1 Explaining trends and changing seasonal cycles of surface ozone in

2 North America and Europe over the 2000-2018 period: A global

3 modelling study with NO_X and VOC tagging

⁴ Tabish Ansari^{1*}, Aditya Nalam^{1,2}, Aurelia Lupaşcu³, Carsten Hinz⁴, Simon Grasse⁴, and Tim Butler^{1,2}

6 ¹Research Institute for Sustainability at the GFZ-Helmholtz Centre Potsdam (RIFS), Potsdam, 14467, Germany

7 ²Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany

8 ³European Center for Medium Range Weather Forecasts (ECMWF), Bonn, 53175, Germany

9 ⁴Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

10

11 *Correspondence to*: Tabish Ansari (tabish.ansari@rifs-potsdam.de)

12

13 Abstract. Surface ozone, with its long enough lifetime, can travel far from its precursor emissions, affecting human health, 14 vegetation, and ecosystems on an intercontinental scale. Recent decades have seen significant shifts in ozone precursor 15 emissions: reductions in North America and Europe, increases in Asia, and a steady global rise in methane. Observations 16 from North America and Europe show declining ozone trends, a flattened seasonal cycle, a shift in peak ozone from summer 17 to spring, and increasing wintertime levels. To explain these changes, we use TOAST 1.0, a novel ozone tagging technique 18 implemented in the global atmospheric model CAM4-Chem which attributes ozone to its precursor emissions fully by NO_X 19 or VOC+CO+CH4 sources and perform multi-decadal model simulations for 2000-2018. Model-simulated maximum daily 20 8h ozone (MDA8 O₃) agrees well with rural observations from the TOAR-II database. Our analysis reveals that declining 21 local NO_X contributions to peak-season ozone (PSO) in North America and Europe are offset by rising contributions from 22 natural NO_X (due to increased O3 production productivity), and foreign anthropogenic- and international shipping NO_X due 23 to increased emissions. Transported ozone dominates during spring. Methane is the largest VOC contributor to PSO, while 24 natural NMVOCs become more important in summer. Contributions from anthropogenic NMVOCs remain smaller than 25 those from anthropogenic NO_X. Despite rising global methane levels, its contribution to PSO in North America and Europe 26 has declined due to reductions in local NO_X emissions. Our results highlight the evolving drivers of surface ozone and 27 emphasize the need for coordinated global strategies that consider both regional emission trends and long-range pollutant

29

28 transport.

30 1 Introduction

31 Ozone near the Earth's surface is primarily formed by the photodissociation of NO₂ molecules by sunlight - the NO₂ 32 molecule breaks down and furnishes atomic oxygen which combines with molecular oxygen in the air to form ozone. The 33 naturally occurring NO₂ concentration in the troposphere is low and cannot alone explain the high ozone observed in the 34 troposphere (Jacobson, 2005; Seinfeld & Pandis, 2016). However, in the modern era especially towards the end of the 20th 35 century especially during the last half of the 20th century, increased industrialization and motorization of society has led to 36 increasing emissions of nitric oxide (NO) (Logan 1983; Beaton et al., 1991; Calvert et al., 1993). NO can interact with 37 peroxy radicals, chiefly produced from naturally and anthropogenically emitted non-methane volatile organic compounds 38 (NMVOCs), carbon monoxide (CO), and methane (CH₄) in the presence of the hydroxyl radical (OH) to form NO₂ which 39 can then produce ozone through the pathway described above (Atkinson 1990, 1994, 1997; Seinfeld & Pandis, 2016). 40 Unsurprisingly, with increasing anthropogenic activities emitting NO, CO, NMVOCs and CH₄, the ozone concentrations in 41 the troposphere and at the surface have risen substantially as compared to the pre-industrial or early-industrial times (Logan 42 1985; Crutzen 1988; Young et al., 2013; UNEP and CCAC, 2021). 43 44 Ozone is a highly reactive pollutant that harms human health, vegetation, and the environment due to its oxidative properties. 45 In humans, it causes respiratory inflammation, exacerbates chronic illnesses, and impairs lung function by generating 46 reactive oxygen species that damage cellular structures (Lippmann 1989; Chen et al., 2007; Devlin et al., 1991; Brook et al., 47 2004) due to long term exposure as well as short term exposure at high concentrations (Fleming et al., 2018). Ozone disrupts 48 photosynthesis in plants and damages tissues, reducing crop yields and altering ecosystems (Ashmore 2005; Felzer et al., 49 2007; Grulke & Heath 2019; Cheesman et al., 2024); a recent assessment by Mills et al. (2018) shows persistent high levels 50 of ozone adversely affecting various types of crops and vegetation in northern hemispheric regions. Moreover, it contributes 51 to climate change by diminishing the carbon sequestration ability of vegetation and acting as a greenhouse gas (Oeschger & 52 Dutsch 1989; Sitch et al., 2007; Szopa et al., 2021). In light of these harmful effects, the World Health Organization (WHO) 53 has set safe standards for short-term and long-term human exposure to ozone: on any day, the maximum 8h average ozone 54 concentration (MDA8 O₃) which must not exceed 100 µgm⁻³ (or ~51 ppb), and annually, the Peak Season Ozone (PSO), i.e., 55 the maximum value of the six-month running average of MDA8 O₃, must not exceed 60 μgm⁻³ (or ~30.61 ppb) (WHO 2021). 56 57 In order to meet these safe health standards, various national governments - particularly in North America and Europe and 58 more recently in China - have acted to reduce their industrial and vehicular emissions by adopting cleaner fuel and 59 technologies and have successfully managed to bring down their national NO_X and NMVOC emissions substantially 60 (Goldberg et al., 2021; Shaw & Heyst 2022; Crippa et al., 2023). However, these national efforts of emission reductions have 61 not fully translated into commensurate reductions in local ozone concentrations and health impacts (Seltzer et al., 2020;

62 Parrish et al., 2022). This is due to the long-enough atmospheric lifetime of ozone (about 3-4 weeks) which allows it to

63 traverse intercontinental distances and affect the air quality of regions far from the location of its chemical production or the 64 location of the emission of its precursors. While the global average tropospheric lifetime of ozone is often cited as 65 approximately 3-4 weeks, a figure largely influenced by more rapid photochemical loss in warmer, humid tropical regions 66 (e.g., Stevenson et al., 2006; Young et al., 2013), the effective lifetime of ozone in air parcels transported within the cooler, 67 drier free troposphere at northern midlatitudes is considerably longer, on the order of several months (e.g., Jacob, 1999; 68 Wang and Jacob, 1998; Fiore et al., 2009). This extended lifetime in the primary transport pathway for intercontinental 69 pollution allows ozone to traverse vast distances and enables the northern mid-latitude free troposphere to act as a relatively 70 well-mixed reservoir (Parrish et al., 2020). Moreover, some ozone precursors (e.g., CO and less reactive NMVOCs) also 71 possess atmospheric lifetimes sufficient for intercontinental transport, subsequently contributing to ozone formation in 72 downwind regions far from their original emission sources. Therefore, air quality benefits in regions with declining 73 emissions can be offset by an increasing share of transported ozone from far away regions where emissions are on the rise. 74 Many previous observational-based studies have reported declining peak-ozone trends in North America towards the final 75 decades of the 20th century and the beginning of the 21st century (Wolffe et al., 2001; Cooper et al., 2014; Cooper et al., 76 2015; Chang et al., 2017; Fleming et al., 2018; Cooper et al., 2020). However, some of these studies and many others -77 through novel statistical decomposition filtering of observational data - have also pointed out increasing trends in wintertime 78 and background ozone concentrations at many sites in North America, particularly at the US west coast (Jaffe et al., 2003; 79 Cooper et al., 2010; Simon et al., 2014; Parris & Ennis, 2019; Parrish et al., 2022; Christiansen et al., 2022). Such increases 80 in ozone have also been identified throughout the background troposphere at northern midlatitudes including in the free 81 troposphere, with a peak attained in the first decade of the 2000s (e.g., Parrish et al., 2020; Derwent et al., 2024). Some of 82 these observational studies (e.g., Jaffe et al., 2003) have further correlated the increasing background ozone in western US to 83 increasing emissions in Asia while others (e.g., Cooper et al., 2010) have also employed air mass back trajectory analysis to 84 support their claims. Jaffe et al., (2018) performed a comprehensive knowledge assessment of background ozone in the US 85 and emphasized its growing relative importance and advocated for, among other things, a more strategic observational 86 network and new process-based modelling studies to better quantify background ozone in the US to support informed clean 87 air policies. A number of observational studies have also reported changes in the ozone seasonal cycle in North America, 88 with shifting peaks from summer to springtime (Bloomer et al., 2010; Parrish et al., 2013; Cooper et al., 2014), a reversal of 89 the spring-to-summer shift in peak ozone during mid-twentieth century which was reported in earlier studies (e.g., Logan 90 1985) when anthropogenic emissions were increasing in North America. Similarly, for Europe, many studies have observed 91 declining ozone trends since 2000 (Cooper et al., 2014; Chang et al., 2017; Fleming et al., 2018; EEA report 2020; Sicard 92 2021). For Europe too, there have been attempts of statistical decomposition filtering and analyses of observational data in 93 innovative ways to highlight the increasing share of intercontinental transport and the consequent changes in ozone seasonal 94 cycle in recent decades (Carslaw 2005; Parrish et al., 2013; Derwent & Parrish, 2022).

96 Reliable, long-term, and publicly accessible monitoring stations across different continents form the backbone of an 97 international consensus on ozone distributions, trends, and health impacts on various populations. These observational 98 networks provide essential data for advanced statistical analyses, which can estimate both transported and locally produced 99 ozone (as seen in many observational studies mentioned earlier). However, such statistical interpretations can be subject to 100 dispute and must be corroborated by well-evaluated atmospheric chemical transport models which simulate atmospheric 101 transport processes explicitly. Together, observational analyses and model-generated results can aid the theoretical 102 development and improvement of simpler conceptual models that capture the essence of the most salient physical and 103 chemical processes that control observed ozone abundances (Derwent et al., 2024).

104

The hemispheric-scale transport of "foreign" ozone is a phenomenon peculiar to longer-lived pollutants such as ozone. While short-lived pollutants like PM2.5, which are regional in nature, can be largely controlled through domestic policies, effective ozone mitigation requires international engagement and cooperation. Developing such cooperation requires a high-trust international dialogue, underpinned by confident estimates of ozone transport between regions on which there is international consensus. These estimates are vital to implementing effective policies in a world where "foreign" ozone transport between regions on which there is contributions are significant.

111

112 Atmospheric chemical transport models simulate the emission, chemical production and loss, transport, and removal of 113 various coupled species within the atmosphere and allow us to assess theory against observational evidence. Atmospheric 114 models can also enable us to quantify various source contributions to concentrations of a particular chemical species in a 115 given location or region. This is achieved by using, broadly, one of the two methods - perturbation or tagging. In the 116 perturbation method, several runs are conducted where certain emission sources are removed or reduced and the resulting 117 concentration fields are subtracted from the baseline run with full emissions to yield the contribution of the removed source. 118 In the tagging method, generally a single simulation yields source contributions from different tagged regions or emission 119 sectors. The contributions derived from the perturbation method are not the true contributions operating under baseline 120 conditions. Instead, they represent the response of all other sources to the removal of a particular source, which may be 121 different from their contribution when all sources are present (Jonson et al., 2006; Burr & Zhang, 2011; Wild et al., 2012; 122 Ansari et al., 2021). Therefore, perturbation experiments are best-suited to evaluate air quality policy interventions, when 123 certain emission sources are actually removed (or reduced) or are planned to be removed in the real-world as part of policy. 124 On the other hand, tagging techniques, which track the fate of emissions from designated sources as they undergo transport 125 and chemical transformation within the unperturbed baseline atmosphere, allow us to assess the contribution of various 126 sources under a baseline scenario when no policy intervention has been made. We refer the reader to Grewe et al. (2010) for 127 a first-principles discussion on perturbation versus tagging methods and to Butler et al. (2018) for a review of different 128 tagging techniques.

130 With growing observational evidence of the increasing importance of "foreign" transported ozone, there have been many 131 attempts at confirming and quantifying these contributions using both perturbation-based and tagging-based model 132 simulations for both North American and European receptor regions in recent years. For example, Reidmiller et al. (2009) 133 used results from an ensemble of 16 models which conducted several regional perturbations for the year 2001, to report that 134 East Asian emissions are the largest foreign contributor to springtime ozone in western US while European emissions are the 135 largest foreign contributor in eastern US. Lin et al., (2015) disentangled the role of meteorology from changing global 136 emissions in driving the ozone trends in the US by performing sensitivity simulations with fixed emissions over their 137 simulation period of 1995-2008. Strode et al. (2015) conducted a perturbation experiment where they only allowed domestic 138 US emissions to vary over time but keep the remaining global emissions fixed at an initial year to better quantify the effect 139 of changing foreign emissions on ozone in the US. Similarly, Lin et al. (2017) performed global model simulations with 140 several perturbation experiments where emissions were fixed at the initial year over Asia and where US emissions were 141 zeroed-out. They used the difference between the simulated concentrations in their perturbation and base simulations to 142 quantify the influence of local and foreign emission changes on the ozone concentrations in the US. Mathur et al. (2022) 143 calculated emission source sensitivities of different source regions for the year 2006 using a sensitivity-enabled hemispheric 144 model and applied these sensitivities to multi-decadal simulations to compute the influence of foreign emissions on North 145 American ozone levels. They found a declining influence of European emissions and an increasing influence of East- and 146 Southeast Asian emissions along with shipping emissions on the spring- and summertime ozone in North America. Derwent 147 et al. (2015) used an emissions-tagging method in a global Lagrangian model for the base year 1998 to explain the changing 148 ozone seasonal cycle in Europe. Garatachea et al. (2024) performed three-year long regional model simulations with 149 emissions tagging to calculate the import and export of ozone between European countries. Building on previous work, 150 Grewe et al. (2017) introduced a new tagging method which assigns different ozone precursors into a limited number of 151 chemical 'families' and attributes ozone to multiple sources within each family. Mertens et al. (2020) used this tagging 152 technique at a regional scale to calculate the contribution of regional transport emissions on surface ozone within Europe.

As pointed out earlier, perturbation-based estimates are more suited to evaluate an emissions policy intervention rather than 155 to quantify baseline contributions of various sources (Grewe et al., 2010, 2017; Mertens et al., 2020). Tagging techniques, in 156 calculating baseline source contributions, can also have limitations. For example, they often tag combined NO_X and VOC 157 emissions over a tagged region or attribute ozone to the geographic location of its chemical production rather than the 158 original location of its precursor emissions (as in Derwent et al., 2015) which can complicate policy-relevant interpretation 159 of the model results. Some tagging techniques (as in Garatachea et al., 2024) tag ozone only to its limiting precursor in each 160 grid cell thereby complicating detailed chemical interpretation of the computed contributions. While others (e.g., Grewe et al., 2017; Mertens et al., 2020) attribute ozone molecules to tagged NO_X and VOC depending on their abundances relative to 162 the total amount of NO_X and VOC present in each grid cell at each time step.

164 In this study, we use the TOAST tagging technique as described in Butler et al. (2018) which separately tags NO_X and 165 NMVOC emissions in two model simulations to provide separate NO_X and VOC contributions from different regions and 166 sectors to simulated ozone in each model grid cell. The results from NO_X- and VOC-tagging can be compared side-by-side 167 and the total contributions of all sources from both simulations add up to the same total baseline ozone. The TOAST tagging 168 technique has been previously applied in both global (Butler et al., 2020; Li et al., 2023; Nalam et al., 20254) and regional 169 models (Lupascu & Butler, 2019; Lupascu et al., 2022; Romero-Alvarez 2022; Hu et al., 2024) to calculate tagged ozone 170 contributions over US, Europe, East Asia as well as the global troposphere.

171

172 We describe our model configuration, simulation design, input emissions data, and observations from the TOAR-II database 173 used for model evaluation in section 2. In section 3.1, we present region-specific model valuation for the policy-relevant 174 MDA8 O₃ metric. Key results on attribution of trends and seasonal cycle to NO_X and VOC sources are presented in sections 175 3.2 for North America and section 3.3 for Europe. We finally summarise our key findings along with potential future 176 directions in section 4.

177

178 2 Methodology

179 2.1 Model description, tagged emissions, and simulation design:

180 We perform two 20-year long (1999-2018) global model simulations, with 1999 used as a spin-up year, using a modified 181 version of the Community Atmosphere Model version 4 with chemistry (CAM4-Chem) which forms the atmospheric 182 component of the larger Community Earth System Model version 1.2.2 (CESMv1.2.2; Lamarque et al., 2012; Tilmes et al., 183 2015). The gas-phase chemical mechanism employed in this study is based on the Model for Ozone and Related chemical 184 Tracers, version 4 (MOZART-4) (Emmons et al., 2010) which includes detailed O_x-NO_x-HO_x-CO-CH₄ chemistry, along with 185 the oxidation schemes for a range of non-methane volatile organic compounds (NMVOCs). Specifically, MOZART-4 treats 186 85 gas-phase species involved in 39 photolytic and 157 gas-phase reactions. NMVOCs are represented using a lumped 187 species approach, where, for example, alkanes larger than ethane are lumped as a single species (e.g., BIGALK for C4+ 188 alkanes), and alkenes larger than ethene are lumped (e.g., BIGENE), with specific treatments for aromatics, isoprene, and 189 terpenes. The oxidation products of these lumped and explicit VOCs are also tracked. Further details on the MOZART-4 190 chemical mechanism, including the full list of species and reactions, can be found in Emmons et al. (2010). The two 191 simulations are identical in simulating the baseline chemical species including the total ozone mixing ratios, however, they 192 are used to separately tag region- or sector-based NO_X and VOC ozone precursor emissions respectively which ultimately 193 allow us to break down ozone mixing ratios into their tagged NO_X or VOC sources separately.

195 The model is run at a horizontal resolution of 1.9°×2.5°, a relatively coarse resolution which essentially allows us to 196 compensate for the added computational burden due to the introduction of many new chemical species in form of tags and to 197 effectively carry out two multi-decadal simulations. Vertically, the model was configured with 56 vertical levels with the top 198 layer at approximately 1.86 hPa and roughly the bottom half of the levels representing the troposphere. The model is run as 199 an offline chemical transport model with a chemical time-step of 30 min and is meteorologically driven by prescribed fields 200 from the MERRA2 reanalysis (Molod et al., 2015) with no chemistry-meteorology feedback. The model is meteorologically 201 nudged towards the MERRA2 reanalysis fields (temperature, horizontal winds, and surface fluxes) by 10% every time step.

202

203 We use the recently released Hemispheric Transport of Air Pollution version 3 (HTAPv3) global emissions inventory (Crippa 204 et al., 2023) to supply the temporally varying anthropogenic emissions input for NO_X, CO, SO₂, NH3, OC, BC and 205 NMVOCs over 2000-2018 for our model runs. These include multiple sectors including several land-based sectors but also 206 domestic and international shipping as well as aircraft emissions. We break down the global aircraft emissions spatially to 207 denote three different flight phases based on EDGAR6.1: landing & take-off, ascent & descent, and cruising. Based on this 208 spatial disaggregation of flight phases, we vertically redistribute the aircraft emissions at appropriate model levels for each 209 flight phase following the recommended vertical distribution in Vukovich & Eyth (2019). We also speciated the lumped 210 NMVOCs as provided by the HTAPv3 emissions dataset, first, into 25-categories of NMVOCs as defined by Huang et al. 211 (2017). This was done by using the regional (North America, Europe, Asia, and Other regions) speciation ratios specified for al. (2023)table 212 each sector by Crippa et (see here: 213 https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/htap_v3/NMVOC_speciation_HTAP_v3.xls). After 214 obtaining the 25-category region- and sector-based NMVOC speciation, we further speciated them into the appropriate 215 NMVOC species as required by the MOZART chemical mechanism, which included merging as well as bifurcation of 216 certain species. Biomass burning emissions are taken from GFED-v4 inventory (van der Werf et al., 2010) which provide 217 monthly emissions for boreal forest fires, tropical deforestation and degradation, peat emissions, savanna, grassland and 218 shrubland fires, temperate forest fires, and agricultural waste burning. The biogenic NMVOC emissions are taken from 219 CAMS-GLOB-BIO-v3.0 dataset (Sindelarova et al., 2021), while biogenic (soil) NO_X is prescribed as in Tilmes et al. (2015). 220 While we spatially interpolate the emissions from HTAPv3 high-resolution (0.1°×0.1°) dataset to our coarser model 221 resolution $(1.9^{\circ} \times 2.5^{\circ})$, it leads to some land-based emissions at coastal areas to spill into the ocean grid cells and vice versa, 222 thereby creating a potential for misattribution of tagged emissions. To correct this, we move these wrongly allocated 223 land-based emissions over ocean grid cells back to the nearest land grid cells (and similarly, wrongly moved oceanic 224 emissions to coasts back into the ocean) to make sure that the emissions are allocated to the correct region for the source 225 attribution. We also ensure that small islands which are smaller than the model grid cell area are preserved and their 226 emissions are not wrongly attributed as oceanic or shipping emissions.

228 Our simulations do not resolve the full carbon cycle and do not have explicit methane emissions. Instead, methane 229 concentration is imposed as a surface boundary condition. These methane concentrations are taken from the 2010–2018 230 average mole fraction fields from the CAMS CH₄ flux inversion product v18r1

231 (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion?tab=overview) and is 232 specified as a zonally and monthly varying transient lower boundary condition. For upper boundary conditions, annually 233 varying stratospheric concentrations of NO_X, O₃, HNO₃, N₂O, CO and CH₄ are prescribed from WACCM6 ensemble member 234 of CMIP6 and are relaxed towards climatological values (Emmons et al., 2020).

235

236 Following the methodology of Butler et al. (2018 and 2020), as per the TOAST tagging system, we modify the MOZART 237 chemical mechanism (Emmons et al., 2012) to include extra tagged species for the NO_x tags and VOC tags, respectively, for 238 the two simulations. This system allows us to attribute almost 100% of tropospheric ozone in terms of its NO_X (+ 239 stratosphere) sources and in terms of its VOC (+ methane + stratosphere) sources in two separate simulations. In the 240 troposphere, almost all ozone production can be attributed to reactions between peroxy radicals and NO, producing NO2, 241 which ultimately photolyzes to produce ozone. Only a small fraction (typically less than 1 ppb of ozone at the surface) can 242 not be clearly attributed to either NOx or VOC precursors, for example the ozone production from O atoms formed through 243 the self-reaction of hydroxyl radicals (Butler et al., 2018) which is labelled as "residual ozone" in our study. In the two 244 simulations, aside from the full baseline emissions, we additionally provide regionally- and sectorally-disaggregated NO_x 245 and VOC emissions, respectively, which undergo the same chemical and physical transformations in the model as the full 246 baseline emissions. The regional tags are based on the HTAP2 Tier1 regions (Galmarini et al., 2017; see Figure 1, S12 and 247 Table 1). Since the focus of this study is to study ozone trends and its sources in North America and Europe, and because 248 ozone is primarily a hemispheric pollutant (with little inter-hemispheric contributions), we explicitly tagged the land-based 249 NO_X emissions in the northern hemisphere regions, namely, North America, Europe, East Asia, South Asia, 250 Russia-Belarus-Ukraine, Mexico & Central America, Central Asia, Middle East, Northern Africa and Southeast Asia, while 251 the southern hemisphere regions of South America, Southern Africa, Australia, New Zealand and Antarctica are tagged 252 together as "rest-of-the-world". The ocean is also divided into multipleany zones, mainly in the northern hemisphere, and 253 tagged separately (see Figure S12). In case of the VOC emissions, we use fewer explicitly tagged regions and some of the 254 explicitly tagged NO_x regions are aggregated with the "rest-of-the-world". This is done to ensure computational efficiency 255 given that tagging NMVOC means tagging several speciated NMVOCs within the MOZART chemical mechanism (as 256 opposed to a single NO species in case of NO_x tagging). In addition to the regional tags which carry anthropogenic 257 emissions, we also tag other, mainly non-anthropogenic, global sectors separately: biogenic, biomass burning, lightning, 258 aircraft, methane and stratosphere.

259

260 We specify an additional tag for NO_X emission generated from lightning parameterization (Price and Rind, 1992; Price et al., 261 1997) in our NO_X-tagged simulation, and for methane in our VOC-tagged simulation. We refer the reader to Figure 1 for the

262 geographic definitions of the various source regions and to Table 1 for more details on the regional and global tags for the 263 NO_x and VOC-tagging runs. Based on these tags changes were made to the model source code following Butler et al. (2018) 264 which allows for physical and chemical treatment of all tagged species within the model.

265

266 Figure 2 shows the trends in NO_X and VOC emissions for North America (NAM) and Europe (EUR) tagged source regions 267 and for the northern hemisphere along with the global lightning NO_X emissions and prescribed methane concentrations over 268 the study period. We see a consistent decline in North American anthropogenic NO_X emissions (Fig 2a) from ~250 Kg (N) s⁻¹ 269 in 2000 down to ~100 Kg (N) s⁻¹. We also see a decline in European anthropogenic NO_X emissions (Fig 2c), although 270 starting from a lower base in 2000, from ~140 Kg (N) s⁻¹ down to 80 Kg (N) s⁻¹. Similarly, the anthropogenic NMVOCs, or 271 AVOCs, in the two regions (Figs 2b and d) have also declined substantially. These large emission changes reflect the strict 272 and effective emission control policies implemented in these regions (Clean Air Act 1963, Clean Air Act Amendments 1990; 273 Council Directive 1996, 2008). The biogenic NO_X emissions peak in summertime for both regions but remain much lower 274 (up to 40 Kg (N) s⁻¹ in North America and 20 Kg (N) s⁻¹ in Europe) than the anthropogenic NO_X emissions and exhibit no 275 long-term trend. NO_X emissions from fires remain extremely small. The biogenic NMVOCs, or natural VOCs, also peak 276 during summertime for both regions. This is due to the larger leaf area in the summer season (Guenther et al., 2006; 277 Lawrence and Chase, 2007). The natural VOCs for North America are higher than the AVOCs and show an increasing trend 278 since 2013. The natural VOC emissions in Europe are comparable to the AVOC emissions especially in recent years. The 279 biomass burning NMVOC emissions are the smallest but they show an increasing trend in North America. We have also 280 plotted the total northern hemispheric (NH) NO_x and NMVOC emissions which can provide some context in understanding 281 foreign contributions to ozone in North America and Europe. Here, we see the NH anthropogenic NO_X increasing from 2000 282 until 2013 after which it declines to below 2000 levels. This increasing trend is primarily driven by increasing Chinese 283 emissions, while the decline is driven by a decline in Chinese, North American and European emissions (not shown). We see 284 a similar trend for NH AVOC as well. Summertime NH natural VOC emissions exceed the AVOC emissions. NH biomass 285 burning NMVOC emissions are also significant, up to 5000 Kg C s⁻¹, but they are lower than natural VOC and AVOC 286 emissions and do not show any significant trend. Global lightning NO_X emissions show a declining trend from ~100 Kg (N) 287 s⁻¹ in 2000 to ~90 Kg (N) s⁻¹ in 2014 after which they increase to 95 Kg (N) s⁻¹ in 2018. The global methane concentration 288 remains consistent, around 1780 ppb, for 2000-2006 but rises steadily since 2007 reaching around 1880 ppb in 2018. 289 Understanding these trends in regional emissions of different ozone precursors allows us to better interpret tagged 290 contributions to simulated ozone in later sections.

291

292 2.2 Model runs and initial post-processing:

293 We perform two separate 20-year long simulations for 1999-2018. The first year, 1999, is discarded as a spin-up year and 294 only the outputs for 2000-2018 are used for further analyses. For the VOC-tagged run, the spin-up time was two years, such

that the 1999 run was restarted with the conditions at the end of the first 1999 run. Introducing extra tagged species with full physical and chemical treatment in the model leads to a substantial increase in computational time (approx. 6x-8x) as compared to a basic model run without tagging. Therefore, such a model configuration typically needs a large number of CPU cores spread over multiple parallel nodes. We run our tagged simulations on 6-nodes with 72 Intel Icelake cores each (432 cores in total) with a memory of 2048 GB per node. It takes approximately 24h and 36h wallclock time to complete a single year of simulation with NO_X- and VOC-tagging, respectively, with our model configuration. The VOC-tagged involves all speciated NMVOCs to be tagged separately thereby increasing the total number of chemical species to be treated in the model.

304

We configure the model to write out key meteorological and chemical variables, including tagged O₃ variables, as 3D output 306 at monthly average frequency but also write out the tagged O₃ variables at surface at an hourly frequency which allows us to 307 assess key policy-relevant ozone metrics for further analyses. Before we proceed to analyses of the results, we convert the 308 model output into global MDA8 O₃ (maximum daily 8h average) values along with its tagged contributions for each grid cell 309 in the model. The model writes-out the hourly ozone values in Universal Time Coordinates (UTC) for all locations. 310 Therefore, we first, consider different time-zones (24 hourly zones based on longitude range) and select the 24 ozone values 311 by applying the appropriate time-offset to reflect a "local day" for each grid cell. Once a 24h local-day has been selected, we 312 perform 8h running averages spanning these 24 values and pick the maximum of these 8h averages as the MDA8 O₃ value 313 for that grid cell on a given day. We then use the selected time window for the MDA8 O₃ value for the grid cell to also 314 calculate the 8h-average tagged contribution over this window. Using this methodology, we prepare global NetCDF files 315 which contain daily MDA8 O₃ values along with tagged contributions for each grid cell. We use these files for further 316 analyses.

