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Abstract. In this study, we use a data assimilation framework based on the Adaptive Markov Chain Monte Carlo (MCMC)

algorithm to constrain process parameters in LPJ-GUESS using CH4 eddy covariance flux observations from 14 different

natural boreal and temperate wetlands. The objective is to derive a single set of calibrated parameter values. These parameters

are then used in the model to validate its CH4 flux output against 5 different types of natural wetlands situated in different

locations, assessing their generality for simulating CH4 fluxes from different boreal and temperate wetlands. The results show5

that the MCMC framework has substantially reduced the cost function (measuring the misfit between simulated and observed

CH4 fluxes) and facilitated detailed characterisation of the posterior distribution. A reduction of around 95 % in the cost

function and approximately 50 % in RMSE were observed. The validation experiment results indicate that four out of 5 sites

successfully reduced RMSE, demonstrating the effectiveness of the framework for estimating CH4 emissions from wetlands

not included in the study.10

1 Introduction

Methane (CH4) emissions from wetlands contribute 20-30 % to the total global emissions (IPCC AR6 chapter 5: Canadell et al.

(2022), Saunois et al. (2020)). About one-third to one-half of these wetland emissions are from wetlands located at northern

latitudes of North America, Europe and Russia (Saunois et al., 2016a). According to the IPCC AR6 report, wetlands are the

largest single source of uncertainty to the global CH4 budget estimate. It is expected to have increased uncertainties in wetland15

CH4 emissions in the future (Christensen et al., 2007), partly due to climate change and partly due to spatio-temporal changes

in wetland extent (that in itself is partly a consequence of climate change) (Saunois et al. (2016b), Zhang et al. (2017)). A

key question to consider here is the extent to which these changes in emissions are occurring and how they will impact the

future global greenhouse gas (GHG) budget and hence the climate. While current in-situ measurement techniques such as

eddy-covariance (EC) observations are promising for drawing assumptions on this issue at local scales, studies to date have20

faced difficulties in estimating wetland CH4 emissions over large landscapes (Saunois et al., 2020).
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An attempt to overcome this limitation through process-based modelling of global CH4 emissions was first initiated by Fung

et al. (1991) followed by Christensen and Cox (1995) and more mechanistically by Cao et al. (1996), and Walter and Heimann

(2000). These models were simple in structure, and later more attention was given to model process improvement through the

studies of mainly Segers and Leffelaar (2001), Gedney et al. (2004), and Zhuang et al. (2006). In the last decade more detailed25

models with more complexity and a wider range of applications were developed by Wania et al. (2010), Ringeval et al. (2010),

Susiluoto et al. (2018) etc. All of these past efforts indicate that comprehensive, process-based modelling of CH4 emissions

from wetland ecosystems is unquestionably a key way to understand the variability of wetlands and how they respond to

stresses and climate change (Saunois et al., 2020).

As all these models are approximations of the real world and exhibit their own uncertainties, here again the question is30

how to reduce the uncertainty for large-scale applications. According to Kuppel et al. (2012) every terrestrial biosphere model

contains uncertainties in 5 different ways: errors in real data used for calibration, errors in meteorological forcing, errors in

process descriptions, errors in model parameter values, and inaccurate initial state of the model. The first two errors are related

to measurement, while the last three are related to model formulation and are important to improve the model performance

for general applications. There has been a growing effort to reduce uncertainty related to the last three sources of error factors35

in several ways. A popular method to reduce uncertainty in model parameters is to calibrate the model simulations against

observations. Previous studies like Williams et al. (2009), Susiluoto et al. (2018) and Kuppel et al. (2012), based on different

models, different data and different parameter sets provide examples of improving model parameters and reducing uncertainties

through data assimilation.

In this study, we consider uncertainties in parameter values of the CH4 module of a global process-based ecosystem model,40

Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) v4.1 and aim to reduce their uncertainties by assimilating EC

CH4 flux observations collected at 14 different arctic, boreal and temperate wetland sites. Dynamic Global Vegetation Models

(DGVMs) like LPJ-GUESS are state-of-the-art tools for studying the functioning of high-latitude wetlands and estimating the

dynamics in their global carbon balance (Sitch et al., 2003). In a previous study, Kallingal et al. (2023) have used EC data

collected at an individual site to investigate the potential of a Markov Chain Monte Carlo (MCMC) type (Global Rao-Black-45

wellised Adaptive Metropolis, GRaB-AM) algorithm to optimise the parameters in the CH4 module of LPJ-GUESS. The study

showed that eddy covariance measurements of CH4 flux contain useful information for optimising the CH4 model parameters

due to the high temporal resolution of the CH4 flux measurements. However, the small spatial scale (site scale) and limited

temporal extent of data collected from a single site could have over fitted parameters to the specificities of the particular site

used. This points to the need for a more general approach. For example, in a study conducted by Groenendijk et al. (2011) the50

parameters of a photosynthesis model are optimised using EC data from several Fluxnet sites. Similarly, studies like Kuppel

et al. (2012) and Raoult et al. (2016) have constrained the parameters of a global ecosystem model using multi-site EC data.

Considering these studies and the results of Kallingal et al. (2023), we hypothesise that assimilating daily CH4 multi-site field

observations using the GRaB-AM framework can derive a set of optimised general parameters capable of representing various

types of northern wetlands.55
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The present study’s objective is to investigate the capacity of the GRaB-AM framework developed by Kallingal et al. (2023)

for calibrating process model parameters in a more general multi-site framework. We aim to optimise selected model parameters

for examining to what extent this optimisation improves the model’s ability to simulate the seasonal cycle of CH4 from different

wetlands over northern latitudes above 40◦ N. We also aim to estimate the model process and parameter correlations and

uncertainties. The 14 sites chosen for this study were selected to encompass diverse bioclimatic and geographical characteristics60

of wetlands. This deliberate selection aimed to endow the optimised parameters with the ability to represent a range of wetland

types, independent of their distinct climatic and geographical features. We then perform additional validation simulations to

evaluate the performance of the calibrated model against 5 different, independent validation sites to verify our above mentioned

hypothesis. In the following, we first give a brief overview of the LPJ-GUESS model, the data used in the assimilation and the

data assimilation methodology itself. The assimilation results are then presented and discussed in Sect. 3 before we end with65

the conclusions (Sect. 4).

2 Data and methodology

2.1 LPJ-GUESS model

LPJ-GUESS represents the structure and dynamics of terrestrial ecosystems from local to global scales (Smith (2001), Smith

et al. (2014)). The model combines basic eco-physiological features with detailed vegetation dynamics and canopy structure70

as used in forest gap models, and includes an interactive nitrogen cycle (Smith et al., 2014). In version 4.1, which we used

for this study, global vegetation is grouped into thirteen different co-occurring mixtures of Plant Functional types (PFTs) and

5 additional PFTs that can only exist on peatland stands. The model input data consists of climate parameters (mean daily

air temperature, precipitation and incoming shortwave radiation), atmospheric CO2 concentrations and soil properties. LPJ-

GUESS simulates vegetation dynamics, ecosystem biogeochemistry, water cycling and energy and carbon fluxes on a daily75

time step. The peatland module in LPJ-GUESS contains detailed representations of wetland PFT characteristics and bio-geo-

chemical processes including, estimation of peat temperature, hydrology and ecosystem exchanges, including CH4 emissions.

