Supplement of

Comparative ozone production sensitivity to NOx and VOCs in Quito, Ecuador and Santiago, Chile: implications for control strategies in times of climate action

María Cazorla et al.

Correspondence to: María Cazorla (mcazorla@usfq.edu.ec)

List of contents

Figure S1: Time series of solar radiation at Quito and Santiago overlapping sunny days to all days.

Figure S2: Air quality time series for Santiago (O'Higgins Station)

Figure S3: Air quality time series for Quito. CO was obtained by averaging data from three nearby air quality stations, Belisario, Centro and Tumbaco, this data can be accessed in the link: https://aireambiente.quito.gob.ec/

Figure S4: Isoprene and NOx scenarios for Quito and Santiago.

Table S1: VOC compounds used in the model with the measurement nomenclature and the attributed weighting factors

Table S2: F0Am input options chosen for model runs

Table S3: Ozone and NO statistics for 2022 data at Quito and Santiago

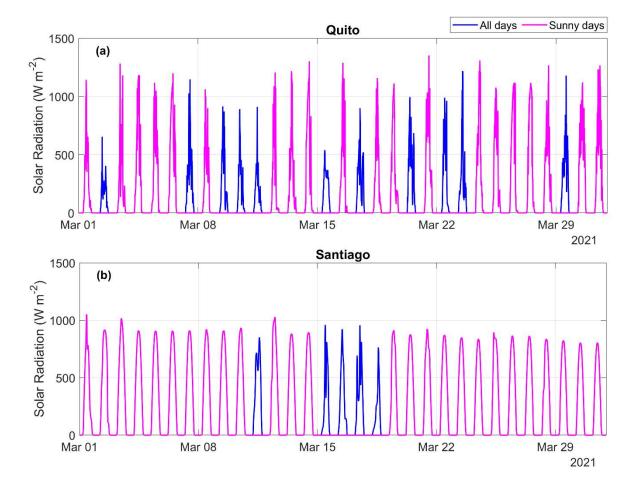


Figure S1: Time series of solar radiation in Quito and Santiago overlapping sunny days to all days.

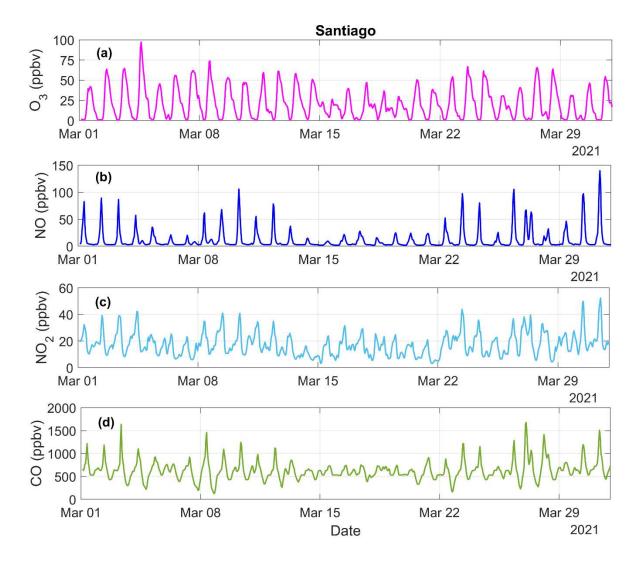


Figure S2: Air quality time series for Santiago (O'Higgins Station)

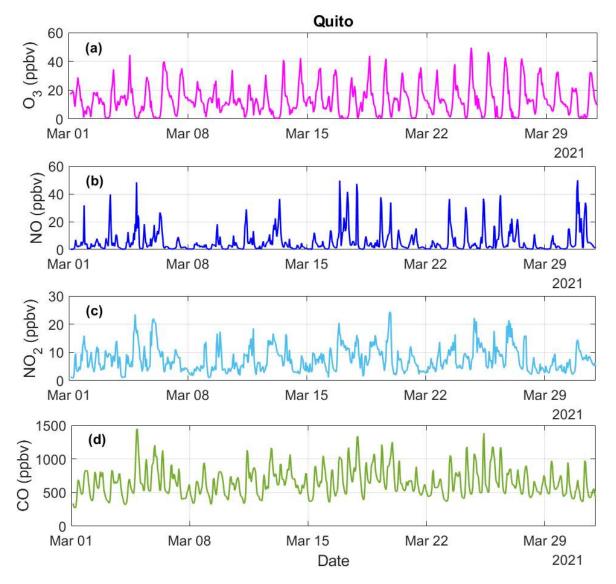


Figure S3. Air quality time series for Quito. Ozone, NO, and NO₂ are from EMA USFQ station. CO was obtained by averaging data from Belisario, Centro and Tumbaco stations from the Quito Air Quality Network (Secretariat of the Environment, Quito, Ecuador, https://aireambiente.quito.gob.ec/).