317

318 Figure 3 shows the geographic definitions of various HTAP-Tier2 regions (Galmarini et al., 2017), out of which nine regions, 319 five in North America, namely Eastern Canada, Northwest United States (NW US), Southwest United States (SW US), 320 Northeast United States (NE US), and Southeast United States (SW US), and four in Europe, namely Western Europe, 321 Southern Europe, C&E Europe, and SE Europe, shown in various shades of magenta and green, are used as receptor regions 322 to perform further analyses of trends and seasonality in section 3. We use these receptor regions to perform area-weighted 323 spatial averaging of MDA8 O₃ values before analysing the trends and contributions. Area-weighted spatial averaging is 324 needed because different model grid cells cover different areas on the ground based on the rectangular lat-long coordinate 325 system, with high-latitude grid cells covering smaller areas and low-latitude and equatorial grid cells covering larger areas. 326 So, a simple spatial averaging will overrepresent the concentrations of high-latitude gridcells and underrepresent 327 lower-latitude gridcell concentrations in the receptor region average. So, we derive dimensionless coefficients for all grid 328 cells within each receptor region based on their relative size to the average grid cell area in that region. We scale the gridded

329 MDA8 O3 with these area-coefficients before spatial averaging, ensuring a proportionate representation of the MDA8 O3 330 value over the entire receptor region.

332 2.3 TOAR Observations and related data processing:

333 For model evaluation, we utilize ground-based observations of hourly ozone from many stations over North America and 334 Europe which are part of the TOAR-II database of the Tropospheric Ozone Assessment Report (TOAR). We use the newly 335 developed TOAR gridding tool (TOAR Gridding Tool 2024) to convert the point observations from individual stations into a 336 global gridded dataset which matches our model resolution of 1.9°×2.5°. The TOAR gridding tool allows for data selection 337 including the variable name, statistical aggregation, temporal extent and a filtering capability according to the station 338 metadata.

339

331

340 We extract the Maximum Daily 8h Average (MDA8) metric for ozone from the TOAR-II database analysis service 341 (TOAR-II 2021) for the years 2000 to 2018 (as available until May 2024). The MDA8 values are only saved if at least 18 of 342 the 24 hourly values per day are valid (see, *dma8epa_strict* in TOAR-analysis 2023). This allows us to minimize any 343 discrepancies between the observed and model-derived MDA8 O3 values. Also, since our model resolution is coarse, we 344 only include rural background stations in our analyses to avoid influences of urban chemistry which may not be resolved in 345 our model.

346

347 We use the *type_of_area* field of the station metadata to select the rural stations; this information is provided by the original 348 data providers (see Acknowledgements for an exhaustive list of data providers). They cover about 20% of all stations in 349 North America and Europe. We note that roughly a similar fraction of stations in these regions remains unclassified. In the 350 final gridded product, which contains daily MDA8 O₃ values over North America and Europe a grid cell has non-missing 351 value if there is at least one rural station present within it. We obtain large parts of NAM and EUR regions with valid TOAR 352 grid cells, although the number of these valid grid cells changes day-to-day and year-to-year. In North America, the number 353 of valid stations varies from 3-4 for Eastern Canada, 17-344 for NW US, 532-139140 for SW US, 178-207134-235 for NE 354 US, 116-139100-114 for SE US. In Europe, the number of rural stations varies from 140-154201-236 for Western Europe, 355 50-18557-223 for Southern Europe, 36-8645-100 for C&E EuropeCentral & Eastern Europe, and 1-1920 for SE Europe, 356 with a general increase in the number of stations in each region with time, except for 2012 when there is an anomalous drop-357 in the number of stations. Furthermore, the number of valid TOAR stations within each grid cell also varies for certain 358 locations. To better understand the changes in the TOAR station network in each of the 9 receptor regions considered here, 359 we have plotted a time-series of annual average number of stations within each receptor region. This is shown in Figure S11. 360 We note that sparse spatiotemporal sampling can introduce uncertainty in identifying true long-term trends of ozone and 361 refer the reader to a technical note on this issue by Chang et al. (2024) for more details.

363 3. Results:

364 3.1 Model Evaluation:

365 The CAM4-Chem model has been evaluated for its ability of simulating the distribution and trends of tropospheric ozone by 366 many previous studies (Lamarque et al., 2012; Tilmes et al., 2015) including its modified version with ozone tagging (Butler 367 et al., 2020; Nalam et al., 20245). Generally, many atmospheric models including CAM4-Chem have been shown to 368 overestimate surface ozone in the Northern Hemisphere (Reidmiller et al., 2009; Fiore et al. 2009; Lamarque et al., 2012; 369 Young et al., 2013; Tilmes et al., 2015; Young et al., 2018; Huang et al., 2021). In a recent study that utilized the same model 370 simulations as those presented in this study, Nalam et al. (20254) evaluated model simulated monthly average surface ozone 371 against gridded observations from the TOAR-I dataset (Schultz et al., 2017) over various HTAP Tier 2 regions (Galmarini et 372 al., 2017) in North America, Europe and East Asia for 2000-2014 and found a satisfactory performance, albeit with a 373 general high bias of 4-12 ppb, similar to a reference CMIP6 model CESM2-WACCM6 (Emmons et al., 2020); see Figure 1 374 in Nalam et al., 20254 for more details. Furthermore, Nalam et al. (20254) have also evaluated the model simulated monthly 375 mean ozone against the ozone sonde-based climatology compiled by Tilmes et al. (2012) for different latitude bands in the 376 northern hemisphere at different pressure levels over the same period and found generally high correlations and low biases - 377 see Figure 2 in Nalam et al. (20245) for further details.

378

379 One reason for a high bias as seen in Nalam et al., (20254) and other studies could be the use of all available stations 380 (including many urban stations) for evaluating the model performance. Given the coarse model resolution, we expect the 381 model not to resolve high NO_X concentrations around the urban and industrial centres and therefore suffer from the lack of 382 ozone titration. Therefore, here, we only evaluate the model against data from rural stations, wherever available. Also, in this 383 study, we only work with policy-relevant metrics such as Maximum Daily 8h Average (MDA8) Ozone at the surface or other 384 metrics derived from it, e.g., Peak Season Ozone (PSO). These metrics generally include only the daytime ozone, especially 385 over land. Therefore, evaluating the model for these metrics also allows us to exclude nighttime ozone and avoid any large 386 nighttime biases which often arise due to improper simulation of the nighttime boundary layer which has been a persistent 387 issue in both global and regional models (Houweling et al., 2017; Du et al., 2020; Ansari et al., 2019).

388

389 For model evaluation, we derive regionally averaged monthly mean MDA8 O₃ for all HTAP tier 2 receptor regions for North 390 America, Europe and Asia but sample the MDA8 O₃ values only from those gridcells where rural TOAR observations were 391 available. Figure 4 shows the time-series of monthly mean MDA8 O₃ from the model and TOAR observations for the entire 392 simulation period. We ask the reader to refer to the geographic extent of the receptor regions discussed here in Figure 3.

394 In Eastern Canada (Figure 4a), the model reproduces the O₃ seasonal cycle very well, especially between 2007-2018. It 395 overshoots the maxima and undershoots the minima for the earlier years of 2000-2006. This could be due to inaccurate 396 (higher) NO_x emissions over the region in the HTAPv3 inventory for the earlier years which leads to higher summertime 397 production and lower wintertime levels due to increased titration. The model also reproduces the flattening annual cycle well 398 which is consistent with decreasing NO_x emissions over this region (see Figures 3 and S63). For the Northwestern United 399 States (Figure 4b), the model reproduces the annual cycle very well, although it systematically overestimates the MDA8 O₃ 400 during peak season by up to 5 ppb. For the Northeastern United States (Figure 4c), the model captures the structure of the 401 annual cycle of MDA8 O₃ very well for recent years but overestimates the summer peak and underestimates wintertime 402 ozone for earlier years, similar to Eastern Canada, again pointing to high NO_X emissions in the emission inventory over this 403 region in the initial years. The model shows an extremely skilful simulation of MDA8 O₃ in the Southern United States. In 404 SW USSouthwestern US (Figure 4d), the model reproduces the gradual and steady decline in MDA8 O₃ over time, albeit 405 with a slight overprediction (~2ppb) in later years. Similarly, in the SE USSoutheastern US (Figure 4e), we note a very good 406 reproduction of trends, with a decreasing summertime peak. For all North American regions, we see a high correlation 407 between observed and modelled monthly mean MDA8 O3 values with correlation coefficient r ranging from 0.86 to 0.98. 408 Correlations at the annual average timescale are lower and driven by interannual variability rather than seasonality of ozone. 409 Mean bias is positive for all regions and ranges but small, ranging from 0.68 ppb to 3.65 ppb. Mean absolute bias ranges **410** from 3.35 ppb to 4.37 ppb.

411

412 Since the MDA8 O3 seasonal cycle is a subject of further analysis in this study and forms a key part of our results, it is 413 imperative to perform a more rigorous evaluation of the model's ability to capture its various features quantitatively. Parrish 414 et al. (2016) provide a good precedent for such an evaluation where they break down the observed and modelled ozone 415 seasonal cycle into a y-intercept (detrended annual average) and two sinusoidal harmonics using a Fourier transform and 416 then statistically compare the fit parameters that define these harmonics (i.e. amplitudes and phase angles) for the observed 417 and modelled data. They argue that the first harmonic, with its large amplitude and phase angle, broadly represents the local 418 photochemical production of ozone, while the generally out-of-phase second harmonic, with a smaller amplitude and phase 419 angle, is related to the photolytic loss of O3, driven by $j(O^1D)$ - a hypothesis supported by the finding that the second 420 harmonic is small in the free troposphere but grows more significant in the marine boundary layer (MBL), at least for alpine 421 and remote sites analyzed (Parrish et al., 2020). Thus comparing these Fourier parameters for the observed and modelled 422 data can unveil specific model skill or lack thereof in capturing different aspects of atmospheric chemistry which ultimately 423 determine the shape of O3 seasonal cycle (Bowdalo et al., 2016; Parrish et al., 2016; Bowman et al., 2022). We performed a 424 quantitative evaluation of the seasonal cycles following the same approach. Figure S3 presents scatterplots for these five 425 essential fourier parameters, y0 in ppb (y-intercept representing annual average MDA8 O3 derived from detrended data), A1 426 in ppb (amplitude of the first or fundamental harmonic), φ1 in radians (phase angle of the fundamental harmonic), A2 in ppb 427 (amplitude of the second harmonic), and φ 2 in radians (phase angle of the second harmonic). In terms of y0, the correlation 428 coefficient r ranges from 0.34 to 0.95, with higher values for southern US but lower values for NW US and Eastern Canada, 429 reflecting lower model skill in capturing the interannual variability of MDA8 O3 in these regions. The model is more skilful 430 in capturing the amplitude of the fundamental harmonic (r values from 0.72-0.93) than in capturing the amplitude of the 431 second harmonic (r values from 0.09-0.90). In terms of phase angles too, the model is more skilful in capturing the phase 432 angles for the fundamental harmonic (r values from 0.63-0.93) than for the second harmonic (r values from 0.41-0.74). The 433 model generally overestimates y0, A1, A2, and φ1 but underestimates φ2. In general we can state that the first harmonic 434 which is related to local photochemistry is well captured by the model for most of North America. The second harmonic, in 435 our case, might be related to all other processes that modify the near-sinusoidal shape of the O3 seasonal cycle (e.g., long 436 range transport of ozone from other regions and from stratosphere and photolytic losses), and these processes are relatively 437 less well captured by the model. All Fourier fit parameters for the observed and modelled MDA8 O3 seasonal cycles have 438 been tabulated in Tables S2-S6 for different North American receptor regions.

439

440 The model reproduces the monthly mean MDA8 O₃ for Europe extremely well with very small mean biases (-1.54 ppb to 441 1.25 ppb), small mean absolute biases (2.18 to 3.54), and very high r values ranging from 0.94 to 0.97 for various regions, 442 except SE EuropeSoutheastern Europe. For Western Europe (Figure 4f), it captures both the trends and the structure of the 443 seasonal cycle extremely well, for example, note the near-stagnant maxima and increasing minima over time in both 444 observations and model output. Similarly for Southern Europe (Figure 4g), we again see a very skilful simulation of monthly 445 mean MDA8 for the entire simulation period - this includes capturing the slightly decreasing summer maxima and increasing 446 winter minima and an overall flattening of the seasonal cycle post 2006. We see a very good reproduction of MDA8 O₃ for 447 C&E EuropeCentral & Eastern Europe (Figure 4h) particularly for the summer months. We see a small underprediction for 448 the winter months in years up to 2012. However, it is the summertime MDA8 O₃ values that constitute the peak season ozone 449 metric which are ultimately utilized in our further policy-relevant analyses. Finally, for SE EuropeSoutheastern Europe 450 (Figure 4i), we notice an overprediction of MDA8 O₃ for early years, until 2006, after which the model captures the trends 451 and particularly the summer peaks very well. The mean bias is 7.63 ppb and r value is 0.62.

452

453 Similar to North America, we also performed a Fourier transform analysis for European regions which provides a
454 quantitative basis for assessing model skill in reproducing various aspects of the MDA8 O3 seasonal cycle across the 19 year
455 study period. Scatterplots in Figure S4 show high correlations between observed and modelled amplitudes and phase angles
456 for both harmonics. The general high biases, as seen in North American regions, are also not present except for the first
457 harmonic parameters for Western Europe and C&E Europe. This highlights a very high model skill in reproducing the
458 fundamental local ozone photochemistry as well as transport and loss processes in Europe. The y-intercept y0, representing
459 interannual variability of ozone, shows lowest correlations which suggests that year-to-year meteorological changes remain a
460 source of model bias and uncertainty in this region. All Fourier fit parameters for the observed and modelled MDA8 O3
461 seasonal cycles have been tabulated in Tables S7-S10 for different European receptor regions.

462

We have also included the Belarus & Ukraine region (Figure 4j; with 1-2 valid stations) in our evaluation and here too we 464 see a good simulation of MDA8 O₃ for the entire period (with a small mean bias of 0.56 ppb and r value of 0.83), barring a 465 couple of years (2014 and 2017) when the model overestimates the values. We have also evaluated the model for MDA8 O₃ 466 against rural observations from the TOAR-II database in other regions including Mexico (11-14 stations), North Africa (1-3 467 stations), Southern Africa (1 station), Southern Latin America (1-2 stations), and Europea Western Russia (2 stations; see 468 Figure 3 for region definitions), where the model has also captured the trends well, however, since we do not discuss these 469 regions in further analyses, they are presented in the supplement (see, Figure S1). Here too, the model output is extracted 470 only from those grid cells where at least one TOAR station exists, ensuring representative co-sampling.

471

472 We also evaluate the model in the context of potential overestimation of ozone production from ship plumes. This is because
473 in our modelling setup, ship NOx emissions are instantaneously diluted within the 1.9°×2.5° model grid cell which can lead
474 to an overestimation of ozone production efficiency from ship NOx. In the real world, the more localized, high-NOx
475 conditions within a concentrated young plume, the titration effects and NOx self-reactions can be more dominant and the
476 true ship NOx contribution might be somewhat lower than simulated (Kasibhatla et al., 2000; Chen et al., 2005; Huszar et
477 al., 2010). Such overestimated ship NOx contribution to ozone shows up, for example, in terms of a lower simulated vertical
478 gradient than the observed vertical profile of ozone especially at remote coastal locations. To assess this, we plot observed
479 and model simulated ozone vertical profiles at Trinidad Head, off the coast of California, for the month of July (a
480 representative month for peak season) for all 19 years (see Figure S5). The monthly mean modelled vertical O3 profile over
481 Trinidad Head generally falls within the envelope of daily observational profiles within the MBL (say, below 850 hPa).
482 Although, for multiple years, the vertical drop in modelled O3 concentration towards the surface is less sharp than that seen
483 in observations, thereby suggesting a potential overproduction of O3 near the ocean surface in the model due to
484 instantaneous distribution of ship NOx emissions in the model gridcell. This particular feature of our modelling system can
485 partly explain the positive bias in simulated ozone.

486

487 Overall, we obtain very good model-observations agreement, with low biases and high correlations, better than previous 488 studies (e.g., Butler et al., 2020; Li et al., 2023; Garatachea et al., 2024). The possible reasons for such improved 489 performance could be 1) the use of the newly developed HTAPv3 emissions inventory 2) using only rural stations for 490 evaluation which avoids urban titration which may be in the observations but not in model output 3) improved treatment of 491 spatial and temporal representativeness (including the treatment of missing values) of the stations through the TOAR 492 gridding tool 4) evaluating the policy-relevant MDA8 O₃ metric which avoids nighttime O₃ which may not be well-simulated 493 due to improper estimation of the nighttime boundary layer. We note that our model evaluation is based on model results and 494 observations of time series of MDA8 O3 that are averaged, both temporally (monthly) and spatially (first over model grid

495 cells and then over receptor regions) but such an evaluation is valid because all our subsequent analyses and conclusions 496 depend on the same spatial and temporal scales.

After a satisfactory performance of the model across different world regions and, in particular, excellent performance in the 499 simulation of MDA8 O₃ against rural stations from the TOAR-II database, we proceed to further analyses of trends and 500 source contributions to ozone in different receptor regions. First, to explain the year-to-year trends, we present the full 501 19-year time series of Peak Season Ozone (PSO) for North America and Europe along with their NO_X- and VOC- source 502 contributions derived from our two tagged simulations. After explaining the year-to-year trends in ozone in terms of the NO_X 503 and VOC contributions, we further calculated a 19-year month-centered average MDA8 O₃ and its source contributions for 504 each receptor region. This allows us to interpret the leading sources of ozone in each receptor region on a monthly basis 505 averaged over the entire simulation period. We also present the first five year (2000-2004) and last five year (2014-2018) 506 then break down this 19-year month-centered average MDA8 O₃ seasonal cycle into a past (first five years) and recent (last

507 five year) averaged seasonal cycle and explain the shifts in terms of tagged contributions for all receptor regions during these

509 3.2 Ozone in North America:

497

520

510 3.2.1 Peak Season Ozone in North America: Regional Trends and Source Contributions:

508 periods. In the next subsections, we present these results for North America and Europe.

In this section we discuss the trends in and contributions to PSO in North America. The Peak Season Ozone for any location 512 is defined as the highest of the 6-month running average of monthly mean MDA8 O₃ values. In order to compute PSO, we 513 performed the averaging over 6-month windows (Jan-Jun, Feb-July, Mar-Aug and so on) over the TOAR observations and 514 the same time window was imposed over the modelled values for calculating the 6-month averaging (instead of 515 independently selecting the peak 6-month time window for the model). This approach ensures temporal consistency between 516 the observations and modelled values. Furthermore, for spatial consistency, the model values were sampled only from those 517 grid cells where at least one TOAR-II station was present. Finally, these values from multiple grid cells were spatially 518 averaged over various receptor regions after weighting them with the grid cell areas to derive a single PSO value per region 519 per year for observations and the model along with tagged contributions.

Before examining the detailed temporal trends and source contributions to PSO in specific North American receptor regions, 522 it is instructive to visualize the spatial distribution of NOx emissions and their impact on PSO. Figure 5 illustrates the 523 gridded local anthropogenic NOx emissions (panels a, d), the total modelled PSO (panels b, e), and the modeled contribution 524 of local anthropogenic NOx to PSO (panels c, f) for the initial (2000) and final (2018) years of our analysis. The NOx 525 emissions, for each grid cell, are calculated for the same 6-month window as the PSO for the grid cell. In 2000 (Figure 5a), 526 high NOx emissions were concentrated over the Eastern United States, particularly the Ohio River Valley and the Northeast

527 corridor, as well as in California and other major urban centers. By 2018 (Figure 5d), these emissions had substantially 528 decreased across most of the continent, with the most dramatic reductions evident in the aforementioned historical hotspot 529 regions. This widespread decline in local NOx emissions directly translated to changes in ozone levels. The spatial 530 distribution of total PSO (Figure 5b, e) shows a corresponding general decrease between 2000 and 2018, particularly in the 531 eastern and central US. The spatial features of PSO for both years are very similar to bias-corrected maps of PSO for 2000 532 and 2017 presented in Becker et al. (2023). More specifically, the contribution of local anthropogenic NOx to PSO (Figure 533 5c, f) shows a marked reduction in magnitude across the continent. In 2000, local NOx contributed significantly to PSO over 534 large swathes of the eastern and southern US, whereas by 2018, this direct local contribution had diminished considerably, 535 becoming more confined to residual emission hotspots. These spatial changes provide a crucial backdrop for understanding 536 the regionally averaged trends discussed below.

537

538 Figure 6 presents the time series of observed and model-simulated total PSO (panels a, d, g, j, m), alongside the attributed 539 contributions from NOx sources (panels b, e, h, k, n) and VOC sources (panels c, f, i, l, o). On a visual inspection of 540 observed and modelled PSO trends (left column panels) we decided to fit Generalized Least Squares (GLS) linear trends to 541 these data points. We note that some previous studies have fitted higher order functions to ozone data over North America as 542 necessitated by their longer period of analysis where ozone concentrations increased, stagnated, and then decreased (Logan 543 et al., 2012; Parrish et al., 2025; Parrish et al. 2020). However, a linear fit is appropriate for the period considered in this 544 study when local emissions have only declined (Figure 2). Quantitative details of the trends and their significance for all 545 contributions are provided in Table 2. A consistent observation across all North American regions is that the observed PSO 546 levels generally exceed the WHO guideline (31 ppb) throughout the study period.

547

548 Observed PSO exhibits a decreasing trend in most North American regions (Figure 6, panels a, d, g, j, m). For instance, 549 Eastern Canada shows a slight decline (-0.19 (0.01) [-0.32, -0.06] ppb/yr), while more substantial decreases are seen in the 550 SW US (-0.33 (<0.01) [-0.45, -0.21] ppb/yr), NE US (-0.34 (<0.01) [-0.50, -0.18] ppb/yr), and SE US (-0.46 (<0.01) [-0.63, 551 -0.28] ppb/yr). The NW US shows the smallest, albeit still decreasing, trend (-0.09 (0.11) [-0.20, 0.02] ppb/yr). The model 552 generally captures these decreasing trends and the interannual variability reasonably well, though with some regional 553 differences in magnitude (e.g., an overestimation in the NW US, but good trend reproduction with -0.11 (0.03) [-0.21, -0.01] 554 ppb/yr).

555

556 The contributions from various NOx sources show distinct regional patterns in their temporal evolution (Figure 6, panels b, 557 e, h, k, n; Table 2). The most significant driver of change is the local anthropogenic NOx contribution, which has declined 558 steeply across all regions, reflecting successful emission control policies. This decline is particularly sharp in the eastern US 559 regions: NE US (from ~35 ppb to ~22 ppb; trend of -0.97 (<0.01) [-1.19, -0.76] ppb/yr) and SE US (from ~38 ppb to ~20 ppb; trend of -1.09 (<0.01) [-1.25, -0.94] ppb/yr). SW US also shows considerable decline in the local NOx contribution

561 (from ~27 ppb to ~16 ppb; trend of -0.72 (<0.01) [-0.83, -0.62] ppb/yr). Despite these reductions, local anthropogenic NOx 562 often remained a dominant contributor, especially in the earlier part of the study period, though its share has notably 563 diminished. These results are consistent with findings from Simon et al. (2024) who analysed observational trends over 51 564 sites in the US over roughly the same period (2002-2019) and found the marked impact of clean air policies across the US 565 such that the difference between the weekend (lower NOx) and weekday (higher NOx) MDA8 O3 has diminished and 566 become negative in recent years reflecting a transition from NOx-saturated to NOx-limited ozone formation regime.

567

568 To further quantify the relationship between these local emissions and their impact on ozone, we performed a gridded 569 correlation analysis for the 2000-2018 period (Figure 7). Figure 7a reveals the temporal correlation between local 570 anthropogenic NOx emissions and total PSO. Positive correlations are widespread, particularly strong (r > 0.6-0.8) over 571 much of the central and eastern US, indicating that in these locations, year-to-year variations in local emissions significantly 572 drive the variability in total PSO levels. However, in other areas, such as parts of the western US and more remote regions, 573 these correlations are weaker or even negative. This suggests a greater relative importance of factors like intercontinental 574 transport of ozone and its precursors, or the influence of natural emissions, in driving total PSO variability in those areas, 575 especially as local anthropogenic emissions have decreased. This lack of correlation between local NOx emissions and 576 observed MDA8 O3 has been reported by Simon et al. (2024) for rural California even at a higher temporal frequency 577 through disappearing day-of-week activity patterns indicating an increasing role of transported ozone in this region.

578

579 More directly, Figure 7b demonstrates a very strong and spatially ubiquitous positive correlation (r > 0.8-0.9 in most 580 populated areas) between local anthropogenic NOx emissions and the modeled contribution of these local emissions to PSO. 581 This high correlation is an expected outcome and serves to validate that the model's attribution of ozone to local NOx 582 sources is directly and robustly responsive to changes in those local emissions themselves. It underscores that reductions in 583 local NOx emissions translate directly and proportionally to reductions in the ozone specifically formed from those local 584 emissions within the model framework. The slightly weaker correlations in very remote northern areas likely reflect the 585 minimal anthropogenic emissions and thus lower signal-to-noise for this specific contribution. These spatial analyses 586 highlight that while local NOx emission reductions have been effective in decreasing their direct contribution to PSO across 587 large areas, the impact on total PSO can be spatially heterogeneous due to the varying influence of other ozone sources and 588 transport processes.

589

590 Conversely, the contribution from foreign anthropogenic NOx (including aircraft) has generally increased across all regions 591 (Figure 6, panels b, e, h, k, n; Table 2). This increase is most prominent in the western US regions. In the NW US, where its 592 contribution has grown at 0.12 (<0.01) [0.09, 0.16] ppb/yr (see Table 1) to become comparable to, and in recent years 593 exceed, that of local anthropogenic NOx. Similarly, in SW US, the foreign NOx contribution has grown at 0.19 (<0.01) 594 [0.15, 0.24] ppb/yr to match the local NOx contribution in recent years. Other regions like Eastern Canada and the NE US

595 also show a discernible rise in foreign NOx influence. The contribution from natural NOx sources (biogenic, fire, and 596 lightning) shows a slightly increasing trend in most regions (e.g., 0.12 (<0.01) [0.08, 0.16] ppb/yr in NE US). This increase 597 in contribution despite stable natural emissions (Figure 2) indicates an enhanced ozone production efficiency from these 598 natural NOx sources in environments with lower overall anthropogenic NOx levels, consistent with previous findings (e.g., 599 Liu et al., 1987). Global shipping NOx contributions, while smaller in absolute terms (typically <2-3 ppb), exhibit a 600 consistent increasing trend across all receptor regions, reflecting rising emissions from this sector. Stratospheric intrusion 601 provides a baseline ozone contribution with some interannual variability and small increasing trends in eastern regions (see 602 Table 2).

603

The attribution of PSO to VOC sources (including methane) also reveals important trends and regional differences (Figure 6, 605 panels c, f, i, l, o; Table 2). Methane is consistently the largest single VOC contributor to PSO across most North American 606 regions, typically contributing 15-25 ppb. Interestingly, despite the global increase in methane concentrations (Figure 2h), 607 the methane contribution to PSO has remained relatively stable or even slightly decreased in some regions like the SW US 608 (-0.10 (<0.01) [-0.15, -0.06] ppb/yr), NE US (-0.09 (<0.01) [-0.15, -0.03] ppb/yr) and SE US (-0.15 (<0.01) [-0.20, -0.11] 609 ppb/yr). This is likely due to the reduced availability of local NOx, which limits the efficiency of ozone production from 610 methane oxidation. Contributions from local AVOC have generally declined across all regions, reflecting the reductions in 611 their emissions as well as the local NOx emission reductions. For example, the NE US saw a local AVOC contribution trend 612 of -0.36 (<0.01) [-0.41, -0.31] ppb/yr, and the SE US experienced a similar decline (-0.33 (<0.01) [-0.37, -0.29] ppb/yr).

613

614 The role of natural VOCs (biogenic and fire) varies regionally. In forested regions like Eastern Canada and the NE US, 615 natural VOCs make a substantial contribution (e.g., ~10-18 ppb). The trend in their contribution is often negative (e.g., -0.17 616 (0.10) [-0.39, 0.04] ppb/yr in Eastern Canada, -0.24 (0.01) [-0.42, -0.06] ppb/yr in NE US), which, similar to methane, may 617 reflect the decreasing local NOx rather than a decrease in natural VOC emissions themselves (which, for North America, 618 Figure 2 shows variability and some recent increases). For all regions, the year-to-year variability in local anthropogenic 619 NOx contributions often mirrors that of natural VOC contributions, suggesting strong chemical coupling between these local 620 precursor pools. In arid regions like the NW US and SW US, the natural VOC contribution is understandably lower (~14-18 621 ppb initially, declining) than the methane contribution. Contributions from foreign AVOCs, shipping VOCs, and 622 stratospheric intrusion (VOC perspective) are generally smaller and show modest trends, with foreign AVOCs and 623 stratospheric intrusion showing a slight increasing trend in some regions (see Table 1 for p-values and 95% confidence 624 intervals).

