2018. This suggests the role of other contributions in offsetting the expected decline in PSO, especially

in northern European regions.

Observed PSO time series (Figure 12, panels a, d, g, j) reveal diverse trends across Europe (see Table 2). Western Europe
exhibits no significant long-term trend in observed PSO, despite a clear decline in local NOx contributions. This region notably
experienced high PSO during the 2003 and 2006 heatwaves (Vautard et al., 2005; Solberg et al., 2008; Struzewska & Kaminski,
2008), events which the model captures. Southern Europe shows a slight overall decline in observed PSO (-0.09 (0.45) [-0.33,
0.15] ppb/yr, Table 2), though with an uptick in the final years. C&E Europe displays a more pronounced decreasing trend in
observed PSO (-0.40 (<0.01), [-0.58, -0.22] ppb/yr). The model's performance in reproducing these trends varies: it captures
the lack of trend in Western Europe and the declining trend in Southern Europe (albeit overestimating the declining trend; -
0.20 (0.01) [-0.35, -0.06] ppb/yr), but simulates a much weaker or even insignificant decline in C&E Europe than observed.
SE Europe presents a challenge for PSO trend interpretation due to lack of sufficient observational stations for most of the
study period (see Figure S11). Due to these sampling issues, we do not overinterpret the results for this region. Instead, we
refer the reader to Lin et al., (2015) for a discussion on the dependence of the modelled ozone trends on the co-sampling with
observations. Our results are in general agreement with the findings of Yan et al. (2018) who found insignificant trends for

mean ozone but declining trends for the 95th %ile ozone in Europe during spring-summer.

The evolution of NOx contributions to PSO (Figure 12, panels b, e, h, k; Table 2) is key to understanding European PSO
trends. Local anthropogenic NOXx contributions (red lines) have declined significantly across all European regions. In Western
Europe, this decline (-0.28 (<0.01) [-0.38, -0.18] ppb/yr) is offset by increases in other contributions, leading to a flat overall

PSO trend. This quantitatively demonstrates that while local NOx emission controls have reduced direct local ozone
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production, other contributions have compensated. In Southern Europe, the more stringent decline in local NOx contribution
(from ~25 ppb in 2000 to ~19 ppb in 2018) is the primary driver of the overall PSO decrease. C&E Europe also shows a
substantial decline in local NOx contribution (-0.28 (<0.01), [-0.36, -0.20] ppb/yr).

The relationship between local NOx emissions and PSO is further illuminated by the correlation analysis in Figure 13. The
gridcell-level correlation between local anthropogenic NOx emissions (averaged over the corresponding 6-month PSO window
per year) and total PSO (Figure 13a) is moderately positive over large parts of Central and Southern Europe (r ~ 0.4-0.7), but
weaker or even negative in parts of Western and Northern Europe. This indicates that while local emissions are a factor, total
PSO in the northern belts of Europe is highly susceptible to other influences. In contrast, the correlation between local NOx
emissions and their direct contribution to PSO (Figure 13b) is very high (r > 0.7-0.9) across most of Europe. This confirms the

model's source attribution capability and reinforces that reducing local NOx directly curtails its specific ozone yield.

Foreign anthropogenic NOXx contributions have shown small increases across Europe (e.g., 0.04 (0.03) [0.00, 0.07] ppb/yr in
Western Europe, 0.07 (0.01) [0.02, 0.13] ppb/yr in S Europe, 0.08 (<0.01), [0.04, 0.13] ppb/yr in C&E Europe), offsetting the
benefits of local reductions (Figure 12, panels b, e, h, k; Table 2). Global shipping NOx contributions also show a consistent
increasing trend across all European regions (e.g., 0.12 (<0.01) [0.10, 0.14] ppb/yr in Western Europe, 0.16 (<0.01) [0.14,
0.19] ppb/yr in Southern Europe), reflecting rising maritime emissions and their growing impact on coastal and inland air
quality. Contributions from natural NOx sources are also rising (see Table 2) despite the lack of a significant increase in natural
NOx emissions (Figure 2) suggesting an increased ozone production efficiency by these emissions in a lower-NOx
environment, as also noted in North American regions. Stratospheric intrusion remains relatively small and a stable contributor

to PSO without any significant trends (Table 2).

The VOC source contributions to PSO (Figure 12, panels ¢, f, i, I; Table 2) reveal the significant role of methane and the impact
of local emission changes. Methane is the largest VOC contributor to PSO across all European regions, typically around 15-
20 ppb. Its contribution generally shows a slight increasing trend (e.g., 0.08 (<0.01) [0.05, 0.11] ppb/yr in Western Europe),
consistent with rising global methane concentrations, though this increase is modest compared to the overall PSO levels.
Contributions from local AVOC have declined in all regions, mirroring reductions in their emissions and contributing to the
overall PSO decrease where observed. For example, in Western Europe, local AVOCs declined by -0.17 (<0.01) [-0.21, -0.12]
ppb/yr, and in Southern Europe by -0.21 (<0.01) [-0.25, -0.16] ppb/yr. This decline is consistent with reduced availability of
both AVOCs and local NOx for ozone formation. Natural VOCs (from biogenic and fire emissions) are the second most
important VOC contributors after methane. Their absolute contribution varies, but like methane, their ozone production
capacity is linked to NOx availability. The interaction between local anthropogenic NOx and natural VOCs is evident in all

regions, where variability in the contribution from these two sources is highly similar. Foreign AVOCs, shipping VOCs, and
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stratospheric intrusion (VOC perspective) are smaller contributors, with foreign AVOCs and stratospheric components

generally stable.

