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Part A. Build daily AOD to select reliable TROPOMI XCH4 observations 

The way to find AOD for each pixel is consisted of two steps. (1) Check if any MODIS 

observations of AOD at 550nm are available within a 0.2° radial area of the pixel center. 

Use the median value of these MODIS AODs to stand for the AOD of this pixel if the 

presumption is true. (2) If there are no available MODIS observations, use the AOD value 

from global hourly Atmospheric Composition Reanalysis 4 (EAC4) that is constrained by 

MODIS observation instead. The method to build the constrained daily AOD from EAC4 

is as follow: 

First, we build monthly mean of MODIS AOD on a grid of 0.75°, which is the same 

resolution as EAC4 dataset. For the grid cell without any observations in a month, we apply 

a spatial interpolation staring from surrounding ±2 grid cells until finding the available 

MODIS observations. In the meanwhile, the monthly mean of EAC4 AOD is generated by 

sampling grid cells at the same overpass time as MODIS pixels and preforming the same 

spatial interpolation process. Thus the consistence between monthly MODIS AOD and 

CAMS AOD is ensured. Then the daily AOD of a TROPOMI pixel that has no MODIS 

observation is estimated by: 

𝐴𝑂𝐷𝑇 =  
𝐴𝑂𝐷𝑀𝑂𝐷𝐼𝑆

𝑚

𝐴𝑂𝐷𝐸𝐶𝐴
𝑚 ∙ 𝐴𝑂𝐷𝐸𝐶𝐴

𝑑   (S1) 

 𝐴𝑂𝐷𝑇  stands for the estimated daily AOD for a TROPOMI pixel missing a MODIS 

observation. 𝐴𝑂𝐷𝑀𝑂𝐷𝐼𝑆
𝑚  and 𝐴𝑂𝐷𝐸𝐶𝐴

𝑚  are monthly means of MODIS and ECA AOD after 

the same spatial interpolation aforementioned, respectively. 𝐴𝑂𝐷𝐸𝐶𝐴
𝑑  is the daily AOD 

from ECA. The calculation of Eq. (S1) is on a grid of 0.75°. 
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Part B. Procedure to build the non-divergent wind field 

The Flux-Divergence method operates on the assumption that any divergence in the flux 

of a target gas results from the presence of its sources and sinks. However, the flux (𝐹) is 

determined by the product of the gas (∆𝑋𝐶𝐻4
𝑃𝐵𝐿 in this study, use 𝑉 to represent the 

vertical column density in Eq. (1)) and the wind velocity (𝑤). 

By applying the chain rule, we obtain: 

∇ ∙ 𝐹 =  ∇ ∙ (𝑉𝑤⃗⃗ ) = (∇𝑉) ∙ 𝑤⃗⃗ + 𝑉(∇ ∙ 𝑤⃗⃗ ) (S2) 

A segment of the flux divergence is attributed to variations in the wind field, unrelated to 

the emission or deposition. At a global level, wind divergence arises from the movement 

between low-pressure and high-pressure zones. Additionally, larger-scale factors like 

mountain ranges, coastlines, and other topographic features can contribute to divergence. 

On a more localized level, interpolating the ECMWF wind field grid onto a regular grid 

may also introduce some divergence in the wind field. In order to find a flux-field for which 

∇ ∙ 𝑤⃗⃗  is minimized, and thus ∇(∇ ∙ 𝑤⃗⃗ ) approaches zero, we followed the method proposed 

by Sims (2018): 

Assume 𝑤⃗⃗  contains divergence. Iterate: 

1. Compute the divergence of 𝑤𝑘⃗⃗⃗⃗  ⃗:  ∇ ∙ 𝑤𝑘⃗⃗⃗⃗  ⃗ 

2. Compute the gradient of the divergence: ∇(∇ ∙ 𝑤𝑘⃗⃗⃗⃗  ⃗). 

3. Update vector field: 𝑤𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤𝑘⃗⃗⃗⃗  ⃗ + m∇(∇ ∙ 𝑤𝑘⃗⃗⃗⃗  ⃗). 

m is used to scale the update. Stopping Criterion: |𝑤𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑤𝑘⃗⃗⃗⃗  ⃗ | < 10−5 or k > 10000. 

The principle of this algorithm is based on the observation that an area has negative 

divergence when more flux enters a domain than leaves it. Conversely, a domain has 

positive divergence when it has a net outflow of particles. Therefore, divergence can be 

diminished by adding flow away from the area with a negative divergence, and towards 

areas with a positive divergence. Repeatedly adding the gradient of the divergence to a 

vector field achieves this, as the gradient is an arrow pointing from low-divergence areas 

to high-divergence areas. 

This algorithm is similar to the Newton-Rhapson technique that iteratively approximates 

the root of a function by continuously adding the derivative of a function to an initial guess 

for the root. As the gradient of the divergence becomes smaller when a local minimum is 

reached, the update to the vector field also becomes smaller. 
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A side note on the implementation of the algorithm is that the units of the original vector 

field (F) and the vector field we use as update (∇ (∇ ∙ 𝐹)) are different. In the specific 

implementation of wind vector field (𝑤⃗⃗ ), the units of the original vector field are m/s, 

whereas the gradient of the divergence has units 1/(m·s). To compensate for this, it was 

chosen to multiply the gradient of the divergence by the dimensions of the grid cells ∆𝑥 

and ∆𝑦. Thus, the scaling factor then becomes 𝑚 ∙ ∆𝑥 ∙ ∆𝑦. 