625

626 Our model-based findings of declining local anthropogenic contributions to PSO in North America differ quantitatively with 627 recent observation-based studies such as Parrish et al. (2025), which also document a significant waning of local influence 628 using different metrics and inferential techniques. For example, Parrish et al. (2025) estimate a local anthropogenic 629 enhancement to Ozone Design Values (ODVs) in the SW US of typically <6 ppb in recent years. Our direct tagging method 630 quantifies a larger local anthropogenic NOx contribution to average PSO in this region (~16 ppb in 2014-2018, Figure 6h). 631 This quantitative difference likely arises from several factors. First, PSO represents a 6-month seasonal average of MDA8 632 O3, while ODVs target specific high-percentile episodic conditions, and direct contributions to seasonal averages can be 633 expected to differ from enhancements during specific episodes (although episodic contributions could be expected to have a 634 higher share of local photochemistry than seasonal contributions). Second, and perhaps more fundamentally, inferential 635 methods based on subtracting an estimated 'baseline' from total observed ozone may systematically underestimate the full 636 impact of local anthropogenic emissions. Such approaches often define the baseline based on remote sites or specific 637 statistical filtering, which may not fully account for the ozone produced from local emissions that is then regionally 638 dispersed (as we also see indications of anthropogenic NOx and BVOC interactions in the tagged output) or the non-linear 639 chemical feedbacks that occur when local emissions are present. In contrast, our emissions tagging technique directly 640 attributes ozone formation to its original precursor sources as they undergo transport and chemical transformation within the 641 model's complete and consistent chemical framework. This provides a mechanistic quantification of source contributions to 642 the specific PSO metric under baseline conditions. While inferential methods provide valuable observational constraints, our 643 tagging approach offers a complementary, process-explicit view of how different source categories contribute to the ozone 644 burden, particularly illuminating the partitioning between local, regional, and intercontinental sources in the complex, 645 evolving atmospheric environment

646

647 In summary, declining PSO trends across North America are primarily driven by substantial reductions in local 648 anthropogenic NOx and, to a lesser extent, local AVOC contributions. However, these reductions are partially offset by 649 increasing contributions from foreign anthropogenic NOx, shipping NOx, and, in some cases, an enhanced role of natural 650 NOx in ozone formation under lower ambient NOx conditions. Methane remains a cornerstone of VOC-attributed ozone, but 651 its contribution to PSO trends is heavily modulated by NOx availability. The interplay between declining local NOx and the 652 ozone-forming potential of both natural VOCs and methane is a key feature influencing regional PSO trajectories. The NW 653 US stands out as a region where foreign NOx contributions now rival or exceed local sources, highlighting the growing 654 importance of intercontinental transport for this region.

655 656

657 Figure 5 shows the observed versus model-simulated time series of Peak Season Ozone along with its NO_X- and VOC source 658 contributions for five different receptor regions within North America (see Figure 2 for geographic definitions). We note 659 that, for all regions in North America, the observed PSO exceeds the WHO guidelines (31 ppb) throughout the 2000-2018 660 period. For each row, the left and right panels show the same observed and model derived PSO in dotted lines for a given 661 receptor region but break it down in terms of the NO_X contributions and VOC contributions respectively, thereby providing 662 us two distinct perspectives of seeing ozone in terms of its contributors. In terms of NO_X contributions, PSO is broken down 664 aircraft contribution, natural NO_V contribution which is a sum of biogenic, fire and lightning NO_V contribution, global 665 shipping NO_x contribution, and stratospheric intrusion, regardless of the origin of the VOCs that interacted with them. It 666 describes 100% of ozone at any given receptor wholly in terms of its NO_x sources only. Similarly, the right-hand panels 667 describe the same ozone in terms of its VOC sources + global methane irrespective of its NO_v sources. Here, the different 668 contributors are, local anthropogenic VOC sources, foreign anthropogenic VOC sources (including global aircraft VOC), 669 natural VOC which is a combination of global biogenic VOCs and fire VOCs, global shipping VOC contribution, methane-670 contribution, and stratospheric intrusion, which again explains the entire 100% of ozone abundance for any given receptor 671 region. Analysing these contributions side-by-side can also provide qualitative insights into possible interactions between 672 different NO_x and VOC sources along with some insights into plausible regional control measures. 673 ₩ 674 Figures 5 a & b show PSO for Eastern Canada in terms of NO_X and VOC contributions respectively. Overall, we see a slight 675 negative trend in the observed PSO (0.24 ppb/yr, (1.9)) with magnitudes in the range of 40-45 ppb. The model captures the 676 PSO magnitude well but overestimates the trend (-0.35 ppb/yr, (0.99)). From the NO_x source perspective (Fig 5a), we see 677 that the largest contribution is from local anthropogenic NO_x sources although with a declining trend of (-0.75 ppb/yr, (1.0)) 678 over the 19-year period. The declining trend in the local NO_x contributions is sharper than the trend in overall PSO because 679 all other sources show a small positive trend (see table S1 for details) which partially compensates the negative trend in local 680 NO_x contributions. Despite declining trends, local NO_x remains the largest contributor (-15ppb) to PSO while each of the 681 remaining contributions, though increasing, remain below 10 ppb. In terms of VOC contributions (Fig 5b), methane-682 contribution is largest, at around 15 ppb. This is followed by natural VOC and local AVOC contributions. The declining 683 trend in overall PSO is explained by declining trends in local AVOC contributions (-0.32 ppb/yr, (1.0)) and natural VOC 684 contributions (-0.17 ppb/yr, (0.89)), partially offset by an increasing trend in stratospheric (0.12 ppb/yr, (0.99)) and foreign 685 AVOC contributions (0.09 ppb/yr, (0.99)). It is worth noting that the year-to-year peaks and troughs in the local NO_X 686 contributions correspond neatly with the natural VOC contributions and are also reflected in the overall shape of the PSO 687 time series. This suggests a large interaction between local anthropogenic NO_X and local natural VOCs in the region. 688 ¶ 689 Figures 5 c and d show PSO time series for the Northwestern United States. We see PSO values around 45 ppb throughout 690 the period but with a slight decreasing trend (0.11 ppb/yr, (0.82)). The model overestimates the magnitude, for reasons-691 discussed in the previous section, but reproduced the small declining trend very well (-0.11 ppb/yr, (0.97)). In the early years, 692 local anthropogenic NO_x contribution remains the largest but declines steadily (-0.38 ppb/yr, (1.0)) to become comparable to 693 foreign NO_x contributions by 2011. In recent years, the foreign NO_x contribution exceeds the local NO_x contributions. The 694 declining contribution of local NO_x can be linked with the large decline in local NO_x emissions in this region along with a

663 in terms of local anthropogenic NO_x contribution, foreign anthropogenic NO_x contribution which also includes global

695 steady increase in northern hemispheric anthropogenic NO_X emissions (see Figure 3). In terms of VOC contributions, 696 methane remains the largest contributor with a steady contribution at around 20 ppb. This is followed by natural VOC

697 contributions (10-12 ppb). Here, the overall decline in PSO is almost single handedly associated with the declining trend in 698 local AVOC contributions (-0.15 ppb/yr, (1.0)). This decline can be linked to a combination of the decline in the North 699 American AVOC and NO_X emissions (see Figure 3). There is also a small declining trend (-0.03 ppb/yr, (0.97)) in natural 700 VOC contributions.¶

701 **¶**

Figures 5 e and f show PSO for Southwestern US. Here we see the highest PSO of any other region considered in our analysis, with concentrations reaching 60 ppb in the early years declining at (0.34 ppb/yr, (1.0)) to reach 55 ppb in 2018, with well above the WHO guideline of 31 ppb. The model slightly overestimates the magnitude but captures the decreasing trend reasonably well (0.25 ppb/yr, (1.0)). There is a very sharp downward trend (0.71 ppb/yr, (1.0)) in local NO_X contributions which is partially offset by an increasing trend in foreign anthropogenic NO_X contributions (0.2 ppb/yr, (1.0)). These two together explain the decreasing trend in overall PSO. This region has seen a dramatic reduction in local NO_X emissions such that they were the single largest contributor to ozone in the initial years (up to 27 ppb) with more than double the contributions of foreign NO_X, but in recent years the local NO_X contributions have declined to 16 ppb which is comparable to foreign NO_X and natural NO_X contributions. In terms of VOC contributions, methane remains the largest contributor, at around 25 ppb albeit with a very small decreasing trend (0.09 ppb/yr, (1.0)). This is remarkable given the rapidly increasing background concentration of methane, but is consistent with the lower availability of local NO_X during methane oxidation for producing ozone. Given the arid climate and sparse vegetation of this region, natural VOC contribution is much lower, at around 14-18 ppb. Similar to Eastern Canada, the stratosphere contributes up to 6-8 ppb, while foreign and local AVOC contributions remain low, beginning at equal strengths at around 5 ppb but followed by a steady decline in local AVOC contribution (0.25 ppb/yr) as also seen in other parts of the United States.

717 ¶

718 Figures 5 g and h show PSO time series for Northeastern United States along with its NO_X and VOC contributions 719 respectively. Here, we see a substantial decline in observed PSO (0.43 ppb/yr, (1.0)) from around 50 ppb in early 2000s 200 down to 45 ppb in 2018. The model overestimates the magnitude but reproduces the declining trend well (0.52 ppb/yr, 721 (1.0)). From a NO_X source perspective, the PSO decline in this region is driven by a dramatic decline in local NO_X 722 contributions from -40 ppb to -20 ppb (0.94 ppb/yr, (1.0)) which is partially offset by a steadily increasing foreign NO_X 723 (0.17 ppb/yr, (1.0)) and natural NO_X contribution (0.13 ppb/yr, (1.0)). It is notable that the natural NO_X contribution is 1.00 increasing despite no increase in natural NO_X emissions (see Figure 2) which is consistent with the natural NO_X emissions 225 becoming more productive due to overall lower NO_X levels (Liu et al., 1987). Stratospheric contribution remains low 266 between 4.7 ppb and the ship NO_X contribution is the lowest, 0.2 ppb, albeit with an increasing trend consistent with the 277 increasing shipping NO_X emissions. In terms of VOC contributions, we see comparable contributions from methane and 288 natural VOC, around 18 ppb. The higher natural VOC contribution in this region suggests ample availability of natural VOC 299 through vegetation and also ample local NO_X nearby the natural VOC sources. The peaks and troughs in local NO_X 300 contributions and natural VOC contributions are coincident which also points to their interaction in this region. The

731 declining trend in PSO can be explained by the declining local AVOC contribution (-0.37 ppb/yr), natural VOC (-0.25 732 ppb/yr) and methane contributions (-0.11 ppb/yr) which shows that the ozone produced through the oxidation of VOCs is 733 responding to the declining local NO_x emissions, especially because the natural VOC emissions and methane concentrations, 734 themselves, are rising (Figure 2).¶ 735 ₩ 736 Finally, Figures 5i and j show the PSO time series for the Southeastern US. This region shows the sharpest decline in 737 observed PSO than any other receptor region in North America (-0.47 ppb/yr, (1.0)). The contributions are similar to those in 738 Northeastern US: a sharp decline in local NO_x contribution (38 ppb to 20 ppb; -1.07 ppb/yr, (1.0)) which remains the largest 739 contributor even after the decline, and modest increases in foreign NO_x, natural NO_x and ship NO_x contributions (see Table-740 S1 for quantitative trends). Natural NO_x and foreign NO_x contributions remain around 10 ppb while stratospheric and ship-741 NO_x contributions are under 5 ppb. In terms of VOC contributions, methane and natural VOC contributions are comparable 742 and explain part of the declining trend in PSO (-0.16 ppb/yr, (1.0)) and (-0.33 ppb/yr, (0.9)). The remaining part of the 743 declining trend is captured by a steady decline in local AVOC contribution which reduces from 10 ppb to under 4 ppb over 744 the 19-year period; (-0.33 ppb/yr, (1.0)). Again, the peaks and troughs in natural VOC contribution coincide with those in the 745 local NO_x contribution suggesting their interaction in ozone formation in this region. The quantitative Thiel-Sen trends for 746 observed and modelled PSO in all receptor regions and their tagged contributions are included along with their significance 747 in Table S1. ¶ 748

750 3.2.2 Ozone seasonal cycle in North America: Quantitative Characterization Trends and Source Contributions:

Figure 86 shows the 19 year (2000-2018) average seasonal cycle of MDA8 O₃ over the different receptor regions within North America along with its source contributions. We see elevated levels of MDA8 O₃ in spring and summer and lower levels in winter, in line with the scientific understanding of ozone photochemistry (Logan 1985; Scinfeld & Pandis 2016). The model reproduces the 19-year average seasonal cycle over different parts of North America very well. For western regions, we see a consistent systematic positive bias of 2-4 ppb. For eastern regions we see a very good reproduction of the seasonal cycle during winter and spring but a notable overestimation during summertime.

757 ₩

749

758 Figure 6a and b shows the average seasonal cycle of MDA8 O₃ in Eastern Canada along with its NO_X and VOC source 759 contributions respectively. The MDA8 O₃ seasonal cycle in this region is characterized by a springtime peak (Mar - Apr; ~44 760 ppb) and a decline in the summertime (Jul - Sep; ~35 ppb). The springtime peak is driven by peaks in foreign anthropogenic 761 NO_X contribution and stratospheric intrusion along with high local NO_X contribution. The summertime peak in the model 762 (not seen in observations) is composed of peaks in local NO_X and natural NO_X. This modelled but not observed peak is likely 763 the reason for the high model bias in this region seen in figure 4. And since the model performs well for springtime, this summertime high bias points to nearby emissions being too high, or alternatively, an overactive photochemistry (see also NE 765 and SE US). In terms of VOC contribution, the springtime peak is composed of methane contribution (12-14 ppb), for stratospheric intrusion (up to 10 ppb), foreign AVOC contribution peak (8 ppb) and an increasing share of local AVOC contribution (-6ppb). natural VOC contribution peaks in the summertime, when there are more leaves and emissions of natural VOC – this also drives the summer peak in modelled PSO which is not seen in observations. The summertime model observations gap warrants further investigation into uncertainties in local anthropogenic NO_X as well as local natural VOC emissions to further attribute this mismatch. Methane remains the highest overall contributor in terms of VOCs with slightly higher levels than foreign NO_X contributions suggesting its substantial interaction with both local and foreign NO_X in production of local as well as transported ozone in this region. ¶

773 ¶

774 Figures 6e and d show the average seasonal cycle of MDA8 O₃ in Northwestern US in terms of NO₃ and VOC source 775 contributions respectively. Here, we see high MDA8 O, from spring through summer in observations. The shape of the 776 seasonal cycle is skilfully captured by the model albeit with a high bias. In contrast to the eastern regions, the bias here is 777 high all year. This points to an overestimation of the background ozone rather than a high bias in local emissions and 778 photochemistry. The spring peak is primarily driven by peaks in foreign NO_X and stratospheric intrusion. Ship NO_X 779 contributions, although small, peak during springtime. Summer highs are driven by highs in local NO_x and natural NO_x 780 contributions. A peculiar feature is a sustained high foreign anthropogenic NO_x contribution throughout the year which only 781 dips in the summertime. This summertime dip in foreign contribution is likely because ozone lifetime is reduced at higher 782 temperatures due to the increased ability of air to hold water vapour (Stevenson et al., 2006) and long-range transported 783 ozone can be destroyed when it encounters moisture (Real et al., 2007). Thus, the overall long-range transport efficiency of 784 ozone is reduced during summertime. A notable feature is the sustained high contribution from foreign anthropogenic NO_x 785 throughout the year, with a distinct dip during summertime. This summertime reduction is likely due to the shorter lifetime 786 of ozone at higher temperatures, which is associated with increased water vapor content in the atmosphere (Stevenson et al., 787 2006). Water vapor promotes ozone loss via photochemical pathways involving HO_x radicals, and transported ozone is more-788 likely to be destroyed under moist conditions (Real et al., 2007). Consequently, the efficiency of long-range ozone transport 789 decreases in summer. In terms of VOC contributions, springtime peak is primarily composed of methane, stratospheric, 790 foreign AVOC contributions with smaller contributions from natural VOC and local AVOC. Summertime peak is composed 791 of a peak in methane contribution and natural VOC peak. A natural VOC peak is expected during summertime due to a high 792 leaf area during this time of the year. All other VOC contributions are very small during summertime in this region. 793 4

794 Figures 6e and f show the average seasonal cycle of MDA8 O_3 in Southwestern US which is similar to that for the 795 Northwestern US and is well reproduced by the model. Springtime peak is dominated by foreign NO_X and stratospheric 796 contributions but also composed of an increasing local NO_X and natural NO_X component. Summertime peak is driven by

797 local NO_X and natural NO_X contributions. In terms of VOC contributions, methane, stratosphere and foreign AVOC drive the 798 springtime peak while methane and natural VOC contributions drive the summertime peak.

799 🖷

Figures 6g and h show the average seasonal cycle of MDA8 O₃ in Northeastern US which is characterized by a major springtime peak which declines over the summer until the winter months. The model skilfully captures the seasonal cycle for the first five months but overestimates the summertime ozone. Both the NO_X and VOC contributions show a similar cycle as in western US regions except for a very large local NO_X peak (and a corresponding natural VOC contribution peak) which drives the modelled summertime peak not seen in observations. Unlike the western regions, the summertime natural VOC contribution exceeds the methane contribution by a large margin and reaches up to 25 ppb. The higher natural VOC and lower methane contributions broadly correspond with the higher local NO_X and lower remote NO_X contributions. The accuracy of natural VOC emissions in this region is a matter of further investigation. There is also a sustained higher local NOC contribution (> 5ppb) than in western US. ¶

809 ¶

810 Figures 6i and j show the average seasonal cycle of MDA8 O₃ in the Southeastern US which is very similar to that in the 811 Northeastern US. The model reproduces the observed seasonal cycle well although with an overestimation of the summer 812 peak. The shape of the seasonal cycle is primarily driven by local anthropogenic NO_X contributions from a NO_X perspective 813 and by methane and natural VOC contributions from the VOC perspective. Foreign anthropogenic NO_X contributions are 814 high, up to 10 ppb, during spring and winter but dip to around 5 ppb in the summer.

815

816 To characterize the climatological seasonal cycle of MDA8 O3 in North America and assess the model's ability to reproduce 817 it, we performed a Fourier analysis (as detailed in section 3.1) on the 19-year (2000-2018) averaged month-centered mean 818 MDA8 O3 time series for both observations and model output in each receptor region. This analysis decomposes the 819 climatological seasonal cycle into its annual mean (y0), the amplitude (A1) and phase (φ1) of the fundamental annual 820 harmonic (related to local ozone photochemistry), and the amplitude (A2) and phase (φ2) of the second harmonic 821 (semi-annual cycle; related to long-range transport, stratospheric intrusion and loss processes). The phase φ1 indicates the 822 timing of the annual peak, with numerically larger values typically corresponding to a later peak in the year (Bowdalo et al., 823 2016; Parrish et al., 2016; Bowman et al., 2022). These parameters are presented in the last rows of Tables S2-S6, while 824 Figure 8 illustrates the 19-year average seasonal cycle of total MDA8 O3 and its attributed NOx and VOC source 825 contributions.

826

827 The observed annual mean MDA8 O₃ (y0) varies across North American regions, ranging from approximately 37 ppb in 828 Eastern Canada to a notably higher 48.5 ppb in the SW US, reflecting differing baseline ozone levels and regional influences 829 (Tables S2-S6). The model generally captures these mean levels, though with a tendency for overestimation. For instance, in 830 Eastern Canada, the modeled y0 (37.66 ppb) is very close to observed (36.93 ppb). However, in western regions, the model

831 exhibits a consistent positive bias of approximately 3-4 ppb in y0 (e.g., 44.09 ppb modeled vs. 40.83 ppb observed in NW 832 US). This suggests a potential overestimation of background ozone or the combined influence of persistent remote/natural 833 source contributions by the model in these regions. Indeed, Figure 8 (panels d, f) shows sustained contributions from foreign 834 anthropogenic NOx and methane in the NW US throughout the year, which could contribute to this higher baseline in the 835 model.

836

837 The amplitude of the primary annual cycle (A1) signifies the magnitude of the seasonal swing in ozone concentrations.
838 Observed A1 is largest in the SW US (11.25 ppb) and the NE US (9.3 ppb), indicating strong seasonal variation driven by
839 photochemistry and precursor availability. Eastern Canada shows the smallest observed A1 (5.86 ppb). The model tends to
840 overestimate A1 in most regions, particularly in the eastern regions. For example, in the NE US, the modeled A1 (14.89 ppb)
841 is substantially larger than observed (9.3 ppb), and in Eastern Canada, modeled A1 (9.89 ppb) is also significantly higher
842 than observed (5.86 ppb). This overestimation of A1 in eastern regions is due to the model simulating an overly pronounced
843 summer peak, likely due to an overestimation of summertime local photochemical production, as suggested by the
844 pronounced summer peaks in modeled local NOx and natural VOC contributions (Figure 8a,b for E.Canada; 8g,h for NE
845 US) which are not as prominent in the observed seasonal cycle implied by the total ozone. In contrast, for SW US, the
846 modeled A1 (10.66 ppb) is slightly lower than observed (11.25 ppb), suggesting a slightly damped seasonal cycle in the
847 model for this high-ozone region.

848

849 The phase of the annual cycle (φ1), which dictates the timing of the seasonal maximum, shows regional differences. 850 Observed φ1 values range from 4.82 radians in Eastern Canada to 5.44 radians in SW US (Tables S2-S6, last rows). Higher 851 φ1 values suggest a later seasonal peak. The model generally reproduces the phase well, with modeled φ1 values closely 852 tracking the observed ones, indicating that the model captures the relative timing of the ozone maximum across regions 853 correctly. For instance, in Eastern Canada, the observed (4.82 rad) and modeled (5.36 rad) φ1 values, while differing, both 854 point towards an earlier peak (spring, as seen in Figure 8a) compared to SW US (observed 5.44 rad, modeled 5.47 rad) which 855 exhibits a clear summer maximum (Figure 8e). The springtime peak in Eastern Canada (Figure 8a) is driven by significant 856 contributions from foreign anthropogenic NOx and stratospheric intrusion, while the summertime peak in SW US (Figure 857 8e) is dominated by local NOx and natural NOx contributions. The model's ability to capture these phase differences reflects 858 its capacity to simulate the varying dominance of these seasonally distinct drivers.

859

860 The amplitude of the second harmonic (A2), representing semi-annual variations driven by processes other than the local 861 ozone photochemistry, is generally smaller than A1 but provides insights into deviations from a simple sinusoidal annual 862 cycle, such as the presence of distinct spring and summer maxima or a flattened peak. Observed A2 is most prominent in the 863 SE US (3.32 ppb) and Eastern Canada (1.89 ppb), suggesting more complex seasonality than a single peak. The model tends 864 to reproduce or even slightly overestimate A2 (e.g., 3.78 ppb vs. 3.32 ppb in SE US; 2.07 ppb vs. 1.89 ppb in E. Canada). A

865 significant A2 can indicate a broadening of the peak ozone season or the influence of multiple processes peaking at different 866 times (e.g., a spring transport peak and a summer photochemical peak). The model's higher A2 in regions like NE US (3.11 867 ppb modeled vs. 1.58 ppb observed) may again be linked to its overestimation of the summer photochemical peak, which, 868 when combined with a reasonably simulated spring shoulder, could enhance the semi-annual component. The phase of the 869 second harmonic (φ_2) varies, and its interpretation is complex, but model agreement with observed φ_2 is mixed, indicating 870 varying skill in capturing these finer details of seasonal shape.

871

- 872 The quantitative Fourier parameters align well with the qualitative features observed in the source contributions (Figure 8).
- 873 For Eastern Canada (Fig 8a,b), the relatively low y0 and A1 (observed) are consistent with lower overall photochemical
- 874 activity and a seasonal cycle strongly influenced by springtime transport (foreign NOx and stratosphere; ~10 ppb each)
- 875 rather than a dominant summer photochemical peak. The model's overestimation of A_1 here is driven by a simulated summer
- 876 peak in local NOx and natural NOx/VOC contributions not evident in the overall observed seasonal structure, leading to the
- 877 noted summertime bias.

878

879 For NW US (Fig 8c,d), the moderate y0 and A1 reflect a balance of influences: the model captures the year-round high 880 foreign NOx contribution, with a summertime dip, contributing to y0, while local NOx and natural NOx/VOCs drive the 881 summer high, contributing to A1. The summertime dip in foreign NOx contribution (also seen in other sub-regions) is likely 882 due to shorter lifetime of ozone at higher temperatures, which is associated with increased water vapor content in the 883 atmosphere (Stevenson et al., 2006). Water vapor promotes ozone loss via photochemical pathways involving HO_x radicals, 884 and transported ozone is more likely to be destroyed under moist conditions (Real et al., 2007). Consequently, the efficiency 885 of long-range ozone transport decreases in summer. The consistent positive bias in y0 in the model suggests an 886 overestimation of these baseline contributions. For SW US (Fig 8e,f), the highest observed y0 and a large A1 are 887 characteristic of this photochemically active region with significant local precursor influence in summer (local and natural 888 NOx driving the summer peak). Methane is a dominant VOC contributor throughout the year. The model reproduces this 889 structure well, including the dominance of local/natural NOx in summer. For NE US (Fig 8g,h), a large observed A1 reflects 890 strong seasonality. The model overestimates this A1 due to a very pronounced modeled summer peak in local NOx and, 891 consequently, natural VOC contributions, leading to summertime overestimations. Unlike western regions, natural VOCs 892 play a more significant role than methane during the summer peak in this region according to the model, likely due to higher 893 BVOC emissions in these regions as well as more local NOx availability enhancing their ozone production efficiency. SE US 894 (Fig 8i,j), similar to NE US, shows a strong seasonal cycle (large A1). The model again overestimates A1 due to an 895 exaggerated summer peak driven by local NOx and associated natural VOC chemistry. The significant A2 in observations 896 and model suggests a broader ozone season or influences from both spring transport and summer photochemistry.

898 Overall, the model successfully reproduces the primary features of the 19-year average MDA8 O_3 seasonal cycle across 899 North America, including the relative annual mean levels (y0) and the timing of the annual peak (ϕ_1). However, it tends to 900 overestimate the amplitude of the annual cycle (A_1) in eastern regions, linked to summertime photochemical production. In 901 western regions, a modest positive bias in the annual mean (y0) is observed. These findings highlight areas for further model 902 refinement, particularly concerning the simulation of summer photochemistry and baseline ozone levels in different 903 continental sub-regions.

904

905

906 3.2.3 Changes in seasonal cycle of ozone in United States: Role of Local vs Remote contributions

A careful analysis of the dominant contributors to MDA8 O₃ seasonal cycle for different months (Figure 8) alongside the ehanging dominant contributors to PSO over the two decades (Figure 6) suggests that the seasonal cycle as well as its 909 composition must be changing significantly over the years. This led us to plot full envelopes of MDA8 O₃ cycles (instead of 910 averages) to fully assess the changes in the shape of the O₃ seasonal cycle for different receptor regions. These envelope 911 plots are shown in the supplement (Figure S2) which reveal the changes in the MDA8 O₃ seasonal cycle year to year. In 912 Figure S2, we note that generally the spring and summertime MDA8 O₃ is decreasing while the wintertime O₃ is increasing 913 for many regions which is consistent with decreasing local anthropogenic NO_X emissions reducing titration in winter and 914 local production in summer. The wintertime ozone increase could also be partly due to increasing transported ozone from 915 foreign contributions. ¶

916 ¶

917 To better understand how the seasonal cycle has changed over these two decades, we present the initial and final 5 year 918 averaged MDAS O₃ seasonal cycles (over 2000-2004 and 2014-2018, respectively) along with their NO_X and VOC 919 contributions. Figures 7 a and d show the observed and modelled initial 5 year and final 5 year average seasonal cycles for 920 Northwestern US. We see that between these two periods, the spring and summertime ozone has decreased while the 921 wintertime ozone has increased. The model reproduces these seasonal changes reasonably well but with a high bias of up to 922 4 ppb. We see (in Figs 7b and c) that these changes in the seasonal cycle are driven by a substantial drop in local NO_X 923 contributions especially in the summer along with an increase in summertime natural NO_X contribution which partially 924 compensates for the drop in local anthropogenic NO_X contributions. As noted in the previous sections, there is no increase in 925 the natural NO_X emissions in these two decades (Figure 2) however, under lower NO_X conditions, the same natural NO_X 926 becomes more productive in forming ozone during summer (see Liu et al., 1987). The wintertime increases are primarily 927 driven by an increased foreign NO_X contribution along with a small increase in ship NO_X contribution. From a VOC 928 perspective (Figs 7e and f), the biggest changes occur in the local AVOC contributions which have declined throughout the 929 year (probably in response to the declining local NO_X emissions but also a decline in their own emissions; see figure 2).

930 Wintertime increase in MDA8 O₃ is composed of increases in methane and foreign AVOC contributions in winter.
931 Summertime decrease is associated with a decrease in methane and local AVOC contributions in the summer.

932 ₩

933 Figure 8 shows a similar analysis but for Northeastern US. Here, in the observed seasonal cycle, we see a small decrease in 934 springtime ozone (-48 ppb to -45 ppb), a large decrease in summertime (-48 ppb to -40 ppb), and an increase in wintertime 935 ozone (28-32 ppb to 30-36 ppb). For the initial 5-year period, the model overestimates the summertime peak by a large-936 margin (-10 ppb) and underestimates the wintertime levels by 4-8 ppb. This is likely due to high anthropogenic NO_x over 937 this region in the HTAPv3 emissions dataset and has also been discussed in the model evaluation section (see section 3.1 and 938 Figure 3c). The model captures the seasonal cycle for the final 5-year period much better over the winter and spring seasons 939 but the summertime overestimation remains. However, the model is able to capture the directional changes in the seasonal 940 eyele: small decrease in spring, large decrease in summer and an increase in winter. These changes can be understood in 941 terms of decreasing summertime local NO_X contributions and increasing wintertime and springtime foreign NO_X 942 contributions (Figs 8b and e). From a VOC point of view, the summertime drop is primarily due to a large drop in local 943 AVOC contributions and to a lesser extent in natural VOC contributions, while the wintertime increase is due to an increase 944 in methane contributions. We have performed a similar analysis for other receptor regions within North America which can 945 be found in the supplement (Figures S3-S5). Our results are in agreement with observational studies which have also 946 reported a decline in summer peaks and a shift in peak ozone to the springtime in North America (Bloomer et al., 2010; 947 Parrish et al., 2013; Cooper et al., 2014). For the first time, through our tagging technique, we are able to explain these 948 changes in terms of NO_x and VOC source contributions from local and remote regions. It is crucial to note the increased 949 share of foreign NO_x contributions to springtime ozone which coincides with the growing season and highlights the 950 increasing impact of transported ozone on crop yields (Dingenen et al., 2009; Avnery et al., 2011).