2.1.1 Main process description in CH4 module of LPJ-GUESS

A detailed description of the wetland and CH4 emissions module is given in Wania et al. (2010) and in Kallingal et al. (2023).

Here, we only briefly summarise the most important aspects of the module. The wetland peat in LPJ-GUESS is 1.5 m deep and80

is divided into an acrotelm of thickness 0.3 m with varying water table depth (wtd), and a permanently saturated catotelm. Peat

hydrology and peat temperature in this layered structure depend on its composition and prevailing meteorological conditions.

The five types of PFTs implemented in the wetlands are Sphagnum mosses, C3 graminoids, evergreen and deciduous shrubs

and a generic herbaceous cushion lichen moss PFT. Shade mortality, inundation stress and daily desiccation stress are limiting

factors for the existence and productivity of these PFTs.85
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A potential soil carbon pool distributed in proportion to the root distribution for methanogens to produce CH4 is the basic

concept of the CH4 module in LPJ-GUESS. The carbon in the soil is transformed to CH4 or CO2 depending on the hydrological

conditions. A fraction of the produced CH4 is in dissolved form and the remainder is in gaseous form. A part of this CH4 is

oxidised by the oxygen in the soil and the other part is eventually transported to the atmosphere through either diffusion, plant-

mediated transport or ebullition. As shown in Eq.1 the sum of the emissions through these three pathways constitutes the total90

CH4 flux from the soil to the atmosphere (Wania et al. (2010), Kallingal et al. (2023)).

FCH4 = CH4diff + CH4plant + CH4ebul (1)

where FCH4 is the total CH4 flux, CH4diff is the CH4 flux component from diffusion, CH4plant is the CH4 flux component

from plant-mediated transport and CH4ebul is the CH4 flux component from ebullition.

2.1.2 Parameter selection95

The parameters selected for optimisation in this study are shown in Table 1. For this study we have considered 10 out of 11

parameters calibrated by Kallingal et al. (2023) in their single-site optimisation. The parameter wtiller is removed because it

showed high correlation with rtiller in Kallingal et al. (2023).

Table 1. Parameters selected for the multi-site assimilation. Model prior values, prior standard deviation (std), units, and description of the

parameters are given.

Number Parameter Prior value Prior std Unit Description

1. Rmoist 0.4 0.396 - Moisture response in acrotelm

2. CH4/CO2 0.085 0.236 - CH4 to CO2 ratio

3. foxid 0.5 0.36 - Litter CO2 fraction

4. ϕtiller 70 36 % Porosity of tiller

5. rtiller 0.0035 0.004 m Radius of Tiller

6. fair 0 4 % Fraction of air in peat

7. poracro 0.98 0.06 - Acrotelm porosity

8. porcato 0.92 0.076 - Catotelm porosity

9. Rmoist-an* 0.025 0.04 - Moisture response in catotelm

10. λroot 25.17 12 cm Decay length of root biomass

2.2 Flux sites and climate data

As mentioned above, for this study we selected 14 natural wetland sites for the assimilation and 5 additional wetland sites for100

validation (see Fig. 1, Table 2 and Table 6). The selection criteria for the sites were: 1) that they are located above 40◦North, 2)

that they include at least three years of consecutive CH4 (at least the summer) measurements and meteorological measurements
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available for the sites used for assimilation and same criteria, but, at least two years of measurements available for the sites

used for validation, and 3) that they represent arctic, boreal or temperate ecosystems. We did not consider lakes, uplands, etc.

as they are beyond the scope of the present study. The nineteen sites are representative for a range of wetland types including105

fens, mires, bogs, marshes and a wet tundra (for validation).

Figure 1. Location of measurement sites selected for the study. The 14 sites used for assimilation are indicated as circles and the 5 sites used

for validation are indicated as stars. The numbers in the left and right side legends correspond to the numbers assigned to the sites in Table 2

and Table 6, respectively.

In total we have used 18,437 data points of daily CH4 measurements for assimilation, spanning approximately 93 measurement-

years. We did not consider any sites where the climate data had gaps of more than fourteen days. In case of gaps smaller than

fourteen days the data are back-filled (by copying the values from the preceding cells) to ensure dataset continuity, as data with

gaps cannot be used in the model as input. For validation, we utilised 5111 data points spanning a total of 14 measurement110

years. For all sites, only the available CH4 observations are compared with the model both for assimilation and validation, i.e.,

we do not use any gap-filled data. It should be noted that for the assimilation sites Att, Bon, Sco, Uoa, and Zak, most of the

data from winter months were missing, while for the validation sites Lgt and Wpt, most of the data from summer months were

missing. We assume that the missing winter data from the sites used for assimilation will not introduce considerable bias, as

the model simulates almost zero emissions during winter.115
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Table 2. Site information and data references of the 14 natural wetland sites used for assimilation. MAT refers to the mean annual temperature

and MAPr to the mean annual precipitation. For Bib, Deg, Lom, Los, Ole, Sco, Sii, and Uao MAT and MAPr are extracted from the

corresponding grid cells of the site locations of the WorldClim 2.0 gridded product (Fick and Hijmans, 2017), and for the rest of the sites, the

information is taken from their references. The table also includes type, coordinates and climate zones of the wetlands, as well as the time

period of data availability.

No Site Abr. Type Location Climate

Zone

MAT

(◦C)

MAPr

(mm)

Period Reference

1. Abisko Abi Bog 68.21◦N, 19.03◦E Arctic -0.7 304 2014-18 Łakomiec et al. (2021)

2. Attawapiskat Att Fen 52.70◦N, -83.95◦E Boreal -1.3 700 2011-20 Todd and Humphreys (2018)

3. Bibai Bib Bog 43.32◦N, 141.81◦E Temperate 6.7 1153 2015-19 Ueyama et al. (2020)

4. Bonanza Creek Bon Bog 64.69◦N, -148.32◦E Boreal -0.9 331 2014-17 Euskirchen and Edgar (2020)

5. Degerö Deg Fen 64.18◦N, 19.55◦E Boreal 1.2 523 2014-19 Granberg et al. (2001)

6. Huetelmoor Hue Fen 54.21◦N, 12.17◦E Temperate 10.2 572 2011-19 Koebsch and Jurasinski (2020)

7. Lompolojänkkä Lom Fen 68.00◦N, 24.21◦E Boreal -0.4 484 2006-15 Lohila et al. (2020), Aurela et al. (2015)

8. Lost Creek Los Fen 46.08◦N, -89.97◦E Temperate 4.8 833 2014-19 Desai and Thom (2020)

9. Olentangy Ole Marsh 40.02◦N, -83.01◦E Temperate 12.1 1120 2011-16 Bohrer and Morin (2020)

10. Scotty Creek Sco Bog 61.30◦N, -121.29◦E Boreal -2.8 414 2014-18 Sonnentag and Helbig (2020)

11. Siikaneva Sii Fen 61.83◦N, 24.193◦E Boreal 4.2 707 2005-15 Rinne et al. (2018)

12. Uni. of Alaska Uoa Bog 64.86◦N, -147.85◦E Boreal -2.9 611 2011-19 Iwata et al. (2020)

13. Zackenberg Zak Fen 74.30◦N, -20.30◦E Arctic -8.6 253 2006-20 Scheller et al. (2021)

14. Zarnekow Zar Fen 53.87◦N, 12.88◦E Temperate 9.7 426 2014-19 Sachs et al. (2020)

2.3 Data assimilation system

To find an optimal posterior parameter set we used an adaptive Rao–Blackwellised Markov Chain Monte Carlo Metropolis-

