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Abstract 13 

An improved divergence method has been developed to estimate annual methane (CH4) 14 

emissions from TROPOspheric Monitoring Instrument (TROPOMI) observations. It 15 

has been applied to the period of 2018 to 2021 over the Middle East, where the 16 

orography is complicated, and the mean mixing ratio of methane (XCH4) might be 17 

affected by albedos or aerosols over some locations.  To adapt to extreme changes of 18 

terrain over mountains or coasts, winds are used with their divergent part removed.  A 19 

temporal filter is introduced to identify highly variable emissions and further exclude 20 

fake sources caused by retrieval artifacts. We compare our results to widely used 21 

bottom-up anthropogenic emission inventories: Emissions Database for Global 22 

Atmospheric Research (EDGAR), Community Emissions Data System (CEDS) and 23 

Global Fuel Exploitation Inventory (GFEI) over several regions representing various 24 

types of sources. The NOX emissions from EDGAR and Daily Emissions Constrained 25 

by Satellite Observations (DECSO), and the industrial heat sources identified by Visible 26 

Infrared Imaging Radiometer Suite (VIIRS) are further used to better understand our 27 

resulting methane emissions. Our results indicate possibly large underestimations of 28 

methane emissions in metropolises like Tehran (up to 50%) and Isfahan (up to 70%) in 29 

Iran. The derived annual methane emissions from oil/gas production near the Caspian 30 

Sea in Turkmenistan are comparable to GEFI but more than two times higher than 31 

EDGAR and CEDS in 2019. Large discrepancies of distribution of methane sources in 32 
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Riyadh and its surrounding areas are found between EDGAR, CEDS, GFEI and our 33 

emissions. The methane emission from oil/gas production in the east to Riyadh seems 34 

to be largely overestimated by EDGAR and CEDS, while our estimates, and also GFEI 35 

and DECSO NOX indicate much lower emissions from industry activities. On the other 36 

hand, regions like Iran, Iraq, and Oman are dominated by sources from oil and gas 37 

exploitation that probably includes more irregular releases of methane, with the result 38 

that our estimates, that include only invariable sources, are lower than the bottom-up 39 

emission inventories.   40 
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1 Introduction 41 

Methane (CH4) is the second most important greenhouse gas of which the abundance 42 

kept increasing in the last decades (Turner et al., 2019; Saunois et al., 2020; Eyring et 43 

al., 2021), with a short-term stable concentration level between the years 2000 and 2006 44 

(Dlugokencky et al., 2009; Rigby et al., 2008). The relatively short lifetime of about a 45 

decade makes CH4 emissions a short-term target for mitigating climate change. The 46 

TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel 5 Precursor 47 

(S5-P) satellite provides an opportunity to measure CH4 globally at a high resolution of 48 

7 × 7  km2 since its launch in October 2017 (upgraded to 5.5 × 7  km2 in August 2019) 49 

(Veefkind et al., 2012; Lorente et al., 2021). Previous studies have demonstrated the 50 

capability of TROPOMI to identify big CH4 emitters (e.g., leakages from pipelines) 51 

through detecting large anomalies or to derive regional emission fields (de Gouw et al., 52 

2020; Pandey et al., 2019; Zhang et al., 2020; Chen et al., 2023).  53 

However, using observations from TROPOMI to quantify emissions are also facing 54 

challenges. On the one hand, some sources are located near the coast or in places with 55 

complex topography, where satellite observations are often of reduced quality. The 56 

observations of TROPOMI CH4 contain uncertainties from retrieval assumptions for 57 

surface albedo, aerosols, and the sun-glint model over the ocean. On the other hand, the 58 

characteristics of the various sources are poorly understood. For instance, constant 59 

emitting sources from landfills versus intermittent leakage of oil/gas, makes it difficult 60 

to quantify their emissions (Varon, 2021).  61 

The Middle East is one of the strong CH4-emitting regions in the world (Chen et al., 62 

2023). Nevertheless, these emissions are particularly challenging to be quantified 63 

because of the aspects aforementioned. Lauvaux et al. (2022) found fewer detections 64 

of ultra-emitters (>25 kg/hour) in Middle Eastern countries like Iraq, Saudi Arabia than 65 

other hot-spot regions like the U.S. from TROPOMI observations. Chen et al., (2023) 66 

also revealed large discrepancies between a priori and posterior emission inventory 67 

derived from satellites over the Middle East.  68 

In this study, we present an improved divergence method (Beirle et al., 2019, 2023; Liu 69 

et al., 2021; Sun et al., 2022; Veefkind., 2023) to quantify the emissions of CH4 over 70 

the Middle East from 2018 to 2021 on a grid of 0.2° from TROPOMI retrieved XCH4 71 

by using the latest version of the scientific retrieval product (TROPOMI/WFMD v1.8) 72 

from the University of Bremen (Schneising et al., 2023). This inversion algorithm is 73 

based on the mass balance theory and is unique because of its speed and no need for a 74 

priori knowledge of the sources. The wind divergence was first removed from the daily 75 

wind fields to better adapt to the complicated orography in the Middle East, and a 76 

temporal filter was developed in this study to exclude incorrect sources caused by 77 

retrieval issues, respectively. For an area without influence from retrieval issues (e.g., 78 