951 ¶

952

953 The preceding analyses of 19-year average seasonal cycles (Figure 8) and long-term PSO trends (Figure 6) suggest 954 significant evolution in the seasonality of surface ozone over the two decades (see Figure S2 for seasonal cycle envelopes 955 over the entire period). To investigate these changes more quantitatively, we compare the 5-year averaged MDA8 O3 956 seasonal cycles for an initial period (2000-2004) and a recent period (2014-2018). This section focuses on two illustrative 957 regions, the NW US and NE US, with Fourier analysis parameters for these periods detailed in Tables S3 and S4, 958 respectively (and for other regions in Tables S2, S5-S6 in the Supplement). Figures 9 and 10 present these comparative 959 seasonal cycles for NW US and NE US, respectively, alongside their attributed NOx and VOC source contributions. Results 960 for Eastern Canada, SW US and SE US are included in the supplement (Figures S6-S8; Tables S1, S4-S5).

962 In the NW US (Figure 9, Table S2), the evolution of the seasonal cycle from 2000-2004 to 2014-2018 is characterized by 963 subtle but distinct changes. The observed annual mean ozone (y0) decreased slightly from 41.43 ppb to 40.64 ppb, while the 964 modeled y0 remained relatively stable at a higher level (43.54 ppb to 43.87 ppb), maintaining the positive bias noted earlier. 965 More significantly, the amplitude of the primary annual cycle (A1) shows a marked decrease in both observations (from 6.50 ppb to 5.24 ppb) and the model (from 9.01 ppb to 5.33 ppb). This indicates a notable damping of the seasonal swing. 967 Concurrently, the observed phase of the annual peak (φ1) shifted slightly earlier, from 5.22 radians to 5.18 radians, a trend 968 also captured by the model (5.43 to 5.33 radians). The amplitude of the second harmonic (A2) also decreased, particularly in 969 the observations (1.08 ppb to 0.29 ppb), suggesting a smoother, less complex seasonal shape in the recent period.

970

971 These quantitative changes are driven by shifts in precursor contributions (Figure 9b,c,e,f). The most prominent change is the 972 substantial reduction in the summertime peak of local anthropogenic NOx contributions between the two periods (Figure 9b 973 vs. 9e). This directly contributes to the decreased A1. While this local contribution shrinks, the foreign anthropogenic NOx 974 contribution remains a significant and relatively stable component throughout the year, becoming proportionally more 975 important, especially during spring; a finding consistent with a long line of previous studies (Berntsen et al., 1999; Jacob et 976 al., 1999; Jaffe et al., 1999; Fiore et al., 2002; Jaffe et al., 2003; Parrish et al., 2004; Cooper et al., 2010; Simon et al., 2014; 977 Parris & Ennis, 2019; Parrish et al., 2022; Christiansen et al., 2022). The wintertime ozone levels show a slight increase 978 (Figure 9a vs. 9d), primarily linked to an increase in the modeled foreign NOx contribution during these months in the later 979 period. The springtime (March-May) ozone has seen increases in both foreign NOx contributions (13.16 ppb to 14.81 ppb) as 980 well as stratospheric contributions (12.02 ppb to 12.55 ppb; see Table 3 for a comparison across regions). Springtime mean 981 stratospheric contribution is 12.55 ppb in the recent period (even higher in SW US at 14.25 ppb; Figure S7; Table 3). 982 Previous studies have reported modelled stratospheric contributions in North America during observationally-identified 983 episodes with higher values (e.g., 20-40 ppb; Lin et al., 2012) as well as seasonal mean contributions (6-18 ppb; Mathur et al. 984 2022b). Our seasonal mean values are lower likely because we do not sample the model output extensively from the 985 mountainous region of western US, where stratospheric contributions are highest, due to lack of TOAR observations in those 986 regions.

987

988 From a VOC perspective (Figure 9c vs. 9f), the local AVOC contribution declined across all seasons, further contributing to 989 the damping of the seasonal cycle (reduced A1). Methane remains a dominant VOC contributor, but its absolute contribution 990 shows little change between the periods, suggesting its impact on seasonal amplitude is more modulated by NOx availability 991 than by its own concentration changes over this timeframe. The decrease in natural VOC contribution, particularly in 992 summer, also plays a role in reducing A1. The overall effect is a flattening of the summer peak and a slight elevation of 993 winter/spring troughs, leading to the observed and modeled decrease in A1.

995 The NE US (Figure 10, Table S3) experienced more dramatic changes in its ozone seasonal cycle. The observed annual mean 996 (y0) decreased from 40.35 ppb to 38.29 ppb. In contrast, the modeled y₀ remained remarkably stable (41.06 ppb to 41.13 997 ppb), causing the model's initial slight positive bias to increase in the later period, particularly as observed wintertime values 998 increased more than modeled ones. The most striking change is the substantial reduction in the amplitude of the annual cycle 999 (A₁), both in observations (from 11.85 ppb to 6.70 ppb) and even more so in the model (from a highly overestimated 20.01 1000 ppb to 9.26 ppb). This signifies a major reduction in the summer peak. The phase of the annual peak (φ₁) also shifted 1001 significantly earlier in observations (from 5.40 radians to 5.01 radians), indicating a pronounced shift of the seasonal 1002 maximum from summer towards spring. The model also simulates an earlier peak (5.59 to 5.44 radians), though the shift is 1003 less pronounced than observed, and the model still peaks later than observations in the recent period. The amplitude of the 1004 second harmonic (A2) increased in observations (1.31 ppb to 2.17 ppb) but decreased in the model (3.94 ppb to 2.31 ppb), 1005 suggesting evolving complexity in the seasonal shape that the model captures with mixed success.

1006

1007 These transformations are clearly linked to changes in NOx and VOC contributions (Figure 10b,c,e,f). The dramatic decrease 1008 in A1 is primarily due to a large reduction in the summertime contribution from local anthropogenic NOx (Figure 10b vs. 1009 10e). This local NOx peak, which was very pronounced in 2000-2004 (contributing ~35-45 ppb in the model during 1010 summer), is significantly curtailed in 2014-2018 (contributing ~15-20 ppb in summer). While the model still appears to 1011 overestimate this summer local NOx contribution in the later period (as suggested by a visual inspection of Figure 10d as 1012 well as the still present overestimation of A1), the reduction is substantial. Concurrently, winter and spring ozone levels have 1013 increased (Figure 10a vs. 10d). This is partly due to reduced wintertime titration by lower local NOx, but also, as seen in the 1014 model (Figure 10e), an increase in the foreign anthropogenic NOx contribution during spring (8.30 ppb to10.83 ppb) and 1015 winter months (see section 3.4 for a detailed analysis) as well as an increase in the stratospheric contributions (7.58 ppb to 1016 11.00 ppb; see Table 3). This increased foreign and stratospheric influx in spring, combined with the diminished summer 1017 photochemical peak, explains the observed shift in φ1 towards an earlier (springtime) maximum.

1018

1019 From the VOC perspective (Figure 10c vs. 10f), the summertime drop is driven by a large decrease in local AVOC 1020 contributions and a significant reduction in the contribution from natural VOCs. The latter is likely a consequence of the 1021 reduced local NOx, making the natural VOCs less efficient at producing ozone, given that there is no correspondingly large 1022 decreasing trend in the BVOCs (Figure 2). The wintertime increase in ozone is associated with an increased modeled 1023 contribution from methane, alongside the foreign AVOCs.

1024

1025 The quantitative analysis of seasonal cycle changes in NW US and NE US highlights the profound impact of declining local 1026 anthropogenic NOx emissions. In both regions, this has led to a significant reduction in the amplitude of the annual ozone 1027 cycle (A1), particularly by lowering summer peaks. Wintertime ozone levels have generally increased, partly due to reduced 1028 titration and partly due to increased contributions from remote sources like foreign anthropogenic NOx and methane. The

1029 NE US exhibits a more pronounced shift, with a dramatic decrease in the summer peak and a clear move towards a 1030 spring-dominated seasonal maximum (earlier φ_1), a finding also reported by previous observation-based studies (Bloomer et 1031 al., 2010; Parrish et al., 2013; Cooper et al., 2014). This underscores the increasing relative importance of long-range 1032 transport in spring as local summer production wanes. This transition in the ozone seasonal cycle in the NE US, towards a 1033 springtime maximum, is expected to continue with future emissions changes, as discussed by Clifton et al. (2014). While the 1034 NW US also sees a damped cycle, its baseline remains more consistently influenced by foreign NOx throughout the year. 1035 Our tagging technique, combined with Fourier analysis, allows for a quantitative attribution and evaluation of these changes. 1036 The increased share of foreign NOx and methane in contributing to springtime ozone, which coincides with the agricultural 1037 growing season, highlights the impacts of intercontinental transported ozone on crop yields (Dingenen et al., 2009; Avnery et 1038 al., 2011) and ecosystem health, even as local emissions are successfully reduced.

1040 3.3 Ozone in Europe:

1039

1050

1041 Here, we present the observed and model-derived results for different sub-regions in Europe: Western Europe, Southern 1042 Europe, C&E EuropeCentral & Eastern Europe, and SE EuropeSoutheastern Europe (see Figure 2 for geographical extents). 1043 We first present trends in PSO along with their NO_X and VOC contributions, and then show the 19-year average seasonal 1044 cycle of MDA8 O₃ and its source contributions, and finally present changes in the seasonal cycle between initial and the final 1045 five years. Europe has undergone significant reductions in NO_X emissions over the past decades (see Figure 23), particularly 1046 in Western and Southern Europe (see Figure 11). However, some countries in Central and Eastern Europe have not yet 1047 achieved the same level of reductions, suggesting potential variability in ozone trends across the continent. This raises 1048 important questions about how these uneven NO_X reductions might influence ozone formation dynamics in different 1049 sub-regions, which we will explore in detail in this section using our tagged model results.

1051 3.3.1 Peak Season Ozone in Europe: Trends and Source Contributions:

- 1052 Figure 9 shows the observed and modelled PSO in different regions of Europe along with the corresponding NO_X and VOC 1053 source contributions. We note that despite the large decline in European anthropogenic NO_X and NMVOC emissions (Figure 1054 2) over the two decades, the observed PSO values exceed the WHO guidelines in all regions.
- 1056 Figures 9 a and b show the observed and modelled PSO for Western Europe along with its NO_X and VOC contributions 1057 respectively. The model does a near-perfect job of reproducing the magnitude and trend of the observed PSO (see Table S1 1058 for quantitative trends). It also captures the high PSO for 2003 and 2006 which were associated with summertime heatwaves 1059 in Europe (Vautard et al., 2005; Solberg et al., 2008; Struzewska & Kaminski, 2008). We do not see any significant trends in 1060 the PSO for this region over the 19-year period. There is a decline in the local NO_X contribution (-0.26 ppb/yr, (1.0)) but it is

1061 partially compensated by small increasing trends in foreign NO_x (0.06 ppb/yr, (0.99)) and ship NO_x (0.12 ppb/yr, (1.0)) 1062 contributions. These results demonstrate that the local NO_v emission controls did not translate into the local air quality 1063 improvement in this region, at least in terms of the policy-relevant PSO metric. Although, other studies have highlighted that 1064 summertime ozone extremes have been reduced in recent decades (Yan et al., 2018; Crespo-Miguel et al., 2024). From the 1065 VOC perspective, methane is the largest contributor at around 18 ppb with an increasing trend (0.08 ppb/yr, (1.0)) which is 1066 followed by natural VOC, stratosphere, foreign AVOC and local AVOC contributions in that order, all contributing between 1067 4-10 ppb. The small declining trend in PSO is mainly captured by a declining trend in the local AVOC contributions (-0.16-1068 ppb/yr, (1.0)) while other VOC contributions show modest trends (see Table S1 for details). 1069 **¶** 1070 Figures 9 c and d show the observed and model derived PSO for Southern Europe along with its NO_X and VOC 1071 contributions respectively. The model captures the magnitude and trend of PSO extremely well. Here, we see a gentle decline 1072 in observed PSO (0.04 ppb/yr, (0.52)) from -50 ppb in early years to -46 ppb in 2016, albeit with an uptick in the final two-1073 years. The model captures the trend well for a large part of the time series but overestimates the overall decline (-0.17 ppb/yr. 1074 (0.98)). This declining trend is driven by a noticeable decline in local NO_V contribution (-0.51 ppb/yr, (1.0)) partially 1075 compensated by increasing trends in foreign NO_x (0.07 ppb/yr, (0.98)) and ship NO_x (0.16 ppb/yr, (1.0)) contributions. 1076 Despite the decline, local NO_x remains the largest contributor throughout the year, at 25 ppb in 2000 and 19 ppb in 2018. 1077 The large gap between the local NO_x and foreign NO_x contributions in early years has narrowed in recent years – and foreign 1078 anthropogenic NO_x contributions are becoming an important source of transported ozone in this region. In terms of VOC 1079 contributions, methane and natural VOC remain the largest contributors. The variability in the PSO time series corresponds 1080 with the variability in local NO_x contributions in the left panel and natural VOC contributions in the right panel, suggesting 1081 their interaction. From a VOC perspective, the declining PSO trend is mainly associated with declining local AVOC 1082 contributions (-0.22 ppb/vr, (1.0)), ¶ 1083 ¶ 1084 For Central & Eastern Europe (Figures 9 e and f), we see a noticeable negative trend of 0.43 ppb/yr (1.0) in the observed 1085 PSO. The model captures the PSO magnitude well but with a small underestimation for the early years and overestimation 1086 for the later years, which leads to a smaller negative modelled trend of -0.04 ppb/yr (0.47). Similar to Southern Europe, local 1087 NO_x contributions are the largest contributor but with a consistent decline (-0.27 ppb/yr, (1.0)) while foreign NO_x 1088 contributions are increasing (0.1 ppb/yr, (0.99)). Other contributions remain small. The VOC contributions are very similar 1089 to those seen in Southern Europe where the declining PSO trend is primarily captured by a decline in local AVOC 1090 contributions (-0.18 ppb/yr, (1.0)) which is consistent with both decreasing emissions of AVOC and decreasing availability 1091 of NO_x for ozone production (Figure 2).¶ 1092 ¶

1093 Finally, Figures 9 g and h show PSO time series for Southeastern Europe along with its NO_X and VOC contributions 1094 respectively. Here, we see a large model observations gap for the early years which narrows and closes towards the later

1095 years. There is considerable year-to-year variability in the observations which is not reproduced in the modelled results. This 1096 could be due to the complicated nature of model sampling from TOAR-valid grid cells which are changing from year to year 1097 while the number of stations within a grid cell are also changing rapidly in the region. We have explored the TOAR 1098 station network for each of the receptor regions and plotted the number of valid stations per region as a time series in Figure 1099 S8. We see that Southeastern Europe only had 1-3 rural stations in the initial years which increased to up to 20 stations 1100 towards the end. Such a rapidly changing station network, especially when happening within a model grid cell, can 1101 complicate the model-observation agreement and interpretation. Due to these sampling issues, we do not overinterpret the 1102 results for this region. Instead, we refer the reader to Lin et al., (2015) for a discussion on the dependence of the modelled 1103 ozone trends on the co-sampling with observations.

1104

1105 Figure 12 shows the observed and modelled PSO in different sub-regions of Europe along with the corresponding NOX and 1106 VOC source contributions. We note that despite the large decline in European anthropogenic NOX and NMVOC emissions 1107 (Figure 2) over the two decades, the observed PSO values exceed the WHO guidelines (31 ppb) in all regions. To understand 1108 the geographical backdrop of PSO changes, Figure 11 presents a spatial map of local anthropogenic NOx emissions (panels 1109 a, d), total PSO (panels b, e), and the modeled contribution of local anthropogenic NOx to PSO (panels c, f) for the initial 1110 (2000) and final year (2018). In 2000 (Figure 11a), prominent NOx emission hotspots were evident (e.g., Benelux, Germany, 1111 Po Valley), parts of the UK, and major urban agglomerations across the continent. By 2018 (Figure 11d), substantial 1112 emission reductions occurred, particularly in Western and Central Europe. However, this decline is not obviously reflected in 1113 the spatial patterns of total PSO (Figure 11b, e), which generally decreased in the southern regions but not in northern 1114 regions, especially over areas with the largest emission cuts, as also seen in bias-corrected PSO maps by Becker et al. (2023). 1115 The direct contribution of local anthropogenic NOx to PSO (Figure 11c, f) mirrors these emission reductions more closely, 1116 with clear reductions from 2000 to 2018. This suggests the role of other contributions in offsetting the expected decline in 1117 PSO, especially in northern European regions.

1118

1119 Observed PSO time series (Figure 12, panels a, d, g, j) reveal diverse trends across Europe (see Table 2). Western Europe 1120 exhibits no significant long-term trend in observed PSO, despite a clear decline in local NOx contributions. This region 1121 notably experienced high PSO during the 2003 and 2006 heatwaves (Vautard et al., 2005; Solberg et al., 2008; Struzewska & 1122 Kaminski, 2008), events which the model captures. Southern Europe shows a slight overall decline in observed PSO (-0.09 1123 (0.45) [-0.33, 0.15] ppb/yr, Table 2), though with an uptick in the final years. C&E Europe displays a more pronounced 1124 decreasing trend in observed PSO (-0.40 (<0.01), [-0.58, -0.22] ppb/yr). The model's performance in reproducing these 1125 trends varies: it captures the lack of trend in Western Europe and the declining trend in Southern Europe (albeit 1126 overestimating the declining trend; -0.20 (0.01) [-0.35, -0.06] ppb/yr), but simulates a much weaker or even insignificant 1127 decline in C&E Europe than observed. SE Europe presents a challenge for PSO trend interpretation due to lack of sufficient 1128 observational stations for most of the study period (see Figure S11). Due to these sampling issues, we do not overinterpret

1129 the results for this region. Instead, we refer the reader to Lin et al., (2015) for a discussion on the dependence of the modelled 1130 ozone trends on the co-sampling with observations. Our results are in general agreement with the findings of Yan et al. 1131 (2018) who found insignificant trends for mean ozone but declining trends for the 95th %ile ozone in Europe during 1132 spring-summer.

1133

1134 The evolution of NOx contributions to PSO (Figure 12, panels b, e, h, k; Table 2) is key to understanding European PSO 1135 trends. Local anthropogenic NOx contributions (red lines) have declined significantly across all European regions. In 1136 Western Europe, this decline (-0.28 (<0.01) [-0.38, -0.18] ppb/yr) is offset by increases in other contributions, leading to a 1137 flat overall PSO trend. This quantitatively demonstrates that while local NOx emission controls have reduced direct local 1138 ozone production, other contributions have compensated. In Southern Europe, the more stringent decline in local NOx 1139 contribution (from ~25 ppb in 2000 to ~19 ppb in 2018) is the primary driver of the overall PSO decrease. C&E Europe also 1140 shows a substantial decline in local NOx contribution (-0.28 (<0.01), [-0.36, -0.20] ppb/yr).

1141

1142 The relationship between local NOx emissions and PSO is further illuminated by the correlation analysis in Figure 13. The 1143 gridcell-level correlation between local anthropogenic NOx emissions (averaged over the corresponding 6-month PSO 1144 window per year) and total PSO (Figure 13a) is moderately positive over large parts of Central and Southern Europe ($r \sim 1145 \, 0.4$ -0.7), but weaker or even negative in parts of Western and Northern Europe. This indicates that while local emissions are 1146 a factor, total PSO in the northern belts of Europe is highly susceptible to other influences. In contrast, the correlation 1147 between local NOx emissions and their direct contribution to PSO (Figure 13b) is very high (r > 0.7-0.9) across most of 1148 Europe. This confirms the model's source attribution capability and reinforces that reducing local NOx directly curtails its 1149 specific ozone yield.

1150

1151 Foreign anthropogenic NOx contributions have shown small increases across Europe (e.g., 0.04 (0.03) [0.00, 0.07] ppb/yr in 1152 Western Europe, 0.07 (0.01) [0.02, 0.13] ppb/yr in S Europe, 0.08 (<0.01), [0.04, 0.13] ppb/yr in C&E Europe), offsetting 1153 the benefits of local reductions (Figure 12, panels b, e, h, k; Table 2). Global shipping NOx contributions also show a 1154 consistent increasing trend across all European regions (e.g., 0.12 (<0.01) [0.10, 0.14] ppb/yr in Western Europe, 0.16 1155 (<0.01) [0.14, 0.19] ppb/yr in Southern Europe), reflecting rising maritime emissions and their growing impact on coastal 1156 and inland air quality. Contributions from natural NOx sources are also rising (see Table 2) despite the lack of a significant 1157 increase in natural NOx emissions (Figure 2) suggesting an increased ozone production efficiency by these emissions in a 1158 lower-NOx environment, as also noted in North American regions. Stratospheric intrusion remains relatively small and a 1159 stable contributor to PSO without any significant trends (Table 2).

1160

1161 The VOC source contributions to PSO (Figure 12, panels c, f, i, l; Table 2) reveal the significant role of methane and the 1162 impact of local emission changes. Methane is the largest VOC contributor to PSO across all European regions, typically

around 15-20 ppb. Its contribution generally shows a slight increasing trend (e.g., 0.08 (<0.01) [0.05, 0.11] ppb/yr in Western 1164 Europe), consistent with rising global methane concentrations, though this increase is modest compared to the overall PSO 1165 levels. Contributions from local AVOC have declined in all regions, mirroring reductions in their emissions and contributing 1166 to the overall PSO decrease where observed. For example, in Western Europe, local AVOCs declined by -0.17 (<0.01) 1167 [-0.21, -0.12] ppb/yr, and in Southern Europe by -0.21 (<0.01) [-0.25, -0.16] ppb/yr. This decline is consistent with reduced 1168 availability of both AVOCs and local NOx for ozone formation. Natural VOCs (from biogenic and fire emissions) are the 1169 second most important VOC contributors after methane. Their absolute contribution varies, but like methane, their ozone 1170 production capacity is linked to NOx availability. The interaction between local anthropogenic NOx and natural VOCs is 1171 evident in all regions, where variability in the contribution from these two sources is highly similar. Foreign AVOCs, 1172 shipping VOCs, and stratospheric intrusion (VOC perspective) are smaller contributors, with foreign AVOCs and 1173 stratospheric components generally stable.

1174

1175

1176 3.3.2 Ozone seasonal cycle in Europe: Quantitative Characterization Trends and Source Contributions:

1177 Figure 14 shows the 19-year average seasonal cycle of MDA8 O₃ for different sub-regions of Europe along with its NO_X and 1178 VOC source contributions. The observed seasonal cycle is distinct in each receptor region: we see a major spring peak in 1179 Western Europe, a sustained spring-to-summer peak in Southern Europe and C&E EuropeCentral & Eastern Europe, and a 1180 major summer peak in SE EuropeSoutheastern Europe. The model reproduces the average seasonal cycles in these regions 1181 extremely reasonably well, particularly in Western and Southern Europe. The model underestimates the MDA8 O₃ for C&E 1182 EuropeCentral & Eastern Europe in winter months and systematically overestimates the full seasonal cycle for SE 1183 EuropeSoutheastern Europe.

1184

1185

1186

1187 For all regions, we see that, in the left panels, the local anthropogenic NO_X and natural NO_X contributions peak in the 1188 summertime, along with methane and natural VOC contributions in the right panels. The foreign NO_X and stratospheric 1189 contributions peak in the springtime. In all sub-regions, the springtime peak is composed of a peaking contribution from 1190 foreign NO_X and stratosphere along with an increasing local NO_X contribution. Methane remains the highest contributor 1191 throughout the year in terms of VOC contributions for all sub-regions. The lack of a summer peak for Western Europe is 1192 explained by lower local NO_X contributions as compared to other regions. For all regions, the wintertime MDA8 O₃ levels 1193 are sustained by high foreign NO_X contributions, mostly greater than 10 ppb. Ship NO_X contribution remains low, but can 1194 reach up to 5 ppb in spring and summer. Foreign AVOC contributions remain low, below 10 ppb, much lower than the

1195 foreign NO_X contributions, pointing to their low interaction and potentially a higher interaction of foreign NO_X with natural

1196 VOC and methane globally.

1197

1198

1199 The 19-year (2000-2018) average seasonal cycle of MDA8 O3 across European sub-regions was characterized using Fourier 1200 analysis, with parameters detailed in Tables S7-S10 and the cycles, along with source contributions, depicted in Figure 14. 1201 Observed annual mean MDA8 O3 (y0) across Europe is generally lower than in many North American regions, ranging from 1202 ~35 ppb in Western Europe to ~41 ppb in Southern Europe (Tables S7-S10). The model reproduces these annual means 1203 reasonably well for Western Europe (observed 35.36 ppb, modeled 34.67 ppb) and Southern Europe (observed 41.15 ppb, 1204 modeled 42.39 ppb). However, it underestimates y0 by ~1.5 ppb in C&E Europe (observed 38.1 ppb, modeled 36.62 ppb) 1205 and significantly overestimates it by ~7.5 ppb in SE Europe (observed 39.86 ppb, modeled 47.35 ppb). This large positive 1206 bias in y0 for SE Europe, also evident in the full seasonal cycle (Figure 14g,h), may be influenced by uncertainties due to

1207 limited observational network affecting the gridded observational product in this sub-region (see Figure S11).

1208

1209 The amplitude of the fundamental harmonic (A1), indicating the magnitude of seasonal variation, is substantial across 1210 Europe. Observed A1 ranges from 8.61 ppb in Western Europe to 11.62 ppb in Southern Europe. The model consistently 1211 overestimates A1 in all European regions, suggesting an overestimation of the summer photochemical peak. This 1212 overestimation is most pronounced in C&E Europe (modeled 15.18 ppb vs. observed 11.33 ppb) and Western Europe 1213 (modeled 11.13 ppb vs. observed 8.61 ppb). This pattern of overestimated A1 mirrors the findings for eastern North America 1214 and points towards a common model tendency to exaggerate summertime ozone production, likely linked to the modeled 1215 response of local and natural NOx/VOC contributions during summer months (Figure 14, left and right panels respectively).

1216

1217 The phase of the annual peak (φ_1) is relatively consistent across the regions, with observed values around 5.05-5.39 radians, 1218 indicating a late spring to early summer maximum. SE Europe exhibits a slightly later observed peak $(\varphi_1 = 5.55 \text{ radians})$. The 1219 model generally captures this timing well, with modeled φ_1 values closely matching observations (e.g., Western Europe: obs. 1220 5.05, mod. 5.2; Southern Europe: obs. 5.39, mod. 5.45). This agreement suggests the model correctly simulates the relative 1221 seasonal contributions of different processes driving the main ozone peak. For instance, the spring peak in Western Europe 1222 (Figure 14a) is notably influenced by foreign NOx and stratospheric contributions, while the broader spring-summer peak in 1223 Southern Europe and C&E Europe (Figure 14c) reflects a strong summertime peak in local and natural NOx contributions, 1224 alongside springtime transport influences.

1225

1226 The amplitude of the second harmonic (A2), representing semi-annual features, is generally smaller than A1 but 1227 non-negligible, with observed values between 1.76 ppb (C&E Europe) and 2.76 ppb (SE Europe). The model tends to 1228 reproduce A2 reasonably well for Western Europe and C&E Europe but overestimates it in Southern Europe (observed 1.79).

1229 ppb vs modeled 2.65 ppb). A significant A2 can reflect the interplay between springtime transport-driven ozone 1230 enhancements and summer photochemical production. The phase of this second harmonic (ϕ_2) shows more variability and 1231 model-observation agreement is mixed.

1232

1233 The Fourier parameters are consistent with the source attribution patterns: for Western Europe (Fig 14a,b), the distinct spring 1234 peak (captured by φ_1) is clearly driven by peaks in foreign NOx and stratospheric contributions. The model's overestimation 1235 of A1 stems from a more pronounced modeled summertime contribution from local and natural NOx than is suggested by the 1236 overall observed seasonal shape, which lacks a strong summer maximum. Methane is the dominant VOC contributor 1237 year-round. Southern and C&E Europe (Fig 14c-f) exhibit a broader spring-to-summer high. Their larger A1 values reflect a 1238 strong summer peak in local anthropogenic NOx and natural NOx contributions, which the model captures but tends to 1239 exaggerate, leading to the overestimation of A1. Foreign NOx contributes significantly to the spring shoulder and winter 1240 baseline. Methane and natural VOCs are key VOC contributors, especially during the warmer months. SE Europe (Fig 1241 14g,h) shows a clear summer maximum in observations and model (larger φ_1 ; delayed peak). Local and natural NOx 1242 contributions drive the strong summer peak in the model.

1243

1244 The model effectively simulates the timing of the annual ozone peak (φ_1) across Europe. However, it consistently 1245 overestimates the amplitude of this annual cycle (A1), pointing to an overactive summer photochemistry in the model, a 1246 characteristic also noted for parts of North America. The annual mean ozone (y0) is well-reproduced for Western and 1247 Southern Europe but shows biases for Central & Eastern and particularly SE Europe. Wintertime ozone levels in all regions 1248 are sustained by significant foreign NOx contributions (often >10 ppb), while summertime peaks are primarily driven by 1249 local anthropogenic and natural NOx chemistry. Foreign AVOC contributions remain low (<5-7 ppb), suggesting limited 1250 interaction with European NOx, implying that transported NOx more significantly interacts with natural VOCs and globally 1251 present methane.