3.3.2 Ozone seasonal cycle in Europe: Quantitative Characterization and Source Contributions:

Figure 14 shows the 19-year average seasonal cycle of MDA8 Os for different sub-regions of Europe along with its NOx and
VOC source contributions. The observed seasonal cycle is distinct in each receptor region: we see a major spring peak in
Western Europe, a sustained spring-to-summer peak in Southern Europe and C&E Europe, and a major summer peak in SE
Europe. The model reproduces the average seasonal cycles in these regions reasonably well, particularly in Western and
Southern Europe. The model underestimates the MDAS8 O3 for C&E Europe in winter months and systematically overestimates

the full seasonal cycle for SE Europe.

The 19-year (2000-2018) average seasonal cycle of MDAS8 O3 across European sub-regions was characterized using Fourier
analysis, with parameters detailed in Tables S7-S10 and the cycles, along with source contributions, depicted in Figure 14.
Observed annual mean MDA8 O3 (y0) across Europe is generally lower than in many North American regions, ranging from
~35 ppb in Western Europe to ~41 ppb in Southern Europe (Tables S7-S10). The model reproduces these annual means
reasonably well for Western Europe (observed 35.36 ppb, modeled 34.67 ppb) and Southern Europe (observed 41.15 ppb,
modeled 42.39 ppb). However, it underestimates y0 by ~1.5 ppb in C&E Europe (observed 38.1 ppb, modeled 36.62 ppb) and
significantly overestimates it by ~7.5 ppb in SE Europe (observed 39.86 ppb, modeled 47.35 ppb). This large positive bias in
y0 for SE Europe, also evident in the full seasonal cycle (Figure 14g,h), may be influenced by uncertainties due to limited

observational network affecting the gridded observational product in this sub-region (see Figure S11).

The amplitude of the fundamental harmonic (A1), indicating the magnitude of seasonal variation, is substantial across Europe.
Observed Al ranges from 8.61 ppb in Western Europe to 11.62 ppb in Southern Europe. The model consistently overestimates
Al in all European regions, suggesting an overestimation of the summer photochemical peak. This overestimation is most
pronounced in C&E Europe (modeled 15.18 ppb vs. observed 11.33 ppb) and Western Europe (modeled 11.13 ppb vs. observed
8.61 ppb). This pattern of overestimated A1 mirrors the findings for eastern North America and points towards a common
model tendency to exaggerate summertime ozone production, likely linked to the modeled response of local and natural

NOx/VOC contributions during summer months (Figure 14, left and right panels respectively).

The phase of the annual peak (¢1) is relatively consistent across the regions, with observed values around 5.05-5.39 radians,
indicating a late spring to early summer maximum. SE Europe exhibits a slightly later observed peak (¢: = 5.55 radians). The
model generally captures this timing well, with modeled ¢: values closely matching observations (e.g., Western Europe: obs.

5.05, mod. 5.2; Southern Europe: obs. 5.39, mod. 5.45). This agreement suggests the model correctly simulates the relative
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seasonal contributions of different processes driving the main ozone peak. For instance, the spring peak in Western Europe
(Figure 14a) is notably influenced by foreign NOx and stratospheric contributions, while the broader spring-summer peak in
Southern Europe and C&E Europe (Figure 14c) reflects a strong summertime peak in local and natural NOx contributions,

alongside springtime transport influences.

The amplitude of the second harmonic (A2), representing semi-annual features, is generally smaller than Al but non-
negligible, with observed values between 1.76 ppb (C&E Europe) and 2.76 ppb (SE Europe). The model tends to reproduce
A2 reasonably well for Western Europe and C&E Europe but overestimates it in Southern Europe (observed 1.79 ppb vs
modeled 2.65 ppb). A significant A2 can reflect the interplay between springtime transport-driven ozone enhancements and
summer photochemical production. The phase of this second harmonic (¢2) shows more variability and model-observation

agreement is mixed.

The Fourier parameters are consistent with the source attribution patterns: for Western Europe (Fig 14a,b), the distinct spring
peak (captured by @) is clearly driven by peaks in foreign NOx and stratospheric contributions. The model's overestimation
of Al stems from a more pronounced modeled summertime contribution from local and natural NOx than is suggested by the
overall observed seasonal shape, which lacks a strong summer maximum. Methane is the dominant VOC contributor year-
round. Southern and C&E Europe (Fig 14c-f) exhibit a broader spring-to-summer high. Their larger Al values reflect a strong
summer peak in local anthropogenic NOx and natural NOx contributions, which the model captures but tends to exaggerate,
leading to the overestimation of Al. Foreign NOXx contributes significantly to the spring shoulder and winter baseline. Methane
and natural VOCs are key VOC contributors, especially during the warmer months. SE Europe (Fig 14g,h) shows a clear
summer maximum in observations and model (larger ¢:; delayed peak). Local and natural NOx contributions drive the strong

summer peak in the model.