albedo), the persistence of sources can be further tested by the temporal filter.  79 
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Before calculating the divergence, we exclude contaminated pixels with a high aerosol 80 

optical depth (AOD) using daily MODIS AOD observations and the global hourly 81 

Atmospheric Composition Reanalysis 4 (EAC4) dataset. To a grid cell that shows a 82 

strong spatial correlation between the divergence and its corresponding background 83 

divergence, a posterior correction is applied to remove the contribution from the 84 

inhomogeneous background. The final results are further compared to the total 85 

anthropogenic CH4 emissions from Emissions Database for Global Atmospheric 86 

Research (EDGAR) v7.0 (Crippa et al., 2022) and CEDS v_2021_04_21 (O'Rourke et 87 

al., 2021). Other auxiliary datasets, such as the methane emissions from the fuel 88 

exploitation predicted by GEFI v2 (Scarpelli et al., 2019) and total anthropogenic NOX 89 

emissions from EDGAR v6.1 and DECSO v6.2 (van der A et al., 2024; Ding et al., 90 

2020; Mijling and van der A, 2012) are used for a better interpretation of our results.   91 

2 Data and Methodology  92 

2.1 Selection of reliable TROPOMI XCH4 data  93 

This study used the latest TROPOMI WFM-DOAS (TROPOMI/WFMD v1.8) XCH4 94 

product (Schneising et al., 2023). Quality filters were applied to reduce the size of a 95 

daily XCH4 file before making it available to the public. Thus, the daily files contain 96 

only the pixels that had passed the quality check. In version 1.8, a de-striping filter has 97 

been applied to each orbit. 98 

The TROPOMI/WFMD algorithm has been designed for clear-sky scenes with minor 99 

scattering by aerosols and optically thin clouds (i.e., cirrus). Still, a few pixels could 100 

contain high aerosol loadings (MODIS AOD at 550 nm ≥ 0.75, Fig. 1. d–f v.s. a-c), 101 

leading to biased high XCH4. We here use the daily observation of 10 km MODIS/Aqua 102 

AOD data at 550 nm, which has a similar overpass time as TROPOMI, to estimate the 103 

AOD values for pixels of TROPOMI. The pixels with AOD ≥ 0.75 are filtered, and 1.7% 104 

of pixels in 2019 are excluded with this criterion in the domain of 10–40N°, 20–50E°. 105 

Admittedly, not every TROPOMI pixel has a collocated MODIS AOD observation. 106 

Thus, we used the global hourly EAC4 dataset combined with MODIS daily 107 

observations to ensure every pixel of TROPOMI has an AOD estimate to reduce the 108 

systematic biases caused by high aerosol loadings while maintaining as many pixels as 109 

possible. The details about obtaining an AOD value for each pixel can be found in Part 110 

A of the Supplementary Information (SI). 111 
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 112 

Figure 1. Annual mean of (a) MODIS AOD, (b) albedo in TROPOMI XCH4 retrieval 113 

and (c) TROPOMI XCH4 on a grid of 0.2° in 2019, which are the average of pixels 114 

with AOD < 0.75. (d)-(f) are similar to (a)-(c) but based on the pixels with AOD ≥ 0.75. 115 

Only pixels with available MODIS AOD are used to generate the maps shown here. 116 

Another aspect that is addressed is the distinction between land and water bodies, 117 

especially over the coastlines. TROPOMI use different retrieval strategies for data over 118 

land and ocean. The retrievals over ocean are only available in sun glint mode. We find 119 

the data over ocean can be quite noisy. Furthermore, the data continuous from land to 120 

ocean are checked. We selected pixels locating at several 1° ×1° areas covering half 121 

land and half ocean at the coastlines of Oman, Yemen and along the Red Sea. We found 122 

there are not many differences between pixels over land and ocean (see Figure S1 in 123 

SI). Therefore, we built a water-land mask at the same spatial resolution as our emission 124 

data (0.2° ×0.2°) based on Global Land Cover Characterization (GLCC) of the United 125 

States Geological Survey (USGS) (United States Geological Survey, 2018a, b) to 126 

distinguish water, land and the coast (transition grids from land to water). Only grid 127 

cells that are marked as land and coast are used to build the regional background and 128 

are used to calculate the daily divergence. 129 

2.2 Methane bottom-up emission inventories and auxiliary emission datasets 130 

In this study, EDGAR v7.0 is mainly used to evaluate the result of the derived methane 131 

emissions because it covers the whole period of our study. EDGARv7.0 provides 132 

estimates for emissions of the three main greenhouse gases (CO2, CH4, N2O) per sector 133 

and country from 1970 to 2021 on a grid of 0.1° . The activity data for non-CO2 134 

emissions are primarily based on the World Energy Balances data (2021) of the IEA. 135 
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The activity data for certain sectors are further modified by other updated datasets. For 136 

example, International Fertiliser Association (IFA) and Gas Flaring Reduction 137 

Partnership (GGFR)/U.S. National Oceanic and Atmospheric Administration (NOAA), 138 

United Nations Framework Convention on Climate Change (UNFCCC) and World 139 

Steel Association (worldsteel) recent statistics are used for activity data of energy-140 

related sectors, and agricultural sectors are further modified by FAO (2021). In addition, 141 

the latest version (v_2021_04_21) of CEDS and the Global Fuel Exploitation Inventory 142 

