Ozone causes substantial reductions in the carbon sequestration of managed European forests

Per Erik Karlsson, Patrick Büker, Sam Bland, David Simpson, Sharps, K, Hayes, F, Lisa D. Emberson.

Supplementary information

Table S1. DO_3SE stomatal flux model parameterisation for each bioregion (NE = Northern Europe; ACE = Atlantic Central Europe; CCE = Continental Central Europe; M = Mediterranean) specific species.

Parameter	Units	Birch (NE)	Norway Spruce (NE)	Temperate Oak (ACE) **	Scots pine (ACE) **	Beech (CCE)	Norway spruce (CCE)	Mediterranean Deciduous oak (M)	Mediterranean Evergreen oak (M)
Canopy height (h)	m	20	20	25	20	25	20	20	20
Root depth (RD)	m	1	1	1	1	2	2	2	2
Leaf dimension (I)	m	0.05	0.008	0.05	0.008	0.07	0.008	0.042	0.03
Albedo (A) ‡	fraction	0.16	0.12	0.16	0.12	0.16	0.12	0.16	0.12
gmax	mmol O3 m-2 PLA s-1	240	125	225	190	155	130	265	195
fmin	fraction	0.1	0.1	0.06	0.1	0.13	0.16	0.13	0.02
light_a	fraction	0.0042	0.006	0.003	0.006	0.006	0.01	0.006	0.012
Tmin	fraction	5	0	0	0	5	0	0	1
Topt	fraction	20	20	20	20	16	14	22	23
Tmax	fraction	200	200	35	36	33	35	35	39
VPDmax	fraction	0.5	0.8	1	0.6	1	0.5	1.1	2.2
VPDmin	fraction	2.7	2.8	3.25	2.8	3.1	3	3.1	4
SWPmin	fraction	-1.5	-1.5	-1.5	-1.5	-4	-4	-4	-4
SWPmax	fraction	-0.5	-0.5	-0.5	-0.5	-1	-1	-1	-1

ASWmin	% ASW	75	75	75	75	75	75	75	75
ASWmax	% ASW	100	100	100	100	100	100	100	100
LAI at SGS	m2/m2	0	5	0	5	0	5	4	4
LAI_b	m2/m2	4	5	4	5	4	5	4	4
LAI_c	m2/m2	4	5	4	5	4	5	4	4
LAI at EGS	m2/m2	0	5	0	5	0	5	4	4
LAI_1	days	15	30	20	30	15	30	20	30
LAI_2	days	30	30	30	30	20	30	30	30
fphen at SGS	days	0	0	0	0.8	0.4	0	0.3	1
fphen_b	fraction	1	1	1	1	1	1	1	1
fphen_c	fraction	1	1	1	1	1	1	1	0.31
fphen_d	fraction	1	1	1	1	1	1	1	1
fphen at EGS	fraction	0	0	0	0.8	0.4	0	0.3	1
fphen_1	days	20	20	15	20	20	0	15	0
fphen_4	days	30	30	30	40	20	0	20	0
Rsoil	s/m	200	200	200	200	200	200	200	200

N.B. The values come from a variety of sources; those values that are not sourced from UNECE LRTAP Mapping Manual 2017 are indicated as follows: ** From Bueker et al. 2015; † Simpson et al 2012.

Table S2. Details of the selection of species- or PFT-specific DO₃SE stomatal flux model parameterisation and dose response relationships (DRRs) used for i). GAI and ii). Whole tree biomass for each bioregion. Details are also provided of the associated species coverage by EMEP grid, with the value in parenthesis after each bioregion.