1252

1253 3.3.3 Changes in seasonal cycle of ozone in Europe: Role of Local vs Remote contributions

1254 A long-term average of the ozone seasonal cycle as shown in the previous section provides us with a general sense of 1255 monthly contributions from various sources but it may conceal the (possibly large) year-to-year variations within the cycle. 1256 Therefore, in this section we compare the early 5-year average seasonal cycle with the recent 5-year seasonal cycle to 1257 understand the changing shape of the cycle and its contributing factors in terms of NO_X and VOC sources. Figure 11 presents 1258 the observed and modelled 5-year averaged MDA8 O₃ seasonal cycles for the initial (2000-2004) and final (2014-2018) 1259 periods along with their NO_X and VOC contributions for Western Europe. The model captures both the spring and summer 1260 peaks and their changes in this region extremely well. Between these initial and final periods, we see a significant drop in the 1261 summer peak (from 44 ppb to 40 ppb) along with an increase in the wintertime ozone levels. The summertime drop is due to

adrop in local NO_X contributions while the wintertime increase is due to an increase in foreign NO_X contributions (Figs 11b 1263 and e). It is noteworthy that the summertime drop in the local NO_X contributions is larger than the overall drop in 1264 summertime PSO. For example, for the month of August, the observed PSO dropped by 3.86 ppb between the two periods. 1265 This drop is 4.63 ppb in the model. However, the drop in the local NO_X contributions is larger (7.06 ppb) and there is also a 1266 drop in foreign NO_X contribution (0.25 ppb). These combined decreases in local and foreign NO_X contributions (7.31 ppb) 1267 are offset by increases in contributions from shipping NO_X (1.65 ppb), natural NO_X (0.96 ppb) and stratosphere (0.06 ppb) 1268 such that the overall drop in PSO in August is smaller. While the increase in shipping NO_X contribution is consistent with an 1269 increase in the northern hemispheric shipping NO_X emissions (Figure 2e), there is no significant increase in natural NO_X 1270 between the two periods, which shows the increasing ozone producing efficiency of natural NO_X when overall NO_X 1271 emissions are decreasing. In terms of VOCs, the summertime drop is associated with a drop in local AVOC contributions and 1272 the wintertime increase is primarily due to increased share of methane contribution as well as some foreign AVOC 1273 contribution. ¶

1274 **¶**

1275 Figure 12 presents the changes in the MDA8 O₃ seasonal cycle for Southern Europe. The model reproduces the seasonal 1276 cycles for both the initial and final periods extremely well. We broadly see a flattening of the ozone seasonal cycle in this 1277 region between the two periods, with the summertime peak coming down (due to reduced local NO_x contribution partially 1278 offset by increases in natural and ship NO_x contributions) and wintertime levels rising due to increase in wintertime foreign 1279 NO_x contributions, same as in Western Europe. From a VOC perspective, the summertime drop is associated with a decrease 1280 in local AVOC contributions and a small drop in methane contributions. The wintertime increase is associated with an 1281 increase in methane and foreign AVOC contributions but also stratospheric intrusion.

1282 To understand the evolution of ozone seasonality in Europe, we compare the 5-year average MDA8 O3 seasonal cycles from 1283 an initial period (2000-2004) with a recent period (2014-2018). Here, we present the results for Western Europe and 1284 Southern Europe, with detailed Fourier parameters in Tables S7 and S8, and the corresponding seasonal cycles and source 1285 contributions in Figures 15 and 16. Results for the remaining European sub-regions are included in the supplement (Figures 1286 S9-S10; Tables S8-S9).

1287

1288 In Western Europe (Figure 15, Table S6), the most notable change between 2000-2004 and 2014-2018 is a distinct flattening 1289 of the summer ozone peak alongside an increase in wintertime ozone levels. The observed annual mean MDA8 O₃ (y0) 1290 remained remarkably stable (35.84 ppb to 35.85 ppb), a feature well-captured by the model (34.07 ppb to 35.28 ppb). 1291 However, the amplitude of the primary annual cycle (A1), representing the summer-winter difference, decreased in both 1292 observations (from 10.08 ppb to 7.95 ppb) and the model (from 13.16 ppb to 9.46 ppb). This indicates a significant damping 1293 of the seasonal swing. The phase of the fundamental harmonic (φ_1) shifted slightly earlier in observations (5.18 to 5.09 1294 radians), as well as the model (5.32 to 5.18 radians).

1297 local anthropogenic NOx decreased substantially between the two periods. This reduction in local summer production is the 1298 main cause of the lower summer peak and reduced A1. Conversely, wintertime ozone levels increased. This rise is linked to 1299 an increase in the foreign anthropogenic NOx contribution during winter and spring months in the later period, coupled with 1300 reduced titration from lower local NOx emissions (see section 3.4 where these two effects are disentangled). It is noteworthy 1301 that the reduction in the local NOx contribution during summer is larger than the overall decrease in total MDA8 O3 during 1302 these months, because offsetting increases from other sources like shipping NOx (which increased from ~2 ppb to ~4 ppb in 1303 August) and a more efficient ozone production from remaining natural NOx under lower overall NOx conditions partly 1304 compensated for the local reductions. As noted previously, while Northern Hemispheric shipping NOx emissions increased 1305 (Figure 2e), the increased contribution from natural NOx highlights its enhanced ozone-forming efficiency in a lower-NOx 1306 environment. From a VOC perspective (Figure 15c vs. 15f), the summertime decrease is associated with a reduction in local 1307 AVOC contributions. The wintertime ozone increase is supported by a larger share of methane contribution and, to a lesser 1308 extent, foreign AVOCs during winter in the recent period.

1309

1310 Southern Europe (Figure 16, Table S7) also exhibits a notable evolution in its seasonal ozone cycle, characterized by a 1311 flattening of the seasonal cycle. The observed annual mean ozone (y0) slightly increased (from 40.83 ppb to 41.81 ppb), a 1312 trend also seen in the model (42.05 ppb to 42.76 ppb). The amplitude of the fundamental harmonic (A1) decreased 1313 significantly in observations (from 13.02 ppb to 10.64 ppb) and even more so in the model (from 15.18 ppb to 9.93 ppb), 1314 indicating a substantial reduction in the peak summer concentrations. The phase of the peak (φ_1) remained relatively stable, 1315 suggesting the timing of the summer maximum did not shift considerably.

1316

1317 The primary driver for the reduced summer peak and lower A1 is the marked decrease in the summertime contribution from 1318 local anthropogenic NOx (Figure 16b vs. 16e). While this local source remains the dominant contributor to the summer peak, 1319 its magnitude is considerably lower in 2014-2018 compared to 2000-2004. Similar to Western Europe, contributions from 1320 foreign anthropogenic NOx have become relatively more important throughout the year, particularly sustaining spring and 1321 winter ozone levels. Natural NOx and shipping NOx contributions also show slight increases in summer in the later period, 1322 partially offsetting the local NOx reductions.

1323

1324 Regarding VOC contributions (Figure 16c vs. 16f), the summertime decrease in ozone is linked to reductions in both local 1325 AVOC and methane contributions during the peak season in the later period. Methane remains the largest VOC contributor 1326 overall, but its peak summer contribution has diminished. Wintertime ozone increases are associated with higher 1327 contributions from methane and foreign AVOCs, along with stratospheric intrusion.

1329 3.4 Increasing Foreign Ozone in North America and Europe: increasing Foreign NOx emissions versus reduced local 1330 titration of background ozone:

Previous sections highlighted an increasing trend in the contribution of foreign anthropogenic NOx to ozone in various North American and European receptor regions, particularly during winter and spring (Jan-Apr). This observed increase in ozone 1333 attributed to foreign anthropogenic NOx (hereafter, O3_FOREIGN) could stem from two primary mechanisms: (i) an actual 1334 increase in the intercontinental transport of ozone produced from foreign NOx emissions, or (ii) an "unmasking" of existing 1335 transported ozone due to weakened local titration (NO + O₃ \rightarrow NO₂ + O₂) as local NO emissions have declined in these 1336 regions. Disentangling these factors is crucial for making informed decisions on local as well as global emission reduction 1337 policies. For example, if the second mechanism is dominant, it would imply that with further local NOx reductions we 1338 should expect more increases in winter-springtime ozone (which may potentially be a barrier to such policymaking). 1339 However, if the first mechanism is dominant, then further decreases in local NOx will principally decrease local ozone while 1340 the transported component can be controlled through international policies.

1341

1342 To investigate this, we analyzed the combined contribution of O₃_FOREIGN and the NO₂ formed from the titration of 1343 O₃_FOREIGN (hereafter, NO₂_FOREIGN). It is noteworthy that this NO₂_FOREIGN, locally recovered from foreign ozone 1344 titration, is separately tagged in our modelling system than the NO₂ directly flowing from foreign regions (which we do not 1345 discuss here). The sum, Ox_FOREIGN (O3_FOREIGN + NO₂_FOREIGN), represents the total reactive odd oxygen 1346 attributable to foreign anthropogenic NOx sources. An increasing trend in Ox_FOREIGN would more strongly indicate an 1347 actual rise in transported reactive oxygen from foreign sources, whereas an increase in O₃_FOREIGN with relatively stable 1348 Ox FOREIGN might suggest a dominant role of reduced local titration.

1349

1350 Figure 17 presents the time series of winter-spring (Jan-Apr) mean O₃_FOREIGN (blue shaded area) and the additional 1351 NO₂_FOREIGN component (grey shaded area, making up the total Ox_FOREIGN indicated by the top of the grey area) for 1352 selected North American and European receptor regions over the 2000-2018 period. In both the NW US (Figure 17a) and 1353 SW US (Figure 17b), a clear increasing trend is evident not only in O₃_FOREIGN but also in the total Ox_FOREIGN over 1354 the 2000-2018 period. For instance, in NW US, Jan-Apr mean O₃_FOREIGN increased from approximately 10.3 ppb in 1355 2000 to 13.3 ppb in 2018, while Ox_FOREIGN increased from approximately 10.8 ppb to 13.6 ppb. Similarly, in SW US, 1356 O₃_FOREIGN rose from around 10.6 ppb to 13.7 ppb, and Ox_FOREIGN from 11.2 ppb to 14.0 ppb. The NO2_FOREIGN 1357 component (grey area) is consistently small, typically ranging from 0.2 to 0.7 ppb during these cold, low-photolysis months. 1358 The key finding here is that the total Ox_FOREIGN shows a clear increasing trend. This robust increase in Ox_FOREIGN 1359 demonstrates that the rising influence of foreign NOx on winter-spring ozone in western North America is substantially 1360 driven by an actual increase in the import of reactive odd oxygen from foreign sources, rather than solely by reduced local 1361 titration unmasking more foreign-produced background ozone. While reduced local titration plays a minor role 1362 (NO2_FOREIGN decreases over time), the fundamental increase in O3_FOREIGN is due to increasing foreign NOx

1363 emissions. The Ox_FOREIGN peaks in 2013 when Northern Hemispheric NOx emissions also peaked (see Figure 2e). 1364 These results are consistent with findings of Elshorbany et al., (2024) and Lu et al., (2024) who report increasing ozone 1365 trends in Asia both in the troposphere and at the surface which stabilize around 2013. After 2013, we see a decline in both 1366 Ox_FOREIGN and O3_FOREIGN which is principally driven by a decline in foreign NOx emissions (Crippa et al., 2023), 1367 which is primarily due to the implementation of China's Clean Air Programme (Zheng et al., 2018)

1368

1369 Similar patterns are observed in Western Europe and Southern Europe (Figures 17c and d, respectively). In Western Europe, 1370 winter-spring O3_FOREIGN increased from 10.6 ppb in 2000 to 11.6 ppb in 2018, with Ox_FOREIGN rising from 11.9 ppb 1371 to 12.6 ppb. Southern Europe saw O3_FOREIGN increase from around 10.7 ppb to 12.9 ppb, and Ox_FOREIGN from 11.8 1372 ppb to 13.4 ppb. Again, the NO2_FOREIGN component remains a minor fraction of the total Ox_FOREIGN during these 1373 Jan-Apr periods and slightly decreases with time, reflecting reduced titration of O3_FOREIGN. The consistent increase in 1374 the total Ox_FOREIGN across these European regions, much like in North America, demonstrates an increasing influx of 1375 reactive odd oxygen attributed to foreign NOx sources. This suggests that the observed rise in foreign ozone contributions 1376 during European winter-spring is not merely an artifact of changing local chemical environments (i.e., reduced titration) but 1377 reflects a more fundamental increase in the amount of pollution arriving from upwind, foreign sources.

1378 4. Conclusion, Limitations and Future Outlook:

1379 In this study we explain the long-term trends and the evolving shape of changes in the seasonal cycle of surface ozone in 1380 Europe and North America and Europe (an issue raised by many previous observational studies) in terms of changing 1381 contributions from various NOx and VOC sources, through the use of an ozone tagging system in a global chemical transport 1382 model. for the period 2000-2018. While both regions have experienced rapid reductions in locally-emitted ozone precursors 1383 in recent decades, we note that the Peak Season Ozone (PSO) in both regions exceeds the WHO guidelines for the entire 1384 study period.

1385

1386 Our model is generally in good agreement with ground observations from rural stations in the newly-developed TOAR-II 1387 database, allowing us to attribute the observed trends in terms of the changing contributions from local and foreign emission 1388 sources of NO_X and VOC. While Aanthropogenic NMVOC emissions contribute a relatively small fraction of the total PSO, 1389 anthropogenic NO_X emissions have a much stronger influence. The decreasing trend in NO_X emissions in both North 1390 America and Europe leads to a lower fraction of the PSO attributable to these local NO_X emissions towards the recent years, 1391 however the total modelled decrease in PSO in both regions is partially offset by increasing contributions from natural NO_X, 1392 foreign anthropogenic NO_X, and international shipping.

1394 While the increasing trend in ozone attributable to international shipping (despite potential overestimation of ozone produced 1395 from ships) is consistent with increasing emissions from this sector, the increasing trend in modelled contribution of natural 1396 NO_x emissions we find in our study, especially during the summertime, suggests is most likely due to the increasing ozone 1397 productivity of these emissions since there is no noticeable-increasing trend in natural NOx emissions in our model and a 1398 slight decreasing trend in Lightning NOx emissions (Figure 3 a, c, e, g). The decreases in local NO_x emissions in both 1399 regions lead to strong reductions in summertime ozone, but have a smaller effect in the springtime, when long-range 1400 transport of ozone produced from foreign anthropogenic NO_x emissions and stratosphere is more important (Table 3). All 1401 regions show a modest increasing trend in the foreign anthropogenic NO_X contribution to the PSOpeak season ozone over 1402 the study period. Especially in the western sub-regions of Europe and North America, the foreign anthropogenic NO_X 1403 contribution to PSO has become comparable in magnitude to the local NO_x contribution. Foreign anthropogenic NO_x 1404 contribution to winter-springtime ozone has increased significantly and is primarily driven by increases in foreign NOx 1405 emissions rather than reduced titration of foreign transported ozone, although the latter also plays a minor role. We have 1406 shown that local anthropogenic NOX emissions still contribute significantly to PSO in both Europe and North America and 1407 its further reduction would not unmask a large amount of previously titrated ozone over regional scales in winter and spring. 1408 As an emission source which can be controlled with domestic policy interventions, future policy should continue to target 1409 these emissions.

1410

1411 ¶

1412 Due to the nature of our ozone tagging system, we perform two separate source attributions, one for NO_X emissions, and 1413 another for VOC emissions. When attributing ozone to VOC emissions, we note the strong contribution of BVOC emissions 1414 to the summertime peak ozone, which is clearly linked with the strong contribution of local anthropogenic NO_X emissions to 1415 summertime ozone. The co-variability of these two sources is also apparent in the PSO time series for all regions and 1416 emphasizes the interaction of anthropogenic NOx with BVOC in rural and background regions. This is an emerging finding 1417 made possible due to our dual-tagging approach; a relatively recent regional modelling study (Lupascu et al., 2022) focusing 1418 on two high ozone episodes in Germany that also utilized the TOAST1.0 system also noted the interaction of local 1419 anthropogenic NOx and BVOC in driving ozone peaks.and emphasizes the interaction of anthropogenic NOx with BVOC in 1420 rural and background regions. This finding highlights that, at least for rural and background regions, the interaction of 1421 anthropogenic NOx with BVOC exceeds its interaction with AVOC which might be contained within the urban centres. It is 1422 noteworthy that BVOC emissions also either match or exceed AVOC emissions in North America and Europe during the 1423 peak season. In all of the sub-regions in our study except for the eastern parts of the United States, the contribution of 1424 methane to ozone is greater than that of BVOC. While global methane concentrations have risen from 1787 ppb to 1875 ppb 1425 during our study period (an increase of about 5%), this has only led to a modest increasing trend in methane contributions to 1426 PSO in Europe. In all regions of the US except NW US, the methane contribution to PSO has slightly decreased over this 1427 time. This is consistent with the large reductions in local NO_x emissions, leading to a lower efficiency of ozone production

1428 during methane oxidation over both regions. Given the strong role of methane as an ozone precursor, as noted in this study
1429 and consistent with previous work, targeted reductions of methane along with other AVOC can also be expected to contribute
1430 to the reductions in PSO needed to comply with the WHO guideline value.

14311432

1433 The TOAST1.0 dual-tagging technique uniquely allows us to unveil many interesting results summarized above, which 1434 would not be possible to disentangle through perturbative approaches or other tagging approaches that tag a specific region 1435 with all its (NOx+VOC) emissions or the geographic area of ozone production. It provides us with a parallel view of the 1436 composition of ozone trends in terms of NOx and VOC precursors belonging to their original source locations, thereby 1437 facilitating a more targeted species-specific policy response. Many key results, for example: the separation of Foreign NOx 1438 versus stratospheric contributions in explaining springtime ozone increase; separation of increased wintertime ozone to 1439 increased foreign NOx versus reduced local titration; decreasing methane contribution to ozone in many regions despite 1440 increasing background methane; and in general the co-attribution of ozone to anthropogenic and biogenic emission sources 1441 under baseline conditions, would not be unveiled without the aid of our novel tagging system. Our innovative approach to 1442 model evaluation by breaking down the observed and modelled ozone seasonal cycles into a fundamental and secondary 1443 harmonic using Fourier transform and then comparing them against the seasonal cycles of tags (e.g., comparison of the 1444 fundamental harmonic against the local NOx contribution to seasonal cycle) allows us to test the validity of such statistical 1445 decomposition techniques in different contexts and improve their theoretical interpretation; something which could not be 1446 achieved without tagged model simulations. Once sufficiently validated, such statistical decomposition could be applied 1447 more broadly, thereby unveiling new scientific insights from observations alone.¶

1448

1449 While this study has yielded an array of novel scientific results and policy-relevant insights, a number of limitations remain.

1450 First, our model spatial resolution (1.9°×2.5°), necessitated by the extra computational burden of tagged species and the long

1451 duration of the simulation period, is admittedly quite coarse and potentially introduces model biases. A recent study by Gao

1452 et al. (2025) has highlighted that the long-standing problem of overestimating surface ozone in the northern hemispheric

1453 mid-latitudes by global models can be addressed in large part by increasing the model resolution. Therefore, future

1454 modelling studies with tagging can be performed over short duration but high model resolution to assess the effect of model

1455 resolution on model bias and source contributions. Second, While our ozone source attribution, while is capable of

1456 determining the contributions of different local and remote emission sources to the ozone under baseline conditions

1457 simulated in our model, it is only of limited usefulness in predicting the response of ozone levels to any future emission

1458 reductions. For such an assessment, it is necessary to perform model sensitivity studies reflecting the actual policy

1459 interventions aimed at reducing ozone. Studies like ours can however identify the major contributing emission sources.

1460 Given the strong role of methane as an ozone precursor, targeted reductions of methane along with other AVOC can also be

1461 expected to contribute to the reductions in PSO needed to comply with the WHO guideline value but such an assessment

1462 would require model perturbation studies wherein methane and AVOCs are reduced. Third, our approach does not attribute 1463 any changes in ozone to meteorological changes which might become increasingly important in a warming world. Instead, 1464 all changes in ozone are essentially attributed to precursor emissions. However, changing contributions from certain 1465 emission sources do not necessarily imply only changing emissions but could also be due to more/less efficient transport of 1466 foreign produced ozone due to meteorological changes.

1467

- 1468 We have shown here that local anthropogenic NO_X emissions still contribute significantly to PSO in both Europe and North
- 1469 America and its further reduction would not unmask a large amount of previously titrated ozone in winter and spring. As an
- 1470 emission source which can be controlled with policy interventions, future policy should continue to target these emissions.
- 1471 Given the strong role of methane as an ozone precursor, as noted in this study and consistent with previous work, targeted
- 1472 reductions of methane along with other Aanthropogenic NMVOC can also be expected to contribute to the reductions in
- 1473 PSO needed to comply with the WHO guideline value.
- 1474 Increasing productivity of natural NOx under a lower NOx environment could be tested in future perturbation+tagging
- 1475 studies.¶
- 1476

1477 Author Contributions:

- 1478 TA and TB together designed the study. TA performed the model simulations, performed all the analyses and produced the
- 1479 visualizations with inputs from TB. AN and AL provided support in model setup, source code changes for incorporating new
- 1480 tags, and generating the tagged chemical mechanisms for NOx and VOC attribution. CH and SG created and provided the
- 1481 gridded TOAR dataset for model evaluation. TA wrote the manuscript with inputs from TB. All co-authors provided their
- 1482 inputs to the discussion and the final manuscript.

1483 Acknowledgements:

- 1484 This work utilized high-performance computing resources made possible by funding from the Ministry of Science, Research
- 1485 and Culture of the State of Brandenburg (MWFK) and are operated by the IT Services and Operations unit of the Helmholtz
- 1486 Centre Potsdam. TA would like to thank Dr. Edward Chan at RIFS for his technical assistance in setting-up the model on the
- 1487 GFZ GLIC supercluster.

- 1489 The following programs, organizations and persons contributed to the TOAR gridded dataset: programmes: Global
- 1490 Atmospheric Watch Program; Research and Development Programme of Ministry of Education Culture Sports Science and
- 1491 Technology Japan and Environmental Research and Technology Development Fund of Ministry of Environment Japan;

```
1492 organizations: AECOM; Aethon Energy; Air Quality Services; Air Resource Specialists, Inc; Akron Regional Air Pollution
1493 Control Agency: Al Dept Of Env Mgt: Albuquerque Environmental Health Department, Air Quality Division: Anadarko,
1494 WY; Arizona Department Of Environmental Quality; Arkansas Department of Energy and Environment; Bay Area Air
1495 Quality Management District; Bayerisches Landesamt für Umwelt; Boulder City-County Health Department; CH2M Hill;
1496 Cabazon Band of Mission Indians, CA; California Air Resources Board; Canton City Health Department Air Pollution
1497 Control; Chattanooga-Hamilton County Air Pollution Control; Cherokee Nation, Oklahoma; Cherokee Nation/ITEC
1498 (consortium); Choctaw Nation of Oklahoma; City of Huntsville, Div of Natural Resources; City of Jacksonville
1499 Environmental Quality Division; City of Toledo, Environmental Services Division; Clark County, NV DAQEM; Colorado
1500 Department of Public Health And Environment; Confederated Tribes of Umatilla Reservation of Oregon; Connecticut
1501 Department of Environmental Protection; Dames & Moore, Inc; Dayton Regional Air Pollution Control Agency; Delaware
1502 Dept Natural Resources and Environmental Control; Delaware Nation, OK; EBAS; Eastern Band Of Cherokee Indians of
1503 North Carolina; Eastern Shoshone and Northern Arapaho Tribes of Wyoming; Enefit; Environment and Climate Change
1504 Canada / Government of Canada; Environmental Monitoring Company (Emc); European Environment Agency; Evansville
1505 Division Of Air Pollution Control; FDEP Ambient Monitoring Section; Florida Department of Environmental Protection
1506 (FDEP); Florida Dept of Environmental Protection, Central District; Florida Dept of Environmental Protection, Northeast
1507 District; Florida Dept of Environmental Protection, Northwest District; Florida Dept of Environmental Protection, South
1508 District; Florida Dept of Environmental Protection, Southeast District; Florida Dept of Environmental Protection, Southwest
1509 District; Forest County Potawatomi Community, WI; Forsyth County Environmental Affairs Department; Georgia Air
1510 Protection Branch Ambient Monitoring Program; Gila River Indian Community of Gila River Indian Reservation, AZ;
1511 Goodyear Tire Obion County, TN; Great Basin Unified APCD; Hamilton County Department Of Environmental Services;
1512 Hessisches Landesamt für Umwelt und Geologie; Hillsborough County Environmental Protection Commission; Idaho
1513 Department Of Health And Welfare-Environment Division; Illinois Environmental Protection Agency; Imperial County
1514 APCD; Indiana Depart Of Environ Management/Office Of Air Quality; Indianapolis Office of Environmental Services;
1515 Institut für Hygiene und Umwelt Hamburg; Inter-tribal Council of MIchigan, Inc.; Japan Agency for Marine-Earth Science
1516 and Technology; Jefferson County, AL Department Of Health; Kansas City Health Department, Air Quality Section; Kansas
1517 Department Of Health And Environment; Kentucky Division For Air Quality; KNO<sub>x</sub> County Department Of Air Pollution
1518 Control; La Posta Band of Dieguento Mission Indians of La Posta Indian Reservation, CA; Lake County Health Department
1519 Division Air Pollution Control; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen; Landesamt für
1520 Umwelt, Naturschutz und Geologie; Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht; Landesamt für
1521 Umweltschutz Sachsen-Anhalt; Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg; Lane Regional
1522 Air Pollution Authority; Las Vegas Tribe of Paiute Indians of the Las Vegas Indian Colony, NV; Lincoln-Lancaster County
1523 Health Department; MT Dept Of Environmental Quality, Air Quality Division; Mactec, Inc; Mahoning-Trumbull Air
1524 Pollution Control Agency; Maine D.E.P. Bureau Of Air Quality Control, Augusta; Manatee County Environmental
1525 Management Department; Maricopa County Air Quality; Maryland Department of the Environment; Mass Dept
```

```
1526 Environmental Protection-Div Air Quality Control; Mecklenburg County Air Quality; Memphis-Shelby County Health
1527 Department; Meteorological Solutions, Inc.; Metropolitan Health Department/Nashville & Davidson County; Miami-Dade
1528 County Department of Environmental Resources Management; Michigan Dept Of Environment, Great Lakes, and
1529 Energy-Air Quality Division; Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume; Ministerium
1530 für Umwelt und Verbraucherschutz Saarland; Minnesota Chippewa Tribe, MN (Fond du Lac Band); Minnesota Pollution
1531 Control Agency, Division Of Air Quality; Mississippi DEQ, Office Of Pollution; Missouri Laboratory Services Program;
1532 Mojave Desert AQMD; Monterey Bay Unified APCD; Morongo Band of Mission Indians, CA; National Institute for
1533 Environmental Studies; National Park Service; Navajo Nation, AZ, NM, UT; Nevada Division Of Environmental Protection;
1534 New Hampshire Air Resources Agency; New Jersey State Department Of Environmental Protection; New Mexico
1535 Environment Department; New York State Department Of Environmental Conservation; Niedersächsiches Ministerium für
1536 Umwelt, Energie und Klimaschutz; North Carolina Dept Of Environmental Quality; North Coast Unified Air Quality
1537 Management District; North Dakota DEQ; Northern Sonoma County APCD; Northwestern Band of Shoshoni Nation of Utah
1538 (Washakie); Ohio EPA Central Office; Ohio EPA, Central District Office; Ohio EPA, Northeast District Office; Ohio EPA,
1539 Northwest District Office; Ohio University, Athens, OH; Oklahoma Dept. Of Environmental Quality Air Quality Division;
1540 Olympic Air Pollution Control Authority; Omaha-Douglas County Health Department; Open Air Quality; Oregon
1541 Department Of Environmental Quality; Paiute-Shoshone Indians of Bishop Community of Bishop Colony, CA; Pala Band of
1542 Luiseno Mission Indians of Pala Reservation, CA; Passamaquoddy Tribe of Maine (Pleasant Point); Pennsylvania
1543 Department Of Environmental Protection; Pennsylvania State University (Penn State); Penobscot Tribe of Maine; Picayune
1544 Rancheria of Chukchansi Indians of California; Pima County Department of Environmental Quality; Pinal County APCD:
1545 Pinellas County Department Of Environmental Management; Polk County Physical Planning; Ponca Tribe of Indians of
1546 Oklahoma; Portsmouth City Health Dept Division Air Pollution Control; Pueblo of Jemez, NM; Quapaw Tribe of Indians,
1547 OK; Quebecor; RR Donnley, IN; Sac and Fox Nation, OK; Sacramento County APCD; Salt River Pima-Maricopa Indian
1548 Community of Salt River Reservation, AZ; San Diego County Air Pollution Control District; San Joaquin Valley Unified Air
1549 Pollution Control District; San Luis Obispo County APCD; Santa Barbara County APCD; Santa Rosa Indian Community of
1550 Santa Rosa Rancheria, CA; Senat für Umwelt, Bau und Verkehr, Bremen; Senatsverwaltung für Stadtentwicklung und
1551 Umwelt; Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin; Servicio Meteorologico Nacional; Shasta County
1552 APCD; South Carolina Department Health And Environmental Control; South Coast Air Quality Management District;
1553 South Dakota Department of Agriculture and Natural Resources; South East Texas Regional Planning Commission
1554 (SETRPC); Southern Ute Indian Tribe of Southern Ute Reservation, CO; St Louis County Health Department Air Pollution
1555 Control; St. Regis Mohawk Tribe, New York; State Of Louisiana; Swinomish Indians of Swinomish Reservation, WA;
1556 Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie; Table Mountain Rancheria; Taiwan Environmental
1557 Protection Agency; Tallgrass Energy Partners; Tata Chemicals; Tennessee Division Of Air Pollution Control; Tennessee
1558 Valley Authority; Texas Commission On Environmental Quality; Thüringer Landesanstalt für Umwelt und Geologie;
1559 Torres-Martinez Cahuilla Indians, California; Toyota; Tracer Technologies; US Forest Service; USEPA - Clean Air Markets
```

- 1560 Division; Umweltbundesamt; United States Environmental Protection Agency; University Hygenic Laboratory (University
- 1561 of Iowa); Utah Department Of Environmental Quality; Ute Indian Tribe of Uintah & Ouray Reservation, UT: Vandenberg
- 1562 AFB; Ventura County APCD; Vermont Agency Of Environmental Conservation; Vigo County Division Of Air Pollution
- 1563 Control; Virginia Department of Environmental Quality; WAUPACA Foundry; Wampanoag Tribe of Gay Head (Aquinnah)
- 1564 of Massachusetts; Warren Energy Services, LLC; Washington State Department Of Ecology; West Virginia Division of Air
- 1565 Quality; Weston Solutions, TX; Wisconsin Dept Of Natural Resources, Air Monitoring Section; Wyoming Air Quality
- 1566 Division, Dept Of Environmental Quality; Wyoming Bureau of Land Management; persons: Maria; Adela Holubova;
- 1567 Anne-Cathrine Nilsen; Aude Bourin; Christine F Braban; Christoph Hueglin; Christopher Conolly; Chrysanthos Savvides;
- 1568 Erik Andresen; Erzsebet Gyarmatine Meszaros; Gabriela Vitkova; Gerardo Carbajal Benitez; Gerardo Carbajal Benítez;
- 1569 Hiroshi Tanimoto; Indriksone Iveta; Iveta Indriksone; Jan Silhavy; Jaroslav Pekarek; Jasmina Knezevic; Juan Martinez;
- 1570 Karin Sjoberg; Karin Sjöberg; Karin Sjöberg; Keith Vincent; Lino Fabian Condori; Magdalena Bogucka; Maj-Britt Larka;
- 1571 Marcin Syrzycki; Maria Barlasina; Marijana Murovec; Mateja Gjere; Milan Vana; Ming-Tung Chuang; Monistrol Jose
- 1572 Antonio Fernandez; Muinasmaa Urmas; Murovec Marijana; Nikolova Yana; Robert Gehrig; Roman Prokes; Rune Keller;
- 1573 Stefan Reimann; Truuts Toivo; Ursul Gina; Usin Eve; Veronika Minarikova; Wenche Aas; Willis Paul; Yugo Kanaya;
- 1574 Zdzislaw Przadka (2024). Ozone data obtained from TOAR Database for rural stations between 2000 and 2018.