(GFEI v2) are also used for comparisons in specific years. CEDS v_2021_04_21 143 

consists of CMIP6 historical anthropogenic emissions data from 1980 - 2019 on a grid 144 

of 0.5°. The 0.5° data was further downscaled to 0.1° using 0.1° proxy data from 145 

EDGAR v5.0 emission grids (O'Rourke et al., 2021). GFEI v2 allocates methane 146 

emissions from oil, gas, and coal to a grid of 0.1° by using the national emissions 147 

reported by individual countries to UNFCCC and assign them to infrastructure 148 

locations. GFEI v2 inventory is available for 2019 and presents an update of GFEI v1 149 

which was made for 2016 (Scarpelli, et al., 2021). 150 

Despite the fact that the three above-mentioned inventories have assembled various 151 

information from recent statistics, emissions in the Middle East are still uncertain and 152 

show large discrepancies because of the lack of reports from the industrial facilities. To 153 

validate the sources not reported in bottom-up inventories, target-mode instruments 154 

with very high spatial resolution (pixels < 60m) (e.g., GHGSat, PRISMA, EMIT) are 155 

widely used to pinpoint individual sources and reveal their characteristics. NASA’s 156 

Earth Surface Mineral Dust Source Investigation (EMIT) mission was launched in 2020 157 

and methane plumes are recorded since 10th August 2022 (Source: 158 

https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases/). It uses an 159 

advanced imaging spectrometer instrument that measures a spectrum for every point in 160 

the image. The high-confidence research grade methane plume complexes from point 161 

source emitters are released as they are identified (Brodrick et al., 2023). In addition, 162 

NOX emissions and gas flaring data are often used to analyze the emission of methane, 163 

especially for the energy-related sources. Thus, we further used NOX emissions and 164 

industrial heat sources identified by VIIRS (Liu et al., 2018) to better understand the 165 

derived methane emissions. The latest NOX emissions from EDGAR (v6.1, the most 166 

recent year is 2018) and the top-down NOX emission inventory from TROPOMI, 167 

DECSO (van der A et al., 2023; Ding et al., 2020), are used to assess uncertainties of 168 

various emission inventories. For clarity, we combined the source sectors of methane 169 

in EDGAR and CEDS, and the sectors of NOX in EDGAR into two categories: energy 170 

and others. The sectors for each category are listed in Table-1.  171 

  172 

https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases/
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1The codes in parentheses are based on IPCC 2006 used by EDGAR v7.0 to generate each sector. 173 
2
CEDS provides monthly sectoral methane emissions, in which the category is illustrated by the number. 174 

  175 

Table 1. Sectors of CH4 and NOX used in this study based on EDGAR 

    Sector 

 

 

Species 
Energy Others 

1EDGAR v7.0 

CH4 

1, Power industry (1A1a) 

2, Refineries and transformation industry 

(1A1b+1A1ci+1A1cii+1A5biii+1B1b+1

B2aiii6+1B2biii3+1B1c)  

3, Combustion for manufacturing (1A2) 

4, Fuel exploitation 

(1B1a+1B2aiii2+1B2aiii3+1B2bi+1B2bi

i) 

5, Chemistry process (2B) 

6, Energy for building (1A4 +1A5) 

7, Iron and steel production (2C2) 

8, Fossil fuel fires (5B) 

Transportation 

1, Aviation (1A3a) 

2, Railways, pipelines, off-road transport 

(1A3c+1A3e) 

3, Shipping (1A3d) 

Agricultural 

1, Manure management (3A2) 

2, Agricultural soils (3C2+3C3+3C4+3C7) 

3, Enteric fermentation (3A1) 

Waste 

1, Agricultural waste burning (3C1b) 

2, Solid waste incineration (4C) 

3, Solid waste landfills (4A+4B) 
2CEDS 

v_2021_04_21 

CH4 

1, Energy 

2, Industrial 

3, Solvents production and application 

0, Agriculture 

1, Transportation 

2, Residential, commercial, other 

6, Waste 

7, International shipping 

EDGAR v6.1 

NOX  

1, Power industry (1A1a) 

2, Refineries and transformation industry 

(1A1b+1A1ci+1A1cii+1A5biii+1B1b+1

B2aiii6+1B2biii3+1B1c)  

3, Combustion for manufacturing (1A2) 

4, Fuel exploitation 

(1B1a+1B2aiii2+1B2aiii3+1B2bi+1B2bi

i) 

5, Chemistry process (2B) 

6, Energy for building (1A4 +1A5) 

7, Iron and steel production (2C2) 

8, Fossil fuel fires (5B) 

9, Non-ferrous metals production (2C3-

C5) 

10, Food and paper (2H) 

 

Transportation 

1, Aviation (1A3a) 

2, Railways, pipelines, off-road transport 

(1A3c+1A3e) 

3, Shipping (1A3d) 

Agricultural 

1, Manure management (3A2) 

2, Agricultural soils (3C2+3C3+3C4+3C7) 

Waste 

1, Agricultural waste burning (3C1b) 

2, Solid waste incineration (4C) 
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2.3 Divergence calculation 176 