Bioregion	Land cover type	Stomatal flux model	GAI DRR	Whole tree biomass DRR	% land cover
(no. of EMEP		parameterisation	(Developed in this		coverage in
grids)			paper)		bioregion
Alpine (251)	Birch	Birch (NE)	Beech/Birch	Beech/Birch*	11%
	Norway spruce	Norway spruce (NE)	Norway spruce/Scots	Norway spruce*	37%
	Other deciduous	Birch (NE)	pine	Broadleaf deciduous**	19%
	Other coniferous	Norway spruce (NE)	Broadleaf deciduous	Needleleaf **	24%
	Mixed	Birch (NE) & Norway spruce (NE)	Needleleaf	Broadleaf deciduous &	9%
			Broadleaf deciduous &	Needleleaf**	
			Needleleaf		
Arctic (4)	Birch	Birch (NE)	Beech/birch	Beech/Birch*	90%
	Mixed	Birch & Norway spruce	Broadleaf deciduous &	Broadleaf deciduous &	10%
			Needleleaf	Needleleaf**	
Atlantic (515)	Temperate Oak	Temperate oak (ACE)	Temperate deciduous	Broadleaf deciduous**	16%
	Scots pine	Scots pine (ACE)	oak	Needleleaf**	13%
	Other deciduous	Beech (CCE)	Norway spruce/Scots	Broadleaf deciduous**	27%
	Other coniferous	Norway spruce (CCE)	pine	Needleleaf**	30%
	Mixed	Beech (CCE) & Norway spruce	Broadleaf deciduous	Broadleaf deciduous &	15%
		(CCE)	Needleleaf	Needleleaf**	
			Broadleaf deciduous &		
			Needleleaf		
Black sea (9)	Beech	Beech (CCE)	Beech/birch	Beech/birch*	23%
	Other deciduous	Mediterranean deciduous oak (M)	Broadleaf deciduous	Mediterranean deciduous	9%
	Other coniferous	Mediterranean evergreen oak (M)	Aleppo pine/Holm oak	oak*	49%
	Mixed	Mediterranean deciduous oak (M)	Aleppo pine/Holm oak	Mediterranean evergreen*	20%
		& Mediterranean Evergreen oak		Mediterranean deciduous	
		(M)		oak & Mediterranean	
				evergreen*	
Boreal (416)	Birch	Birch (NE)	Beech/birch	Beech/birch*	7%

	Norway spruce	Norway spruce (NE)	Norway spruce/Scots	Norway spruce*	32%
	Scots pine	Scots pine (ACE)	pine	Norway spruce*	46%
	Other deciduous	Birch (NE)	Norway spruce/Scots	Needleleaf**	9%
	Other coniferous	Norway spruce (NE)	pine	Beech/birch	5%
	Mixed	Birch (NE) & Norway spruce (NE)	Broadleaf deciduous	Beech/birch & Norway	1%
			Needleleaf	spruce*	
			Broadleaf deciduous &		
			Needleleaf		
Continental	Beech	Beech (CCE)	Beech/birch	Beech/birch*	13%
(613)	Norway spruce	Norway spruce (CCE)	Norway spruce/Scots	Norway spruce*	16%
	Scots pine	Scots pine (ACE)	pine	Needleleaf**	23%
	Other deciduous	Beech (CCE)	Norway spruce/Scots	Beech/birch*	18%
	Other coniferous	Norway spruce (CCE)	pine	Norway spruce*	13%
	Mixed	Beech (CCE) & Norway spruce	Broadleaf deciduous	Broadleaf deciduous &	15%
		(CCE) & Scots pine (ACE)	Needleleaf	Needleleaf**	
			Broadleaf deciduous		
Mediterranean	Mediterranean	Mediterranean deciduous oak (M)	Broadleaf deciduous	Mediterranean deciduous	4%
(507)	deciduous oak			oak*	
	Mediterranean	Mediterranean evergreen oak (M)	Aleppo pine/Holm oak		27%
	evergreen			Mediterranean evergreen*	
	Other deciduous	Mediterranean deciduous oak (M)	Broadleaf deciduous		34%
	Other coniferous	Mediterranean evergreen oak (M)	Aleppo pine/Holm oak	Mediterranean deciduous	22%
	Mixed	Mediterranean deciduous oak (M)	Broadleaf deciduous &	oak*	14%
		& Mediterranean Evergreen oak	Aleppo pine/Holm oak	Mediterranean evergreen*	
		(M)		Mediterranean deciduous	
				oak* &	
				Mediterranean evergreen*	
Pannonian (57)	Other deciduous	Beech (CCE)	Broadleaf deciduous	Broadleaf deciduous**	41%
	Other coniferous	Norway spruce (CCE)	Needleleaf	Needleleaf**	26%
	Mixed	Beech CCE & Norway spruce (CCE)	Broadleaf deciduous &	Broadleaf deciduous** &	33%
			Needleleaf	Needlelead**	
Steppic	Beech	Beech (CCE)	Beech/birch	Beech/birch*	9%
	Temperate oak	Temperate Oak (ACE)	Oak deciduous	Broadleaf deciduous**	23%

Ot	ther deciduous	Beech (CCE)	Broadleaf deciduous	Broadleaf deciduous**	29%
Ot	ther coniferous	Norway spruce (CCE)	Needleleaf	Needleleaf**	19%
Mi	lixed	Beech (CCE) & Norway spruce	Broadleaf deciduous &	Broadleaf deciduous** &	20%
		(CCE)	Needleleaf	Needleleaf**	