The model effectively simulates the timing of the annual 0zone peak (¢:) across Europe. However, it consistently overestimates
the amplitude of this annual cycle (A1), pointing to an overactive summer photochemistry in the model, a characteristic also
noted for parts of North America. The annual mean ozone (y0) is well-reproduced for Western and Southern Europe but shows
biases for Central & Eastern and particularly SE Europe. Wintertime ozone levels in all regions are sustained by significant
foreign NOx contributions (often >10 ppb), while summertime peaks are primarily driven by local anthropogenic and natural
NOx chemistry. Foreign AVOC contributions remain low (<5-7 ppb), suggesting limited interaction with European NOX,

implying that transported NOx more significantly interacts with natural VOCs and globally present methane.
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3.3.3 Changes in seasonal cycle of ozone in Europe: Role of Local vs Remote contributions

To understand the evolution of ozone seasonality in Europe, we compare the 5-year average MDAS8 O3 seasonal cycles from
an initial period (2000-2004) with a recent period (2014-2018). Here, we present the results for Western Europe and Southern
Europe, with detailed Fourier parameters in Tables S7 and S8, and the corresponding seasonal cycles and source contributions
in Figures 15 and 16. Results for the remaining European sub-regions are included in the supplement (Figures S9-S10; Tables
$8-S9).

In Western Europe (Figure 15, Table S6), the most notable change between 2000-2004 and 2014-2018 is a distinct flattening
of the summer ozone peak alongside an increase in wintertime ozone levels. The observed annual mean MDAS Os (y0)
remained remarkably stable (35.84 ppb to 35.85 ppb), a feature well-captured by the model (34.07 ppb to 35.28 ppb). However,
the amplitude of the primary annual cycle (A1), representing the summer-winter difference, decreased in both observations
(from 10.08 ppb to 7.95 ppb) and the model (from 13.16 ppb to 9.46 ppb). This indicates a significant damping of the seasonal
swing. The phase of the fundamental harmonic (1) shifted slightly earlier in observations (5.18 to 5.09 radians), as well as
the model (5.32 to 5.18 radians).

These changes are primarily driven by shifts in NOx contributions (Figure 15b vs. 15e). The summertime contribution from
local anthropogenic NOx decreased substantially between the two periods. This reduction in local summer production is the
main cause of the lower summer peak and reduced Al. Conversely, wintertime ozone levels increased. This rise is linked to
an increase in the foreign anthropogenic NOx contribution during winter and spring months in the later period, coupled with
reduced titration from lower local NOx emissions (see section 3.4 where these two effects are disentangled). It is noteworthy
that the reduction in the local NOx contribution during summer is larger than the overall decrease in total MDAS8 O3 during
these months, because offsetting increases from other sources like shipping NOx (which increased from ~2 ppb to ~4 ppb in
August) and a more efficient ozone production from remaining natural NOx under lower overall NOx conditions partly
compensated for the local reductions. As noted previously, while Northern Hemispheric shipping NOx emissions increased
(Figure 2e), the increased contribution from natural NOx highlights its enhanced ozone-forming efficiency in a lower-NOx
environment. From a VOC perspective (Figure 15¢ vs. 15f), the summertime decrease is associated with a reduction in local
AVOC contributions. The wintertime ozone increase is supported by a larger share of methane contribution and, to a lesser

extent, foreign AVOCs during winter in the recent period.

Southern Europe (Figure 16, Table S7) also exhibits a notable evolution in its seasonal ozone cycle, characterized by a
flattening of the seasonal cycle. The observed annual mean ozone (y0) slightly increased (from 40.83 ppb to 41.81 ppb), a
trend also seen in the model (42.05 ppb to 42.76 ppb). The amplitude of the fundamental harmonic (A1) decreased significantly
in observations (from 13.02 ppb to 10.64 ppb) and even more so in the model (from 15.18 ppb to 9.93 ppb), indicating a
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substantial reduction in the peak summer concentrations. The phase of the peak (¢1) remained relatively stable, suggesting the

timing of the summer maximum did not shift considerably.

The primary driver for the reduced summer peak and lower Al is the marked decrease in the summertime contribution from
local anthropogenic NOx (Figure 16b vs. 16e). While this local source remains the dominant contributor to the summer peak,
its magnitude is considerably lower in 2014-2018 compared to 2000-2004. Similar to Western Europe, contributions from
foreign anthropogenic NOx have become relatively more important throughout the year, particularly sustaining spring and
winter ozone levels. Natural NOx and shipping NOx contributions also show slight increases in summer in the later period,

partially offsetting the local NOx reductions.

Regarding VOC contributions (Figure 16c¢ vs. 16f), the summertime decrease in ozone is linked to reductions in both local
AVOC and methane contributions during the peak season in the later period. Methane remains the largest VOC contributor
overall, but its peak summer contribution has diminished. Wintertime ozone increases are associated with higher contributions

from methane and foreign AVOCs, along with stratospheric intrusion.

3.4 Increasing Foreign Ozone in North America and Europe: increasing Foreign NOx emissions versus reduced local
titration of background ozone:

Previous sections highlighted an increasing trend in the contribution of foreign anthropogenic NOx to ozone in
various North American and European receptor regions, particularly during winter and spring (Jan-Apr). This
observed increase in ozone attributed to foreign anthropogenic NOx (hereafter, O3_FOREIGN) could stem from
two primary mechanisms: (i) an actual increase in the intercontinental transport of ozone produced from foreign
NOx emissions, or (ii) an "unmasking" of existing transported ozone due to weakened local titration (NO + O; —
NO, + O,) as local NO emissions have declined in these regions. Disentangling these factors is crucial for making
informed decisions on local as well as global emission reduction policies. For example, if the second mechanism
is dominant, it would imply that with further local NOx reductions we should expect more increases in winter-
springtime ozone (which may potentially be a barrier to such policymaking). However, if the first mechanism is
dominant, then further decreases in local NOx will principally decrease local ozone while the transported

component can be controlled through international policies.