1576 Competing Interests

1577 TB is a member of the editorial board of Atmospheric Chemistry and Physics.

1578

1575

1579 Data Availability

1580 Please contact tabish.ansari@rifs-potsdam.de for availing the model output of our simulations.

1581

1582 References:

- 1583 Ansari, T. U., Wild, O., Li, J., Yang, T., Xu, W., Sun, Y., and Wang, Z.: Effectiveness of short-term air quality emission
- 1584 controls: a high-resolution model study of Beijing during the Asia-Pacific Economic Cooperation (APEC) summit period,
- 1585 Atmos. Chem. Phys., 19, 8651–8668, https://doi.org/10.5194/acp-19-8651-2019, 2019.

1586

- 1587 Ansari, T. U., Wild, O., Ryan, E., Chen, Y., Li, J., and Wang, Z.: Temporally resolved sectoral and regional contributions to
- 1588 air pollution in Beijing: informing short-term emission controls, Atmos. Chem. Phys., 21, 4471–4485,
- 1589 https://doi.org/10.5194/acp-21-4471-2021, 2021.

1590

- 1591 Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation, Plant Cell & Environment, 28, 949–964,
- 1592 https://doi.org/10.1111/j.1365-3040.2005.01341.x, 2005.

- 1594 Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: A review, Atmos. Environ. Part A. Gen. Top., 24,
- 1595 1-41, https://doi.org/10.1016/0960-1686(90)90438-S, 1990.

- 1597 Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monograph 2, 1-216,
- **1598** 1994.
- 1599 Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref.
- 1600 Data, 26, 215–290, https://doi.org/10.1063/1.556012, 1997.

1601

- 1602 Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1.
- 1603 Year 2000 crop production losses and economic damage, Atmospheric Environment, 45, 2284–2296,
- 1604 https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011.

1605

- 1606 Beaton, S. P., Bishop, G. A., Zhang, Y., Stedman, D. H., Ashbaugh, L. L., and Lawson, D. R.: On-Road Vehicle Emissions:
- 1607 Regulations, Costs, and Benefits, Science, 268, 991–993, https://doi.org/10.1126/science.268.5213.991, 1995.

1608

- 1609 Becker, J. S., Butler, T., Nalam, A., Lupascu, A., and Kipling, Z.: Using Regionalized Air Quality Model Performance and
- 1610 Bayesian Maximum Entropy data fusion to map global surface ozone concentration, Elementa: Sci. Anth., 11, e2022.00025,
- **1611** https://doi.org/10.1525/elementa.2022.00025, 2023.

1612 **¶**

- 1613 Berntsen, T. K., Karlsdóttir, S., and Jaffe, D. A.: Influence of Asian emissions on the composition of air reaching the north
- 1614 western United States, Geophys. Res. Lett., 26, 2171–2174, https://doi.org/10.1029/1999GL900477, 1999.

1615

- 1616 Bowdalo, D. R., Evans, M. J., and Sofen, E. D.: Spectral analysis of atmospheric composition: application to surface ozone
- 1617 model-measurement comparisons, Atmos. Chem. Phys., 16, 8295-8308, https://doi.org/10.5194/acp-16-8295-2016, 2016.

1618

- 1619 Bloomer, B. J., Vinnikov, K. Y., and Dickerson, R. R.: Changes in seasonal and diurnal cycles of ozone and temperature in
- 1620 the eastern U.S., Atmospheric Environment, 44, 2543–2551, https://doi.org/10.1016/j.atmosenv.2010.04.031, 2010.

- 1622 Bowman, H., Turnock, S., Bauer, S. E., Tsigaridis, K., Deushi, M., Oshima, N., O'Connor, F. M., Horowitz, L., Wu, T.,
- 1623 Zhang, J., Kubistin, D., and Parrish, D. D.: Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal
- 1624 cycle throughout the northern midlatitude troposphere, Atmos. Chem. Phys., 22, 3507–3524,
- 1625 https://doi.org/10.5194/acp-22-3507-2022, 2022.
- 1626
- 1627

- 1628 Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.
- 1629 C. Jr., and Tager, I.: Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel
- 1630 on Population and Prevention Science of the American Heart Association, Circulation, 109, 2655–2671,
- 1631 https://doi.org/10.1161/01.CIR.0000128587.30041.C8, 2004.

- 1633 Burr, M. J. and Zhang, Y.: Source apportionment of fine particulate matter over the Eastern U.S. Part II: source
- 1634 apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations, Atmospheric
- 1635 Pollution Research, 2, 318–336, https://doi.org/10.5094/APR.2011.037, 2011.

1636

- 1637 Butler, T., Lupascu, A., and Nalam, A.: Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen
- 1638 oxides and reactive carbon in a global chemical transport model, Atmos. Chem. Phys., 20, 10707–10731,
- 1639 https://doi.org/10.5194/acp-20-10707-2020, 2020.

1640

- 1641 Butler, T., Lupascu, A., Coates, J., and Zhu, S.: TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for
- 1642 CESM 1.2.2, Geosci. Model Dev., 11, 2825–2840, https://doi.org/10.5194/gmd-11-2825-2018, 2018.

1643

- 1644 Butler, T., Lupascu, A., Coates, J., and Zhu, S.: TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for
- 1645 CESM 1.2.2, Geosci. Model Dev., 11, 2825-2840, https://doi.org/10.5194/gmd-11-2825-2018, 2018.

1646

- 1647 Calvert, J. G., Heywood, J. B., Sawyer, R. F., and Seinfeld, J. H.: Achieving Acceptable Air Quality: Some Reflections on
- 1648 Controlling Vehicle Emissions, Science, 261, 37–45, https://doi.org/10.1126/science.261.5117.37, 1993.
- 1649 Carslaw, D. C.: On the changing seasonal cycles and trends of ozone at Mace Head, Ireland, Atmos. Chem. Phys., 5,
- 1650 3441–3450, https://doi.org/10.5194/acp-5-3441-2005, 2005.

1651

- 1652 Chang, K.-L., Petropavlovskikh, I., Cooper, O. R., Schultz, M. G., and Wang, T.: Regional trend analysis of surface ozone
- 1653 observations from monitoring networks in eastern North America, Europe and East Asia, Elementa: Science of the
- 1654 Anthropocene, 5, 50, https://doi.org/10.1525/elementa.243, 2017.

1655

- 1656 Chang, K.-L., Cooper, O. R., Gaudel, A., Petropavlovskikh, I., Effertz, P., Morris, G., and McDonald, B. C.: Technical note:
- 1657 Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment, Atmos. Chem. Phys., 24,
- 1658 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, 2024.

- 1660 Cheesman, A. W., Brown, F., Artaxo, P., and others: Reduced productivity and carbon drawdown of tropical forests from
- 1661 ground-level ozone exposure, Nat. Geosci., 17, 1003–1007, https://doi.org/10.1038/s41561-024-01530-1, 2024.

- 1663 Chen, G., Blake, D. R., Heikes, B., Huey, G., Lueb, R., Ryerson, T. B., Thornton, D., and Williams, E.: An investigation of
- 1664 the chemistry of ship emission plumes during ITCT 2002, J. Geophys. Res., 110, D10S90,
- 1665 https://doi.org/10.1029/2004JD005236, 2005.

- 1667 Chen, T.-M., Kuschner, W. G., Gokhale, J., and Shofer, S.: Outdoor Air Pollution: Ozone Health Effects, The American
- 1668 Journal of the Medical Sciences, 333, 244–248, https://doi.org/10.1097/MAJ.0b013e31803b8e8c, 2007.

1669

- 1670 Christiansen, A., Mickley, L. J., Liu, J., Oman, L. D., and Hu, L.: Multidecadal increases in global tropospheric ozone
- 1671 derived from ozonesonde and surface site observations: can models reproduce ozone trends?, Atmos. Chem. Phys., 22,
- 1672 14751–14782, https://doi.org/10.5194/acp-22-14751-2022, 2022.

1673

- 1674 Clean Air Act (1963). United States Congress. Clean Air Act of 1963. Public Law 88-206, 77 Stat. 392. Enacted December
- 1675 17, 1963. Available at: U.S. EPA.

1676

- 1677 Clean Air Act Amendments (1990). United States Congress. Clean Air Act Amendments of 1990. Public Law 101-549, 104
- 1678 Stat. 2399. Enacted November 15, 1990. Available at: U.S. EPA.

1679

- 1680 Clifton, O. E., Fiore, A. M., Correa, G., Horowitz, L. W., and Naik, V.: Twenty-first century reversal of the surface ozone
- 1681 seasonal cycle over the northeastern United States, Geophys. Res. Lett., 41, 7343–7350,
- **1682** https://doi.org/10.1002/2014GL061378, 2014.

1683

- 1684 Cooper, O. R., Gao, R., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-term ozone trends at rural ozone monitoring sites
- 1685 across the United States, 1990–2010, J. Geophys. Res., 117, 2012JD018261, https://doi.org/10.1029/2012JD018261, 2012.

1686

- 1687 Cooper, O. R., Parrish, D. D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., Cammas, J. P., Oltmans, S. J., Johnson, B. J.,
- 1688 Tarasick, D., Leblanc, T., McDermid, I. S., Jaffe, D., Gao, R., Stith, J., Rverson, T., Aikin, K., Campos, T., Weinheimer, A.,
- 1689 and Avery, M. A.: Increasing springtime ozone mixing ratios in the free troposphere over western North America, Nature,
- 1690 463, 344–348, https://doi.org/10.1038/nature08708, 2010.

- 1692 Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R.,
- 1693 Lamarque, J.-F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., and Zbinden,
- 1694 R. M.: Global distribution and trends of tropospheric ozone: An observation-based review, Elementa: Science of the
- 1695 Anthropocene, 2, 000029, https://doi.org/10.12952/journal.elementa.000029, 2014.

- 1697 Cooper, O. R., Schultz, M. G., Schröder, S., Chang, K.-L., Gaudel, A., Benítez, G. C., Cuevas, E., Fröhlich, M., Galbally, I.
- 1698 E., Molloy, S., Kubistin, D., Lu, X., McClure-Begley, A., Nédélec, P., O'Brien, J., Oltmans, S. J., Petropavlovskikh, I., Ries,
- 1699 L., Senik, I., Sjöberg, K., Solberg, S., Spain, G. T., Spangl, W., Steinbacher, M., Tarasick, D., Thouret, V., and Xu, X.:
- 1700 Multi-decadal surface ozone trends at globally distributed remote locations, Elem Sci Anth, 8, 23,
- 1701 https://doi.org/10.1525/elementa.420, 2020.
- 1702 Council Directive 96/62/EC (Framework Directive on Ambient Air Quality Assessment and Management) European
- 1703 Parliament and Council. Council Directive 96/62/EC on Ambient Air Quality Assessment and Management. Official Journal
- 1704 of the European Communities, L 296, 21 November 1996, pp. 55-63. Available at: EUR-Lex.

- 1706 Crespo-Miguel, R., Ordóñez, C., García-Herrera, R., Schnell, J. L., and Turnock, S. T.: Large-scale ozone episodes in
- 1707 Europe: Decreasing sizes in the last decades but diverging changes in the future, Science of The Total Environment, 949,
- 1708 175071, https://doi.org/10.1016/j.scitotenv.2024.175071, 2024.¶

1709

- 1710 Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T.,
- 1711 Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S. J., Suchyta,
- 1712 H., Muntean, M., Solazzo, E., Banja, M., Schaaf, E., Pagani, F., Woo, J.-H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang,
- 1713 J., Niemi, D., Sassi, M., Ansari, T., and Foley, K.: The HTAP v3 emission mosaic: merging regional and global monthly
- 1714 emissions (2000–2018) to support air quality modelling and policies, Earth Syst. Sci. Data, 15, 2667–2694,
- 1715 https://doi.org/10.5194/essd-15-2667-2023, 2023.

1716

- 1717 Crutzen, P. J.: Tropospheric ozone: An overview, in: Isaksen, I. S. A. (Ed.), Tropospheric Ozone, NATO ASI Series, Vol.
- 1718 227, Springer, Dordrecht, https://doi.org/10.1007/978-94-009-2913-5 1, 1988.

1719

- 1720 Derwent, R. G., Utembe, S. R., Jenkin, M. E., and Shallcross, D. E.: Tropospheric ozone production regions and the
- 1721 intercontinental origins of surface ozone over Europe, Atmospheric Environment, 112, 216–224,
- 1722 https://doi.org/10.1016/j.atmosenv.2015.04.049, 2015.

1723

- 1724 Derwent, R. G. and Parrish, D. D.: Analysis and assessment of the observed long-term changes over three decades in
- 1725 ground-level ozone across north-west Europe from 1989 2018, Atmospheric Environment, 286, 119222,
- 1726 https://doi.org/10.1016/j.atmosenv.2022.119222, 2022.

- 1728 Derwent, R. G., Parrish, D. D., and Faloona, I. C.: Opinion: Establishing a science-into-policy process for tropospheric
- 1729 ozone assessment, Atmos. Chem. Phys., 23, 13613-13623, https://doi.org/10.5194/acp-23-13613-2023, 2023.

- 1730 Elshorbany, Y., Ziemke, J. R., Strode, S., Petetin, H., Miyazaki, K., De Smedt, I., Pickering, K., Seguel, R. J., Worden, H.,
- 1731 Emmerichs, T., and Taraborrelli, D.: Tropospheric ozone precursors; global and regional distributions, trends, and variability,
- 1732 Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, 2024.

- 1734 Devlin, R. B., McDonnell, W. F., Mann, R., Becker, S., House, D. E., Schreinemachers, D., and Koren, H. S.: Exposure of
- 1735 humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung, Am. J. Respir. Cell
- 1736 Mol. Biol., 4, 72–81, https://doi.org/10.1165/ajrcmb/4.1.72, 1991.

1737

- 1738 Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe. European Parliament and Council. Directive
- 1739 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union, L 152, 11 June
- 1740 2008, pp. 1-44. Available at: EUR-Lex.
- 1741 Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y., Yuan, R., and Miao, S.: Modeling diurnal
- 1742 variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and
- 1743 anthropogenic emission, Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, 2020.

1744

- 1745 Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M. J., Tilmes,
- 1746 S., Bardeen, C., et al.: The chemistry mechanism in the community earth system model version 2 (CESM2), Journal of
- 1747 Advances in Modeling Earth Systems, 12, e2019MS001 882, 2020.

1748

- 1749 Emmons, L., Hess, P., Lamarque, J.-F., and Pfister, G.: Tagged ozone mechanism for MOZART-4, CAM-chem and other
- 1750 chemical transport models, Geoscientific Model Development, 5, 1531–1542, 2012.

1751

1752 European Environment Agency.: Air quality in Europe: 2020 report., Publications Office, LU, 2020.

1753

- 1754 Felzer, B. S., Cronin, T., Reilly, J. M., Melillo, J. M., and Wang, X.: Impacts of ozone on trees and crops, Comptes Rendus.
- 1755 Géoscience, 339, 784–798, https://doi.org/10.1016/j.crte.2007.08.008, 2007.

1756

- 1757 Fiore, A. M., Jacob, D. J., Bey, I., Yantosca, R. M., Field, B. D., Fusco, A. C., and Wilkinson, J. G.: Background ozone over
- 1758 the United States in summer: Origin, trend, and contribution to pollution episodes, J. Geophys. Res.-Atmos., 107, ACH
- 1759 11-1-ACH 11-25, https://doi.org/10.1029/2001JD000982, 2002.

- 1761 Fiore, A. M., Dentener, F., Wild, O., Cuvelier, C., Schultz, M., Hess, P., Textor, C., Schulz, M., Doherty, R., Horowitz, L., et
- 1762 al.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, Journal of Geophysical
- 1763 Research: Atmospheres, 114, 2009

- 1765 Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S., Cooper, O. R., Pinto, J. P., Colette, A., Xu, X.,
- 1766 Simpson, D., Schultz, M. G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric Ozone
- 1767 Assessment Report: Present-day ozone distribution and trends relevant to human health, Elementa: Science of the
- 1768 Anthropocene, 6, 12, https://doi.org/10.1525/elementa.273, 2018.

- 1770 Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe, C., Schulz, M., Benedictow, A., Griesfeller, J. J.,
- 1771 JanssensMaenhout, G., Carmichael, G., et al.: Coordination and harmonization of the multi-scale, multi-model activities
- 1772 HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and model output formats,
- 1773 Atmospheric Chemistry and Physics, 17, 1543–1555, 2017

1774

- 1775 Gao, Y., Kou, W., Cheng, W., Guo, X., Qu, B., Wu, Y., et al.: Reducing long-standing surface ozone overestimation in Earth
- 1776 system modeling by high-resolution simulation and dry deposition improvement, J. Adv. Model. Earth Sy., 17,
- 1777 e2023MS004192, https://doi.org/10.1029/2023MS004192, 2025.

1778

- 1779 Garatachea, R., Pay, M. T., Achebak, H., Jorba, O., Bowdalo, D., Guevara, M., Petetin, H., Ballester, J., and Pérez
- 1780 García-Pando, C.: National and transboundary contributions to surface ozone concentration across European countries,
- 1781 Commun Earth Environ, 5, 588, https://doi.org/10.1038/s43247-024-01716-w, 2024.
- 1782 Goldberg, D. L., Anenberg, S. C., Lu, Z., Streets, D. G., Lamsal, L. N., E McDuffie, E., and Smith, S. J.: Urban NO_X
- 1783 emissions around the world declined faster than anticipated between 2005 and 2019, Environ. Res. Lett., 16, 115004,
- 1784 https://doi.org/10.1088/1748-9326/ac2c34, 2021.

1785

- 1786 Grewe, V., Tsati, E., and Hoor, P.: On the attribution of contributions of atmospheric trace gases to emissions in atmospheric
- 1787 model applications, Geosci. Model Dev., 3, 487–499, https://doi.org/10.5194/gmd-3-487-2010, 2010.

1788

- 1789 Grewe, V., Tsati, E., Mertens, M., Frömming, C., and Jöckel, P.: Contribution of emissions to concentrations: the TAGGING
- 1790 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52), Geosci. Model Dev., 10, 2615-2633,
- 1791 https://doi.org/10.5194/gmd-10-2615-2017, 2017.

1792

- 1793 Grulke, N. E. and Heath, R. L.: Ozone effects on plants in natural ecosystems, Plant Biol J, 22, 12-37,
- 1794 https://doi.org/10.1111/plb.12971, 2020.

- 1796 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene
- 1797 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210,
- 1798 https://doi.org/10.5194/acp-6-3181-2006, 2006.

- 1800 Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M., Kaminski, T., Krol, M., Michalak, A. M., and Patra, P.: Global
- 1801 inverse modeling of CH₄ sources and sinks: an overview of methods, Atmos. Chem. Phys., 17, 235–256,
- 1802 https://doi.org/10.5194/acp-17-235-2017, 2017.

1803

- 1804 Hu, F., Xie, P., Tian, X., Xu, J., Li, A., Lupaşcu, A., Butler, T., Hu, Z., Lv, Y., Zhang, Z., and Zheng, J.: Integrated analysis of
- 1805 the transport process and source attribution of an extreme ozone pollution event in Hefei at different vertical heights: A case
- 1806 of study, Science of The Total Environment, 906, 167237, https://doi.org/10.1016/j.scitotenv.2023.167237, 2024.

1807

- 1808 Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Muntean, M., Schaaf, E.,
- 1809 and Friedrich, R.: Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data
- 1810 set for 1970–2012, Atmos. Chem. Phys., 17, 7683–7701, https://doi.org/10.5194/acp-17-7683-2017, 2017.

1811

- 1812 Huang, Y., Partha, D. B., Harper, K., and Heyes, C.: Impacts of Global Solid Biofuel Stove Emissions on Ambient Air
- 1813 Quality and Human Health, GeoHealth, 5, e2020GH000362, https://doi.org/10.1029/2020GH000362, 2021.

1814

- 1815 Huszar, P., Cariolle, D., Paoli, R., Halenka, T., Belda, M., Schlager, H., Miksovsky, J., and Pisoft, P.: Modeling the regional
- 1816 impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume
- 1817 parameterization, Atmos. Chem. Phys., 10, 6645–6660, https://doi.org/10.5194/acp-10-6645-2010, 2010.

1818

- 1819 Jacob, D. J., Logan, J. A., and Murti, P. P.: Effect of rising Asian emissions on surface ozone in the United States, Geophys.
- 1820 Res. Lett., 26, 2175–2178, https://doi.org/10.1029/1999GL900450, 1999.

1821

1822 Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, 2nd edn., Cambridge University Press, Cambridge, UK, 2005.

1823

- 1824 Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., Simpson, W., Berntsen, T., Karlsdottir, S., and
- 1825 Blake, D.: Transport of Asian air pollution to North America, Geophys. Res. Lett., 26, 711-714,
- 1826 https://doi.org/10.1029/1999GL900100, 1999.

- 1828 Jaffe, D., Price, H., Parrish, D., Goldstein, A., and Harris, J.: Increasing background ozone during spring on the west coast of
- 1829 North America, Geophysical Research Letters, 30, 2003GL017024, https://doi.org/10.1029/2003GL017024, 2003.

- 1830 Jaffe, D. A., Cooper, O. R., Fiore, A. M., Henderson, B. H., Krol, M., Oltmans, S. J., Parrish, D. D., Prather, M. J., Prinn, R.
- 1831 G., Stohl, A., Van Dingenen, R., and Zhang, L.: Scientific assessment of background ozone over the U.S.: Implications for
- 1832 air quality management, Elem. Sci. Anth., 6, 56, https://doi.org/10.1525/elementa.309, 2018.

- 1834 Jonson, J. E., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem.
- 1835 Phys., 2006.

1836

- 1837 Kasibhatla, P., Levy II, H., Moxim, W. J., Pandis, S. N., Corbett, J. J., Peterson, M. C., Honrath, R. E., Frost, G. J., Knapp,
- 1838 K., Parrish, D. D., and Ryerson, T. B.: Do emissions from ships have a significant impact on concentrations of nitrogen
- 1839 oxides in the marine boundary layer?, Geophys. Res. Lett., 27, 2229–2232, https://doi.org/10.1029/2000GL011387, 2000.

1840

- 1841 Lamarque, J.-F., Emmons, L., Hess, P., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C., Holland, E. A., Lauritzen, P., Neu, J.,
- 1842 et al.: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model,
- 1843 Geoscientific Model Development, 5, 369–411, 2012.

1844

- 1845 Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land Model (CLM
- 1846 3.0), J. Geophys. Res., 112, 2006JG000168, https://doi.org/10.1029/2006JG000168, 2007.

1847

- 1848 Li, P., Yang, Y., Wang, H., Li, S., Li, K., Wang, P., Li, B., and Liao, H.: Source attribution of near-surface ozone trends in the
- 1849 United States during 1995–2019, Atmos. Chem. Phys., 23, 5403–5417, https://doi.org/10.5194/acp-23-5403-2023, 2023.

1850

- 1851 Lin, M., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O., Levy II, H., Johnson, B. J., Naik, V., Oltmans, S. J.,
- 1852 and Senff, C. J.: Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric
- 1853 intrusions, J. Geophys. Res., 117, D00V22, https://doi.org/10.1029/2012JD018151, 2012.

1854

- 1855 Lin, M., Horowitz, L. W., Cooper, O. R., Tarasick, D., Conley, S., Iraci, L. T., Johnson, B., Leblanc, T., Petropavlovskikh, I.,
- 1856 and Yates, E. L.: Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western
- 1857 North America: TROPOSPHERIC OZONE TRENDS IN WESTERN NA, Geophys. Res. Lett., 42, 8719-8728,
- 1858 https://doi.org/10.1002/2015GL065311, 2015.

1859

- 1860 Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G.: US surface ozone trends and extremes from 1980 to
- 1861 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate, Atmos. Chem. Phys., 17,
- 1862 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, 2017.

```
1864 Lippmann, M.: Health effects of tropospheric ozone, Environ. Sci. Technol., 25, 1954–1962,
```

1865 https://doi.org/10.1021/es00024a001, 1991.

1866

- 1867 Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hübler, G., and Murphy, P. C.: Ozone
- 1868 production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res., 92,
- 1869 4191-4207, https://doi.org/10.1029/JD092iD04p04191, 1987.

1870

- 1871 Logan, J. A.: Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res., 88, 10785-10807,
- 1872 https://doi.org/10.1029/JC088iC15p10785, 1983.

1873

- 1874 Logan, J. A.: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res., 90,
- 1875 10463-10482, https://doi.org/10.1029/JD090iD06p10463, 1985.

1876

- 1877 Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J.-P., Thouret, V., Claude, H., De Backer, H., Steinbacher, M.,
- 1878 Scheel, H. E., Stübi, R., Fröhlich, M., and Derwent, R.: Changes in ozone over Europe: analysis of ozone measurements
- 1879 from sondes, regular aircraft (MOZAIC) and alpine surface sites, J. Geophys. Res., 117, D09301,
- **1880** https://doi.org/10.1029/2011JD016952, 2012.

1881

- 1882 Lu, X., Zhang, L., Wang, X., Gao, M., Zhao, Y., Chen, D., Zhou, M., Zhang, O., Chang, K.-L., Cooper, O. R., Lin, M., Lin,
- 1883 J., Meng, J., Ni, R., Su, H., Virkkula, A., Yan, Y., and Zhang, Y.: Tropospheric ozone trends and attributions over East and
- 1884 Southeast Asia in 1995–2019: An integrated assessment using statistical methods, machine learning models, and multiple
- 1885 chemical transport models, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2023-741, in review, 2024.

1886

- 1887 Lupascu, A. and Butler, T.: Source attribution of European surface O₃ using a tagged O₃ mechanism, Atmospheric Chemistry
- 1888 and Physics, 19, 14 535–14 558, 2019.

1889

- 1890 Lupascu, A., Otero, N., Minkos, A., and Butler, T.: Attribution of surface ozone to NO_x and volatile organic compound
- 1891 sources during two different high ozone events, Atmospheric chemistry and physics, 22, 11 675–11 699, 2022

1892

- 1893 Lupaşcu, A., Otero, N., Minkos, A., and Butler, T.: Attribution of surface ozone to NO_x and volatile organic compound
- 1894 sources during two different high ozone events, Atmos. Chem. Phys., 22, 11675–11699,
- 1895 https://doi.org/10.5194/acp-22-11675-2022, 2022.

- 1897 Mathur, R., Kang, D., Napelenok, S. L., Xing, J., Hogrefe, C., Sarwar, G., Itahashi, S., and Henderson, B. H.: How Have
- 1898 Divergent Global Emission Trends Influenced Long-Range Transported Ozone to North America?, JGR Atmospheres, 127,
- 1899 e2022JD036926, https://doi.org/10.1029/2022JD036926, 2022a.

- 1901 Mathur, R., Kang, D., Napelenok, S. L., Xing, J., Hogrefe, C., Sarwar, G., Itahashi, S., and Henderson, B. H.: How Have
- 1902 Divergent Global Emission Trends Influenced Long-Range Transported Ozone to North America?, JGR Atmospheres, 127,
- 1903 e2022JD036926, https://doi.org/10.1029/2022JD036926, 2022b.

1904

- 1905 Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., and Sausen, R.: Attributing ozone and its precursors to land transport
- 1906 emissions in Europe and Germany, Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020, 2020.

1907

- 1908 Mertens, M., Kerkweg, A., Grewe, V., Jöckel, P., and Sausen, R.: Attributing ozone and its precursors to land transport
- 1909 emissions in Europe and Germany, Atmospheric Chemistry and Physics (ACP), pp. 7843–7873, 2020.

1910

- 1911 Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z.,
- 1912 Kobayashi, K., and Agrawal, M.: Ozone pollution will compromise efforts to increase global wheat production, Glob.
- **1913** Change Biol., 24, 3560–3574, https://doi.org/10.1111/gcb.14157, 2018.

1914

- 1915 Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model:
- 1916 evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.

