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Abstract. The mean kinematic features in the Gulf of Gabeés region are analyzed based on 30 years
of altimetry data (1993-2022) and the outputs of a high resolution ocean model for the year 2022. A
comparison of the seasonal variability in three different geographical areas within the gulf is
presented. In the northern and southern parts of the gulf, anticyclonic structures prevail, while the
central area is dominated by divergence. Similarity in flow topology is found in these three areas of
the gulf due to the signature of hyperbolic regions. In winter and fall, the mean flow is oriented
northward, while it is reversed in spring and summer. The tidal perturbations influence sea level,
kinetic energy and hyperbolic geostrophic structures, leading to the generation of a cyclonic current
in the central part of the gulf and to the presence of persistent strain gradients amplifying hyperbolic
structures. The Finite Time Lyapunov Exponent (FTLE) computed using altimetry data highlights
the link between physical and biogeochemical dispersion, with the Gulf of Gabeés mean circulation

features acting as transport barriers for phytoplankton dispersion.

1 Introduction

Tidal forcing plays a crucial role in ocean circulation, and the Gulf of Gabés (GG) is notably
influenced by this phenomenon. Understanding tidal interactions with complex dynamics and their
impact on the transport of passive and active tracers (such as pollutants and marine species) is
challenging (Meyerjiirgens et al, 2020). Well-known as a region of relevant tides within the
Mediterranean Sea (Abdennadher and Boukthir, 2006) with a semi-arid climate, high temperature,

relatively high salinity and strong density gradients, the GG is located in the southern part of the
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Sicily Channel and represents a site of water masses exchange between the western and the eastern
Mediterranean Sea basins.

The gulf is considered one of the richest areas of the Mediterranean Sea in terms of nutrients
availability and biological production (Béjaoui et al, 2019; Ben Ismail et al., 2022; Salgado-
Hernanz et al, 2019). Due to the gentle slope of its continental shelf and its shallow depth (Figure
1), the GG has the highest tidal range (with differences between high and low tides up to almost 2
m) in the Mediterranean Sea, is one of the areas in the Mediterranean Sea where the highest tides
can be found (Othmani et al., 2017) which strongly influences its circulation (Abdennadher and
Boukthir, 2006; Sammari et al., 2006; Poulain and Zambianchi, 2007). Apart from the tides,
anticyclonic winds are also one of the drivers of the GG circulation (Sammari et al., 2006).
Originated from the Atlantic Water (AW), the Atlantic Tunisian Current (ATC) and the Bifurcation
Atlantic Tunisian Current (BATC) are the strongest surface currents evolving in the gulf (Ben Ismail
et al,, 2015), while the Atlantic Ionian Stream (AIS) is generated by current instability and
topography (Menna et al., 2019), and it flows North of Malta island without penetrating in the GG
(Figure 2a) (Pinardi et al,. 2015; Bouzaiene et al., 2020). The ATC is a permanent surface current
characterized by low salinity (Sammari et al., 1999). It crosses the Strait of Sicily and circulates
along the Tunisian coast (Sorgente et al., 2011) where it splits into two branches. One of them
interests the coastal strip and flows in a southwesterly direction (Ben Ismail et al., 2010). Due to
its lower salinity, ATC branch circulates further offshore from the coast in a south-eastern direction
where it eventually follows the Libyan plateau (Figure 2a) (Millot and Taupier-Letage, 2005). This
branch, observed especially in winter, is called the Atlantic Libyan Current (ALC). It circulates
along the Libyan shelf break where the mean flow is represented by a weak current bounded by a
cyclonic vortex referenced as the Libyan Shelf Break Vortex (LSBYV, Sorgente et al., 2011, see
Figure 2a). The BATC continues to circulate offshore, generating the Medina Gyre (MG) and the
Southern Medina Gyre (SMG) (Figure 2a), whose formation is due to current instability or/and
topography (Jouini et al., 2016, Menna et al., 2019). Some efforts have been made to focus on the
dynamics of offshore waters in the central Mediterranean Sea from satellite-derived products i.e. the
dynamics in Sicily Channel show multi-scale spatial and temporal variability (Menna et al, 2019).
Nevertheless, a long term analysis for understudied regions like the coastal GG areas can benefit an
overview of: persistent Lagrangian structures, attracting and repelling coastal zones, trends and
upwelling flows.

The GG dynamics are characterized by small and large-scale inter-annual and seasonal variability in
the surface layer (Jebri et al., 2016). This system is identified by many spatio-temporal structures

interacting with each other and producing an extremely complex and variable circulation.
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Currents, filaments and eddies are responsible for water mass transport, thus the understanding of
their seasonal and inter-annual variability is crucial for a wide variety of reasons, such as regional
water exchanges with the open sea, large scale turbulent flow spreading, propagation of particles
and dispersion of sediments in the coastal zones. This is even more important in the GG
environment where the anthropogenic pressure has dramatically increased due to coastal phosphate
processing plants by-products, frequent oil spill episodes, general pollution factors such as floating
marine debris or plastic, micro and macro litter (Ben Ismail et al., 2022). In addition, Lagrangian
studies on the transport of nutrients, jellyfish, eggs, and larvae would benefit from a better
knowledge of the mean circulation variability. To provide a realistic study for the GG circulation it
is necessary to evaluate in detail the long-term variability and the influence that tidal forcing,
interacting with topography, acts on the system, resulting in the generation of new structures
influencing turbulence and circulation in the entire gulf.

It has been shown in Elhmaidi et al. (1993) that turbulent features induce a discrepancy between
modeled and theoretical dispersion laws in case of two-dimensional turbulent dispersion theory for
isotropic and homogeneous flow. Two anomalous absolute dispersion (5/3, elliptic) and (5/4,
hyperbolic) power laws were found in previous studies (Bouzaiene et al., 2021). These anomalous
regimes have been related to the sea topology through the presence of elliptic and hyperbolic
structures (Bouzaiene et al., 2018, 2021). In the eddy inner parts, these areas are referred to as
elliptic regions characterized by high vorticity gradients, while hyperbolic features are detected in
the coherent structure outer parts and can be related to sheared/stretched ocean flow. In Gomez-
Navarro et al., (2024) the impact of tidal forcing on surface particle transport is explored, while the
influence of tidal perturbation on the dispersion of elliptic and hyperbolic regions lacks, in our
opinion, a certain degree of discussion.