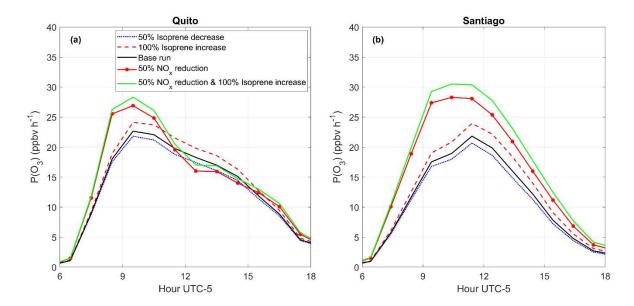


Figure S4. Isoprene and NOx scenarios for Quito and Santiago.

Group	Measured Compounds	MCM Nomenclature	Name	Attributed Factor
		СО	Carbon monoxide	1
		O3	Ozone	1
		NO	Nitrogen monoxide	1
		NO2	Nitrogen dioxide	1
	Propene/Cyclopropane	С3Н6	Propene	1
A 11	1- Butene/2-Butene	BUT1ENE	1-butene	0.333
Alkenes		CBUT2ENE	Cis-2-butene	0.333
		TBUT2ENE	Trans-2-butene	0.333
	Benzene	BENZENE	Benzene	1
	Toluene	TOLUENE	Toluene	1
	Styrene	STYRENE	Styrene	1
		EBENZ	Ethylbenzene	0.20
		OXYL	O-xylene	0.20
	Ethyl benzene/Xylenes	MXYL	M-xylene	0.40
		PXYL	P-xylene	0.20
	C9-Aromatics	PBENZ	Propylbenzene	0.125
Aromatics		IPBENZ	Cumene	0.125
		TM123B	1,2,3- trimethylbenzene	0.125
		TM124B	1,2,4- trimethylbenzene	0.125
		TM135B	1,3,5- trimethylbenzene	0.125
		OETHTOL	2-ethyltoluene	0.125
		METHTOL	3-ethyltoluene	0.125
		PETHTOL	4-ethyltoluene	0.125
	Formaldehyde	НСНО	Formaldehyde	1
	Acetaldehyde	СНЗСНО	Acetaldehyde	1
	Methacrolein / MVK	MACR	Methacrolein	1
Aldehydes and ketones	Butanone / Butanal	MEK	Butanone	0.50
	Butanone / Butanai	C3H7CHO	Butanal	0.50
	Acetone / Propanal	CH3COCH3	Acetone	0.50
	_	C2H5CHO	Propanal	0.50
Oxygenated	Acetic Acid / Glicolaldehyde	СН3СО2Н	Acetic acid	1
compounds	Methanol	CH3OH	Methanol	1

Table S1: VOC compounds used in the model with the measurement nomenclature and the attributed weighting factors

	Ethanol	С2Н5ОН	Ethanol	1
	Phenol	PHENOL	Phenol	1
	Cresol	CRESOL	Cresol	1
Isoprene	Isoprene	С5Н8	Isoprene	1
		APINENE	Alpha-pinene	0.333
Monoterpenes	Monoterpenes	BPINENE	Beta-pinene	0.333
		LIMONENE	Limonene	0.333

Table S2: F0Am input options chosen for model runs

Parameter	Variables	Name in model	Units	Input	
Meteorolo gy	Pressure	Р	mbar	Meteorological dataset	
	Temperature	Т	K		
	Relative humidity	RH	%		
Dilution	Dilution constant	kdil	s ⁻¹	1/86400	
Photolysis options	J-value function	MCMv331_J(Met, Jmethod)	s ⁻¹	MCMv331_J(Met,0)	
	Solar zenith angle	SZA	degrees	Self-generated	
Radiation- Related	Ozone column	O3col	DU	Merra-2 1 hour dataset of Area- Averaged of total ozone column	
	Albedo	Albedo	-	Merra-2 1 hour dataset of Area- Averaged of surface albedo	
	Altitude	ALT	m	538.4 (S), 2414(Q)	
Chemical	O ₃ , NO, NO ₂ , CO and VOC's	InitConc	ppb	Dataset of air quality variables and 35 VOC's	
Concentrat ions	Background concentration	BkgdConc	ppb	0 (default)	
Chemistry	MCM scheme	ChemFiles	-	Subset of chemical species	
	Verbose	Verbose	-	3 (flag for verbose command window output)	
Model options	End points	EndPointsOnly	-	1 (flag for concentration and rate outputs)	
	Link step	LinkSteps	-	0 (flag for using end-points of one run to initialize next run)	

Table S3: Ozone and NO statistics for 2022 data at Quito and Santiago

Month 2022	Days	Quito		Santiago	
		Days with O ₃ higher than 60 ppbv	Days with NO higher than 100 ppbv	Days with O ₃ higher than 60 ppbv	Days with NO higher than 100 ppbv
January	31	0	5	2	1
February	28	1	1	6	0
March	31	0	0	7	12
April	30	0	0	5	17
May	31	0	0	1	27
June	30	0	1	0	25
July	31	0	0	0	24
August	31	0	0	2	22
September	30	0	0	2	13
October	31	0	4	4	6
November	30	0	10	6	1
December	31	0	10	13	0
Sum	365	1	31	48	148