The basic methodology has been described in Liu et al. (2021). Here, we have improved 177 

the procedure to estimate CH4 emissions from TROPOMI retrieved XCH4 consisting 178 

of three steps: (1) The use of daily MODIS/Aqua AOD 10 km L2 dataset (v6.1) and 179 

daily CAMS gridded AOD re-analysis data to filter unreliable retrievals of TROPOMI 180 

XCH4. (2) Derive the enhancements of XCH4 in the PBL (XCH4
PBL) and non-divergent 181 

winds from ERA5 wind dataset, which are then used to calculate the spatial divergence 182 

and the preliminary methane emission. (3) Apply a posterior spatial correction to 183 

subtract the contribution of the residue of the regional background, and identify 184 

possible false sources by using a temporal filter. 185 

Our method to estimate the preliminary methane emission 𝐸′ over a certain period is 186 

based on the divergence method described by Beirle et al. (2019) for NOx emissions 187 

and specifically for methane by Liu et al. (2021): 188 

𝐸′= 𝐷𝑑
𝑆̅̅ ̅̅  = ∇( (𝑋𝑑

𝑃𝐵𝐿  −  𝑋𝑑
𝐵)  ×  𝐴𝑑

𝑃𝐵𝐿  𝑤⃗⃗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (1) 189 

where 𝐷𝑑
𝑆 is the daily divergence of a source. 𝑋𝑑

𝑃𝐵𝐿 is the daily XCH4 in the Planetary 190 

Boundary Layer (PBL) that is calculated by subtracting the vertical column of methane 191 

above the PBL from the TROPOMI observations. Estimating the XCH4 in lower 192 

atmosphere is quite important since the enhancement due to the transport in the upper 193 

atmosphere is irrelevant to the ground emissions. This vertical column above the PBL,  194 

is based on the  model results of EAC4 of CAMS at a relative high spatial resolution, 195 

0.75° horizontally and 60 layers vertically (Inness et al., 2019), with methane serving 196 

as a background species for chemical reactions. This EAC4 model run contains no a 197 

priori CH4 emissions. Thus, the spatial distribution of CH4 is mainly driven by transport 198 

and orography, which will be subtracted from TROPOMI observations to estimate the 199 

PBL concentration of CH4. It is important to note that the total dry air column from the 200 

EAC4 dataset is constrained by the TROPOMI retrieval for each pixel, which 201 

guarantees the mass conservation. We fixed the PBLH at 500 meters above the ground 202 

considering the PBLH from the reanalysis dataset has large uncertainties and is 203 

occasionally too shallow (Guo et al., 2021). The favorable height is suggested to be 204 

500-700 meters above the ground considering the systematic difference between EAC4 205 

dataset and TROPOMI observations (Liu et al., 2021). 𝑋𝑑
𝐵 is the regional background 206 

of 𝑋𝑑
𝑃𝐵𝐿, which is defined as the average of the lower 10 percentile of its surrounding 207 

±3 grid cells in the zonal direction and meridional direction (7×7 = 49 grid cells in total 208 

by taking the current grid cell as the center) considering the extensive variations of the 209 

orography in the Middle East. The daily regional background is built when more than 210 

10 grid cells have valid retrievals in this domain. 𝐴𝑑
𝑃𝐵𝐿

 is the corresponding air density 211 

column in the PBL. The details to derive 𝑋𝑑
𝑃𝐵𝐿  and 𝐴𝑑

𝑃𝐵𝐿  can be found in Liu et al. 212 

(2021). The advantages of including 𝑋𝑑
𝐵  are (1) it can be used to diagnose the 213 
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contribution of inhomogeneous background, especially over mountains and coastal 214 

regions, and (2) the system biases between CAMS and TROPOMI, which leads to 215 

biased 𝑋𝑑
𝑃𝐵𝐿, is included in both and can be greatly reduced by subtracting  𝑋𝑑

𝐵 from 216 

𝑋𝑑
𝑃𝐵𝐿. 217 

The daily wind field (𝑤⃗⃗ ) halfway the height of the PBL (PBLH) close to the overpass 218 

time is obtained from the ECMWF. Wind speeds are constrained between 0 m/s to 10 219 

m/s because the divergence method works when advective transport takes place, and 220 

extremely high wind speed are unfavorable for a method based on the regional mass 221 

balance. Local wind-field changes induced by complicated orography inevitably leads 222 

to a certain pattern of wind divergence (𝐷𝑑
𝑊̅̅ ̅̅̅), which further influence  223 

𝐷𝑑
𝑆 = 𝑤⃗⃗  ∇(𝑋𝐶𝐻4

𝑃𝐵𝐿 − 𝑋𝐶𝐻4
𝐵) +  (𝑋𝐶𝐻4

𝑃𝐵𝐿 − 𝑋𝐶𝐻4
𝐵) ∇𝑤⃗⃗  (2) 224 

Liu et al. (2021) corrected 𝐸′  by using an empirical correction by using a spatial 225 

correlation between 𝐷𝑑
𝑆̅̅ ̅̅  and 𝐷𝑑

𝐵̅̅ ̅̅  to account for the effect of inhomogeneous background 226 

and ∇𝑤̅ over Texas, where the terrain is relatively flat and less affected by mountains. 227 