Hastings (MCMC-MH) algorithm (Andrieu and Thoms, 2008) to iteratively reduce a so-called cost function (see Eq. 2) that

compares the modelled observable with the observations. The details of this search algorithm and its application to a single-site

optimisation have been described in Kallingal et al. (2023). Efficient sampling from the target distribution requires a proposal120

distribution that correctly represents the dependence structure of the target, and to avoid manual tuning of the proposal we use

an adaptive MCMC to tune the proposal distribution, where the Rao–Blackwellisation improves the adaptation step. The tuning

improves the MCMC convergence speed and avoid cases of incomplete convergence (Andrieu and Thoms, 2008), especially

for a complex non-linear model like LPJ-GUESS.

We assumed errors in observation and parameters in the form of Gaussian distributions yielding the cost function J (x),125

J(x) =
1
2

n∑

i=1

(Yi −Mi(x))tR−1
i (Yi −Mi(x)) +

1
2
(x−xp)tB−1(x−xp) (2)

where Yi are the CH4 observations at the ith site, M(x) is the simulated CH4 values from LPJ-GUESS given parameters x,

R is the covariance matrix of the observation errors, xp are the expected prior parameters and B is the prior parameter error
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covariance matrix. Thus the first term represents the model-data misfit weighted by the observation error covariances and the

second term represents the prior information on the parameters weighted by the parameter error covariances.130

Samples are generated by drawing xprop from a proposal distribution and then either accepting the proposed state (xi = xprop)

or keeping the current state (xi = xi−1) based on the posterior probabilities. The probability of accepting the proposed state

(α) is generally computed as

α = min
(

1,
P (xprop)
P (xi−1)

)
(3)

Here, P (xprop) is the posterior probability of the proposed state, and P (xi−1) is the posterior probability of the current state,135

both computed using the cost function, Eq. 2. The acceptance probability ensures a balanced exploration of the parameter

space, accepting states that improve the fit while allowing occasional exploration of less favorable regions (see Andrieu and

Thoms (2008) for technical details and Kallingal et al. (2023) for the implementation).

Table 3. Data availability and threshold estimated for the base error values. The number of available observations from each site is also

provided.

No Site
Threshold for

base error (gC m−2d−1) No. of obs. Available

data (%)

Error below the
threshold (gC m−2d−1)

1. Abi 0.003 1310 89.7 0.09

2. Att 0.0012 1952 61.65 0.036

3. Bib 0.01 815 60.1 0.3

4. Bon 0.01 560 60.0 0.3

5. Deg 0.0057 1361 74.6 0.15

6. Hue 0.037 2124 76.4 1.1

7. Lom 0.011 1682 51.3 0.32

8. Los 0.0085 1472 83.0 0.25

9. Ole 0.0085 1135 74.6 0.25

10. Sco 0.018 646 49.5 0.53

11. Sii 0.01 1547 44.1 0.3

12. Uao 0.013 1126 41 0.38

13. Zak 0.007 1294 26.67 0.21

14. Zar 0.04 1413 77.42 1.2

For optimisation we used the GRaB-AM with a chain length of 100,000 iterations, where each iteration involves one com-

plete model run for all 14 sites. As mentioned above, daily averages of observations collected from the above-mentioned 14140

sites are assimilated simultaneously. For each site only the actual observations, i.e., not gap-filled data are used to calculate the

cost function.

Considering the difficulty of calculating error correlations in the observations, we only considered errors in individual ob-

servations, i.e., we did not consider off-diagonal elements in specifying the observational error covariance matrix R in the
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cost function (Eq. 2). Estimating the exact observation error for each site is again challenging. Assigning a constant percent-145

age error for all measured values could introduce a bias, as it would result in high error values for measurements with high

magnitudes and very low error values for observations with small magnitudes. To overcome this challenge, we followed the

procedure introduced by Knorr and Kattge (2005) for the case of assimilating CO2 eddy covariance observations and assign a

threshold value set at 5% of the variance of the distributions of observations, calculated separately for each site. Values below

this threshold are identified, and a uniform error is assigned to them (see Table 3) . An error of 30% is estimated for the ob-150

servations greater than the threshold values. For the matrix B in the Eq. 2, for each parameter a standard deviation of 40% of

their possible range is assumed based on the expertise of LPJ-GUESS modellers.

2.4 Posterior estimation

After completing a full run of the chain, the posterior parameter error covariance matrix (Bp) is estimated from the prior error

covariance matrices of the observations, R, and of the parameters, B, and the linearisation of the model fat the minimum of the155

cost function, J(M∞) , as described in Tarantola (1987).

Bp = [M t
∞R−1M∞+ B−1]−1 (4)

Bp is then used to estimate the level of optimisation of each parameter and the sensitivity of the cost function to them. The

posterior parameter uncertainties have been estimated from the square root of the diagonal elements of Bp. Large absolute

values of posterior error correlations indicate that the observations do not provide independent information to distinguish the160

effects of a given parameter pair (Tarantola, 1987).

From the 100,000 samples yielded by the GRaB-AM framework 75% of this chain was discarded as burn-in. The remain-

ing part of the chain, which we consider as converged to its stationary distribution was used for calculating the Maximum

a Posteriori estimation (MAP) and posterior mean estimations. The posterior distributions of parameters are classified as

’well-constrained’, ’poorly constrained’, and ’edge-hitting’ parameters. The well-constrained parameters are characterised by165

a clearly defined unimodal distribution with a low standard deviation. Conversely, poorly constrained parameters exhibit a

relatively flat multimodal distribution with a large standard deviation. For a more precise estimation, we classified posterior pa-

rameter distributions as poorly constrained if the standard deviation exceeded 20% of the total range. Edge-hitting parameters

cluster near one of the edges of their prior range, as described by Kallingal et al. (2023) and Braswell et al. (2005).

2.5 Experimental setup170

The model is spun up for 500 years using available Climate Research Unit (CRU) meteorological forcing data (University of

East Anglia Climatic Research Unit , CRU) to bring the model state variables, i.e., the various carbon pools to initial equi-

librium. After spinning up, the model was run for the 14 study sites using local, daily meteorological forcing data collected

directly at the sites. We have bias-corrected the CRU data for the gridcells in which the sites are located to enforce agree-

ment with monthly mean values of the site-specific meteorological input data. For this we have used at least two years of175
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meteorological data that are recorded prior to the time period of the site observations that we used for the assimilation. Daily

measurements of air temperature, precipitation, and incoming short-wave radiation collected at the wetland are used to input

the model. Atmospheric CO2 concentration, as described in McGuire et al. (2001) and updated until recent years using data

from the NOAA Global Monitoring Laboratory (NOAA-GML) is used as the CO2 concentration input to the model.