To our knowledge, the impact of tides on topology (the distribution of elliptic and hyperbolic
regions) in the GG has not been studied before, even though tidal forcing is very important in this
area. Hence, given their potential influence on phytoplankton blooms, nutrient distribution, and
marine litter dispersion, it is essential to gain a better understanding of how tides influence the
circulation, dynamics, and sea topology. Altimetry data analysis allows analyzing the geostrophic
circulation and the kinematic properties of mesoscale structures.

However, their low temporal and spatial resolutions do not allow performing a realistic study on the
dynamics introduced by tides. In order to address this issue, we leveraged high temporal resolution
(hourly) model outputs from a numerical system which includes tides.

In this study, we focus on the kinematic properties of the geostrophic component of the circulation

in the GG and on how tides affect currents. We do this by using altimetry data covering the time
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period 1993-2022 and model analysis data for the year 2022, both distributed by the Copernicus
Marine Service (CMS, http://marine.copernicus.eu/). Previously, some efforts to understand this
oceanographic system have been made by focusing on the general aspects of the Gulf of Gabes
circulation (Ben Ismail et al, 2015, 2022; Zayen et al, 2020). The impact of internal waves on
mesoscale eddies is studied in Barkan et al., (2017, 2021) where the signal increases significantly
when tidal forcing is present. Furthermore, the impact of the velocity fields from a high-resolution
coupled ocean—wave model simulation (Clementi et al, 2023) on simulated surface particle
dispersal was studied in the Mediterranean Sea (Riihs et al, 2025). The comprehension of how tides
influence the geostrophic features is still an open question.

Our aim is to investigate new features of the geostrophic circulation and to assess the impact of
tides on the geostrophic circulation. High-resolution ocean circulation modeling and satellite
altimetry could enhance our understanding of the geostrophic transport. The paper is organized as
follows: in section 2 we describe the datasets used and the methods applied. The results on
geostrophic structures from altimetry and model data are presented in section 3. Summary and

conclusions are proposed in section 4.

2 Material and methods

2.1 Datasets

The geostrophic circulation in the GG has been investigated by means of remote-sensed altimetry
data and outputs from a high-resolution oceanographic numerical system.

2.1.1 Altimetry data

The satellite altimetry dataset used in this study is a subset of the CMS
SEALEVEL_EUR_PHY_L4_MY_008_068 product (European Union-Copernicus Marine Service.
(2021), Mercator Ocean International, https://doi.org/10.48670/MOI-00141), with a spatial
resolution of 0.125° x 0.125° and a daily temporal resolution. Our analyses were conducted over a
30-year period, from 1993 to 2022. For more details see the Quality Information Document (QUID)
(https://documentation.marine.copernicus.eu/QUID/CMEMS-SL-QUID-008-032-068.pdf). The
variable used is the absolute surface geostrophic velocity and we inferred the vorticity, the
divergence, the Okubo-Weiss parameter, the deformation gradients and the Finite Time Lyapunov
Exponent (FTLE) from the surface geostrophic velocity variable from the Absolute Dynamic
Topography (ADT). These parameters were investigated in order to elucidate the mean circulation,
persistent currents, eddies and gyres.

2.1.2 Chlorophyll-a data
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The chlorophyll-a dataset used in this study is the CMS
OCEANCOLOUR_MED_BGC_L4 _MY_009_144 product. We used the daily mass concentration
of chlorophyll-a in sea water (CHL) at 1 km resolution from the Ocean Satellite Observations for
multi-year Bio-Geo_Chemical (BGC) regional datasets (https://doi.org/10.48670/moi-00300).

2.1.3 Model data

Hourly Sea Surface Height (SSH) fields from model data (CMS
MEDSEA_ANALYSISFORECAST_PHY_006_013 (Clementi et al., 2023) covering the year 2022,
are used to compute geostrophic currents. We have chosen the year 2022 since at the time the
dataset was processed it was the only complete year for the CMS system including tidal signals in
the hydrodynamic model used. The physical component of the Mediterranean Sea within the
framework of CMS (Med-Physics) is a tidal, coupled hydrodynamic-wave model with a data
assimilation system implemented over the whole Mediterranean Sea, and a horizontal resolution of
1/24° (~4 km) and 141 unevenly spaced vertical z* levels (Clementi et al. 2017). More detailed
information on the system and its products can be found in the Quality Information Document
(https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-MED-QUID-006-013.pdf).

2.2 Methods

To describe the kinematic properties and the circulation of the GG we estimated the geostrophic
currents for the year 2022 from the model data
(MEDSEA_ANALYSISFORECAST_PHY_006_013) SSH fields and we then computed the four
following quantities from the altimetry data and model data (described in section 2.1.1 and 2.1.3,
respectively): normalized vorticity (with respect to f), normalized divergence, normalized Okubo-
Weiss parameter and FTLE.

2.2.1 Estimation of the geostrophic currents

The model SSH field (section 2.1.3) was used to estimate the geostrophic currents, resulting from
the balance between the Coriolis force and the horizontal pressure gradient. The zonal (ugeos) and
the meridional (vgeos) components of the geostrophic velocities are derived from the geostrophic

equations as follows (Apel, 1987; Vigo et al., 2018a; 2018b):

7
ugeos = 5y 11
vgeos=-~— 2]
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Where, x and y are the longitude and the latitude components respectively, 1 is the model SSH,
g=9.81 m/s’ is the gravity acceleration, f=2Qsin(}) is the Coriolis parameter, A is the latitude in
degrees and Q=2m/T is the Earth angular velocity, being T the period of rotation.