To better reduce the effect of winds, we followed the method proposed by Sims (2018) 228 

to iteratively remove the gradients of ∇𝑤⃗⃗  on each day to get a non-divergent wind field, 229 

V component (south-north) and U component (west-east), for the calculation of Eq. (1). 230 

The positive values of  𝐷𝑑
𝑆̅̅ ̅̅  due to orography-raised wind near Tehran in Fig. 2d are 231 

largely reduced (Fig. 2f) by using a non-divergent wind field. The magnitudes of 𝐷𝑑
𝐵̅̅ ̅̅  in 232 

Fig. 2e also get close to 𝐷𝑑
𝑆̅̅ ̅̅ . Before we applied this change, we tested the non-divergent 233 

method in the GEOS-Chem simulation that was used in Liu et al., (2021). We found 234 

that this step slightly improved the capability of the method in resolving the spatial 235 

variability of sources (Figure S2), but underestimate the final emission by about 15% 236 

in the GEOS-Chem simulation. In contrast, when deriving the emissions from 237 

TROPOMI, using a non-divergent wind field especially improves the robustness over 238 

coastal areas and typically increases emissions by 5-20% for most cases (Table S2 239 

shows an example). The difference in change of emissions between GEOS-Chem 240 

simulation and TROPOMI is primarily due to the correction of the final estimated 241 

emissions. As was mentioned in the manuscript, the final emission based on the 242 

divergence (𝐷𝑑
𝑆̅̅ ̅̅  ). (Fig. 2d) apparently contains the residual of the divergence of 243 

background (𝐷𝑑
𝐵̅̅ ̅̅  ) (Fig. 2c), which is highly correlated with wind divergence (𝐷𝑑

𝑊̅̅ ̅̅̅ ). 244 

However, this dependence is much smaller for the GEOS-Chem simulation and for the 245 
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emissions derived from TROPOMI by using non-divergent wind. The procedure and 246 

the evaluation of removing the wind divergence from the original wind field are 247 

explained in Part B in SI. Generally, using a non-divergent wind field can improve the 248 

capability of the method in resolving the sources, both in a model simulation and in 249 

TROPOMI observations. 250 

2.3 Estimating emissions based on the divergence 251 

The inhomogeneous spatial distribution of  𝐷𝑑
𝐵̅̅ ̅̅  indicates the possible residue of the 252 

regional background we built in Sect. 2.2. Therefore, we evaluate the contribution from 253 

the residue background for each grid cell with positive 𝐸′  by checking the spatial 254 

correlation between  𝐷𝑑
𝐵̅̅ ̅̅   and  𝐷𝑑

𝑆̅̅ ̅̅  in the domain that we defined to build the regional 255 

background (its surrounding ±3 grid cell). For grid cells with positive 𝐸′ , a linear 256 

regression is applied to its surrounding ±3 cells: 257 

𝑦𝑖 = 𝑘 ∙  𝑥𝑖 + 𝑏  (3) 258 

where 𝑦𝑖 stands for 𝐷𝑑
𝑆̅̅ ̅̅  and 𝑥𝑖 stands for 𝐷𝑑

𝐵̅̅ ̅̅  of grid i. k and b are the slope and intercept 259 

of the linear regression, respectively. If Eq. (3) is applicable to the center grid, it implies 260 

the residue of the background still contributes to 𝐸′  and should be subtracted. This 261 

linear correlation can be distinctive over locations with large variations in orography 262 

(e.g., mountains, coastal areas). If more than 68% of the grid cells and the grid cell itself 263 

fall within the prediction lines of Eq. (3), estimated emissions are set to zero because 264 

𝐷𝑑
𝑆̅̅ ̅̅  can be fully predicted by 𝐷𝑑

𝐵̅̅ ̅̅  according to Eq. (3). The grid cells are considered to 265 

be influenced by residue background only when Eq. (3) is significant (p-value < 0.01), 266 

and they are further corrected by the spatial correction: 267 

𝐸𝑐𝑜𝑟𝑟 = 𝐸′ − (𝑘 ∙  𝐷𝑑
𝐵̅̅ ̅̅ + 𝑏)  (4) 268 

in which (𝑘 ∙  𝐷𝑑
𝐵̅̅ ̅̅ + 𝑏) is regarded as the contribution from the remaining background, 269 

which should be subtracted from the preliminary estimated emissions, 𝐸′. In addition, 270 

we find that areas with negative 𝐸′ together with negative 𝐷𝑑
𝐵̅̅ ̅̅ , implying no significant 271 

sources exist. The final estimated emissions at grid cells with negative 𝐸′ are also set 272 

to zero (Liu et al., 2021). 273 
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 274 