Most of the CH4 observations at the sites were available with a half-hourly resolution, but for the assimilation we used daily180

mean values corresponding to the LPJ-GUESS temporal resolution. Also, using daily values reduces the complexity of error

correlations of half-hourly data and is better suited for a broad range time scale assimilation (Lasslop et al., 2008). Days with

less than 50% of half-hourly CH4 data availability were removed from the assimilation.

3 Result and discussion

The GRaB-AM algorithm incorporates the adaptation mechanism with Rao-Blackwellisation, which recursively updates the185

covariance of the proposal distribution to capture the dependence among different parameters. In theory, this will improve

the efficiency of MCMC by allowing the proposal distribution to take larger steps, while still accounting for parameter inter-

dependencies; important particularly for high-dimensional and correlated parameter spaces. In the optimisation process laid

out here, with observations from multiple sites and with high-dimensional parameter spaces and a highly non-linear model, the

GRaB-AM algorithm is particularly beneficial because it enhances the exploration of a wider parameter space while adapting190

the proposal distribution over iterations. Having multiple sites in this framework, one crucial challenge was scaling the cost

function to maintain a balanced representation of each site’s contribution to the overall model-data misfit. This process is

particularly relevant when sites exhibit variations in the magnitude of their individual cost functions or when the number

of observations at each site differs significantly. Here, the scaling factors are carefully chosen to ensure an approximately

equal representation of all sites in the cost function, regardless of their individual characteristics, and to ensure that each site195

has an equal influence on the optimisation outcome. This study undertook an in-depth examination of posterior parameter

distributions, correlations between posterior parameters, and correlations of flux components.

3.1 Posterior parameter distributions

The posterior Probability Density Functions (PDFs) of the parameters from the MCMC chains after the burn-in are displayed

in Fig. 2. All parameters, except for ϕtiller, fair and poracro, are well-constrained with only one peak in the PDF. However, the200

parameters ϕtiller , fair and poracro are rather poorly constrained, exhibiting some clustering around multiple peaks in the PDF

and having large standard deviations (see Fig. 2).

Except for λroot, none of the parameters exhibited edge-hitting behaviour, indicating that the hypothetical boundaries as-

signed for each parameter align well with the model structure. The parameter λroot finds its solution nearly at the lower edge.

Most parameters displayed posterior solutions far from their prior values, i.e., the prior values where outside the posterior mean205

estimate ±1σ, except for ϕtiller. For ϕtiller, both the MAP and posterior mean appeared close to the prior value, i.e., within 1σ

of the posterior mean estimate. Overall, the posterior parameter distributions indicate a successful search within the permitted

9

https://doi.org/10.5194/egusphere-2024-373
Preprint. Discussion started: 28 February 2024
c© Author(s) 2024. CC BY 4.0 License.



parameter ranges. The Rmoist, fair, and λroot showed high skewness and kurtosis. However, the smaller kurtosis values of

foxid, porcato, and Rmoistan
, along with their low skewness, indicate that they closely resemble Gaussian distributions. The re-

maining four parameters showed low skewness, suggesting agreement with a Gaussian distribution, but with very low kurtosis210

indicating somewhat flatter distributions than a Gaussian distribution.

3.2 Posterior parameter estimates and cross-correlation

The posterior parameter values estimated from the MAP and the posterior mean estimate, along with their standard deviations,

are presented in Table 4. A cross-correlation plot (see Fig. 3) shows the correlation between all ten parameter pairs after opti-

misation to examine potential optimisation issues due to parameter correlation. High positive or negative correlations suggest215

that these parameters may convey similar information, and one of them might be redundant in further studies. The results show

that not many parameters have strong positive or negative correlations, except for the correlation between CH4/CO2 and

Rmoistan, which has a high negative correlation of -0.82. Many slight positive correlations are observed, with a few pairs like

poracro and porcato, porcato and fair having comparatively higher values.

Figure 2. PDFs of the posterior obtained after the GRaB-AM experiment. The blue curves are smoothed Gaussian kernel estimates on the

posterior histograms, while the black curves represent the prior distributions. The dotted vertical lines in green, orange, and black correspond

to the posterior mean, MAP, and prior means, respectively. The shaded grey area in the distributions represents the 1σ error estimate of the

PDFs. Skewness and kurtosis values for each posterior distribution are provided in rectangles.

Rmoist and Rmoistan: These parameters are related to the moisture response in the acrotelm and catotelm, respectively.220

A smaller value of Rmoist and Rmoistan
would result in a slower soil carbon turnover time in both aerobic and anaerobic

environments, leading to slightly less carbon available for CH4 production. Although this could decrease the total decomposed

carbon in the soil, the strong negative correlation between Rmoistan and CH4/CO2, and the weak negative correlation between

Rmoist and CH4/CO2, indicate that the decrease in these parameters has influenced the increase in the CH4 fraction from this
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reduced amount of decomposed soil fraction. This indicates that other factors such as water table depth, availability of oxygen,225

soil temperature, etc., might have influenced the CH4 production.

CH4/CO2: The CH4/CO2 was increased to a slightly higher value of 0.14 after the optimisation. This indicates a compar-

atively higher CH4 emission fraction from the total decomposed carbon.

foxid: The fraction of oxidised CH4, utilising available oxygen in the soil, is represented by the parameter foxid. The posterior

parameter value (0.76) is increased compared to the prior. This indicates that a substantial fraction of the produced CH4 will230

get oxidised, while the remaining CH4 (24%) will get transported to the atmosphere.

ϕtiller and rtiller: The posterior parameter values estimated for ϕtiller and rtiller are higher than the prior values, 0.77 and 0.0081,

respectively. With aerenchyma tissues having more porous space and a larger radius, the plant-mediated transport of CH4 to the

atmosphere is facilitated. However, through the same spacious aerenchyma tissues, plants also have the potential to transport

more O2 to the soil. This potential increase in the transport of O2 to the soil could be a reason for increase in foxid, considering235

the slight positive correlation observed between foxid and ϕtiller.

fair, poracro, and porcato: These three parameters are related to soil composition. The posterior values of fair increased com-

pared to the model prior indicate a higher fraction of air in the soil. The decrease in poracro and porcato indicates decreased

porosity in the acrotelm (which can contain both water or air) and catotelm (which can contain only water) respectively. fair

and poracro are positively correlated, indicating more air in a more compact acrotelm environment with less water. A higher240

amount of air in the acrotelm can have a positive effect on diffusion. In the model, the diffusivity of CH4 in air is estimated to

be four orders of magnitude larger than in water. On the other hand, the lower porosity in the catotelm can reduce ebullition

due to less water availability that can retain an excess amount of CH4 and release it when reaching the solubility threshold (see

Kallingal et al. (2023) and Wania et al. (2010) for details).
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Figure 3. Posterior correlations between parameters derived from the GRaB-AM optimisation. In the upper triangle of the figure, negative

correlations are depicted in blue and positive correlations are shown in red. The numerical labels on the upper triangle correspond to values

of Pearson’s correlation coefficient. The diagonal panels exhibit 1-D histograms for each model parameter. The lower triangle displays two-

dimensional marginal distributions for each parameter. The grey dots on the marginal distributions represent the parameter values obtained

from the posterior GRaB-AM chain. The ranges of the distributions are labeled on the left and bottom of the figure.