In order to evaluate the tidal residual from the full SSH signal, a Doodson filter was applied to the
dataset, following the approach proposed in the Manual on Sea Level Measurement and
Interpretation of the IOC (1985). The Doodson is a low-pass, symmetric filter based on the
definition of 19 coefficients as follows:

F(t=(,1,1,2,0,1,1,0,2,0,1,1,0,1,0,0, 1, 0, 1); F(t)=F(-t)

The value of the de-tided sea level SSH . at time t, is calculated as:

d=19
1

SSH,[ty|= =~ F(d|SSH t,+d|;d #0/(3]

30,5
Where SSH denotes the sea level elevation, t, is the time expressed in hours and the coefficients d
represent the increasing or decreasing hours with respect to the central value t,.
2.2.2 The normalized vorticity
The normalized vorticity which is equivalent to the Rossby number (Ro) and is defined as (Poulain
et al., 2023):

v _0uy

=% 7= 4

f ox 0y
where (is the relative vorticity, {* is a good indicator of features activity in the ocean. If {*~O(1),
the flow shows a-geostrophic features while for {*<<1 the flow shows quasi-geostrophic structures
(Siegelman, 2020). For ¢*>0, indicates the presence of cyclonic structures, whereas when (* is
negative the flow shows anticyclonic features.
2.2.3 The normalized divergence
The normalized divergence, a fundamental metric to characterize the transport of passive and active

tracers, is defined as (Poulain et al., 2023):

«_0 du dv
§ ==, 6=—+—
f’ 0x 0y

where § is the horizontal divergence of the velocity field. It allows us to detect two different

5]

dynamical oceanic zones: for §*>0 (divergence) the flow fields tend to propagate outward through
the surrounding surface of a closed control volume, diverging from its center, whereas for §"<0
(convergence) the flow particles tend to converge to the center of the volume.

2.2.4 The normalized Okubo-Weiss parameter

The normalized Okubo-Weiss parameter serves as a powerful indicator to distinguish between two

different topological domains: elliptic or hyperbolic. It is defined as:
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Where S is the strain or rate of deformation of the flow and it is composed of a shear term S; and of

a normal term S,. It is defined as follow:

1
S= {SSZ+SHZ}2(7)

Where S, and S, are defined as
ov, odu ou_ 0dv

_+_ _

0x 0y 0x 0y

2 2

b n

S,=

Where Q*=-1 an elliptic domain can be defined, while where Q*=1 a hyperbolic region can be
identified (Okubo, 1970, Weiss, 1991, Elhmaidi et al., 1993; Bouzaiene et al., 2018, 2021). As
shown by Bouzaiene et al. (2021), the flow dynamical properties in the eddy inner parts (elliptic
regions) and surrounding coherent structures (hyperbolic structures) are very different. In this study

S is normalized by f to identify the sheared and/or stretched regions:

2.2.,5 The Finite Time Lyapunov Exponent

The Finite Time Lyapunov Exponent (FTLE) A, is a parameter which describes the separation
amongst particles in a specific time interval and it has been used in several ocean applications to
identify the Lagrangian Coherent Structures (LCS) (Shadden et al., 2005; Farazmand and Haller,
2012; d’Ovidio et al., 2010; Rousselet et al., 2025). In previous investigations within the
Mediterranean region, the emphasis was on the Finite Scale Lyapunov Exponent (FSLE) rather than
the FTLE. The FSLE was calculated on the basis of the exponential growth of distances between
Lagrangian particle pairs initially separated. This calculation served the dual purpose of identifying
Lagrangian Coherent Structures (LCS), as demonstrated by d'Ovidio et al. (2004, 2009), and
comparing L.CS with Lagrangian surface drifter trajectories, as explored by Bouzaiene et al. (2020).
More recently, Morales-Marquez et al. (2023) investigated the use of FSLE to characterize LCS
concerning mixing and transport properties in the upper layer of the entire Mediterranean Sea.
Despite these advancements, the application of the parameter A, in coastal Mediterranean zones,
particularly in the GG, remains an unanswered question. The implementation of FTLE in coastal
areas, namely from altimetry data, has been limited by the error of the data in very coastal areas.
This study seeks to address this gap by computing At specifically for LCS analysis in these areas.

The implementation of FTLE using particle trajectories with increasing resolution (Onu, et al, 2015)
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in the GG could bring new insight into how coastal features impact biology. The use of FTLE in
coastal areas is reliable to detect LCS (Peng et al, 2024).

FTLE is a local scalar that represents the separation rate of initially neighboring particles for a finite
time [to, to+T]. At position x, and time to, A is defined as follows (Haller, 2002, 2015; Liu et al.,

2018):

tr

0D xy,t+T ,t,|

0X,

0D X, to+ Tty
0Xx,

log A

max

Al x0:t0, T|=0.5 9)

T
where A, is the largest eigenvalue of the Cauchy-Green stress tensor, while the flow field of fluid

particle trajectories is defined as @ (XO o+ T ,to) and tr indicates the matrix transpose.

In 2D turbulence theory, the eigenvalues of the Cauchy-Green tensor quantify the stretching of fluid
particles along their relevant directions (Liu et al., 2018). FTLE can be implemented forward-in-
time and/or backward-in-time and the implications for phytoplankton as one shows attracting and
the other repelling structures. In this work, we compute the forward-in-time or positive-time (T>0)
of the A, field. This eigenvector is called “forward Finite-Time Lyapunov Vector”. It has been shown
that A, is predominantly reliable to capture coherent structures starting from an integration time of 6
days, with no upper limit (Du Toit, 2010; Rypina et al., 2011; Liu et al., 2018). In this study, daily
FTLE fields are computed, and then averaged seasonally over a 30-year period to detect the mean
features and over 7 days to compare it to phytoplankton blooms occurring in GG. Here, At is
calculated from the velocity fields derived from satellite altimetry data at temporal and spatial
resolutions of 1 day and 1/8°, respectively. Our choice is to set the resolution of the mean initial
trajectory conditions to 800 meters x800 meters, corresponding to 1/128°, about 16 times larger
than the velocity field resolution, which guarantees an L.CS accurate enough for capturing oceanic
features (Onu et al., 2015). In general, high values of At indicate the edges of coherent structures,
fronts and filaments (hyperbolic regions), while low values correspond to the inner parts of the
eddies (elliptic areas). Both are considered as transport barriers (Blazevski and Haller, 2014).
Intense stirring induced by strong turbulence disperses the high input of nutrients when uplifted
from deeper layers, whereas larger amounts of nutrients remain in more quiescent zones (decreased

turbulence; Hernandez-Garcia et al., 2010).
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3 Results

Bathymetal(m)

Depth (m)

L2 33 Latitude (°)

Figure 1: Bathymetry of the Mediterranean Sea with the main geographical sub-basins and straits locations. The red dashed rectangle
in the upper panel shows the geographical limits of the larger Gulf of Gabés domain. A detail of 3D bathymetry in the Gulf of Gabés
is shown in the lower panels. The bathymetry was derived from the Global Earth Bathymetric Chart of the Oceans for the 2022
version, with a spatial resolution of ~0.45 km (GEBCO_2022, https://www.gebco.net).