Figure 2. (a) The spatial distribution of original wind divergence (𝐷𝑑
𝑊̅̅ ̅̅̅). (b) Elevation 275 

map generated from the GMTED2010 data set at 30 arcsecs 276 

(http://topotools.cr.usgs.gov/GMTED_viewer/). (c) Divergence of the background (𝐷𝑑
𝐵̅̅ ̅̅ ) 277 

calculated with original daily wind field in 2019. (d) Divergence of methane 278 

enhancement (𝐷𝑑
𝐵̅̅ ̅̅ ) under 500 meters with original daily wind field. (e)-(f) are similar 279 

to (c)-(d) but with the daily non-divergent wind field (U and V). The green “+” in (f) is 280 

used to generate the time series of 𝐷𝑑
𝐵  and 𝐷𝑑

𝑆 in Figure 5b. 281 

 282 

2.4 Build temporal filter to identify possible false sources 283 

The artifacts caused by the variability of spectral albedo (e.g., specific soil types and 284 

interferences in the spectral range of the retrieval windows) have been generally 285 

http://topotools.cr.usgs.gov/GMTED_viewer/
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reduced in the WFMD v18 product (Schneising et al., 2023). The unrealistic 286 

enhancements are reduced/removed over most locations. However, the biases 287 

mentioned above can still exist in some places, as shown in Figure 3. In the northeast 288 

near Riyadh, the stripe-shaped XCH4 enhancements (Fig. 3a) coincide with the 289 

locations of high albedos (Fig. 3b) that cannot be explained by the changes of elevations 290 

from southwest to northeast (Fig. 3c). The relevant correction has been done by 291 

machine learning calibration in the WFMD v18 product, thus we found no universal 292 

pattern that can be used to describe the relationship among XCH4, surface albedo and 293 

aerosol. Therefore, we do not correct this kind of bias, following Liu et al. (2021), to 294 

avoid double-correction. Alternatively, we try to find an objective way to filter false 295 

emissions caused by retrieval artifacts.  296 

A grid cell with a large 𝐸′  but no significant linear correlation between 𝐷𝑑
𝑆̅̅ ̅̅   and 𝐷𝑑

𝐵̅̅ ̅̅  297 

contains either a source or is caused by artifacts in the retrieval, such as the case shown 298 

in Fig. 3. If the enhancement is a kind of artifact; for example, caused by a bright surface, 299 

it behaves more like a constant over days. Therefore, temporal variations of 𝐷𝑑
𝑆 will be 300 

mainly dominated by daily variations of the background, according to Eq (1). 301 

Considering that the values of 𝐷𝑑
𝐵   are much higher than 𝐷𝑑

𝑆 , as 𝑋𝐶𝐻4
𝑃𝐵𝐿  is used to 302 

calculate 𝐷𝑑
𝐵   while (𝑋𝐶𝐻4

𝑃𝐵𝐿 − 𝑋𝐶𝐻4
𝐵)  is used to calculate 𝐷𝑑

𝑆 , we normalize time 303 

series of 𝐷𝑑
𝑆 and 𝐷𝑑

𝐵 , respectively. This normalization allows for a better comparison of 304 

their temporal variations (amplitudes). The temporal filter is based on their normalized 305 

time series and built as follows. Firstly, we remove the grid cells that have less than 10-306 

day records. Next, if more than half of the days in the time series of a grid cell have a 307 

normalized positive 𝐷𝑑
𝑆 larger than 𝐷𝑑

𝐵 , the derived source (grid cell) is considered to 308 

be real and not a retrieval artifact. . As an example, we take a grid cell (showing with a 309 

green “+” in Fig. 3e) that is affected by the albedo near Riyadh. It has a larger 𝐷𝑑
𝑆̅̅ ̅̅  than 310 

its surrounding grid cells, but the linear regression is not applicable here (p_value of 311 

Eq. (3) is 0.2), suggesting the regional background we built is not biased. However, 312 

only 20% (value of R in Fig. 4) of the total reliable days in 2019 have larger positive 313 

normalized 𝐷𝑑
𝑆  (Fig. 4b), indicating the daily variation is not significantly different 314 

from its background. Hence the reliability of this source needs to be checked. In contrast, 315 

more than 50% of the total days of the grid cell, which is verified as a true source in 316 

Tehran (a green “+” in Fig. 3e), have larger positive normalized 𝐷𝑑
𝑆. In this way, the 317 

emissions from an artifact or random noise from the retrieval can be objectively 318 

identified. In this study, we set the temporal filter such that at least more than 50% 319 

observations from the time series have a larger positive normalized 𝐷𝑑
𝑆  than the 320 

normalized 𝐷𝑑
𝐵 . 321 

However, we should also be aware that the threshold of the temporal filter used in this 322 

study is relatively rigid, possibly excluding sources that occasionally release a large 323 

amount of methane, like intermittent oil/gas leakage and inappropriately burned waste 324 
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gases. The preserved sources that pass the temporal filter are suggested to be more 325 

constant than that did not pass the temporal filter. For grid cells not affected by retrieval 326 

issues, the role of the temporal filter is more like an indication of the persistence or 327 

regional significance of a source, and the emissions without the temporal filter might, 328 

in some cases, be more realistic. The role of the temporal filter will be further discussed 329 

in Sect. 3 330 

The divergence method requires sufficient temporal records (typically more than 7 days 331 

with valid observation for a grid cell) to derive robust results. Thus, the divergence on 332 

a single day does not provide a realistic emission for that day, and taking the standard 333 

deviations for individual days does not reflect the uncertainty or variability of a source. 334 