λroot: λroot played a crucial role in this optimisation. After optimisation, this parameter got a significantly lower value of 10.25245

cm compared to the prior. It seems that the optimisation, when generally trying to reduce the emission from the model, has a

tendency to reduce the decay length of root biomass in the soil. The posterior parameter value closely aligns with the values
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reported in Kallingal et al. (2023) (10.47 cm). The optimisation results indicate a much shallower soil profile for the majority

of root decay activities and CH4. Given that most of the peat decomposition activities are assumed to occur in acrotelm, the

reduction in the magnitude of λroot could substantially facilitate diffusion.250

Table 4. Posterior parameter value estimate of the GRaB-AM. The prior values, maximum a posteriori (MAP), posterior mean, posterior

standard deviations (std) are given. The cost function values of prior and posterior estimates are also given.

Parameter

Rmoist CH4/CO2 foxid ϕtiller rtiller fair poracro porcato Rmoist_an λroot Cost value (w)

Start prior vals. 0.3 0.2 0.6 0.8 0.003 0.001 0.9 0.87 0.04 35 4897.95

MAP 0.13 0.12 0.75 0.82 0.0092 0.008 0.95 0.86 0.017 10.25 221.01

Posterior mean 0.15 0.14 0.76 0.77 0.0081 0.023 0.94 0.86 0.017 10.25 227.30

std ∓ 0.045 0.007 0.027 0.15 0.0012 0.02 0.027 0.008 0.005 0.23

3.3 Performance of the optimisation and cost function reduction

The unweighted cost function values for each of the 14 sites individually and their collective sum, along with the corresponding

Root Mean Square Error (RMSE) and χ2 values, are presented in Table B1 in the appendix. The estimated prior cost function

value was 1,763,294.9, and through the optimisation process, it was significantly reduced to 79,296.4 for the posterior mean

estimate. This substantial reduction of approximately 95 %, demonstrates the effectiveness of the GRaB-AM algorithm in255

minimising the cost function. Notably, this successful optimisation occurred even when assimilating data from multiple sites

with diverse climatic conditions.

The total reduced chi-square, calculated as twice the value of the cost function divided by the number of observations, has

a value of 8.6, indicating a slight underfitting between the model output and observed data accounting for measurement and

parameter uncertainty. Notably, none of the sites exhibit overconfidence, as indicated by the individual site χ2 values larger260

than 1, with the exception of the site Hue, which shows a χ2 value below but close to 1 (see Table B1 in the appendix).

The site-wise data-model misfit, presented in terms of RMSE, both before and after optimisation, along with the average

RMSE for all sites combined is presented in Fig. 4. Most sites demonstrate a substantial reduction in RMSE, with many

achieving over 50 % improvement. This suggests a concerted effort to minimise the misfit, particularly evident in sites such as

Abi, Att, Bon, and Uoa, with notable RMSE reductions of 63.5 %, 68.1 %, 70.9 %, and 68.4 %, respectively. These significant265

reductions imply enhanced accuracy in the model predictions. However, the persistence of model-data misfit is highlighted

by the elevated χ2 values for these sites, namely 22.6, 20.3, 6.8, and 9.2, respectively in the posterior estimate (Table B1 in

appendix). The sites Hue, Sco, and Zak have shown the smallest RMSE reduction, but the low χ2 value indicates a consistent
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fit to the observation given the assumed uncertainties. The result indicates that attention should be given to the sites with

smaller RMSE and bigger χ2 values, such as Bib, Lom, Ole, Sii, and Zar, as there might be a possibility to further improve270

them. Overall, the optimisation successfully reduced the model-data misfits, with some variations in the degree of improvement

among different sites. Additionally, the substantial reduction in the total cost function, RMSE and χ2 values from the prior to

the posterior indicate an overall improvement of the model.

Even though no correlations are observed between the types of wetlands and their locations, we note that the sites that

showed a considerable reduction in RMSE, such as Abi, Att, Bon, Deg, Lom, Los, Sii, Uoa, and Zar, are those that are boreal275

or arctic in nature, missing only Sco and Zak. Except for Los, all sites located in the temperate region, namely Hue, Ole, Bib,

and Zar, showed comparatively lower reductions in RMSE (see Table 2 and Fig. 4).

Figure 4. Prior and posterior Root Mean Square Error (RMSE) estimates are provided for each of the 14 sites individually, along with the

combined average values. In the figure, purple, cyan, and grey bars represent the RMSE corresponding to the prior estimate, Maximum A

Posteriori (MAP) estimate, and posterior mean estimate, respectively.

3.4 Impact of the optimisation

Time-series of the annual sums of CH4 emissions at four of the 14 sites used in this study (the time-series of the remaining

sites are shown in appendix B2, Fig. B2) are shown in Fig. 6a. It demonstrates the ability of the optimised model to capture280

the annual budget of these sites, irrespective of geographical, temporal, and climatic variability. All four sites exhibited a better

fit to the annual budget after the optimisation. Particularly noteworthy is the site Bib, which had a prior estimation in 2016

significantly deviating from the observed values. This discrepancy was corrected in the posterior estimate, and the annual

posterior CH4 emissions at all four sites align well with the observations after the optimisation. Figure 6b displays the mean

annual sums of CH4 estimated at all 14 sites. The figure illustrates that the highest contribution came from the sites Hue and285

Zar, which have the highest mean annual temperature (MAT) as compared to other sites. The lowest contributions are from

Zak and Abi, which have below-zero MAT. Abi, Att, Los, Ole, Sco, Sii, Uoa, Zak, and Zar showed improvement in the mean
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annual budgets after the optimisation. The remaining sites did not show an improvement. Sites with a large difference between

observed and modeled CH4 tend to have a biased influence on the total cost estimation based on the magnitude of the difference.

This can be observed, for example, for the sites Att, Hue, and Zar that all had a high contribution to the cost value. Although we290

attempted to overcome this limitation by weighting the individual cost function terms for each site, the optimisation algorithm

compromised by finding the best fit for sites like Zar and Hue and hence showing a tendency to offset the sites like Bib, Bon,

Deg, Low, Sco.