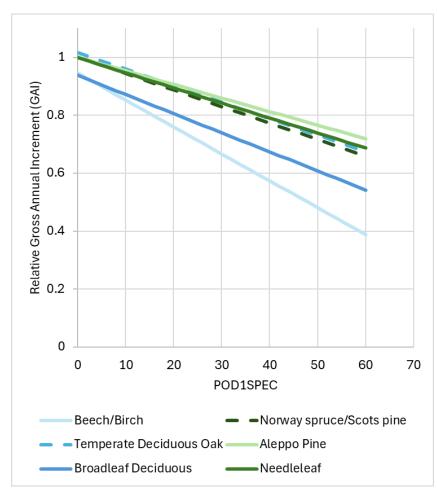
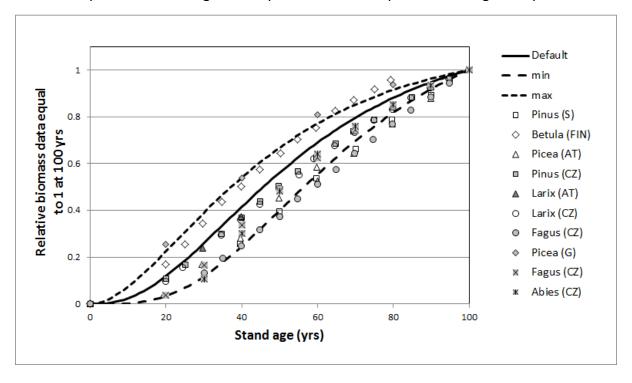

N.B. * DRRs from UNECE LRTAP Mapping Manual 2017; ** DRRs from Bueker et al. 2015.

Table S3. Dose response relationships (DRRs) for POD₁SPEC for i. GAI and ii. Whole tree biomass by bioregion specific species.


Bioregion specific species	GAI DRRs	R ²	Whole tree biomass DRRs	R ²
Beech/Birch	y = -0.0093x + 0.9461	0.59	y = -0.0093x + 1.002	0.67
Norway spruce	-		y = -0.0022x + 0.998	0.31
Norway spruce/Scots pine	y = -0.0057x + 1.0015	0.56	-	
Oak (deciduous)	y = -0.0057x + 1.0167	0.75	-	
Aleppo pine/Holm oak	y = -0.0047x + 1.001	0.64	-	
Mediterranean oak	-		y = -0.0032x + 1.003	0.41
Mediterranean evergreen*	-		y = -0.0009x + 0.998	0.42
PFTs				
Broadleaf deciduous	y = -0.0066x + 0.9381	0.47	y = -0.0057x + 0.9388	0.42
Needleleaf	y = -0.0052x + 0.999	0.69	y = -0.0044x + 0.9988	0.68