In addition, this method is not suitable for sources with a few intermittent releases, such 335 

as sudden leaks in oil and gas production. 𝐷𝑑
𝑆̅̅ ̅̅  can be a quite large positive value for this 336 

kind of source. However, a small number of large releases in a time series may lead to 337 

a removal of this source by the temporal filter (see the case of Fig. 6 in Sect. 4), which 338 

is built for automatically detecting retrieval artifacts over a large domain. In order to 339 

keep as many real sources as possible, we apply a Monte Carlo experiment to each 340 

possible source to estimate the uncertainty of the derived emissions and to evaluate the 341 

robustness/reliability of a source. The procedure is as follows: 342 

(1) We randomly choose 80% of the sampling days from a time series in a year as a 343 

subset. We derive a new emission, Ei, and count the ratio, Ri, of the number of days 344 

that have larger normalized 𝐷𝑑
𝑆 than normalized 𝐷𝑑

𝐵 .  345 

(2) Repeat step (1) 30 times for a time series that has more than 20 sampling days while 346 

10 times for the one that have fewer days to derive the set of emissions, {Ei}, and 347 

the set of ratios, {Ri} for each possible source. Ri is used as the temporal filter in 348 

each subset. 349 

(3) Take one-standard deviation of the set {Ei} as an uncertainty of a source. If the 350 

median value (R) of {Ri} is greater than 0.5, this source is regarded having high 351 

confidence, which means these emissions are constantly released and likely not 352 

caused by a retrieval artifact.   353 

We also investigate the choice of the percentage of the time series and the number of 354 

the iterations. 80-70% percent can be a reasonable range that ensure the 355 

representativeness as well as randomness of sampling days. We have tested the number 356 

of iterations from 10 to 50 times. The uncertainty map such as Fig. 5c become stable 357 
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after 20 iterations, and 30 iterations can ensure the robustness as well as the efficiency 358 

of the calculation. 359 

 360 

Figure 3. Gridded 0.2° × 0.2° annual average of (a) TROPOMI observed XCH4 and 361 

corresponding (b) TROPOMI apparent albedo at the short-wave infrared wavelength 362 

(SWIR). (c) The gridded elevation map that is generated from the GMTED2010 data 363 

set at 30 arcsec (http://topotools.cr.usgs.gov/GMTED_viewer/). (d) The total number 364 

of valid observation days in 2019. (e) Averaged daily divergence ( 𝐷𝑑
𝑆̅̅ ̅̅  ) and (f) 365 

divergence of the background (𝐷𝑑
𝐵̅̅ ̅̅ )  in 2019. The green “+” in (e) is used to generate 366 

the time series of 𝐷𝑑
𝐵  and 𝐷𝑑

𝑆 in Figure 4(a). 367 

 368 

http://topotools.cr.usgs.gov/GMTED_viewer/
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Figure 4. The time series of normalized 𝐷𝑑
𝑆 (orange line) and  𝐷𝑑

𝐵  (black line) of the 369 

grid cell in (a) Saudi Aribia and (b) Iran. The “R” in the lower left corner stands for the 370 

ratio of the number of days with a larger positive normalized 𝐷𝑑
𝑆̅̅ ̅̅  than 𝐷𝑑

𝐵̅̅ ̅̅  related to the 371 

total number of sampled days. 372 

 373 

3 Results 374 

3.1 Deriving the final emissions with the temporal filter 375 

After we derived emissions based on the divergence, the possible false sources are 376 

further identified by the temporal filter. The strict temporal filter is introduced to 377 

objectively exclude artifacts related to retrieval issues. However, to a grid cell that is 378 

not affected by retrieval issues, the temporal filter acts more like an indication of the 379 

persistence of a source. Namely, methane is intermittently released from this source. 380 

Here we selected two areas in the Middle East to illustrate the role of the temporal filter 381 

in the emission estimation. Our methane annual emissions are then compared with three 382 

widely-used methane emission inventories in the same year, 2019. Other auxiliary 383 

datasets such as NOX emission inventories, methane plume complexes detected by 384 

EMIT imaging spectrometer and heating sources identified by VIIRS are also used to 385 

better evaluate our derived emissions. 386 

Figure 5a and c show all possible sources and their relative uncertainties, respectively. 387 

Fig. 5b shows the final emissions after excluding the grid cells with emissions less than 388 

3 kg/km2/h, which is used as detection threshold of a source in this study. It is estimated 389 

by using the detection threshold of TROPOMI XCH4 (Hu et al., 2018, Schneising et al., 390 

2023) and the approach in Jacob et al., (2022). The detection threshold of methane 391 

source from TROPOMI is depending on many factors such as source types, inversion 392 
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methods and temporal coverage over a location etc., which can vary from ~0.5 kg/km2/h 393 

to 12.5 kg/km2/h (Lauvaux et al., 2022; Dubey et al., 2023; Jacob et al., 2016; 2022). 394 

Fig. 5a suggests presence of small sources around the center of Riyadh, where a number 395 

of heating sources are detected by VIIRS. Additionally, small sources are detected in 396 

the south to Riyadh, where dairy farms and industry areas are located. The spatial 397 

distributions over two areas are similar to the DECSO NOX emissions, indicating 398 

existence of human activities. However, we found that sources below the detection 399 

threshold show large uncertainties (>20%) in this study, which means the method is not 400 

robust to distinguish these small sources from the regional background.  401 

Both constant sources and artifacts (the “stripe” in the north of Riyadh) show small 402 

relative uncertainties (Fig.5c) due to continuous regional enhancement of XCH4. Only 403 

a few sources pass the temporal filter in the middle of Saudi Arabia (marked by blue 404 