Table 5 presents the total uncertainty for each site and the total uncertainty estimated for all sites together. This estimation

assumes independence between parameter uncertainty and model uncertainty, using the following equation:295

σtotal =
√

σ2
model + σ2

param (5)

where σmodel is the model structural uncertainty estimated from the standard deviation of the prior and posterior residuals

(Desroziers et al., 2005). σparam represents the contribution of parameter uncertainty to the overall uncertainty in observation

space, estimated from the 95 % credible interval of the parameters and the standard deviation of total sums of the model

prediction by taking into account both the parameter uncertainty from the MCMC sampling and the variability in the model300

predictions. The calculation is performed as follows:

σparam =
σpredic(CIupp −CIlow)

1.96
(6)

where, σpredic is the the standard deviation of total sums of the model prediction over MCMC runs, CIupp and CIlow are the

upper and lower bounds of the credible intervals of the parameters, and the factor 1.96 is the conversion factor to convert the

95 % credible interval to a standard deviation assuming a Gaussian distribution. The total uncertainty of the posterior CH4 flux305

estimates for all the sites together was 0.19 gCm−2d−1, whereas for the prior fluxes it was 0.36 gCm−2d−1. This results in a

reduction of the total uncertainty of around 50 % after the optimisation. Comparing the prior and posterior RMSE (Fig. 4) and

the uncertainty reduction, it can be concluded that the more constrained sites, such as Abi, Att, Bon, and Uoa, exhibited high

uncertainty reduction. Notably, Abi and Att, which had the highest prior RMSE, showed a reduction of uncertainty of around

95 % and 82 %, respectively. A low reduction in uncertainty was mainly observed in sites that demonstrated a low reduction in310

RMSE. In Contradiction to this, even though the RMSE reduction observed in the case of Zak is very small, this site showed

an uncertainty reduction of around 33 %.

Figure 5 illustrates time-series of observed, prior, and posterior fluxes for all the 14 sites considered in the assimilation. The

model adeptly captures the seasonal cycles of CH4 emissions from all wetlands, both for flux estimates using the prior and

the posterior parameter values. Generally, no significant phase shift is observed in either the prior or the posterior estimates.315

However, for Bib, both prior and posterior estimates exhibit a slight phase shift to early summer, while the sites Hue, Los and

Zar show a similar shift to late summer.

The optimisation resulted in a significant reduction in RMSE across all sites. However, emissions at Abi, Att, Los, Ole, Sii,

and Uoa sites continued to be overestimated. Notably, the posterior estimations for Abi and Att, major contributors to the total
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Table 5. Prior and posterior total uncertainty estimates (σ (gCm−2d−1)). Total parameter and model uncertainty estimates separately for

each site and collectively for all sites combined are shown.

Site Prior Unc. Posterior Unc. Site Prior Unc. Posterior Unc.

Abi 0.18 0.01 Los 0.04 0.03

Att 0.11 0.02 Ole 0.02 0.019

Bib 0.08 0.04 Sco 0.10 0.02

Bon 0.15 0.02 Sii 0.05 0.04

Deg 0.03 0.02 Uaf 0.08 0.03

Hue 0.13 0.12 Zak 0.03 0.02

Lom 0.03 0.027 Zar 0.11 0.10

Total Unc. 0.36 0.19

cost function value, remained considerably distant from the observations. These sites were assigned a high weight for the cost320

function weighting to represent them in the total cost function but without overemphasising their influence. For Bib (except

for 2015), Deg, Hue, and Zak emissions were consistently underestimated. The remaining four sites demonstrated reasonably

good agreement of the posterior estimates with the observations. Using the GRaB-AM algorithm at a single site, Kallingal

et al. (2023) observed systematic underestimation over many years. Employing multiple sites with varying climatic variability

has proven beneficial in resolving this issue, as sites like Bib, Deg, Sco, etc., exhibit both overestimation and underestimation325

in consecutive years.
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Figure 5. The CH4 simulation from the LPJ-GUESS model from 14 different wetland sites (green dots) after optimising with the GRaB-AM

algorithm. The black dots are the real CH4 observations from corresponding wetlands. The red dots are the prior simulation with the prior

model parameters used to start the MCMC chain. Three days of running averages are calculated from the original time series, and from most

of the figure a few outliers on the vertical axis have been removed for better visualisation.
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Figure 6. Figure (a) displays the annual sum estimation of CH4 from four out of 14 sites used in the study. The sites are represented in

different clours with distinct markings to distinguish between Observation, Prior, and Posterior. Figure (b) presents the mean annual sums

of CH4 estimated for all 14 sites used in this study as bar charts. It should be noted that the averages of the observations are calculated with

only the available daily averages used for the assimilation.

3.4.1 Changes in component contribution

The observed data points available from all 14 sites collectively provide a total of 888.8 gCm−2. The prior sum estimate for

the corresponding data points was 1957 gCm−2. This value reduced to 850.9 gCm−2 after optimisation, resulting in a slight

underestimation of -38.1 gCm−2. Post-optimisation, there was a reduction of approximately 56.52 % from the prior CH4 flux330

estimate. Although some underestimation persists, the optimisation demonstrated good performance in estimating the total

CH4 flux.

Changes in the component-wise estimation of ebullition, diffusion, and plant-mediated transport before and after optimi-

sation is illustrated in Fig. 7. The inner circles represent the priors, while the outer circles represent the posterior model

estimates. In general, the optimised parameters are constrained differently for different components across sites. No single335

transport mechanism was dominant after optimisation. Regarding the prior estimate, all sites but Hue and Att had significant

contributions from all three emission components. Hue and Att had a very minor contribution from plant-mediated transport.

After optimisation, zero contributions from plant-mediated transport were estimated for both these sites. Interestingly, for the
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site Los, the majority of the prior was contributed by plant-mediated transport and ebullition. However, in the posterior, ebul-

lition contributed very little and was taken over by diffusion. Furthermore, many sites showed the dominance of only two340

components after optimisation. It was consistently observed that the third component was suppressed, regardless of the nature

or climatic conditions of the site.

Figure 7. Component-wise percentage contribution of CH4 to the total modelled emission for all 14 sites is presented separately. The inner

circle represents the prior estimate, and the outer circle represents the posterior estimate.

Another interesting observation pertains to the site Zak, an arctic Fen with a very low mean annual temperature (MAT),

where nearly equal contributions from all three components were observed in the prior. The posterior, however, showed that

nearly all emissions were from diffusion, with very little contributions from the two other components. The RMSE estimate345

for this site indicates a very low reduction compared to other sites, suggesting that the optimisation did not perform well in

constraining this site. The dominance of only one or two components after optimisation suggests biases and highlights the need

for improvements in the GRaB-AM algorithm. On the other hand, resolving this issue might be achievable through component-

wise assimilation into the model using data from all three components and local hydrology observations. However, this will

be challenging due to the unavailability of data, especially of the ebullition. Measuring ebullition fluxes poses significant350

challenges, primarily attributed to the pronounced spatiotemporal variability. Ecosystems exhibit rapid, momentary surges in

fluxes, reaching exceptionally high levels within seconds, interspersed with prolonged periods of negligible ebullition (Canadell

et al., 2022).

3.4.2 Summer and winter anomalies

In freshwater wetlands the emission of CH4 can vary across latitudes based on the growing season and climatic conditions.355

Assimilating a single site into the LPJ-GUESS model, Kallingal et al. (2023) observed some difficulty in the model’s ability to

capture winter-time emissions and the tendency to underestimate the summer-emission. The model emitted zero CH4 when the
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input temperature dropped below zero. However, observations of CH4 fluxes indicated that the wetland was still emitting CH4.