To investigate this, we analyzed the combined contribution of Os FOREIGN and the NO: formed from the titration of
Os_FOREIGN (hereafter, NO._FOREIGN). It is noteworthy that this NO2_FOREIGN, locally recovered from foreign ozone

titration, is separately tagged in our modelling system than the NO2 directly flowing from foreign regions (which we do not
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discuss here). The sum, Ox_FOREIGN (O3_FOREIGN + NO2_FOREIGN), represents the total reactive odd oxygen
attributable to foreign anthropogenic NOx sources. An increasing trend in Ox_FOREIGN would more strongly indicate an
actual rise in transported reactive oxygen from foreign sources, whereas an increase in O FOREIGN with relatively stable

Ox_FOREIGN might suggest a dominant role of reduced local titration.

Figure 17 presents the time series of winter-spring (Jan-Apr) mean Os_FOREIGN (blue shaded area) and the additional
NO:_FOREIGN component (grey shaded area, making up the total Ox_FOREIGN indicated by the top of the grey area) for
selected North American and European receptor regions over the 2000-2018 period. In both the NW US (Figure 17a) and SW
US (Figure 17b), a clear increasing trend is evident not only in Os_ FOREIGN but also in the total Ox_FOREIGN over the
2000-2018 period. For instance, in NW US, Jan-Apr mean Os_ FOREIGN increased from approximately 10.3 ppb in 2000 to
13.3 ppb in 2018, while Ox_FOREIGN increased from approximately 10.8 ppb to 13.6 ppb. Similarly, in SW US,
0s;_FOREIGN rose from around 10.6 ppb to 13.7 ppb, and Ox_FOREIGN from 11.2 ppb to 14.0 ppb. The NO2_FOREIGN
component (grey area) is consistently small, typically ranging from 0.2 to 0.7 ppb during these cold, low-photolysis months.
The key finding here is that the total Ox_FOREIGN shows a clear increasing trend. This robust increase in Ox_FOREIGN
demonstrates that the rising influence of foreign NOXx on winter-spring ozone in western North America is substantially driven
by an actual increase in the import of reactive odd oxygen from foreign sources, rather than solely by reduced local titration
unmasking more foreign-produced background ozone. While reduced local titration plays a minor role (NO2_FOREIGN
decreases over time), the fundamental increase in O3_FOREIGN is due to increasing foreign NOx emissions. The
Ox_FOREIGN peaks in 2013 when Northern Hemispheric NOx emissions also peaked (see Figure 2e). These results are
consistent with findings of Elshorbany et al., (2024) and Lu et al., (2024) who report increasing ozone trends in Asia both in
the troposphere and at the surface which stabilize around 2013. After 2013, we see a decline in both Ox_FOREIGN and
0O3_FOREIGN which is principally driven by a decline in foreign NOx emissions (Crippa et al., 2023), which is primarily due
to the implementation of China’s Clean Air Programme (Zheng et al., 2018)

Similar patterns are observed in Western Europe and Southern Europe (Figures 17c and d, respectively). In Western Europe,
winter-spring O3_FOREIGN increased from 10.6 ppb in 2000 to 11.6 ppb in 2018, with Ox_FOREIGN rising from 11.9 ppb
to 12.6 ppb. Southern Europe saw O3_FOREIGN increase from around 10.7 ppb to 12.9 ppb, and Ox_FOREIGN from 11.8
ppb to 13.4 ppb. Again, the NO.  FOREIGN component remains a minor fraction of the total Ox_FOREIGN during these Jan-
Apr periods and slightly decreases with time, reflecting reduced titration of O3_FOREIGN. The consistent increase in the total
Ox_FOREIGN across these European regions, much like in North America, demonstrates an increasing influx of reactive odd
oxygen attributed to foreign NOXx sources. This suggests that the observed rise in foreign ozone contributions during European
winter-spring is not merely an artifact of changing local chemical environments (i.e., reduced titration) but reflects a more

fundamental increase in the amount of pollution arriving from upwind, foreign sources.
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4. Conclusion, Limitations and Future Outlook:

In this study we explain the long-term trends and the evolving shape of the seasonal cycle of surface ozone in North America
and Europe (an issue raised by many previous observational studies) in terms of changing contributions from various NOx
and VOC sources, through the use of an ozone tagging system in a global chemical transport model. While both regions have
experienced rapid reductions in locally-emitted ozone precursors in recent decades, we note that the Peak Season Ozone (PSO)

in both regions exceeds the WHO guidelines for the entire study period.

Our model is generally in good agreement with ground observations from rural stations in the newly-developed TOAR-I1I
database, allowing us to attribute the observed trends in terms of the changing contributions from local and foreign emission
sources of NOx and VOC. While AVOC emissions contribute a relatively small fraction of the total PSO, anthropogenic NOx
emissions have a much stronger influence. The decreasing trend in NOx emissions in both North America and Europe leads
to a lower fraction of the PSO attributable to these local NOx emissions towards the recent years, however the total modelled
decrease in PSO in both regions is partially offset by increasing contributions from natural NOXx, foreign anthropogenic NOX,

and international shipping.