1917

1918

1919

- 1920 Nalam, A., Lupascu, A., Ansari, T., and Butler, T.: Regional and sectoral contributions of NOx and reactive carbon emission
- 1921 sources to global trends in tropospheric ozone during the 2000-2018 period, Atmos. Chem. Phys., 25, 5287-5311,
- 1922 https://doi.org/10.5194/acp-25-5287-2025, 2025. Nalam, A., Lupascu, A., Ansari, T., and Butler, T.: Regional and sectoral
- 1923 contributions of NO_x and reactive carbon emission sources to global trends in tropospheric ozone during the 2000–2018
- 1924 period, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-432, 2024.¶

1925

- 1926 Oeschger, H., and Dütsch, H. U.: Ozone and the greenhouse effect, *Nature*, 339, 19, https://doi.org/10.1038/339019a0, 1989.
- 1927 Parrish, D. D. and Ennis, C. A.: Estimating background contributions and US anthropogenic enhancements to maximum
- 1928 ozone concentrations in the northern US, Atmos. Chem. Phys., 19, 12587–12605,
- 1929 https://doi.org/10.5194/acp-19-12587-2019, 2019.

- 1931 Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.
- 1932 -E., Steinbacher, M., and Chan, E.: Lower tropospheric ozone at northern midlatitudes; Changing seasonal cycle,
- 1933 Geophysical Research Letters, 40, 1631–1636, https://doi.org/10.1002/grl.50303, 2013.

- 1935 Parrish, D. D., Lamarque, J.-F., Naik, V., Horowitz, L., Shindell, D. T., Staehelin, J., Derwent, R., Cooper, O. R., and
- 1936 Tanimoto, H.: Seasonal cycles of O3 in the marine boundary layer: Observation and model simulation comparisons, J.
- 1937 Geophys. Res.-Atmos., 121, 538-557, https://doi.org/10.1002/2015JD024101, 2016.

1938

- 1939 Parrish, D. D., Derwent, R. G., Steinbrecht, W., Stübi, R., Van Malderen, R., Steinbacher, M., and others: Zonal similarity of
- 1940 long-term changes and seasonal cycles of baseline ozone at northern mid-latitudes, J. Geophys. Res.: Atmos., 125,
- 1941 e2019JD031908, https://doi.org/10.1029/2019JD031908, 2020.

1942

- 1943 Parrish, D. D., Faloona, I. C., and Derwent, R. G.: Observational-based assessment of contributions to maximum ozone
- 1944 concentrations in the western United States, Journal of the Air & Waste Management Association, 72, 434-454,
- 1945 https://doi.org/10.1080/10962247.2022.2050962, 2022.

1946

- 1947 Parrish, D. D., Faloona, I. C., and Derwent, R. G.: Maximum ozone concentrations in the southwestern US and Texas:
- 1948 implications of the growing predominance of the background contribution, Atmos. Chem. Phys., 25, 263-289,
- 1949 https://doi.org/10.5194/acp-25-263-2025, 2025.

1950

- 1951 Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res.,
- 1952 97, 9919–9933, doi:10.1029/92JD00719, 1992.

1953

- 1954 Price, C., Penner, J., and Prather, M.: NO_x from lightning 1, Global distribution based on lightning physics, J. Geophys. Res.,
- **1955** 102, 5929–5941, 1997

1956

- 1957 Real, E., Law, K. S., Weinzierl, B., Fiebig, M., Petzold, A., Wild, O., Methyen, J., Arnold, S., Stohl, A., Huntrieser, H.,
- 1958 Roiger, A., Schlager, H., Stewart, D., Avery, M., Sachse, G., Browell, E., Ferrare, R., and Blake, D.: Processes influencing
- 1959 ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic, J. Geophys. Res., 112,
- 1960 2006JD007576, https://doi.org/10.1029/2006JD007576, 2007.

- 1962 Reidmiller, D. R., Fiore, A. M., Jaffe, D. A., Bergmann, D., Cuvelier, C., Dentener, F. J., Duncan, B. N., Folberth, G., Gauss,
- 1963 M., Gong, S., Hess, P., Jonson, J. E., Keating, T., Lupu, A., Marmer, E., Park, R., Schultz, M. G., Shindell, D. T., Szopa, S.,

- 1964 Vivanco, M. G., Wild, O., and Zuber, A.: The influence of foreign vs. North American emissions on surface ozone in the US,
- 1965 Atmos. Chem. Phys., 2009.

- 1967 Rieger, V. S., Mertens, M., and Grewe, V.: An advanced method of contributing emissions to short-lived chemical species
- 1968 (OH and HO<sub>2</sub>): the TAGGING 1.1 submodel based on the Modular Earth Submodel System
- 1969 (MESSy 2.53), Geosci. Model Dev., 11, 2049–2066, https://doi.org/10.5194/gmd-11-2049-2018, 2018.

1970

- 1971 Romero-Alvarez, J., Lupaşcu, A., Lowe, D., Badia, A., Archer-Nicholls, S., Dorling, S., Reeves, C. E., and Butler, T.:
- 1972 Sources of surface O₃ in the UK: tagging O₃ within WRF-Chem, Atmos. Chem. Phys., 22, 13797–13815,
- 1973 https://doi.org/10.5194/acp-22-13797-2022, 2022.

1974

- 1975 Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E.,
- 1976 Tanimoto, H., Elshorbany, Y., Naja, M., et al.: Tropospheric Ozone Assessment Report: Database and metrics data of global
- 1977 surface ozone observations, Elem Sci Anth, 5, 58, 2017.

1978

- 1979 Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E.,
- 1980 Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke,
- 1981 A.-G., Hong, Y.-D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang,
- 1982 M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P.,
- 1983 Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulló, E., Cupeiro, M., Degorska, A., Ding,
- 1984 A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D.,
- 1985 Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T.,
- 1986 Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M.,
- 1987 Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P.,
- 1988 Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan,
- 1989 E., Torre, P., Trickl, T., Weili, L., Weller, R., Xiaobin, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment
- 1990 Report: Database and metrics data of global surface ozone observations, Elementa: Science of the Anthropocene, 5, 58,
- 1991 https://doi.org/10.1525/elementa.244, 2017.

1992

- 1993 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd edn.,
- 1994 Wiley, Hoboken, NJ, USA, 2016.

- 1996 Seltzer, K. M., Shindell, D. T., Kasibhatla, P., and Malley, C. S.: Magnitude, trends, and impacts of ambient long-term ozone
- 1997 exposure in the United States from 2000 to 2015, Atmos. Chem. Phys., 20, 1757–1775,
- 1998 https://doi.org/10.5194/acp-20-1757-2020, 2020.

2000 ¶

- 2001 Shaw, S. and Van Heyst, B.: Nitrogen Oxide (NO_X) emissions as an indicator for sustainability, Environmental and
- 2002 Sustainability Indicators, 15, 100188, https://doi.org/10.1016/j.indic.2022.100188, 2022.

2003

- 2004 Sicard, P.: Ground-level ozone over time: An observation-based global overview, Current Opinion in Environmental Science
- 2005 & Health, 19, 100226, https://doi.org/10.1016/j.coesh.2020.100226, 2021.

2006

- 2007 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone Trends Across the United States over a Period of Decreasing
- 2008 NO_x and VOC Emissions, Environ. Sci. Technol., 49, 186–195, https://doi.org/10.1021/es504514z, 2015.

2009

- 2010 Simon, H., Hogrefe, C., Whitehill, A., Foley, K. M., Liljegren, J., Possiel, N., Wells, B., Henderson, B. H., Valin, L. C.,
- 2011 Tonnesen, G., Appel, K. W., and Koplitz, S.: Revisiting day-of-week ozone patterns in an era of evolving US air quality,
- 2012 Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024, 2024.

2013

- 2014 Sindelarova, K., Markova, J., Simpson, D., Huszar, P., Karlicky, J., Darras, S., Granier, C.: Copernicus Atmosphere
- 2015 Monitoring Service Global Biogenic VOC emissions version 3.0 (CAMS-GLOB-BIO v3.0), ECCAD,
- 2016 https://doi.org/10.24380/xs64-gj42, 2021.

2017

- 2018 Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects
- 2019 on the land-carbon sink, Nature, 448, 791–794, https://doi.org/10.1038/nature06059, 2007.

2020

- 2021 Solberg, S., Hov, Ø., Søvde, A., Isaksen, I. S. A., Coddeville, P., De Backer, H., Forster, C., Orsolini, Y., and Uhse, K.:
- 2022 European surface ozone in the extreme summer 2003, J. Geophys. Res., 113, 2007JD009098,
- 2023 https://doi.org/10.1029/2007JD009098, 2008.

- 2025 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., Van Noije, T. P. C., Wild, O., Zeng, G., Amann, M.,
- 2026 Atherton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M.,
- 2027 Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C.,
- 2028 Lamarque, J.-F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J.
- 2029 M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.: Multimodel ensemble

- 2030 simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, 2005JD006338,
- 2031 https://doi.org/10.1029/2005JD006338, 2006.

- 2033 Strode, S. A., Rodriguez, J. M., Logan, J. A., Cooper, O. R., Witte, J. C., Lamsal, L. N., Damon, M., Van Aartsen, B.,
- 2034 Steenrod, S. D., and Strahan, S. E.: Trends and variability in surface ozone over the United States, JGR Atmospheres, 120,
- 2035 9020-9042, https://doi.org/10.1002/2014JD022784, 2015.

2036

- 2037 Struzewska, J. and Kaminski, J. W.: Formation and transport of photooxidants over Europe during the July 2006 heat wave –
- 2038 observations and GEM-AQ model simulations, Atmos. Chem. Phys., 8, 721-736, https://doi.org/10.5194/acp-8-721-2008,
- 2039 2008.

2040

- 2041 Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi, S., Gallardo, L., Gidden, M., Kirtman, B.,
- 2042 Krishnan, R., Lecocq, F., Mbow, C., Myhre, G., Pörtner, H.-O., Riahi, K., Rogelj, J., Sillmann, J., and Zanis, P.: Short-Lived
- 2043 Climate Forcers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
- 2044 Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
- 2045 Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
- 2046 Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press,
- 2047 Cambridge, United Kingdom and New York, NY, USA, pp. 817–922, https://doi.org/10.1017/9781009157896.008, 2021.

2048

- 2049 Tilmes, S., Lamarque, J.-F., Emmons, L., Kinnison, D., Ma, P.-L., Liu, X., Ghan, S., Bardeen, C., Arnold, S., Deeter, M., et
- 2050 al.: Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1. 2),
- 2051 Geoscientific Model Development, 8, 1395–1426, 2015

2052

2053 TOAR Gridding Tool. https://gitlab.jsc.fz-juelich.de/esde/toar-public/toargridding; Last access 22nd October 2024.

2054

- 2055 TOAR analysis. Selke, Niklas; Schröder, Sabine; Schultz, Martin. TOAR Analysis Service. FZ-Juelich.
- 2056 https://toar-data.fz-juelich.de/api/v2/analysis/, 2023

2057

- 2058 TOAR-II. Schröder, Sabine; Schultz, Martin G.; Selke, Niklas; Sun, Jianing; Ahring, Jessica; Mozaffari, Amirpasha;
- 2059 Romberg, Mathilde; Epp, Eleonora; Lensing, Max; Apweiler, Sander; Leufen, Lukas H.; Betancourt, Clara; Hagemeier,
- 2060 Björn; Rajveer, Saini. TOAR Data Infrastructure. FZ-Juelich B2SHARE.
- 2061 https://doi.org/10.34730/4D9A287DEC0B42F1AA6D244DE8F19EB3, 2021

- 2063 UNEP and CCAC: Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions, United Nations
- 2064 Environment Programme and Climate and Clean Air Coalition, Nairobi, Kenya, 2021.

- 2066 U.S. EPA: Preparation of Emissions Inventories for the Version 7.1 2016 Hemispheric Emissions Modeling Platform, U.S.
- 2067 Environmental Protection Agency, available at:
- 2068 https://www.epa.gov/sites/default/files/2019-12/documents/2016fe hemispheric tsd.pdf, last access: [27 November 2024],
- 2069 November 2019.

2070

- 2071 Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R., Jin, Y. v.,
- 2072 and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat
- 2073 fires (1997–2009), Atmospheric chemistry and physics, 10, 11 707–11 735, 2010.

2074

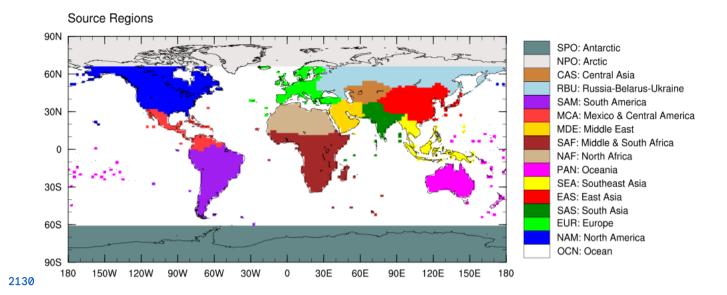
- 2075 Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and Cofala, J.: The global impact of ozone on
- 2076 agricultural crop yields under current and future air quality legislation, Atmospheric Environment, 43, 604-618,
- 2077 https://doi.org/10.1016/j.atmosenv.2008.10.033, 2009.

2078

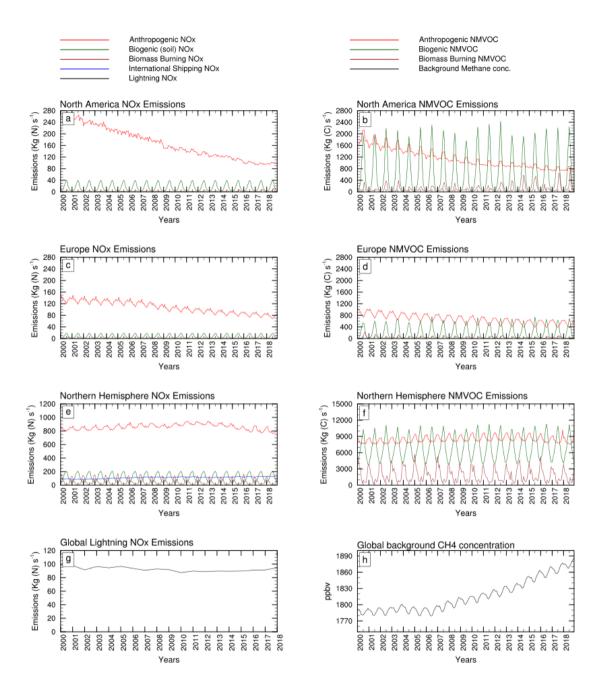
- 2079 Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M., Fernández, J., García-Díez, M., Goergen, K., Güttler,
- 2080 I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S., Mayer, S., Van Meijgaard, E., Nikulin, G., Patarčić,
- 2081 M., Scinocca, J., Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer, V., and Yiou, P.: The
- 2082 simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project, Clim
- 2083 Dyn, 41, 2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.

2084

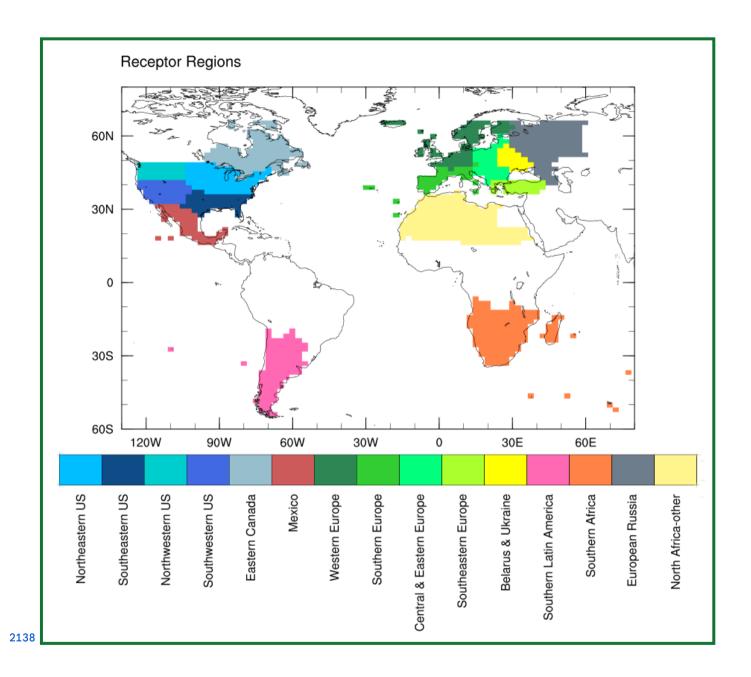
- 2085 Wang, Y., and Jacob, D. J.: Anthropogenic forcing on tropospheric ozone and OH since preindustrial times, J. Geophys. Res.:
- 2086 Atmos., 103, 31123–31135, https://doi.org/10.1029/98JD02225, 1998.

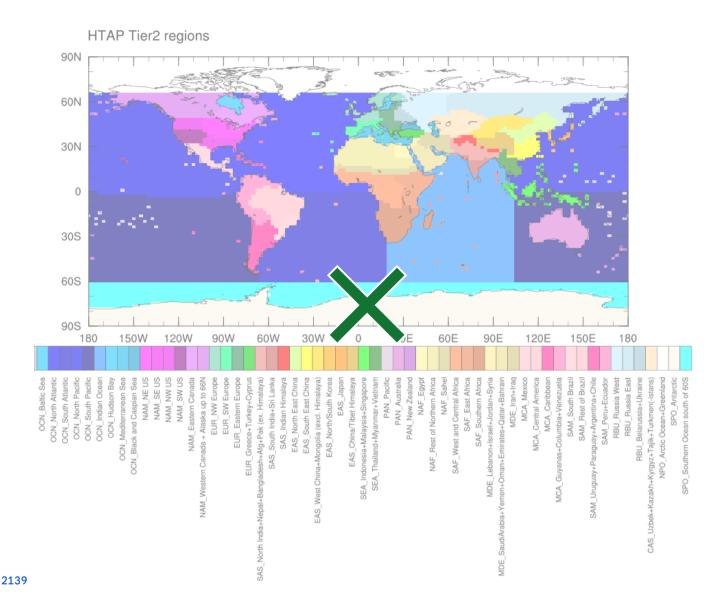

2087

- 2088 Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J., Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie,
- 2089 I. A., Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J., and Zuber, A.: Modelling
- 2090 future changes in surface ozone: a parameterized approach, Atmos. Chem. Phys., 12, 2037–2054,
- 2091 https://doi.org/10.5194/acp-12-2037-2012, 2012.

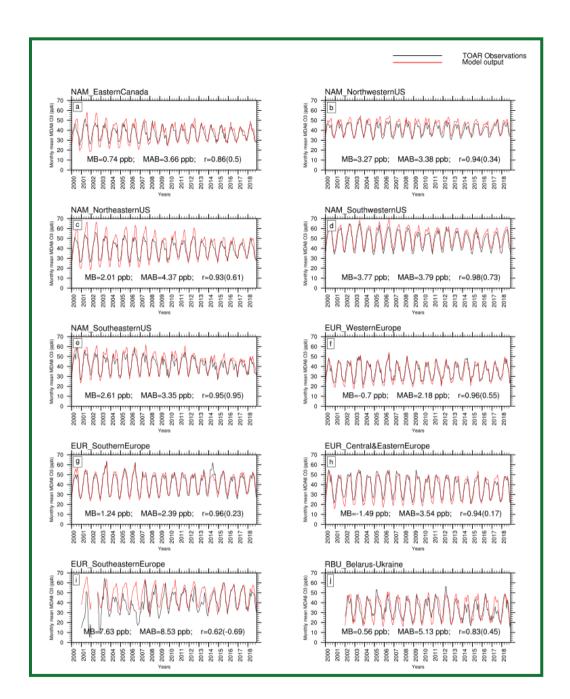

2092

- 2093 Wolff, G. T., Dunker, A. M., Rao, S. T., Porter, P. S., and Zurbenko, I. G.: Ozone Air Quality over North America: Part I—A
- 2094 Review of Reported Trends, Journal of the Air & Waste Management Association, 51, 273-282,
- 2095 https://doi.org/10.1080/10473289.2001.10464270, 2001.

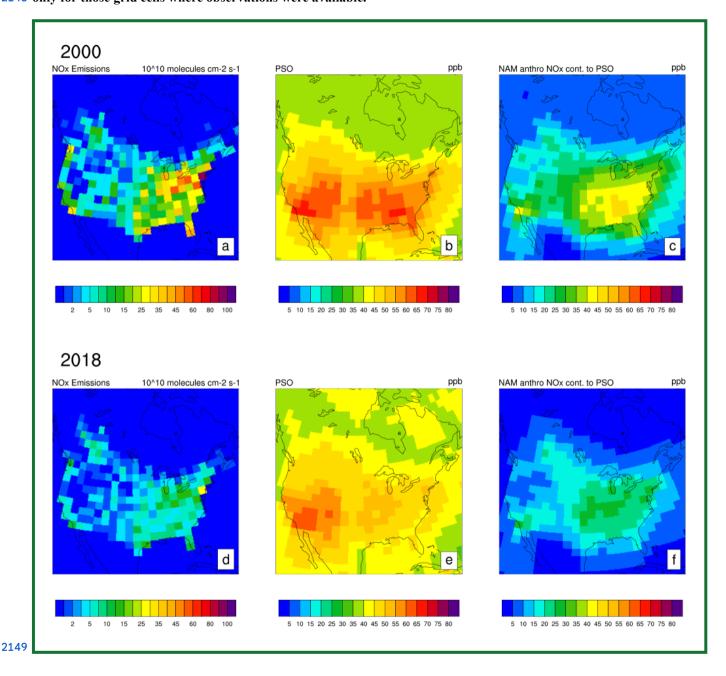

- 2097 World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen
- 2098 Dioxide, Sulfur Dioxide, and Carbon MoNOxide. Geneva: World Health Organization. Available at: WHO IRIS Repository.
- 2099 License: CC BY-NC-SA 3.0 IGO, 2021
- 2100
- 2101 Yan, Y., Pozzer, A., Ojha, N., Lin, J., and Lelieveld, J.: Analysis of European ozone trends in the period 1995–2014, Atmos.
- 2102 Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018, 2018.
- 2103
- 2104 Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A.,
- 2105 Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi,
- 2106 G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T.,
- 2107 Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections
- 2108 of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos.
- 2109 Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
- 2110
- 2111 Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu, J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L.,
- 2112 Tilmes, S., Wild, O., Zhang, L., Ziemke, J., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C., Hegglin, M. I., Hu, L., Im, U.,
- 2113 Kumar, R., Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and Zeng,
- 2114 G.: Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone
- 2115 distributions, variability, and trends, Elementa: Science of the Anthropocene, 6, 10, https://doi.org/10.1525/elementa.265,
- **2116** 2018.
- 2117
- 2118 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng,
- 2119 Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions,
- 2120 Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129



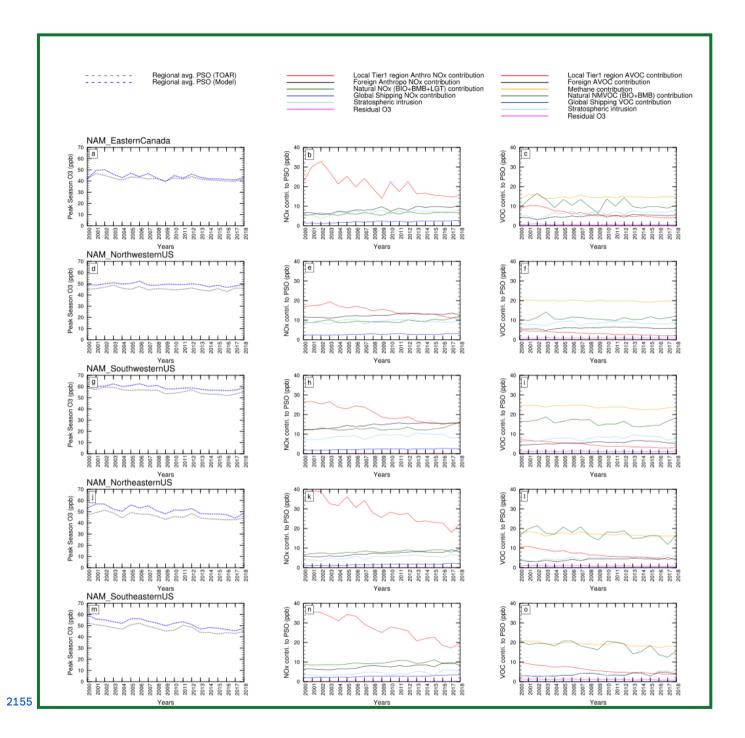
2131 Figure 1: HTAP Tier 1 regions which form the basis for source regions for NO_X and VOC tagging. Oceanic tagged 2132 regions are shown in Figure S12. More details on tagged regions are provided in Table 1.



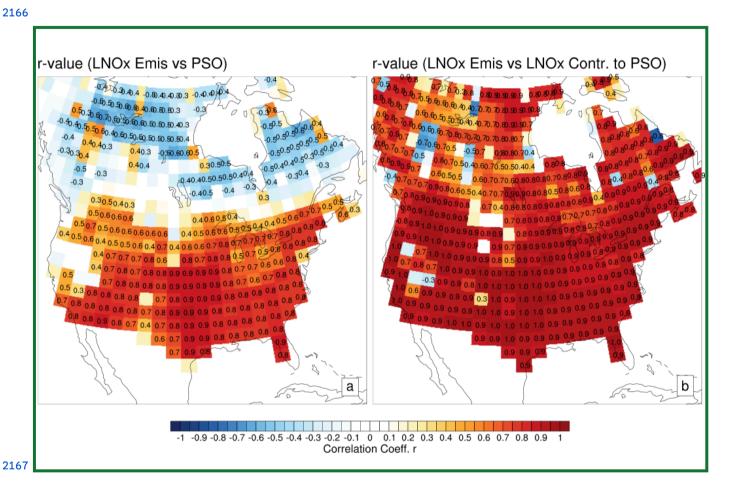
2135 Figure 2: Time-series of NO_{X^-} (left panels) and VOC-emissions (right panels) for North America (a, b), and Europe (c, d) source 2136 regions along with Northern Hemispheric totals (e, f) and global totals of lightning NO_X and background CH_4 concentrations over 2137 the study period.



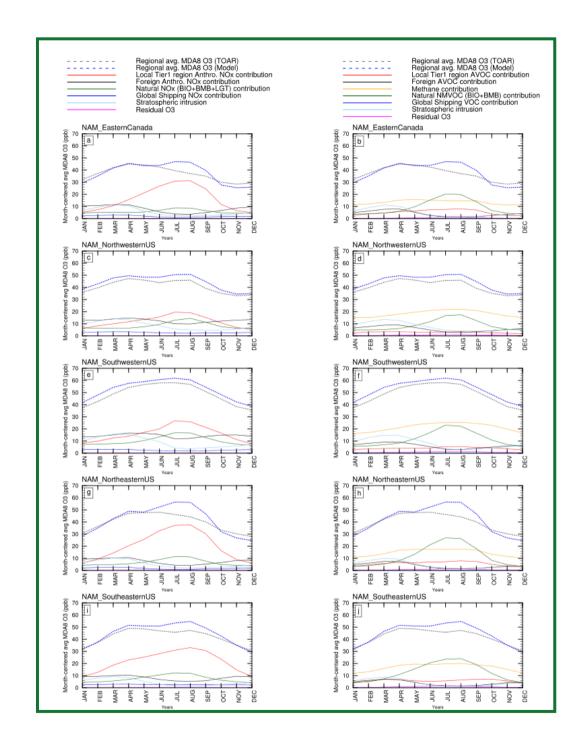
2140 Figure 3: RHTAP Tier 2 receptor regions considered for model evaluation or analysis. Note that many regions were sparsely 2141 sampled due to lack of a wide rural observational network within these regions.

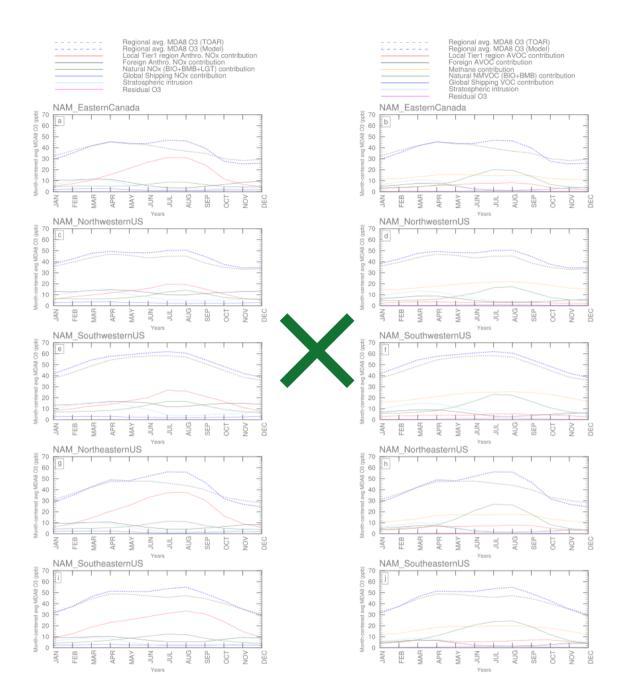



2145 Figure 4: Time series of observed versus simulated monthly mean MDA8 O₃ along with mean bias, mean absolute 2146 bias, and correlation coefficients for various receptor regions. Correlation coefficients for annual averaged data are 2147 mentioned in brackets. Only rural stations data were utilized from the TOAR database and model output was fetched 2148 only for those grid cells where observations were available.