Figure 8 illustrates the mean annual summer (April to September) and winter (October to March) emissions (MAS, MAW) for

all sites and their corresponding standard deviations and Fig. B1 in the appendix shows ’summer’ and ’winter’ anomalies. It360

should be noted that the winter mean and anomaly estimation for the sites Att, Bon, Sco, Uoa, and Zak was conducted with

only a very limited number of available data points, as most of them were missing. Conversely, it should be taken into account

that proper winter measurements were not carried out at these sites, given the almost negligible emission estimates during the

winter months due to their extremely cold temperatures. For all these sites, the mean annual temperature (MAT) was estimated

to be below zero (refer to Table 2 and the corresponding site references).365

Figure 8. Mean annual summer (MAS, left side) and winter (MAW, right side) emissions for all sites, along with their corresponding standard

deviations. The dots represents mean seasonal values, and error lines indicates their 1 standard deviation.

After the optimisation, both MAS and MAW emission estimates for sites Abi, Att, Los, Sco, Sii, and Zar exhibited improved

agreement with the observations. The sites Uoa and Bib showed improvement in summer but not in winter whereas the sites

Bon, Hue, Lom, and Ole improved in winter but not in summer. The sites Zak and Deg did not show any significant improve-

ment in either season. For the site Deg, the prior estimates were closer to the observations than the posterior, and for the site

Zak no significant changes were observed. Summer emissions in Zak were underestimated by both the prior and posterior370

models. This may be attributed to the relatively low (below zero) mean annual temperature (MAT) of -8.6 at this location

and the decomposition seasonality. In contrast, for the sites Abi and Att with negative MAT, the model tends to overestimate

summer emissions, the observed average summer emissions were comparatively lower. However, despite a MAT of -2.9 °C at

the site Sco and -2.6 °C at the site Uoa, both these sites demonstrated relatively high summer emissions, which were better

captured by the model using the posterior parameter values. Sites with a higher MAT, such as Hue, Bib, and Zar, exhibited375
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the highest summer emission values. Although, the site Ole, which has the highest MAT of 12.1 °C, displayed comparatively

lower summer emissions. This difference could be influenced by the substantial MAPr of 1120 mm at the Ole site.

For most of the sites, the observed winter annual mean was very close to zero, except for Bib, Deg, Hue, Ole, and Zar. For

Hue, Ole, and Zar, the posterior estimate showed better performance in capturing the seasonal trends in observations than the

prior. The site Hue exhibited high winter emissions. When the air temperature input for this site was estimated, it showed a380

mean value of 3.8 ◦C in winter months. Overall, although the majority of sites showed improved estimation of winter and

summer emissions, some of the sites remained unchanged or did not perform better than before. The estimation of the standard

deviation for summer and winter months showed a reduction for all sites after optimisation.

3.5 Validation of optimisation

When optimising model process parameters using observations from multiple sites in the assimilation, it is essential to assess385

whether the posterior set of parameters can enhance the model performance for other wetlands within the study area limit.

This assessment involves using additional observations which are not used in the assimilation process. Data from 5 different

wetlands located in various parts within the study area limit are used to estimate the impact of the optimised parameters on the

overall model performance (See Sect. 2.2 and Table 6).

Table 6. Site information and data references of 5 natural wetland sites used for validation. MAT refers to the mean annual temperature

and MAPr to the mean annual precipitation collected from their references. The table also includes the time period of data collected, the

availability of data and the type and climate zones of the wetlands.

No Site Abr. Type Location Climate Zone MAT (◦C) MAPr (mm) Period No. of Obs. Available Data (%) Reference

1. Chersky Che Wet Tundra 68.61◦N, 161.35◦E Arctic -9.8 200 2014-2017 923 84 Merbold et al. (2020)

2. La Guette Lgt Fen 47.32◦N, 2.28◦E Temperate 11.07 650 2017-2019 227 31 Jacotot et al. (2020)

3. Mycklemossen Myk Bog 58.36◦N, 12.16◦E Hemi-boreal 6.9 802 2016-2019 1095 100 White et al. (2023)

4. Schechenfilz N. Sfn Bog 47.80◦N, 11.32◦E Temperate 8.28 700 2012-2015 700 64 Schmid and Klatt (2020)

5. Winous Point N. Wpt Marsh 41.48◦N, -82.99◦E Temperate 11.4 900 2011-2014 477 44 Chen and Chu (2020)

As mentioned in Sect.2.2, the primary criterion for selecting the 14 sites used in this study was to ensure representation of390

various wetland bioclimatic and geographical attributes, including temperature, moisture, and vegetation-related parameters,

across arctic, boreal and temperate regions. Through this selection, we aimed to equip the optimised parameters with the

capability to accurately represent different types of wetlands, irrespective of their specific climatic and geographical features.

Our validation analysis suggests that the optimised parameters successfully achive the aforementioned goal.
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Table 7. RMSE reduction and the percentage change in the total emission estimate (in %) for the validation sites, along with their prior and

posterior uncertainty (σ) estimates.

Site RMSE Reduction

(%)

Change in Total

Estimation (%)

Total Prior σ Total Posterior σ

gCm−2d−1

Che 31.2 -21.5 0.29 0.19

Lgt 0.6 4.9 0.10 0.10

Myk 59.8 43.6 0.17 0.09

Sfn 81.1 38.5 0.77 0.16

Wpt -0.23 31.8 0.2 0.18

Total 58.8 19.2 0.61 0.17

Among the sites used for validation, four out of 5 sites showed a considerable reduction in RMSE (Table 7). The site Wpt, a395

temperate marsh, exhibited a very slight increase in RMSE. The total prior model-data mismatch of CH4 estimated at this site

during the time period was 72.5 gCm−2, which increased to 78.98 gCm−2 after optimisation. Despite the lack of improvement,

the total σ estimated after optimisation was slightly less than the prior. Wet tundras were not used for assimilation; however,

the site Che, a wet tundra used for validation, demonstrated a remarkable 31.2 % reduction in RMSE with a 21.5 % increase

in posterior estimation compared to the prior. Moreover, there was a significant reduction in total posterior σ, decreasing from400

0.29 to 0.19. A collective 58.8 % reduction in RMSE was observed for all sites together, with a posterior total σ of 0.19. The

most significant change was contributed by Sfn and Myk, which are temperate and hemi-boreal fens, respectively. This makes

it interesting, as in general, boreal and temperate fens were the least constrained during the optimisation.

Figure 9. Prior and posterior Root Mean Square Error (RMSE) estimates are provided for each of the 5 validation sites individually, along

with the combined average values. Purple, and grey bars represent RMSE corresponding to the prior estimate and posterior mean estimate,

respectively.
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Overall, the results from validation sites indicate that the optimised parameters perform better in representing different types

of wetlands, especially for bogs. The total estimation of observed CH4 from all the sites during the specified time period is405

319 gCm−2. The posterior estimate for the same period was 421 gCm−2, resulting in a mismatch of 102 gCm−2. Given this

observation and the less constrained nature of sites like Wpt and Lgt, which are temperate, future studies might consider the

necessity of different parameter sets for different wetland types. It is worth noting that the majority of temperate sites used for

optimisation also exhibited lower level performance in terms of cost reduction (see Sect. 3.3).