N.B. *Refers to above ground biomass

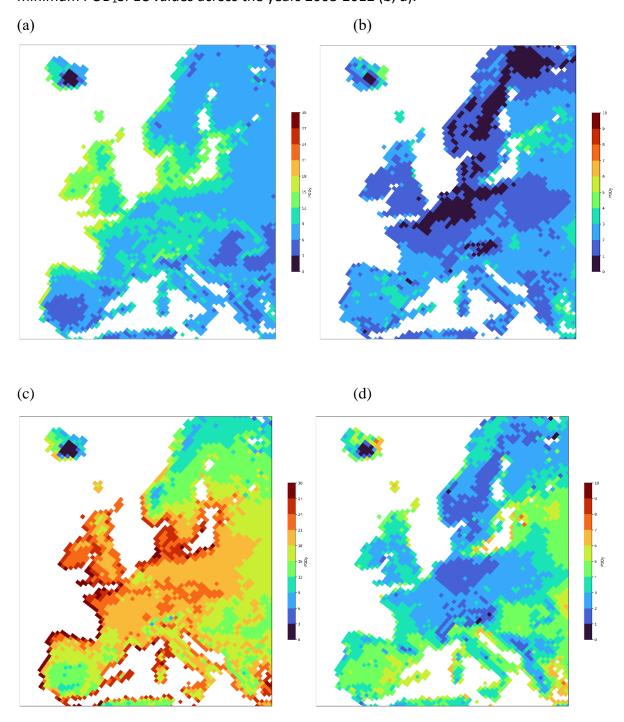
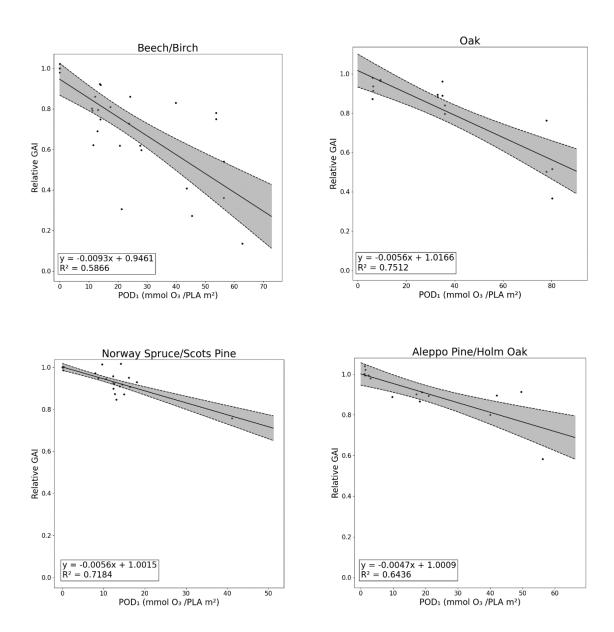
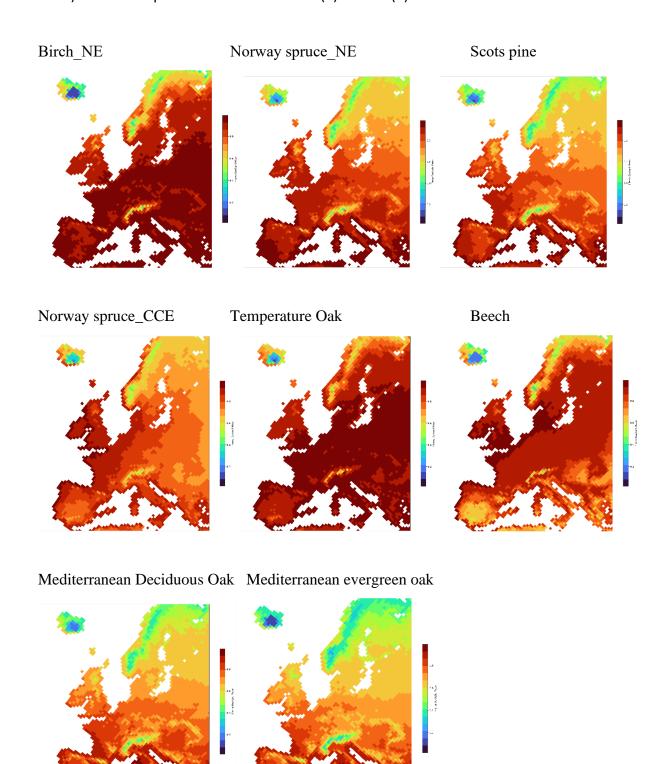
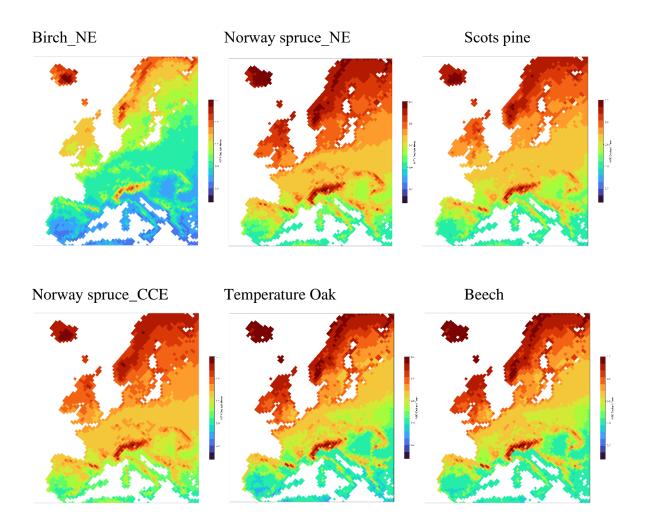
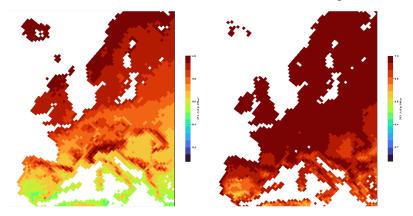

Relative GAI DRRs for all species and PFTs.