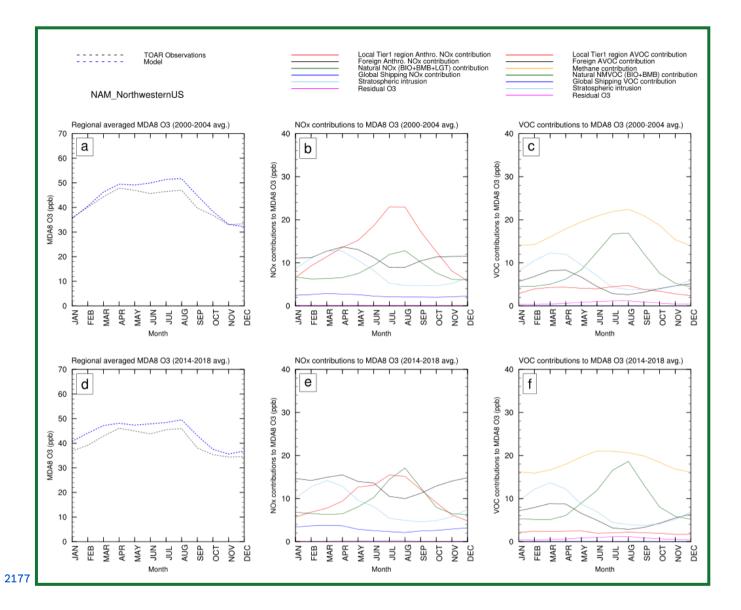

2150 Figure 5: Spatial distribution of local anthropogenic NOx emissions during peak season (a, d), PSO (b, e), and local 2151 anthropogenic NOx contribution to PSO (c, f) for North America during the initial (2000) and final year (2018). Here,

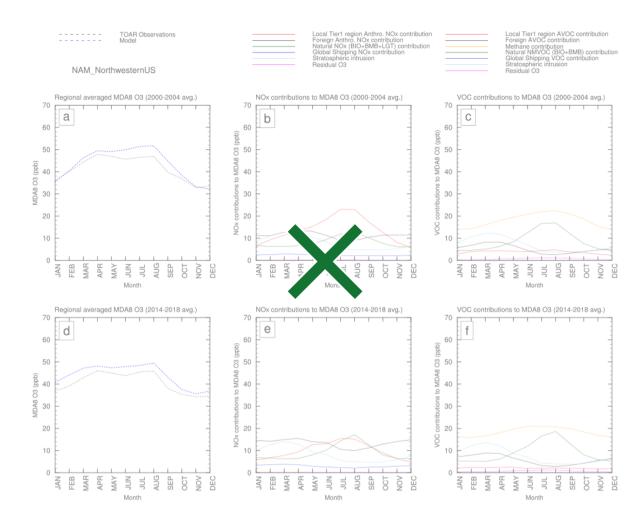
2152 emissions for each grid cell were calculated by averaging over a 6-month time window that matches the PSO window 2153 over the grid cell.

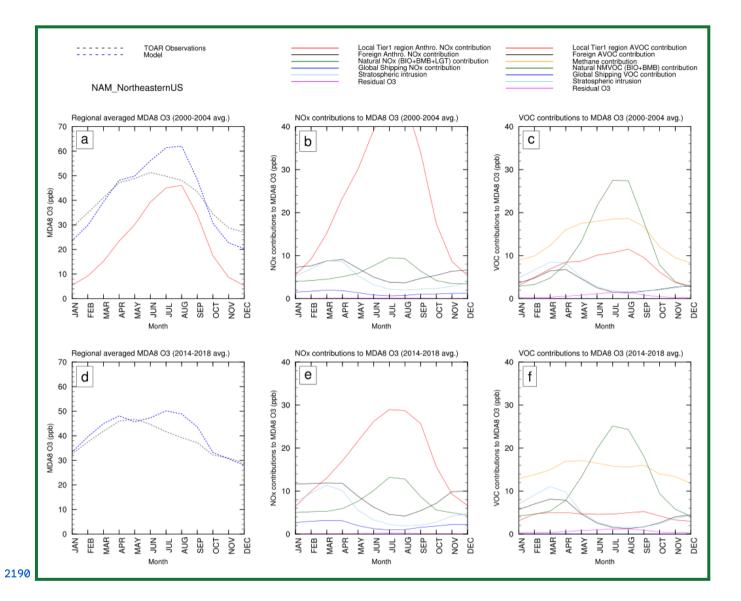


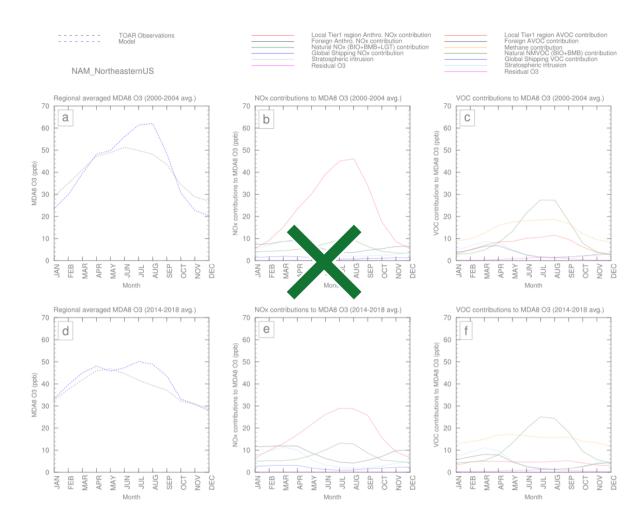


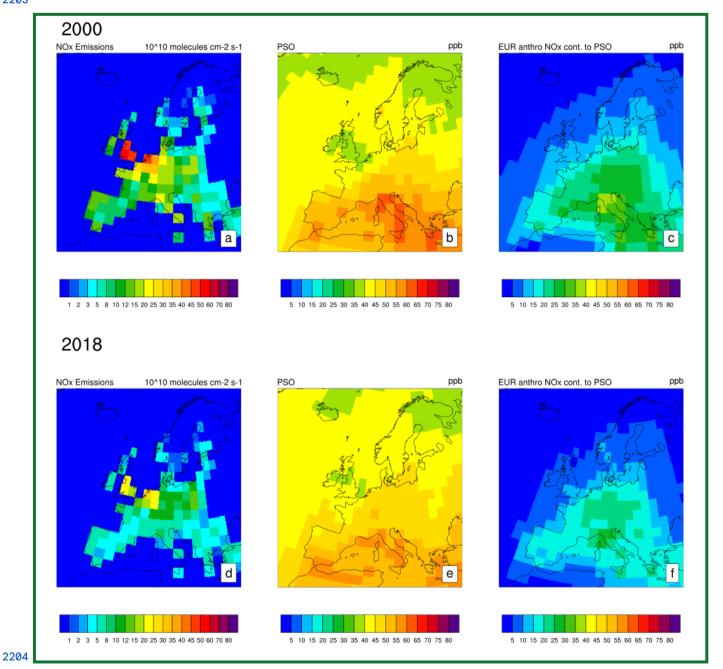
2157 Figure 65: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in North America for 2158 2000-2018 (left panels) and its source contributions in terms of NO_X sources (middle panels) and VOC sources (right 2159 panels). Model output was sampled from TOAR-valid grid cells only.



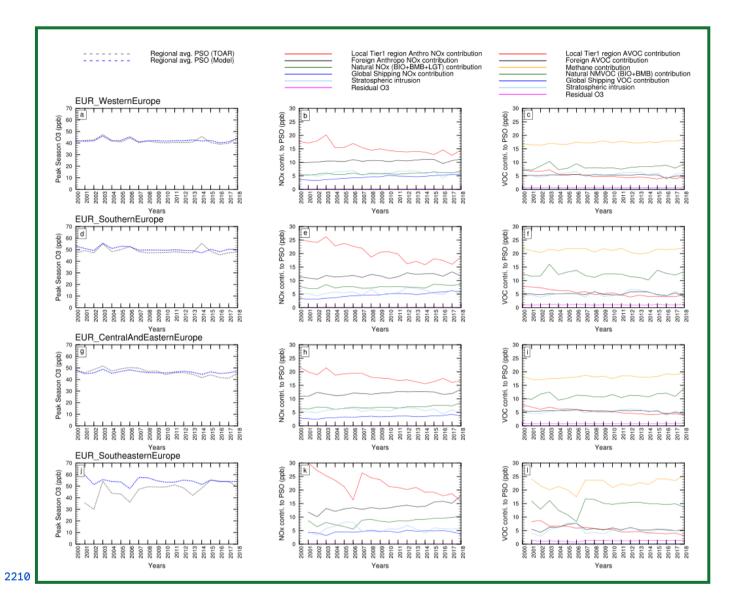

2168 Figure 7: A spatial map showing correlation coefficient (r) between local (North American) anthropogenic NOx 2169 versus PSO (a) and local anthropogenic NOx versus local anthropogenic NOx contribution to PSO (b) over the 19 2170 years for North America. For each year, and each gridcell, only peak season NOx emissions were used.

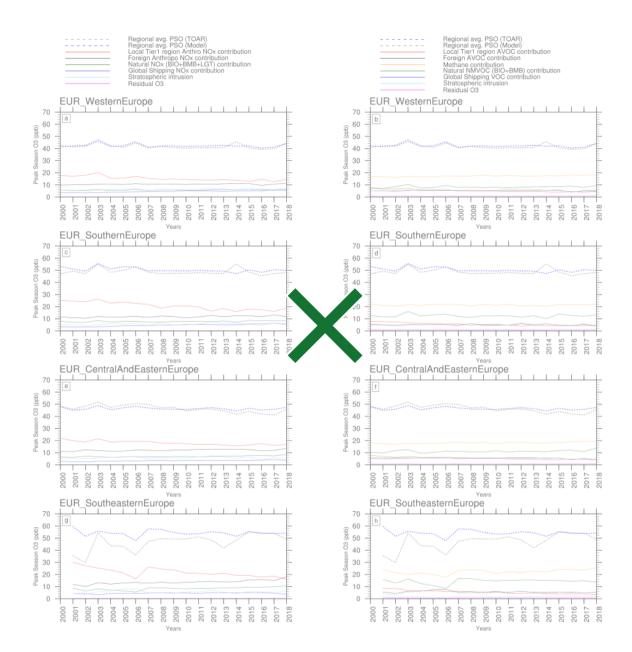


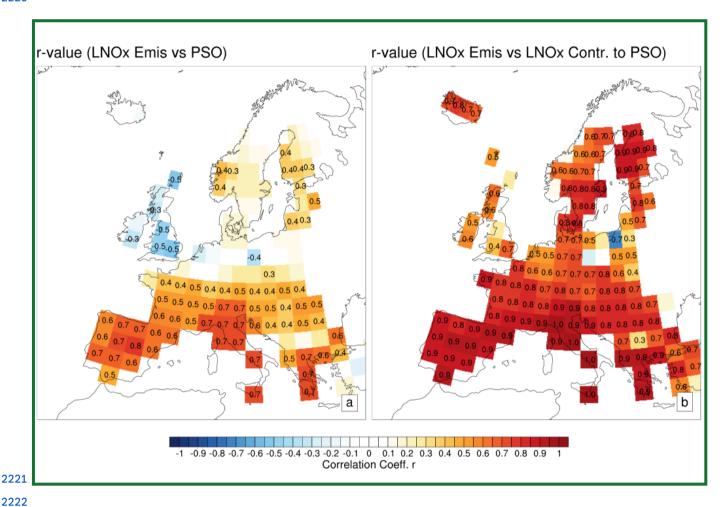

2173 Figure 86: Month-centered average MDA8 O_3 over the 2000-2018 period for various receptor regions in North America and its 2174 source contributions in terms of NO_X sources (left panels) and VOC sources (right panels). Model output was sampled from 2175 TOAR-valid grid cells only.



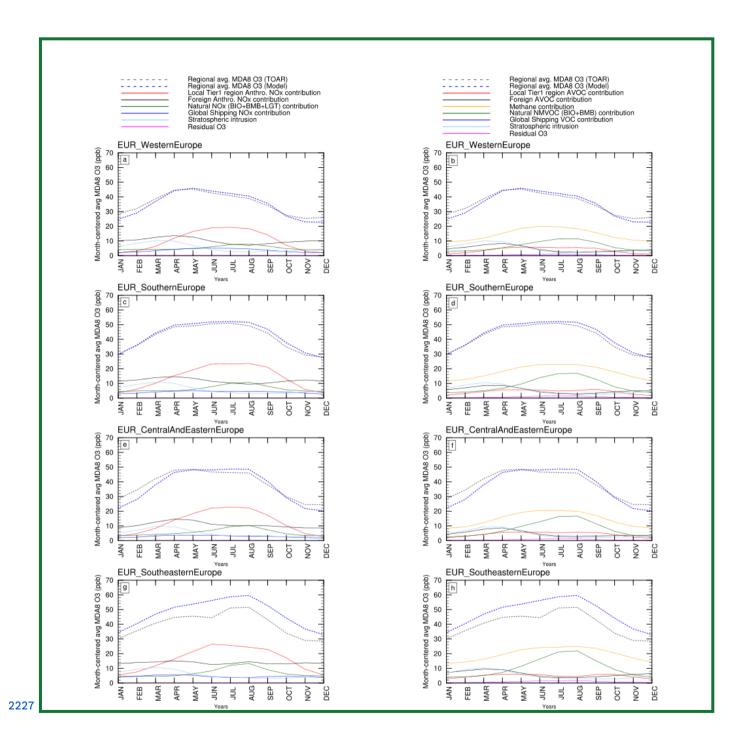
2179 Figure 97: 5-year average MDA8 O_3 seasonal cycles for NW USNorthwestern US for 2000-2004 (a) and 2014-2018 (b) along with 2180 their NO_X (b,e) and VOC contributions (c,f).

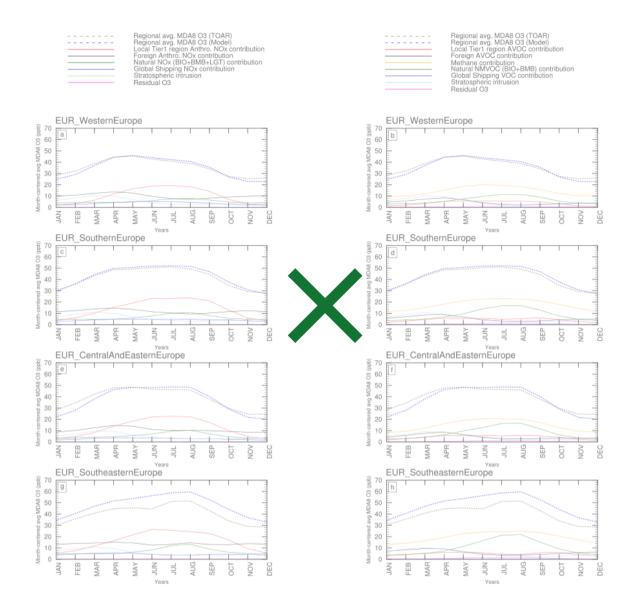



2192 Figure 108: 5-year average MDA8 O_3 seasonal cycles for NE USNortheastern US for 2000-2004 (a) and 2014-2018 (b) 2193 along with their NO_X (b,e) and VOC contributions (c,f).

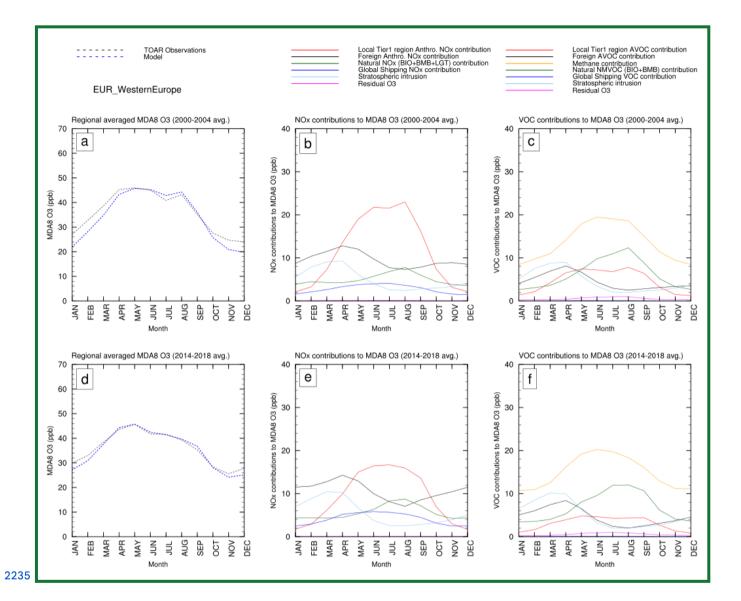

2205 Figure 11: Spatial distribution of local anthropogenic NOx emissions during peak season (a, d), PSO (b, e), and local 2206 anthropogenic NOx contribution to PSO (c, f) for Europe during the initial (2000) and final year (2018). Here, 2207 emissions for each grid cell were calculated by averaging over a 6-month time window that matches the PSO window 2208 over the grid cell.

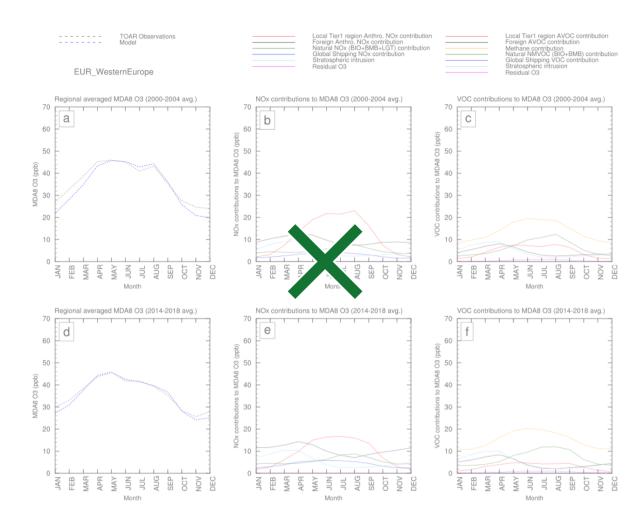
2209 ¶

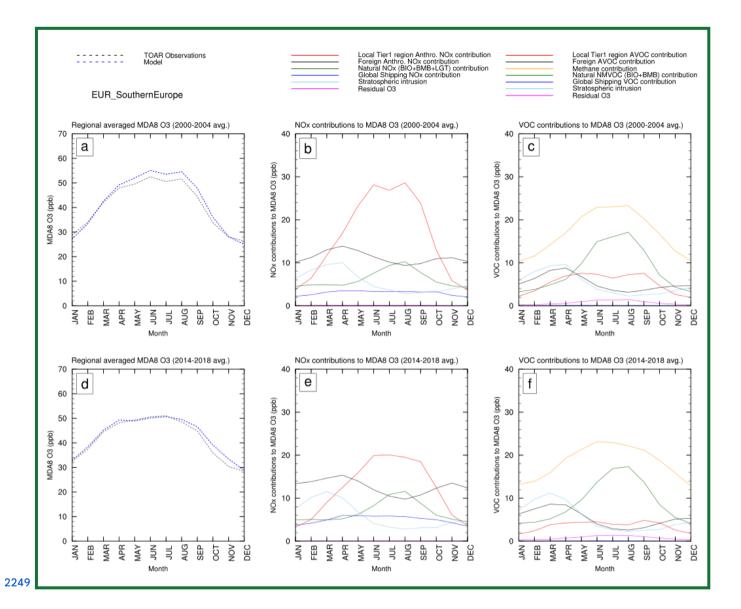


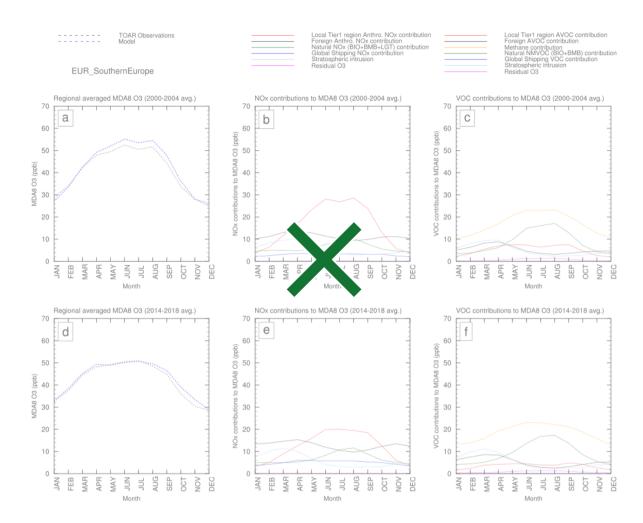


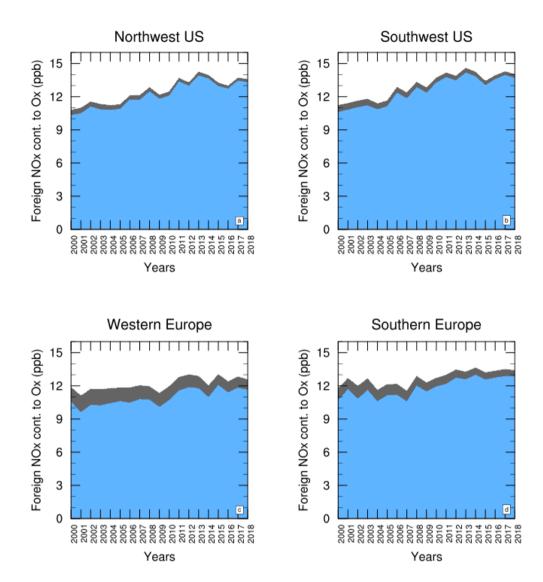
2212 Figure 129: Time-series of observed and model-derived Peak Season Ozone for various receptor regions in Europe for 2000-2018 2213 (left panels) and its source contributions in terms of NO_X sources (middleleft panels) and VOC sources (right panels). Model 2214 output was sampled from TOAR-valid grid cells only.




2223 Figure 13: A spatial map showing correlation coefficient (r) between local anthropogenic NOx versus PSO (a) and 2224 local anthropogenic NOx versus local anthropogenic NOx contribution to PSO (b) over the 19 years for Europe. For 2225 each year, and each gridcell, only peak season NOx emissions were used per grid cell.




2229 Figure 140: Month-centered average MDA8 O_3 over the 2000-2018 period for various receptor regions in Europe and its source 2230 contributions in terms of NO_X sources (left panels) and VOC sources (right panels). Model output was sampled from TOAR-valid 2231 grid cells only.



2237 Figure 154: 5-year average MDA8 O_3 seasonal cycles for Western Europe for 2000-2004 (a) and 2014-2018 (b) along with their 2238 NO_X (b,e) and VOC contributions (c,f).

2251 Figure 162: 5-year average MDA8 O_3 seasonal cycles for Southern Europe for 2000-2004 (a) and 2014-2018 (b) along with their 2252 NO_X (b,e) and VOC contributions (c,f).

2255 Figure 17: Time series of Foreign OX (O3+NO2) contributions to wintertime and springtime (Jan-Apr) mean ozone 2256 in North American and European receptor regions. The blue shaded area denotes O3 due to foreign anthropogenic 2257 NOx and the grey shaded area denotes NO2 originating from the titration of O3 that is attributed to foreign 2258 anthropogenic NOx.

2267 Table 1: Various emission tags for NO_X - and VOC-tagged simulations. The geographic definition of the land-based tags 2268 corresponds to the HTAP tier 1 regions as shown in Figure 1. For NO_X -tagging, "Rest of the World" corresponds to the tier 1 2269 regions of South America, Oceania, and Middle & Southern Africa combined. For VOC-tagging, the regions: Arctic, Central Asia, 2270 Mexico & Central America, North Africa, and Southeast Asia were also combined into the "Rest of the World". The regional 2271 oceanic tags are only applicable for NO_X -tagging and their geographic definitions are shown in Figure S12. For VOC-tagging we 2272 use a single oceanic tag representing NMVOCs from shipping and natural DMS emissions. Lightning tag is only applicable for 2273 NO_X -tagging.

Regional land-based Tags	Regional oceanic tags	Global sector/process-based tags		
Central Asia	Arctic	Aircraft		
East Asia	Eastern North Atlantic	Biogenic		
Europe	North Atlantic (remaining)	Biomass Burning		
Mexico & Central America	North American East-Coastal zone	Lightning		
Middle East	North American West-Coastal zone	Stratosphere		
North Africa	North Pacific			
North America	Baltic and North Seas			
Russia-Belarus-Ukraine	Hudson Bay			
South Asia	Indian Ocean			
Southeast Asia	Mediterranean, Black, and Caspian Seas			
Rest of the World	Southern Hemisphere Oceans			

2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314

Region	TOAR	Model	Local Ant. NO _X	Foreign Ant. NO _X	Natura 1 NO _X	Ship NO _X	Local AVOC	Foreig n AVOC	Metha ne	Natura I VOC	Stratos phere
E Canada	-0.19	-0.28	-0.78	0.22	0.06	0.08	-0.33	0.10	0.00	-0.17	0.14
	(0.01)	(0.01)	(<0.01)	(<0.01)	(0.01)	(<0.01)	(<0.01)	(<0.01)	(0.98)	(0.10)	(<0.01)
	[-0.32,	[-0.50,	[-1.08,	[0.16,	[0.02,	[0.06,	[-0.41,	[0.05,	[-0.06,	[-0.39,	[0.06,
	-0.06]	-0.07]	-0.48]	0.28]	0.11]	0.10]	-0.26]	0.14]	0.06]	0.04]	0.22]
NW US	-0.09	-0.11	-0.39	0.12	0.09	0.03	-0.15	0.03	-0.03	0.00	0.03
	(0.11)	(0.03)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(0.07)	(0.03)	(0.95)	(0.31)
	[-0.20,	[-0.21,	[-0.46,	[0.09,	[0.04,	[0.02,	[-0.16,	[0.00,	[-0.05,	[-0.09,	[-0.03,
	0.02]	-0.01]	-0.31]	0.16]	0.14]	0.05]	-0.13]	0.07]	0.00]	0.10]	0.10]
sw us	-0.33	-0.26	-0.72	0.19	0.10	0.05	-0.24	0.08	-0.10	-0.10	0.11
	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(0.02)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(0.11)	(0.01)
	[-0.45,	[-0.38,	[-0.83,	[0.15,	[0.02,	[0.04,	[-0.27,	[0.04,	[-0.15,	[-0.23,	[0.03,
	-0.21]	-0.15]	-0.62]	0.24]	0.18]	0.06]	-0.22]	0.12]	-0.06]	0.03]	0.19]
NE US	-0.34	-0.50	-0.97	0.17	0.12	0.06	-0.36	0.08	-0.09	-0.24	0.12
	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(0.01)	(<0.01)
	[-0.50,	[-0.69,	[-1.19,	[0.14,	[0.08,	[0.05,	[-0.41,	[0.05,	[-0.15,	[-0.42,	[0.07,
	-0.18]	-0.31]	-0.76]	0.20]	0.16]	0.07]	-0.31]	0.12]	-0.03]	-0.06]	0.18]
SE US	-0.46	-0.63	-1.09	0.17	0.09	0.08	-0.33	0.08	-0.15	-0.32	0.12
	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
	[-0.63,	[-0.79,	[-1.25,	[0.13,	[0.04,	[0.06,	[-0.37,	[0.03,	[-0.20,	[-0.49,	[0.06,
	-0.28]	-0.47]	-0.94]	0.22]	0.15]	0.09]	-0.29]	0.13]	-0.11]	-0.15]	0.18]
W Europe	-0.10	-0.05	-0.28	0.04	0.05	0.12	-0.17	-0.02	0.08	0.03	0.02
	(0.26)	(0.46)	(<0.01)	(0.03)	(<0.01)	(<0.01)	(<0.01)	(0.14)	(<0.01)	(0.34)	(0.48)
	[-0.29,	[-0.18,	[-0.38,	[0.00,	[0.03,	[0.10,	[-0.21,	[-0.05,	[0.05,	[-0.04,	[-0.04,
	0.08]	0.08]	-0.18]	0.07]	0.07]	0.14]	-0.12]	0.01]	0.11]	0.11]	0.08]
S Europe	-0.09	-0.20	-0.54	0.07	0.05	0.16	-0.21	-0.01	0.00	-0.03	0.05
	(0.45)	(0.01)	(<0.01)	(0.01)	(0.03)	(<0.01)	(<0.01)	(0.71)	(0.94)	(0.56)	(0.20)
	[-0.33,	[-0.35,	[-0.67,	[0.02,	[0.00,	[0.14,	[-0.25,	[-0.05,	[-0.06,	[-0.15,	[-0.03,
	0.15]	-0.06]	-0.41]	0.13]	0.09]	0.19]	-0.16]	0.04]	0.06]	0.08]	0.12]
C&E Europe	-0.40 (<0.01), [-0.58, -0.22]	-0.05 (0.32), [-0.15, 0.05]	-0.28 (<0.01), [-0.36, -0.20]	0.08 (<0.01), [0.04, 0.13]	0.08 (<0.01), [0.05, 0.11]	0.07 (<0.01), [0.05, 0.09]	-0.18 (<0.01) [-0.21, -0.15]	-0.04 (0.01) [-0.07, -0.01]	0.09 (<0.01) [0.04, 0.13]	0.09 (0.04) [0.01, 0.17]	-0.01 (0.84) [-0.07, 0.05]
SE Europe	0.84	-0.06	-0.56	0.28	0.18	0.03	-0.28	-0.05	0.18	0.08	-0.01
	(0.01)	(0.60)	(<0.01)	(<0.01)	(<0.01)	(0.19)	(<0.01)	(0.20)	(0.04)	(0.45)	(0.89)
	[0.29,	[-0.32,	[-0.80,	[0.20,	[0.09,	[-0.02,	[-0.32,	[-0.12,	[0.01,	[-0.13,	[-0.14,
	1.38]	0.19]	-0.32]	0.36]	0.27]	0.08]	-0.23]	0.03]	0.35]	0.28]	0.12]

2318 Table 3: Changes in the foreign anthropogenic NOx contributions and stratospheric contributions to springtime 2319 (March-May) mean MDA8 O3 in different receptor regions between the initial period (2000-2004) and recent period 2320 (2014-2018).

Region	Foreign anthropoger	nic NOx contribution	Stratospheric contribution		
	Initial Period	Recent Period	Initial Period	Recent Period	
Eastern Canada	8.91	11.72	8.20	12.97	
NW US	13.16	14.81	12.02	12.55	
SW US	14.01	17.37	13.24	14.25	
NE US	8.30	10.83	7.58	1.00	
SE US	8.47	10.59	6.70	9.27	
Western Europe	12.10	13.34	8.15	9.14	
Southern Europe	13.25	14.66	8.77	9.48	
C&E Europe	13.07	13.94	7.87	8.38	
SE Europe	13.98	15.64	8.44	9.06	