It is also important to note that the algorithm is applied to the wind field after interpolation, 

as interpolation also introduces small-scale divergence. In each iteration, the absolute value 

of the divergence is summed over the research domain. When the decline of this metric is 

smaller than 10−5, the algorithm is terminated. The sum over the divergence lies in the 

order of magnitude of 10−1. A limit of 10000 iterations is also implemented, in case the 

metric does not converge. 

Part C. Uncertainty estimation and sources with high confidence 

To mitigate the influence of singular values from linear regressions or time series and 

estimate uncertainty for each source, we use a Monte Carlo experiment to each possible 

source that pass the spatial filter and have been corrected by spatial correction in each year. 

The procedure is as follows: 

(1) We randomly choose 80% of the sampling days from a time series in a year as a subset 

to this grid cell. We derive a new emission, Ei, and count the ratio, Ri, of the number of 

days that have larger normalized 𝐷𝑑
𝑆 to the total days of the subset. 

(2) Repeat step (1) 30 times for a time series that has more than 20 sampling days while 

10 times for the one that have fewer days. 

(3) Take one-standard deviation of {Ri} as an uncertainty of a grid cell and the median R 

of {Ri} to be the criteria to select sources with high confidence. 

 If R for a grid cell is greater than 0.5, this source is regarded as a source with high 

confidence. We also investigate the influence of the number of the iteration, and find 

the result typically become stable from 20 times, and 30 times can ensure the result 

robust as well as the efficiency of the calculation. 

  



S5 

 

Figure S1. (a) The spatial distributions of annul methane emissions derived from 

TROPOMI XCH4 over west of Turkmenistan in 2019. The sources passing the temporal 

filter are marked with blue “+”. (b) EDGAR v7.0 averaged annual methane total emission 

in 2019. (c) CEDS v_2021_04_21 averaged annual total methane emissions in 2019. (d) 

GEFI v2 averaged annual methane emissions from the fuel exploitation in 2019.  
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Figure S2. (a) The spatial distributions of annul methane emissions derived from 

TROPOMI XCH4 over the coastal area of Iran, Iraq and Kuwait in 2019. The sources 

passing the temporal filter are marked with blue “+”. (b) EDGAR v7.0 averaged annual 

methane total emission in 2019. (c)Energy-related methane emissions from EDGAR v7.0 

overlapped with the industrial heat sources identified by VIIRS instrument. (d) CEDS 

v_2021_04_21 averaged annual total methane emissions in 2019. (e) GEFI v2 averaged 

annual methane emissions from the fuel exploitation in 2019. (f) Averaged annual DECSO 

v6.2 NOX total emission in 2019. 
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Table S1. The annual emissions of EDGAR and TROPOMI  

West of Turkmenistan [37.0°N, 53.0°E, 40°N, 55°E] 

kt/yr 2018 2019 2020 2021 

EDGAR total 591.82 600.96 745.54 524.94 

EDGAR energy 590.52 599.64 744.22 523.61 

TROPOMI all sources 2825.86 2429.45 2426.45 2691.91 

TROPOMI constant sources 1632.78 1544.48 1484.28 1412.61 

Tehran [35.2°N, 50.6°E, 36°N, 52°E] 

kt/yr 2018 2019 2020 2021 

EDGAR total 132.18 130.75 132.69 140.32 

EDGAR energy 24.55 20.80 20.50 25.30 

TROPOMI all sources 219.46 272.99 201.60 187.08 

TROPOMI constant sources 147.20 207.39 177.82 153.39 

Isfahan [32.4°N, 51.2°E, 32.8°N, 52.0°E] 

kt/yr 2018 2019 2020 2021 

EDGAR total 32.00 31.56 31.81 34.77 

EDGAR energy 10.35 9.46 9.24 11.63 

TROPOMI all sources 128.51 113.35 111.52 126.30 

TROPOMI constant sources 113.30 102.50 107.85 114.59 

Iraq & Iran coastal area [29.6°N, 47.0°E, 32.6°N, 51°E] 

kt/yr 2018 2019 2020 2021 

EDGAR total 4795.74 4327.36 4168.02 5101.83 

EDGAR energy 4724.91 4254.67 4093.91 5026.12 

TROPOMI all sources 3570.15 3483.61 3220.13 3780.61 

TROPOMI constant sources 1036.85 1156.05 926.73 1280.26 

Riyadh [24.4°N, 46.4°E, 25°N, 47°E] 

kt/yr 2018 2019 2020 2021 

EDGAR total 263.71 267.11 275.59 279.53 

EDGAR energy 65.65 64.33 68.60 67.22 

TROPOMI all sources 171.25 184.10 176.59 187.86 

TROPOMI constant sources 99.77 87.98 85.37 87.72 
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