While the increasing trend in ozone attributable to international shipping (despite potential overestimation of ozone produced
from ships) is consistent with increasing emissions from this sector, the increasing trend in modelled contribution of natural
NOXx emissions, especially during the summertime, suggests increasing ozone productivity of these emissions since there is no
increasing trend in natural NOx emissions in our model and a slight decreasing trend in Lightning NOx emissions (Figure 3 a,
C, €, 0). The decreases in local NOx emissions in both regions lead to strong reductions in summertime ozone, but have a
smaller effect in the springtime, when long-range transport of ozone produced from foreign anthropogenic NOx emissions and
stratosphere is more important (Table 3). All regions show a modest increasing trend in the foreign anthropogenic NOx
contribution to the PSOover the study period. Especially in the western sub-regions of Europe and North America, the foreign
anthropogenic NOx contribution to PSO has become comparable in magnitude to the local NOx contribution. Foreign
anthropogenic NOXx contribution to winter-springtime ozone has increased significantly and is primarily driven by increases
in foreign NOx emissions rather than reduced titration of foreign transported ozone, although the latter also plays a minor role.
We have shown that local anthropogenic NOx emissions still contribute significantly to PSO in both Europe and North America
and its further reduction would not unmask a large amount of previously titrated ozone over regional scales in winter and
spring. As an emission source which can be controlled with domestic policy interventions, future policy should continue to

target these emissions.

Due to the nature of our ozone tagging system, we perform two separate source attributions, one for NOx emissions, and

another for VOC emissions. When attributing ozone to VOC emissions, we note the strong contribution of BVOC emissions
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to the summertime peak ozone, which is clearly linked with the strong contribution of local anthropogenic NOx emissions to
summertime ozone. The co-variability of these two sources is also apparent in the PSO time series for all regions and
emphasizes the interaction of anthropogenic NOx with BVOC in rural and background regions. This is an emerging finding
made possible due to our dual-tagging approach; a relatively recent regional modelling study (Lupascu et al., 2022) focusing
on two high ozone episodes in Germany that also utilized the TOAST1.0 system also noted the interaction of local
anthropogenic NOx and BVOC in driving ozone peaks.This finding highlights that, at least for rural and background regions,
the interaction of anthropogenic NOx with BVOC exceeds its interaction with AVOC which might be contained within the
urban centres. It is noteworthy that BVOC emissions also either match or exceed AVOC emissions in North America and
Europe during the peak season. In all of the sub-regions in our study except for the eastern parts of the United States, the
contribution of methane to ozone is greater than that of BVOC. While global methane concentrations have risen from 1787
ppb to 1875 ppb during our study period (an increase of about 5%), this has only led to a modest increasing trend in methane
contributions to PSO in Europe. In all regions of the US except NW US, the methane contribution to PSO has slightly decreased
over this time. This is consistent with the large reductions in local NOx emissions, leading to a lower efficiency of ozone

production during methane oxidation over both regions..

The TOAST1.0 dual-tagging technique uniquely allows us to unveil many interesting results summarized above, which would
not be possible to disentangle through perturbative approaches or other tagging approaches that tag a specific region with all
its (NOx+VOC) emissions or the geographic area of ozone production. It provides us with a parallel view of the composition
of ozone trends in terms of NOx and VOC precursors belonging to their original source locations, thereby facilitating a more
targeted species-specific policy response. Many key results, for example: the separation of Foreign NOXx versus stratospheric
contributions in explaining springtime ozone increase; separation of increased wintertime ozone to increased foreign NOXx
versus reduced local titration; decreasing methane contribution to ozone in many regions despite increasing background
methane; and in general the co-attribution of ozone to anthropogenic and biogenic emission sources under baseline conditions,
would not be unveiled without the aid of our novel tagging system. Our innovative approach to model evaluation by breaking
down the observed and modelled ozone seasonal cycles into a fundamental and secondary harmonic using Fourier transform
and then comparing them against the seasonal cycles of tags (e.g., comparison of the fundamental harmonic against the local
NOx contribution to seasonal cycle) allows us to test the validity of such statistical decomposition techniques in different
contexts and improve their theoretical interpretation; something which could not be achieved without tagged model
simulations. Once sufficiently validated, such statistical decomposition could be applied more broadly, thereby unveiling new

scientific insights from observations alone.

While this study has yielded an array of novel scientific results and policy-relevant insights, a number of limitations remain.
First, our model spatial resolution (1.9°x2.5°), necessitated by the extra computational burden of tagged species and the long

duration of the simulation period, is admittedly quite coarse and potentially introduces model biases. A recent study by Gao et
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al. (2025) has highlighted that the long-standing problem of overestimating surface ozone in the northern hemispheric mid-
latitudes by global models can be addressed in large part by increasing the model resolution. Therefore, future modelling
studies with tagging can be performed over short duration but high model resolution to assess the effect of model resolution
on model bias and source contributions. Second, our source attribution, while capable of determining the contributions of
different local and remote emission sources to the ozone under baseline conditions, is only of limited usefulness in predicting
the response of ozone levels to any future emission reductions. For such an assessment, it is necessary to perform model
sensitivity studies reflecting the actual policy interventions aimed at reducing ozone. Studies like ours can however identify
the major contributing emission sources. Given the strong role of methane as an ozone precursor, targeted reductions of
methane along with other AVOC can also be expected to contribute to the reductions in PSO needed to comply with the WHO
guideline value but such an assessment would require model perturbation studies wherein methane and AVOCs are reduced.
Third, our approach does not attribute any changes in ozone to meteorological changes which might become increasingly
important in a warming world. Instead, all changes in ozone are essentially attributed to precursor emissions. However,
changing contributions from certain emission sources do not necessarily imply only changing emissions but could also be due