Three subareas were identified in the GG (black boxes in Figure 2) in order to highlight differences
and similarities in the dynamical features: Northern Gulf of Gabes (NGG, 11°E-12°E and 34.6°N-
35.25°N), Central Gulf of Gabes (CGG, 10°E-11°E and 33.75°N-34.4°N) and Southern Gulf of
Gabes (SGG, 11.1°E-12.2°E and 33°N-33.75°N). The Mediterranean features are strongly driven by
the instability of intense coastal currents, which have frequently changed their location and lifespan
over the past decades (Bouzaiene et al, 2020; Poulain et al, 2012b). In order to investigate the
kinematic properties of mesoscale features, we used 30 years of altimetry data in the present paper,

focusing on the main circulation features in the GG. This 30 year dataset allows for the detection of
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mean patterns across three decades, providing a basis to discuss the well-known mean features
during the observational data availability period. The 30 years of satellite altimetry data are used to
overview the mean kinematic features in the GG domain and in the three specified subareas, as
detailed in section 3.1. The altimetry analysis could help to overview long term kinematic properties
in the coastal regions (Srinivasan and Tsontos, 2023).

MKE(cmZ.572), 1993 to 2022

=

w

PRI
©C900 0000058

37°N =

200

5 e e >l 150

e Y .
---------- S S L F
N GGZ Bhh A AAAANY, .
35°N ! E L
: ] 100
CG :
34°N J ISR Vo
: ‘ : - 50
G - E
a8 Ni: 10cmst E ‘7

10°E 11°E  12°E  13°E

Mean ) (day™), 1993 to 2022
37°N 1+ - i ‘

0.08

36°N -

10.06

35°N

0.04

34°N

0.02

1£5°E 11°E 12°E  13°E  14°E 0

Figure 2: (a) Mean Kinetic Energy (MKE) with superimposed mean geostrophic currents estimated over the period 1993-2022; (b)
Mean Finite Time Lyapunov Exponent (A) computed from geostrophic velocities from altimetry data
(SEALEVEL_EUR_PHY_L4_MY_008_068) in the same period. Three subareas are selected close to the coastal areas of the gulf as
follows: NGG: Northern Gulf of Gabés, CGG: Central Gulf of Gabés, SGG: Southern Gulf of Gabes. List of acronyms of the main
circulation features: MG: Medina Gyre, SMG: Southern Medina Gyre, LSBV, Libyan Shelf Break Vortex, ATC, Atlantic Tunisian
Current, ATC1, First Atlantic Tunisian Current, ATC2: Second Atlantic Tunisian Current, ALC: Atlantic Libyan Current, AIS:

Atlantic Ionian Stream, BATC: Bifurcation Atlantic Tunisian Current.
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The relatively low temporal and spatial resolutions of the data do not allow us to make
considerations on the impact that tides have on GG features in a smaller area. Hence, we focused on
the GG Smaller Domain (CGG, 10.00°E-11.35°E and 33.40°N-34.75°N) where we derived
geostrophic currents from the SSH model fields allowing us to test the impact of tides in the GG, as
explained in section 3.2. SSH spatial and temporal averages in the CGG have been removed from
the native SSH fields.

The resulting mean seasonal geostrophic circulation in the CGG was compared to its counterpart
computed from the de-tided SSH fields, in order to assess the impact of tides on the geostrophic
dynamics of the Gulf. The de-tiding on the native SSH fields was performed using a Doodson filter
(see section 2.2.1 for details).

3.1 Altimetry data analysis of the mean geostrophic circulation

Figure 2a shows the geostrophic circulation (grey arrows) averaged over the period 1993-2022,

superimposed on the Mean Kinetic Energy MKE:(O,S(ugeOSZ+vgeosz) ) for the same period,
where <...> represents the average over the 30 years. Several well-known structures are clearly
visible, namely: (1) the edges of the cyclonic features referenced as the Medina Gyre (MG), the
Southern Medina Gyre (SMG) and the Libyan Shelf Break Vortex (LSBV); (2) the first Atlantic
Tunisian Current (ATC1) which is well developed along the Tunisian coasts; and (3) the second
Atlantic Tunisian Current (ATC2), flowing near the Libyan boundaries and forming the Atlantic
Libyan Current (ALC), in agreement with the results of Sorgente et al. (2011), Jebri et al. (2016)
and Menna et al. (2019).

The MKE shows the presence of energetic features flowing into the GG as well as surrounding
eddies, BATC, ATC1 and ATC2 with MKE of ~50-100 cm?%s?, while the Atlantic Ionian Stream
(AIS) inflows through the north-eastern Ionian Sea with a maximum MKE of approximately 100-
150 cm?/s’. The mean FTLE averaged over the 30-year altimetry data period (A; Equation 9) is
shown in Fig. 2b. A, can be applied to investigate the link between the GG dynamics and the
chlorophyll concentration, which are known to be related by inverse proportionality. The regions
located far from the GG, are characterized by a large A, close to 0.1 day™, indicating strong chaotic
advection clearly evidenced by the presence of intense eddies and persistent currents (MG, SMG,
LSBYV, AIS, see Figure 2a vs. 2b). These features appear as local barriers to transport, inhibiting
biological production. On the contrary, in the coastal zones of the GG, A, tends to zero. These zones
may favor the nutrient standing stocks due to the weak effect of the horizontal mixing and stirring.
This could be one of the causes of the observed high chlorophyll concentration close to the Tunisian

boundaries as shown in previous studies (Bel Hassen et al., 2010; Macias et al., 2018; Kotta et al.,

11
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2019), where nutrients would flee from high turbulent zones to settle in less chaotic areas. We
computed the daily mean speed and kinetic energy (KE) time series over 30 years (1993-2022)
using altimetry data, as shown in Figure 3. The quantities are averaged over the larger GG box,
indicated by the red rectangle in Figure 2. Higher speed and KE values are mostly observed in
winter and fall, while lower values occur in spring and summer. This variability is likely strongly
related to atmospheric forcing. In order to evaluate the evolution of regional dynamics over the
decades, we computed the means of the two quantities separately for the three following periods:
1993-2002, 2003-2012 and 2013-2022. The mean speed increased over the decades, from 7.35 cm/s
in 1993-2002, to 7.6 cm/s in 20032012, and 8.01 cm/s in 2013-2022. Similarly to the averaged
speed, the Mean Kinetic Energy also increased by approximately 7 cm?s? from the beginning to the

end of the considered period.
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Figure 3: Time series of mean speed and Kinetic Energy estimated from geostrophic velocities provided by altimetry data
(SEALEVEL_EUR_PHY_L4_MY_008_068) in the Gulf of Gabés over the period 1993-2022. The quantities are mean over the
larger GG box as displayed with the red rectangle in Figure 2 a.