4 Conclusions410

This study aimed to optimise the simulation of CH4 emissions from natural wetlands in the LPJ-GUESS DGVM using eddy-

covariance flux measurement data obtained from 14 diverse natural wetlands, characterised by variations in temporal, spatial,

and/or climatic features. Ten selected model process parameters with the greatest influence on wetland CH4 flux simulation

are optimised using the Global Raoblackwellised Adaptive MCMC (GRaB-AM) algorithm within a Bayesian framework as

a follow-up study of Kallingal et al. (2023). GRaB-AM is computationally intensive and in this study it took around 480415

computational hours to complete the 100,000 iterations on an AMD Ryzen Threadripper processor. Following the optimisation,

the study used observations from 5 different wetlands, which again differ in their temporal, spatial and bioclimatic features, to

validate the results of the optimisation. The optimisation results showed a substantial enhancement in the model’s capacity to

align with observed CH4 fluxes, with a total reduction of approximately 50 % in RMSE and an approximately 53 % reduction in

total uncertainty. The discrepancy between the modelled and observed values decreased from 1068.5 gCm−2 to 38.1 gCm−2.420

Validation results demonstrate that four out of 5 sites reduced RMSE, contributing to an overall reduction of approximately 58.8

%. Given the remaining mismatches between observations and simulations and the presence of less constrained sites, future

investigations will focus on individual sites, and grouping them based on their bio-geo-climatic characteristics, to examine

if they need to be parameterised with different sets of parameters. Additionally, further studies are planned to quantify CH4

emissions from boreal and temporal wetlands on large spatial scales, using the optimised parameters, and to validate them425

against independent atmospheric observations, i.e., atmospheric CH4 observations provided by the European ICOS observation

network. Another intended outcome of this study is to make use of the error correlation derived from the study as prior input to

the atmospheric CH4 inversion model, such as Lund University Modular Inversion Algorithm (LUMIA) (Monteil and Scholze,

2021).

Code and data availability. The GRaB-AM code and data used for this article are available at Zenedo data deposition.The LPJ-GUESS430

model code can be obtained at LPJ-GUESS. If the site observations are intended to be used for other purposes, we highly recommend

contacting the corresponding PIs.
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Appendix A: Data source description

Among the sites used for assimilation, Bib, Bon, Deg, Hue, Los, Ole, Sco, Uoa, USA, and Zar are collected from Fluxnet

datasets (Fluxnet, Delwiche et al. (2021)). For the site Abi, CH4 data is collected from ICOS, and the climate data is obtained435

from SMHI. Data for Att was collected from Ameriflux. For the site Lom, climate observations of 2006 are taken from the

Fluxnet site mentioned above. Observations for the remaining years are obtained from the station Principal Investigator (PI).

Precipitation and temperature data for Sii are taken from FMI, and CH4 data and short-wave radiation data for Sii are collected

from AVAA-SMEAR (See Kallingal et al. (2023) for details). For the site Zak, the data was taken from GEM CH4 and GEM

climate.440

The data for Che, Lgt, Sfn, and Wpt, used for validation, were collected from the Fluxnet datasets mentioned above. Climate

data for Myk was obtained from SITES, and the CH4 data were obtained from station PIs.

Appendix B: Result of optimisation

Table B1. A comprehensive overview of un-weighted (uw) prior and posterior cost values, RMSE reduction in percentages, and the calculated

χ2 values estimated for all sites individually and together.

Site Prior cost

value (uw)

Posterior cost

value (uw)

RMSE

reduc.

(%)

χ2

(uw)

Site Prior cost

value (uw)

Posterior cost

value (uw)

RMSE

reduc.

(%)

χ2

(uw)

Abi 717913.5 14818.9 63.5 22.6 Los 163304.4 8711.5 63.42 11.8

Att 451259.9 19867.7 68.1 20.3 Ole 25368.6 2693.4 52.2 4.7

Bib 54339.3 1274.8 46.0 3.1 Sco 58147.0 644.4 36.7 2.0

Bon 23300.2 1906.2 70.9 6.8 Sii 58183.1 12406.5 59.2 16.0

Deg 10510.6 873.4 51.3 1.3 Uoa 130041.1 5172.5 68.4 9.2

Hue 5033.6 1018.4 27.16 0.96 Zak 3770.6 1357.8 4.3 2.1

Lom 54172.8 7672.8 55.9 9.12 Zar 7949.7 877.3 42.6 1.2

Total 1763294.9 79296.42 50.30 8.6

B1 Summer and winter anomaly estimation

Summer and winter anomalies of observations, prior, and posterior estimated separately for all 14 sites used can be seen445

in Fig.B1 . The figure also provides details about the years in which the model either underestimated or overestimated the

emissions. It is clear that neither the simulation nor the observation follows any common seasonal patterns or trends. This

indicates that CH4 emissions from wetlands are generally highly dependent on the variabilities in the underlying climatic
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variables, and the same holds for the model. A detailed analysis of the correlation and sensitivity between the model’s CH4

emission and input climatic variables can be seen in Kallingal et al. (2023).450

Figure B1. Summer and winter anomalies were estimated from the averages of the summer months (April to September) and winter months

(October to March). The black, yellow, and purple dashed lines represent observations, prior, and posterior values, respectively. Dots and

plus signs denote summer and winter data points of the season, respectively.

High deviations were observed in the summer anomaly compared to the winter anomaly at all the sites. In general, in the

majority of cases, the model was capable enough to capture trends shown by the observational anomaly, though there were

differences in magnitude. For example, for the sites Bon and Zak, the model was successful in capturing all the summer and
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winter trends of the observation. Notably, the high positive anomaly of Abi in 2016 and of Ole in 2015, etc., and the high

negative anomaly of Att in 2015, of Deg in 2017, of Low in 2017, etc., were also captured by the model.455

B2 The annual sum estimation of CH4

The annual sum estimation of CH4 from ten out of fourteen sites used in the study. Remaining four sites are illustrated and

discussed in Sect. 3.4 of the paper. The figure illustrates that, after optimisation, most sites exhibited improved annual CH4

estimation throughout the year. However, for the site Hue, the model consistently failed to capture the observation pattern

in most years, and the site Att, particularly in the year 2016, also displayed shortcomings. On the other hand, Att in 2016460

completely aligned with the observed value for both prior and posterior estimations.

Figure B2. The annual sum estimation of CH4 from ten out of 14 sites used in the study. The sites are represented in different colors with

distinct markings to distinguish between Observation, Prior, and Posterior.
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Appendix C: Time series estimation of validation sites

Figure C1. The CH4 simulation from the LPJ-GUESS model is compared with observations from five different wetland sites used for

validation. The black dots represent theCH4 observations from corresponding wetlands. The red dots depict the prior simulation using the

prior model parameters, while the green dots represent the posterior simulation with the posterior parameters. Three-day running averages are

calculated from the original time series. In most of the figures, a few outliers on the vertical axis have been removed for better visualisation.

Author contributions. Conceptualisation was undertaken by JTK and MS. Methodology was formulated by JTK, JL, and MS. PM assisted

in setting up the multi-site simulation in LPJ-GUESS. MA provided the CH4 observations collected at Lompolojänkkä. PV and PW provided
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