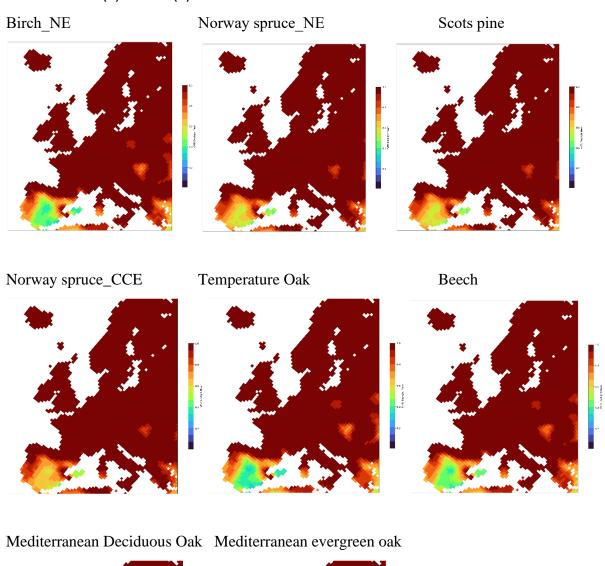
Figure S1. The 'default', 'minimum' (min) and 'maximum' (max) parameterisations of the Richards equation (Richards, 1959; Nishizono, 2010) in relation to European Forest data collected from the literature representing five countries (Sweden (S), Finland (FIN), Austria (AT), Switzerland (CZ) and Germany (G)); and 6 forest genera (*Pinus, Betula, Picea, Larix, Fagus, Abies*) (c.f. Fellner & Rechberger, 2009; Mund et al., 2002). All biomass data are scaled to equal 1 at a stand age of 100 years to allow comparison of the growth profiles.

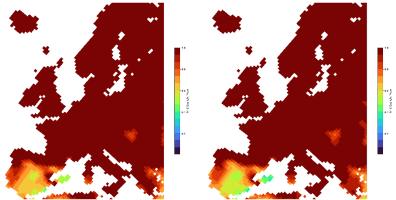
Figure S2. The spatial distribution of the estimated POD₁SPEC across Europe assuming no soil water stress (NSW), separately for coniferous and deciduous tree species for annual mean values for the period 2008-2012 (a, c) and as the difference in maximum and minimum POD₁SPEC values across the years 2008-2012 (b, d).

Figure S3. Dose-response relationships based on POD₁SPEC for assessments based on the estimated impacts on tree growth rates (Relative GAI) for other species and PFT dose-response relationships.

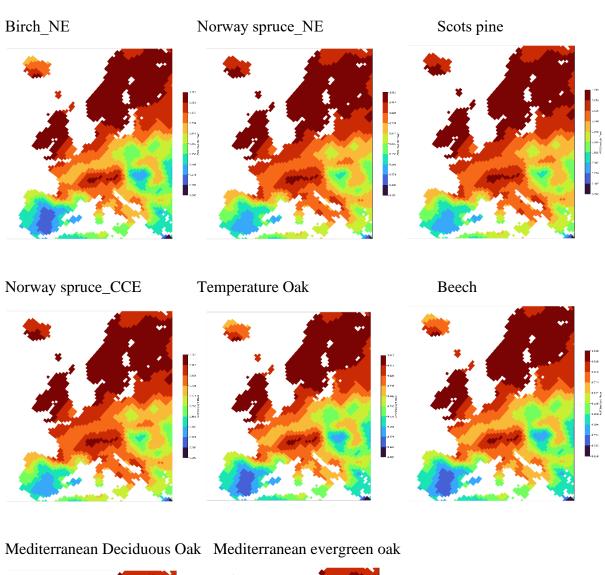





Figure S4a. The limits to POD₁SPEC from f_{temp} for individual species and all years (2008-2012) across Europe. Colour scale from red (1) to blue (0).


Figure S4b. The limits to POD₁SPEC from f_{VPD} for individual species and all years (2008-2012) across Europe. Colour scale from red (1) to blue (0).



Mediterranean Deciduous Oak Mediterranean evergreen oak



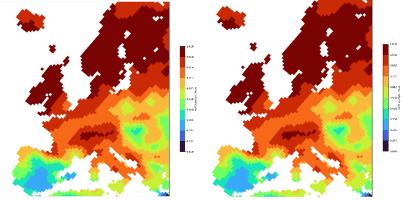

Figure S4c. The limits to POD₁SPEC from f_{PAW} (where g_{sto} reduces on exceedance of 75% of available soil water) for individual species and all years (2008-2012) across Europe. Colour scale from red (1) to blue (0).

Figure S4d. The limits to POD₁SPEC from f_{PAW} with a more sensitive relationship where g_{sto} reduces on exceedance of 50% of available soil water for individual species and for the year 2012 only across Europe. Colour scale from red (1) to blue (0).