The NGG is clearly evidenced by the presence of a large anticyclonic current with A~0 in its core,
while A is greater than zero in the eddy outer part. A similar pattern can also be observed in the
SGG. On the contrary, the mean FTLE in the CGG suggests the presence of filaments and fronts
(Fig. 2b). Normalized vorticity (¢*), normalized Okubo-Weiss (Q*), normalized divergence (6*),

and normalized deformation (S*) over the 30 years (1993-2022) from the altimetry product are
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shown in Figure 4a,b,c and d, respectively, confirming the presence of the MG, SMG and LSBV
eddies. Except for the MG, within the interior of these structures, the value of Q* is negative
(elliptic regions) due to high vorticity gradients, whereas in the surrounding coherent structures the
value of Q* is positive, with predominantly hyperbolic areas due to strong deformation gradients
(Fig. 4b).
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Figure 4: Mean circulation from altimetry data (SEALEVEL_EUR_PHY_L4 MY_008_068) estimated over the period 1993-2022
(a) Normalized vorticity (¢*), (b) normalized Okubo-Weiss parameter Q*, (c) the normalized divergence (6*) and (d) normalized
deformation (S*) with superimposed mean geostrophic velocities. Three subareas are selected close to the coastal areas of the gulf as
follows: NGG: Northern Gulf of Gabés, CGG: Central Gulf of Gabés, SGG: Southern Gulf of Gabes.

The vorticity mostly agrees with the divergence (Fig. 4a and c) for ¢* and 6* higher than zero,
implying the presence of several permanent/recurrent eddies and gyres where the flow tends to
propagate outward through the surrounding eddy cores (divergence). Upwelling of deep, nutrient-
rich water masses occurs in these areas, leading to enhanced biological production at the surface. In
the opposite scenario (negative {* and 6*) the surface flow is pointing towards the inner parts of the
anticyclonic eddy (convergence), pushing water towards its center of mass, then sinking to the
bottom layers. The flow is sheared or stretched (S*~O(1)) in the eddy outer parts where the current
is very unstable. These zones can be identified as hyperbolic regions due to strong deformation

gradients, while for S*~0 (inside coherent vortices) the rotation is dominant (Figure 4 b and d). In
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order to compare the dynamics of regions relatively close to the GG with farther ones, {*, 6* and
Q* are seasonally evaluated in the three sub areas displayed in Figure 5. They can all be classified
as hyperbolic regions (Q*>0, magenta lines in Figure 5) meaning that the flow can be stretched or
sheared. Except for some seasons, the NGG and CGG surface waters tend to rotate into gyres
(elliptic areas, Q*<0). In the CGG, the vorticity is oscillating from ~-0.5 (anticyclonic) to ~0.5
(cyclonic), while {* shows mostly negative values in the two other areas considered (thus indicating
the presence of anticyclonic vortices). In agreement with the vorticity values, the divergence is
negative in the SGG (convergent flow, Fig 5c). In the NGG and CGG, §* indicates positive values,
mostly greater than zero in the NGG, thus denoting the presence of upwelling flows (Fig. 5a,b blue
line). The difference in the divergence of the three subareas might be related to the different

interaction of the main forces (i.e. tides and winds) with the bottom topography.

a) Normalized: vorticity, divergence, Okubo-Weiss, NGG, 1993 to 2022
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

II]IIIIIIIIIIIIIIIIII[IIIlIIIIIIIIIIlIIIIIIIII]lIIlIIIIIIIlIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIlIIIIII

5
PP LN PR LTI PP PO D PP DD
S AN L R R A R i A
IR R T R i R N R N g g

time
b) Normalized: vorticity, dlverence, Okubo-Weiss, CGG, 1993 to 2022

‘l' !"" " """' "

C*!J*l Q*

time
C) Normalized: vorticity, divergence, Okubo-Weiss, SGG, 1993 to 2022

Illllllll“

ef" ' >0, C cl, Div, ﬁyper _ :__f;:

Y S oaaiet —-v.‘- &v'-vaw'w,:wwp. AT AT T ',:-:"w-"w‘m,v"v . et

C*lJ*l Q*

‘0‘?- M ﬁt ¥ 'll P11

Figure 5: Time series of normalized vorticity (¢*; yellow), normalized divergence (§*; blue) and normalized Okubo-Weiss parameter
(Q*, magenta) estimated from geostrophic velocities provided by altimetry data (SEALEVEL_EUR_PHY_L4_MY_008_068) in the
Gulf of Gabés over the period 1993-2022. Panel (a): North GG; Panel (b): Central GG; Panel(c): South GG. The quantities are

averages over each of the boxes defined in Figure 4.

3.2 Model data analysis of the geostrophic circulation in 2022
The GG surface circulation is strongly controlled by tides (Zayen et al., 2020). The highest tidal
ranges can be detected in the central part of the GG, whilst they are much less significant outside of

the gulf (Abdennadher and Boukthir, 2006). Tidal movements, which induce vertical mixing, could
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be considered as a potential cause of high chlorophyll concentration in the CGG (Macias et al.,
2018).

The following sections will focus on the CGG dynamics, both because of its importance from the
biological production point of view, as shown previously by Feki-Sahnoun et al. (2018), and
because it represents a site of particular interest to investigate the influence of tidal forcing on
dynamics.