to more/less efficient transport of foreign produced ozone due to meteorological changes.
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EPA, Northwest District Office; Ohio University, Athens, OH; Oklahoma Dept. Of Environmental Quality Air Quality
Division; Olympic Air Pollution Control Authority; Omaha-Douglas County Health Department; Open Air Quality; Oregon
Department Of Environmental Quality; Paiute-Shoshone Indians of Bishop Community of Bishop Colony, CA; Pala Band of
Luiseno Mission Indians of Pala Reservation, CA; Passamaquoddy Tribe of Maine (Pleasant Point); Pennsylvania
Department Of Environmental Protection; Pennsylvania State University (Penn State); Penobscot Tribe of Maine; Picayune
Rancheria of Chukchansi Indians of California; Pima County Department of Environmental Quality; Pinal County APCD;
Pinellas County Department Of Environmental Management; Polk County Physical Planning; Ponca Tribe of Indians of
Oklahoma; Portsmouth City Health Dept Division Air Pollution Control; Pueblo of Jemez, NM; Quapaw Tribe of Indians,
OK; Quebecor; RR Donnley, IN; Sac and Fox Nation, OK; Sacramento County APCD; Salt River Pima-Maricopa Indian
Community of Salt River Reservation, AZ; San Diego County Air Pollution Control District; San Joaquin Valley Unified Air
Pollution Control District; San Luis Obispo County APCD; Santa Barbara County APCD; Santa Rosa Indian Community of
Santa Rosa Rancheria, CA; Senat fiir Umwelt, Bau und Verkehr, Bremen; Senatsverwaltung fir Stadtentwicklung und
Umwelt; Senatsverwaltung fir Umwelt, Verkehr und Klimaschutz Berlin; Servicio Meteorologico Nacional; Shasta County
APCD; South Carolina Department Health And Environmental Control; South Coast Air Quality Management District;
South Dakota Department of Agriculture and Natural Resources; South East Texas Regional Planning Commission
(SETRPC); Southern Ute Indian Tribe of Southern Ute Reservation, CO; St Louis County Health Department Air Pollution
Control; St. Regis Mohawk Tribe, New York; State Of Louisiana; Swinomish Indians of Swinomish Reservation, WA;
Séachsisches Landesamt fiir Umwelt, Landwirtschaft und Geologie; Table Mountain Rancheria; Taiwan Environmental

Protection Agency; Tallgrass Energy Partners; Tata Chemicals; Tennessee Division Of Air Pollution Control; Tennessee
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Valley Authority; Texas Commission On Environmental Quality; Thiringer Landesanstalt fiir Umwelt und Geologie;
Torres-Martinez Cahuilla Indians, California; Toyota; Tracer Technologies; US Forest Service; USEPA - Clean Air Markets
Division; Umweltbundesamt; United States Environmental Protection Agency; University Hygenic Laboratory (University
of lowa); Utah Department Of Environmental Quality; Ute Indian Tribe of Uintah & Ouray Reservation, UT; Vandenberg
AFB; Ventura County APCD; Vermont Agency Of Environmental Conservation; Vigo County Division Of Air Pollution
Control; Virginia Department of Environmental Quality; WAUPACA Foundry; Wampanoag Tribe of Gay Head (Aquinnah)
of Massachusetts; Warren Energy Services, LLC; Washington State Department Of Ecology; West Virginia Division of Air
Quality; Weston Solutions, TX; Wisconsin Dept Of Natural Resources, Air Monitoring Section; Wyoming Air Quality
Division, Dept Of Environmental Quality; Wyoming Bureau of Land Management; persons: Maria; Adela Holubova;
Anne-Cathrine Nilsen; Aude Bourin; Christine F Braban; Christoph Hueglin; Christopher Conolly; Chrysanthos Savvides;
Erik Andresen; Erzsebet Gyarmatine Meszaros; Gabriela Vitkova; Gerardo Carbajal Benitez; Gerardo Carbajal Benitez;
Hiroshi Tanimoto; Indriksone Iveta; lveta Indriksone; Jan Silhavy; Jaroslav Pekarek; Jasmina Knezevic; Juan Martinez;
Karin Sjoberg; Karin Sjoberg; Karin Sjgberg; Keith Vincent; Lino Fabian Condori; Magdalena Bogucka; Maj-Britt Larka;
Marcin Syrzycki; Maria Barlasina; Marijana Murovec; Mateja Gjere; Milan Vana; Ming-Tung Chuang; Monistrol Jose
Antonio Fernandez; Muinasmaa Urmas; Murovec Marijana; Nikolova Yana; Robert Gehrig; Roman Prokes; Rune Keller;
Stefan Reimann; Truuts Toivo; Ursul Gina; Usin Eve; Veronika Minarikova; Wenche Aas; Willis Paul; Yugo Kanaya;
Zdzislaw Przadka (2024). Ozone data obtained from TOAR Database for rural stations between 2000 and 2018.
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Figure 1: HTAP Tier 1 regions which form the basis for source regions for NOx and VOC tagging. Oceanic tagged

regions are shown in Figure S12. More details on tagged regions are provided in Table 1.
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1777 Figure 2: Time-series of NOx- (left panels) and VOC-emissions (right panels) for North America (a, b), and Europe
1778 (c, d) source regions along with Northern Hemispheric totals (e, f) and global totals of lightning NOx and background
1779 CHya concentrations over the study period.
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1781 Figure 3: Receptor regions considered for model evaluation or analysis. Note that many regions were sparsely sampled
1782 due to lack of a wide rural observational network within these regions.
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1786 Figure 4: Time series of observed versus simulated monthly mean MDAS8 Os along with mean bias, mean absolute
1787 bias, and correlation coefficients for various receptor regions. Correlation coefficients for annual averaged data are
1788 mentioned in brackets. Only rural stations data were utilized from the TOAR database and model output was fetched
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Figure 5: Spatial distribution of local anthropogenic NOx emissions during peak season (a, d), PSO (b, €), and local
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Figure 6: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in North America for 2000-
Model output was sampled from TOAR-valid grid cells only.
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1816

1817 Figure 9: 5-year average MDA8 O3 seasonal cycles for NW US for 2000-2004 (a) and 2014-2018 (b) along with their NOX (b,e) and
1818 VOC contributions (c,f).
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Figure 11: Spatial distribution of local anthropogenic NOx emissions during peak season (a, d), PSO (b, €), and local
anthropogenic NOx contribution to PSO (c, f) for Europe during the initial (2000) and final year (2018). Here, emissions
for each grid cell were calculated by averaging over a 6-month time window that matches the PSO window over the
grid cell.
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1833

Figure 12: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in Europe for
2000-2018 (left panels) and its source contributions in terms of NOx sources (middle panels) and VOC sources (right

panels). Model output was sampled from TOAR-valid grid cells only.
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Figure 13: A spatial map showing correlation coefficient (r) between local anthropogenic NOx versus PSO (a) and local
anthropogenic NOXx versus local anthropogenic NOx contribution to PSO (b) over the 19 years for Europe. For each
year, and each gridcell, only peak season NOx emissions were used per grid cell.
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1850 Figure 14: Month-centered average MDA8 Oz over the 2000-2018 period for various receptor regions in Europe and its source
1851 contributions in terms of NOX sources (left panels) and VOC sources (right panels). Model output was sampled from TOAR-valid
1852 grid cells only.
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1857 Figure 15: 5-year average MDAB8 Os seasonal cycles for Western Europe for 2000-2004 (a) and 2014-2018 (b) along with their NOXx
1858 (b,e) and VOC contributions (c,f).
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1870 Figure 16: 5-year average MDA8 O3 seasonal cycles for Southern Europe for 2000-2004 (a) and 2014-2018 (b) along with their NOX
1871 (b,e) and VOC contributions (c,f).
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Figure 17: Time series of Foreign OX (O3+NQO2) contributions to wintertime and springtime (Jan-Apr) mean o0zone in
North American and European receptor regions. The blue shaded area denotes O3 due to foreign anthropogenic NOx
and the grey shaded area denotes NO2 originating from the titration of O3 that is attributed to foreign anthropogenic
NOX.

71



1882
1883
1884
1885
1886
1887

1888

1889
1890
1891
1892
1893
1894
1895
1896
1897

Table 1: Various emission tags for NOx- and VOC-tagged simulations. The geographic definition of the land-based tags corresponds
to the HTAP tier 1 regions as shown in Figure 1. For NOXx-tagging, “Rest of the World” corresponds to the tier 1 regions of South
America, Oceania, and Middle & Southern Africa combined. For VOC-tagging, the regions: Arctic, Central Asia, Mexico & Central
America, North Africa, and Southeast Asia were also combined into the “Rest of the World”. The regional oceanic tags are only
applicable for NOx-tagging and their geographic definitions are shown in Figure S12. For VOC-tagging we use a single oceanic tag
representing NMVOCs from shipping and natural DMS emissions. Lightning tag is only applicable for NOXx-tagging.

Regional land-based Tags Regional oceanic tags Global sector/process-based tags
Central Asia Arctic Aircraft
East Asia Eastern North Atlantic Biogenic
Europe North Atlantic (remaining) Biomass Burning
Mexico & Central America North American East-Coastal zone Lightning
Middle East North American West-Coastal zone Stratosphere
North Africa North Pacific
North America Baltic and North Seas
Russia-Belarus-Ukraine Hudson Bay
South Asia Indian Ocean
Southeast Asia Mediterranean, Black, and Caspian

Seas
Rest of the World Southern Hemisphere Oceans
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1898  Table 2: Generalized Least Squares (GLS) linear trends in ppb/year along with their p-values (shown in parentheses)
1899 and 95% confidence intervals (shown in square brackets) for observed and modelled Peak Season Ozone and its tagged
1900  source contributions for various receptor regions.