3.2.1 Seasonal variability

The comparison of the mean seasonal geostrophic circulation in 2022 derived from full SSH and
detided SSH is shown in Figures 6 and 7, where the arrows representing the geostrophic velocities
are superimposed on the kinetic energy. During winter/fall the mean flow tends to inflow from the
south to the north, while in spring and summer its circulation is mainly cyclonic bordering the
coastline. Our results are in good agreement with previous studies in the Mediterranean Sea (Vigo et
al., 2018a). The difference in flow direction in the CG can be related to the topography of the gulf
(Figure 1) and/or to the horizontal pressure force influenced by anomalous cyclonic and
anticyclonic atmospheric conditions which were present in 2022, as found in Marullo et al. (2023).
These atmospheric conditions could also be potential causes of the different seasonal geostrophic
patterns shown in Figure 6 and 7. The influence of tides can also be found in the difference of the
seasonally averaged KE computed in the case of full SSH and detided SSH. In winter, in the case of
geostrophic currents computed from full SSH, the KE can reach ~50 cm?/s?, while it decreases in
the other seasons with the lowest values detected in summer/fall (KE <5 cm?s®). The tides'
influence on geostrophic circulation can be also quantified by the differences in mean KE computed
from full SSH and detided SSH fields. The largest MKE values (8.25 and 8.06 cm?/s* for tidal and
detided fields, respectively) can be observed in winter, while the lowest values are observable in
fall, with an average value of about 0.17/0.14 cm?/s*. In spring and summer, the MKE values are
2.06/1.3 and 0.43/0.23 cm?/s?, respectively. Moreover, in spring and summer the relative weight of
the tidal component of the KE is much stronger (46% and 37% respectively) than in winter and fall
(2% and 17%). Since tidal forcing itself does not have significant seasonal variability, it is clear that
it does not affect the varying seasonal patterns shown in Figures 6a, c and 7a, c . The impact of tides
on geostrophic circulation can be observed for the cyclonic vortex detectable in spring, summer and
fall north-west of Djerba Island (~10.4°E-10.9°E and ~33.8°N-34.15°N, see the red lines in Figures
6 and 7) in the full SSH field, which disappears when deriving geostrophic circulation from detided
SSH fields.
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417  Figure 6: Seasonal mean geostrophic currents computed from MEDSEA_ANALYSISFORECAST_PHY_006_013 product SSH
418 fields; both native with tidal forcing included (a, c) and detided (b, d) superimposed to seasonal Mean Kinetic Energy (MKE), in
419  winter and spring, for the year 2022. The average MKE values are shown in the inserts. The black rectangles show the CGG while

420  the dashed red lines show the cyclonic currents.
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Figure 7: Seasonal mean geostrophic currents computed from MEDSEA_ANALYSISFORECAST PHY_006_013 product SSH
fields; both native with tidal forcing included (a, c) and detided (b, d) superimposed to seasonal Mean Kinetic Energy (MKE), in
summer and fall for the year 2022. The average MKE values are shown in the inserts. The black rectangles show the CGG while the

dashed red lines show the cyclonic currents.

We quantified the impact of tides on the dynamics of the CGG by computing the normalized
Okubo-Weiss parameter Q* (eq. 6) from the geostrophic currents derived from the model SSH
fields in 2022. The results are displayed in Figures 8 a, c and 9a, c for the full signal and Figures 8
b, d and 9b,d for the tidal residual. Analyzing the geostrophic circulation derived from full SSH
fields in the CGG, the study area can be classified as a hyperbolic region throughout all the seasons,

with a value of Q* clearly close to 1 for most of the time (>90%), due to strong deformation
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Figure 8: Seasonal mean normalized Okubo-Weiss parameter Q* with superimposed mean geostrophic currents computed from
MEDSEA_ANALYSISFORECAST_PHY_006_013 product SSH fields, both native with tidal forcing included (a, c) and detided (b,

d), in winter and spring for the year 2022. The inserts show the percentage of the domain where Q*<0 (elliptic grid cells) and Q*>0
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Figure 9: Seasonal mean normalized Okubo-Weiss parameter Q* with superimposed mean geostrophic currents computed from

MEDSEA_ANALYSISFORECAST_PHY_006_013 product SSH fields, both native with tidal forcing included (a, c) and detided (b,

d), in summer and fall for the year 2022. The inserts show the percentage of the domain where Q*<0 (elliptic grid cells) and Q*>0

(hyperbolic grid cells). The black rectangles show the CGG.

The highest elliptic grid cell percentages were detected in summer (7.3%) and fall (7.6%) where the

flow becomes more meandering than in winter and spring. By removing the tidal signal from SSH

fields a decrease of ~10% of the hyperbolic areas (Figures 8 b, d and 9b, d) can be observed. In

contrast, an increase of ~10% of elliptic regions can be noticed, with the flow becoming

meandering. In general, the CGG is dominated by hyperbolic regions, and the presence of tides

clearly enhances this tendency by approximately 10%. A possible explanation of the dominating
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hyperbolic structures even in the case of absence of tides might be related to the impact of wind on
geostrophic circulation. Similar results were found in the Black Sea (Bouzaiene et al., 2021) where
the hyperbolic regions are strongly dominant in winter due to larger wind stress, while in summer
the elliptic areas are more pronounced because of the meandering currents.

3.2.2 Impact of tides on strain and effect on biogeochemical distribution

In order to confirm that tidal forcing is amplifying the deformation rate S* that could increase the
recorded hyperbolic grid cells found in Figures 8 and 9, we computed the normalized deformation
rate both from full SSH (case 1) and detided SSH (case 2) fields and the corresponding time series
are shown in Figure 10. In the presence of tides (blue dots) the S* is larger than in the absence of
tides (red dots) throughout the entire considered period. The difference between S* in the two cases
has an average of approximately 0.1 (yellow dots) meaning that tides produce

stretching/deformation rates in the CGG and potentially enhance the presence of hyperbolic regions.

Normalized deformation rate, 2022
T T T T

with tides
detided

Qf, i i
.
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Figure 10: Time series of the deformation rate (S*) computed from MEDSEA_ANALYSISFORECAST_PHY_006_013 product in
2022: full SSH fields (blue curve), detided SSH fields (red curve) and their difference (yellow curve).

To investigate the influence of tides on CGG turbulence, the Probability Density Function (PDF) of
the normalized vorticity ((*) has been computed on a seasonal basis in the two different cases
mentioned above and the results are shown in Figure 11. In the case of a 2D theoretical isotropic
and homogeneous turbulent flow, the PDF shows a Gaussian shape without intermittency (absence

of tails).
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Figure 11: Seasonal Probability Density Function (PDF) of normalized vorticity ((*) computed from
MEDSEA_ANALYSISFORECAST_PHY_006_013 product in 2022: full SSH fields (bold curves) and detided SSH fields (thin

curves) in (a) winter, (b) spring, (c¢) summer and (d) fall.

In our study the PDFs exhibit nearly Gaussian shapes. These appear to be regular shapes for all the
seasons in case of flow affected by tides, with observable intermittency (long tails, ~-0.4 to 0.4)
associated with the presence of coherent structures. The first case (SSH fields including tides) is
well known as 2D quasi-geostrophic turbulence. Different Kurtosis and Skewness values depending
on the season have been found. Low skewness values were detected in spring (sk=-0.05) and in fall
(sk=0.07). Larger values were found in winter (sk=0.19) and summer (sk=0.2), with corresponding
Kurtosis values of 2.48, 2.37, 2.7 and 2.52, respectively. The difference in Skewness and Kurtosis
is essentially due to: (1) non-homogenous and anisotropic turbulent flow, (2) the influence of
coherent vortices, (3) the presence of stretching/deformation. The anisotropic flow for asymmetric

PDFs may be due to the asymmetry in flood and ebb tidal currents (Song, et al., 2011). For the 2nd
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case (i.e., the non-tidal forcing CGG dynamic) the shapes of all the normalized vorticity PDFs are
irregular.

The central part of the GG is dominated by the presence of cyclonic eddies where the divergence is
mostly positive as shown in Figure 4. The dynamics in the central GG region, as shown through the
analysis of the altimetry data, is very different with respect to its northern and southern subareas,
where prominent filaments and upwelling currents enhance phytoplankton blooms. Furthermore,
the CGG, as shown through model data analysis, is rich in tidal activity, leading to the generation of
cyclonic currents and relevant hyperbolic regions characterized by shearing and stirring oceanic
flows. The tidal perturbation may impact the mixed layer, promoting upwelling processes that
supply nutrients to the euphotic zone. The dispersion of phytoplankton blooms, when compared to
FTLE, exemplifies how metrics like FTLE can be used to demonstrate the physical control on
biogeochemical dispersion. One of the possible applications of the results of our work is the study
of the dispersion of nutrients connected to phytoplankton bloom events that occurred in the GG and
captured by NASA satellite images in March 2013 and 2017 as shown in Figure 12. The concept
behind this application is to enhance the knowledge on how physics drives biogeochemistry: by
comparing the phytoplankton blooms to the A integrated over 7 days for high resolution of initial
particle grid positions of 1/128°, this method may effectively enhance our comprehension of the
link between physical processes and biogeochemistry. The qualitative correlation between algal
bloom and A, shows how the latter can be used as a proxy for the distribution of the biomass and
nutrients within the gulf. The positive divergence detected in the central Gulf of Gabes (Fig. 4b)
explains the tendency to upwelling in this area (Poulain, 1993). The surface chlorophyll
concentration from CMS multi-satellite observations at 1 km resolution is displayed in the insets of
Figure 12 along with the phytoplankton blooms captured from NASA (March 12, 2013, March 23,
2017). A link between physics (FTLE) and biogeochemistry (Chl-a bloom) is noticeable, with the

Chl-a being dispersed on the edges of the GG coherent structures.
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Figure 12: (a) Phytoplankton bloom off the coast of Tunisia-NASA MODIS Image of the Day, March 12, 2013
(https://modis.gsfc.nasa.gov/). (b) Spatial distribution of A computed from altimetry data
(SEALEVEL_EUR_PHY_L4_MY_008_068) for 12-18 March 2013. (c) Phytoplankton blooms in the GG from NASA on March 23,
2017 and (d) spatial distribution of FTLE for 22-28 march 2017. Labels as A, B, C, D, E, F, G, H denote the features detected by
NASA. In the insets we show chlorophyll a concentration from the European Union-Copernicus Marine Service (2022) for the same

period as phytoplankton blooms were captured by NASA.

This area is therefore the natural location for a high concentration of nutrients, favored also by the
presence of cyclones (Salgado-Hernanz et al, 2019). GG features appear as transport barriers for
phytoplankton dispersion. The phytoplankton blooms are driven by fronts, filaments, and mesoscale
structures labeled as A, B, C, D, E, F, G and H in Fig. 9. A similar scenario has been observed in the
northeastern Atlantic Ocean, where phytoplankton spring blooms are modulated by the mesoscale
dynamics (Lehahn, et al., 2007). It has been found in some cases that FTLE/FSLE can show fronts
producing Chl-a filaments controlling phytoplankton bloom (Lehahn, et al., 2007; Guinder et al,
2025) and A, can be used as a good indicator of phytoplankton blooms.

23



525
526
527
528
529
530
531
532

533
534

535

536
537
538
539
540

541

542

Starting from the hypothesis adopted in Suthers et al. (2023), i. e. that frontal eddies interacting with
boundary currents may provide a suitable offshore nursery habitat, we filtered the
OCEANCOLOUR_MED BGC L4 MY 009 144 dataset in order to define the areas of the
domain with Chl-a concentration larger than 0.6 mg/m3. Then we superimposed these areas on the
FTLE fields for the same aforementioned phytoplankton bloom events in 2013 and 2017 (see Figure
13). Large amounts of Chl-a were dispersed into GG frontal boundary eddies in both cases.
Therefore, the GG coastal fronts appear to be the most significant driver for phytoplankton blooms

dispersion. FTLE can explain the relative 2D horizontal dispersion/distribution of some biological
quantities and thus provide some insights on potential vertical processes that may engender phytoplankton

blooms (Lévy et al., 2018).

Figure 13: (a) Spatial distribution of A, computed from altimetry data (SEALEVEL_EUR_PHY_L4 MY_008_068) for 12-18
March 2013 superimposed with chlorophyll a concentration (Chl-a >0.6 mg/m3, red dotted areas), from the European Union-
Copernicus Marine Service (2022) for 12 March 2013. (b) Spatial distribution of A, computed from altimetry data
(SEALEVEL_EUR_PHY_L4_MY_008_068) for 22-28 March 2017 superimposed with chlorophyll a concentration (Chl-a >0.6 mg/
m3, red dotted areas) from the European Union-Copernicus Marine Service (2022) for 23 March 2017.