1901
1902
1903
Region TOAR Model Local Foreign | Natural | Ship Local Foreign | Methan | Natural | Stratos
Ant. Ant. NOyx NOyx AVOC | AVOC | e VvVOoC phere
NOx NOx
E Canada -0.19 -0.28 -0.78 0.22 0.06 0.08 -0.33 0.10 0.14
(0.01) [- | (0.01) [- [(<0.01) [-| (<0.01) (0.01) (<0.01) |(<0.01)[-| (<0.01) 0.00 -0.17 (<0.01)
0.32, - 0.50, - 1.08, - [0.16, [0.02, [0.08, 0.41, - [0.05, | (0.98)[- | (0.10)[- | [0.06,
0.06] 0.07] 0.48] 0.28] 0.11] 0.10] 0.26] 0.14] 10.06, 0.06]]0.39, 0.04]f 0.22]
NW US -0.11 -0.39 0.12 0.09 0.03 -0.15 0.03
-0.09 (0.03) [- | (<0.01) [-| (<0.01) | (<0.01) | (<0.01) [(<0.01)[-] (0.07) -0.03 0.00 0.03
(0.11)[- | 0.21,- 0.46, - [0.09, [0.04, [0.02, 0.16, - [0.00, [ (0.03)[- | (0.95)[- | (0.31)[-
0.20,0.02]] 0.01] 0.31] 0.16] 0.14] 0.05] 0.13] 0.07] ]0.05, 0.00]{0.09, 0.10]{0.03, 0.10]
SW US -0.33 -0.26 -0.72 0.19 0.10 0.05 -0.24 0.08 -0.10 0.11
(<0.01) [ | (<0.01) [- | (<0.01) [ | (<0.00) | (0.02) | (<0.01) [(<0.01)[-| (<0.01) |(<0.01)[-| -0.10 (0.01)
0.45, - 0.38, - 0.83, - [0.15, [0.02, [0.04, 0.27, - [0.04, 0.15,- | (0.11)[- | [0.03,
0.21] 0.15] 0.62] 0.24] 0.18] 0.06] 0.22] 0.12] 0.06] 10.23,0.03]] 0.19]
NE US -0.34 -0.50 -0.97 0.17 0.12 0.06 -0.36 0.08 -0.09 -0.24 0.12
(<0.01) [ | (<0.01) [- | (<0.01) [ | (<0.01) | (<0.01) | (<0.01) [(<0.01)[-| (<0.01) |(<0.01)[-| (0.01) [- | (<0.01)
0.50, - 0.69, - 119, - [0.14, [0.08, [0.05, 0.41, - [0.05, 0.15, - 0.42, - [0.07,
0.18] 0.31] 0.76] 0.20] 0.16] 0.07] 0.31] 0.12] 0.03] 0.06] 0.18]
SE US -0.46 -0.63 -1.09 0.17 0.09 0.08 -0.33 0.08 -0.15 -0.32 0.12
(<0.01) [- | (<0.02) [ | (<0.01) [- | (<0.01) | (<0.01) | (<0.01) |(<0.01)[-| (<0.01) |(<0.01)[-](<0.01)[-| (<0.01)
0.63, - 0.79, - 1.25, - [0.13, [0.04, [0.06, 0.37, - [0.03, 0.20, - 049, - [0.06,
0.28] 0.47] 0.94] 0.22] 0.15] 0.09] 0.29] 0.13] 0.11] 0.15] 0.18]
W Europe -0.28 0.04 0.05 0.12 -0.17 0.08
-0.10 -0.05 |(<0.01)[-]| (0.03) (<0.01) | (<0.01) |(<0.01)[-| -0.02 (<0.01) 0.03 0.02
(0.26)[- | (0.46)[- | 0.38,- [0.00, [0.03, [0.10, 0.21,- | (0.14)[- | [0.05, | (0.34)[- | (0.48)[-
0.29, 0.08]/0.18,0.08]| 0.18] 0.07] 0.07] 0.14] 0.12] 0.05,0.01]f 0.11] |0.04,0.11](0.04, 0.08]
S Europe -0.20 -0.54 0.07 0.05 0.16 -0.21
-0.09 (0.01) [- | (<0.01) [-| (0.01) (0.03) (<0.01) |(<0.01)[-| -0.01 0.00 -0.03 0.05
(0.45)[- | 0.35,- 0.67, - [0.02, [0.00, [0.14, 0.25,- | (0.71) [- | (0.94) [- | (0.56) [- | (0.20) [-
0.33,0.15]| 0.06] 0.41] 0.13] 0.09] 0.19] 0.16] ]0.05, 0.04]{0.06, 0.06]{0.15, 0.08]|0.03, 0.12]
C&E -0.40 -0.28 0.08 0.08 0.07 -0.18 -0.04 0.09 0.09
Europe (<0.01), [-| -0.05 [(<0.01),[-] (<0.01), | (<0.01), | (<0.01), |(<0.01) [-| (0.01) [- | (<0.01) | (0.04) -0.01
0.58,- | (0.32),[-| 0.36,- [0.04, [0.05, [0.05, 0.21, - 0.07, - [0.04, [0.01, | (0.84)[-
0.22] [0.15,0.05]] 0.20] 0.13] 0.11] 0.09] 0.15] 0.01] 0.13] 0.17] 0.07,0.05]
SE Europe 0.84 -0.56 0.28 0.18 -0.28 0.18
(0.01) -0.06 |(<0.01)[-| (<0.01) | (<0.01) | 003 [(<0.01)[-| -0.05 (0.04) 0.08 -0.01
[0.29, | (0.60)[- | 0.80,- [0.20, [0.09, | (0.19)[-| 0.32,- | (0.20)[- | [0.01, | (0.45)[- | (0.89)[-

1.38] [0.32,0.19]] 0.32] 0.36] 0.27] [0.02,008]| 023] [0.12,003] 035 [0.13,0.28][0.14,0.12]
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1904  Table 3: Changes in the foreign anthropogenic NOx contributions and stratospheric contributions to springtime
1905 (March-May) mean MDAS8 O3 in different receptor regions between the initial period (2000-2004) and recent period
1906  (2014-2018).

1907
1908
Region Foreign anthropogenic NOx contribution Stratospheric contribution
Initial Period Recent Period Initial Period Recent Period

Eastern Canada 8.91 11.72 8.20 12.97
NW US 13.16 14.81 12.02 12.55
SW US 14.01 17.37 13.24 14.25
NE US 8.30 10.83 7.58 1.00
SE US 8.47 10.59 6.70 9.27
Western Europe 12.10 13.34 8.15 9.14
Southern Europe 13.25 14.66 8.77 9.48
C&E Europe 13.07 13.94 7.87 8.38
SE Europe 13.98 15.64 8.44 9.06

1909

1910

1911
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