4 Summary and conclusions
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In this work the main hydrodynamic features of the Gulf of Gabés were investigated by means of
geostrophic velocities derived from 30 years of satellite altimetry data and 1 year (2022) of hourly
SSH fields produced by a high-resolution oceanographic numerical system. Altimetry analysis of
the GG is presented in terms of normalized vorticity ({*), normalized divergence (6*), normalized
Okubo-Weiss (Q*), normalized deformation (S*) and FTLE (A,), to have an overview of the main
circulation features (and their seasonal variability) of the GG. The mean spatial distribution of A,
(1993-2022) confirms the presence of well-known features in the study area, such as ATC, MG,
SMG and LSBV. The signature of these features can be found in the intensity of A, (Fig. 2b). The
FTLE is a powerful diagnostic tool for ocean turbulence and horizontal mixing/stirring. It often
varies inversely with phytoplankton concentration as it can act as a barrier to offshore transport
(Hernandez-Garcia et al., 2010). This may explain the poverty in nutrients in regions relatively far
from the GG where we detected high values of A, and it is in agreement with the known high
biological production in areas close to the coast, where we found low values of A. This study
investigates sea surface height trends over the GG from 1993 to 2022, where the surface layer
shows a speed trend of 0.033 cm/s and a KE trend of 0.34 cm?/s?2 as shown in Figure 3. The
evolution of regional dynamics, and the consequent potential impact on biogeochemical aspects, is
certainly a highly interesting topic, worthy of further investigation in future studies.

The different statistics show the presence of three different dynamical areas close to the GG coastal
zones; North Gulf of Gabés (NGG), Central Gulf of Gabés (CGG) and Southern Gulf of Gabeés
(SGG).

The CGG subarea can be considered a zone rich in nutrients (since 6* showed some positive values)
where the flow tends to spread particles. This scenario is observed for some seasons, with the
divergence positive curve indicating the divergence of the CGG flow and explaining the
phytoplankton blooms previously observed by Feki-Sahnoun et al. (2018). Furthermore, in the
coastal zones located in the NGG the flow tends to be neutral (6*~0), except for some seasons when
&* is larger than zero, maybe due to the presence of upwelling events close to Djerba Island. In
contrast, in the SGG, the flow is convergent, since it is characterized by a negative value of §*. In
this latter case the vorticity is concomitantly negative due to the signature of an anticyclonic vortex.
Geostrophic coastal currents and eddies are associated with the presence of hyperbolic regions
(Q*>0) in any season, with a crucial role played by stretching/deformation gradients (Figs 4 and 5).
Satellite observations are limited in the CGG, especially close to the boundaries, not allowing to
study tidal signal impact on geostrophic circulation. We used a high resolution model data to focus
on tidal signal impact on geostrophic pattern and topology (i.e., the distribution of elliptic and

hyperbolic regions). To the best of our knowledge, this paper for the first time discusses how tides
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affect the CGG flow topology. The flow topology has been related to anomalous absolute dispersion
regimes in the Mediterranean Sea (Bouzaiene, et al., 2018) and the Black Sea (Bouzaiene, et al.,
2021). Tides amplify hyperbolic regions in the CGG, with more than 90% of hyperbolic grid cells
(Q*>0) captured in any season, while elliptic regions almost disappear due to the outgrowth of
hyperbolic ones. We also observed a significant change in geostrophic circulation pattern through
the different seasons, as discussed in Figs. 6 and 7. These different patterns could be related to gulf
topography, current instability and horizontal pressure gradients influenced by other atmospheric
components. Waves in a coupled hydrodynamic-wave model can be an important factor affecting
the geostrophic field as shown by other studies (Morales-Marquez et al 2023, Riihs et al, 2025). A
lower number of data observations were observed within the GG coastal areas as mentioned in
model QUID where the RMSD of SLA increases significantly. This discrepancy can be reduced in
the model itself since it was combined with data assimilation. In regions or time scales where
geostrophic components become significant, given that the model includes tidal forcing and wave
coupling, we might not be in geostrophic balance anymore. In the Mediterranean Sea, given that the
high resolution model includes waves and tides, it offers an accurate geostrophic circulation
(Escudier et al, 2021).

Lower MKE values are recorded in summer and autumn, while higher values are detected in winter/
spring. Since marine species disperse in regions characterized by lower turbulence and less energy
intensity, our findings are in good agreement with the results found in Salgado-Hernanz et al.
(2019), where enhanced chlorophyll distribution in the CGG starts in June, peaks in September and
terminates in February.

Another finding of this study is the way tides contribute to stretching/deformation (S*) to define the
signature of the hyperbolic regions. The time series of S* derived from geostrophic currents
computed from the full SSH fields shows larger values with respect to the one computed from
detided SSH fields. This confirms that tides are dynamically responsible for the amplification of
deformation gradients. PDFs emphasize the non-homogeneity and anisotropy of the CGG turbulent
flow due to the presence of eddies and intense strain factor.

To conclude, altimetry data available for the period of 1993-2022 was analyzed in the larger Gulf
domain by comparing the dynamics in three subareas and defining their common characteristics.
The central part of the gulf is dominated by an upwelling flow (thus characterized by divergence)
where there is an important biological production rate. The other areas located in its northern and
southern parts are dominated by anticyclonic structures. The three subareas can be classified as
hyperbolic regions (Q*>0). The geostrophic circulation derived from altimetry data for the three

decades within the GG is characterized by strong seasonal and spatial variability. Furthermore the
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dynamics varies differently in the three subareas. The high spatiotemporal resolution of model
outputs allowed the analysis of the CGG over the year 2022. In good accordance with the altimetry
analysis, the CGG can be classified as a hyperbolic area with a signal greater than 90%, whereas the
signature of elliptic zones is lower than 10%. Atmospheric conditions, topography and tidal forcing
are very important for the occurrence of hyperbolic regions driven by strain. As well as amplifying
hyperbolic regions, tides also affect the isotropy and homogeneity of the theoretical turbulent flow.
PDF is applied to quantify the impact of tides on 2D turbulence theory and the PDF asymmetric
distributions reveal the non-homogeneity and anisotropy of the surface flow due to persistent

stretched currents and eddies.
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