“+” in Fig. 5b, indicating they are with high confidence). However, some facilities are 405 

found over the Khurais oil field in Google Earth image while it fails to pass the temporal, 406 

indicating they might be true but not constant. Another similar case is in the middle of 407 

the Syria Arab Republic, where many methane plumes along the Euphrates River are 408 

detected by the EMIT instrument (Fig. 6b) but reported quite low by three bottom-up 409 

emission inventories. They are reported as non-continuous sources (fail to pass the 410 

temporal filter) in our emission inventory (Fig. 6a). Thus, applying the strict temporal 411 

filter in an area without retrieval issues is aim at identifying continuous sources. In 412 

addition, except for the capital, Riyadh, both EDGAR and CEDS show that the primary 413 

type of sources in Saudi Arabia is energy related. The locations of oil/gas-related fires 414 

also match well with the sources of methane in the eastern area in Fig. 5g. However, 415 

our estimates (Fig. 5b) and methane emissions from the fuel exploitation reported by 416 

GFEI v2 (Fig. 5f) are quite low (lower than the TROPOMI detection threshold) in the 417 

eastern oil/gas production area. This finding is similar to the result of Lauvaux et al. 418 

(2022) that fewer ultra-emitters of methane are detected by using the TROPOMI CH4 419 

operational product (Lorente et al., 2021) in Middle Eastern countries such as Kuwait 420 

and Saudi Arabia, which could be attributed to fewer accidental releases and/or 421 

stringent maintenance operations. Using the locations and frequency of flares to 422 

estimate the methane emission in bottom-up emission inventories could have led to 423 

overestimation of the methane emissions in this region.  424 

In contrast, Figure 7 show the case over Tehran and its surroundings. Most sources in 425 

this area pass the strict temporal filter, indicating they are quite constant. Five areas are 426 

identified as hotspots of methane sources in Fig. 7b. Fig. 7d-f shows the spatial 427 

distributions of methane sources estimated by EDGAR, CEDS and GFEI in 2019. The 428 

bottom-up emission inventories show lower methane emissions than our results. The 429 

dominant category of methane sources in this area is not energy-related but others like 430 

waste treatment and agriculture (see classification in Table-1), as suggested by EDGAR 431 

and CEDS. A number of heat sources due to metal or non-metal industry production are 432 

also identified by VIIRS over these hotspots. A good match in locations between 433 
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methane and NOX sources over Tehran, Isfahan, and Atarabad is found when we further 434 

examine NOX source distributions in EDGAR and DECSO. One possible reason for the 435 

consistence over these areas can be that the methane emissions may come from waste 436 

treatment in cities, where landfilling is the most common way of municipal solid waste 437 

(MSW) disposal in Iran (Pazoki et al., 2015). Fig. 7c presents a case of methane plume 438 

identified by EMIT instrument on 23th April 2023 near Kashan power plant that is 439 

apparently not reported in current inventories. Actually, some facilities have been found 440 

in Google Earth images near Kashan, which are also identified by our method in Fig. 441 

7b. Another hotspot area located between Tehran and Kashan is near Kavir National 442 

Park, where we currently have no clear explanation for the emissions.  443 

444 
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Figure 5. (a) Averaged annual methane emissions derived from the divergence after the 445 

spatial correction in the middle of Saudi Aribia. (b) All possible sources above the 446 

detection threshold of emissions in this study (3kg/km2/h). Grid cells that pass the 447 

temporal filter are marked by blue “+”. (c) The relative uncertainty of derived methane 448 

emissions in (a). (d) EDGAR v7.0 averaged annual methane total emission in 2019. (e) 449 

CEDS v_2021_04_21 averaged annual total methane emissions in 2019. (f) GEFI v2 450 

averaged annual methane emissions from fuel exploration in 2019. (g) Energy-related 451 

methane emissions from EDGAR v7.0 overlapped with the industrial heat sources 452 

identified by VIIRS instrument. (h) CEDS v_2021_04_21 energy-related methane 453 

emissions in 2019. (i) Averaged annual DECSO v6.2 NOX total emission in 2019. The 454 

spatial resolution of all emission data showing here is 0.2° × 0.2°. 455 
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Figure 6. (a) Averaged annual methane emissions over Syria from TROPOMI 456 

observations in 2019. (b) The detected methane plume complex (red circles) by the 457 

EMIT instrument. (c) Energy-related methane emissions from EDGAR v7.0 458 

overlapped with the industrial heat sources identified by the VIIRS instrument. (d) 459 

GEFI v2 methane emissions from the fuel exploitation in 2019. (e) EDGAR v7.0 460 

emission inventory in 2019. (f) CEDS v_2021_04_21 total methane emissions in 2019.  461 

The spatial resolution of all emission data showing here is 0.2° × 0.2°. 462 

Figure 7. (a) The spatial distribution of TROPOMI observed XCH4 in 2019 on a grid 463 

of 0.2°. (b) The methane sources derived from TROPOMI after the spatial correction 464 

and are higher than 3kg/km2/h (inferred from the detection threshold of TROPOMI 465 

XCH4). The grid cells with high confidence, passing the temporal filter, are marked by 466 

a blue “+”. (c) The detected methane plume complex by the EMIT instrument in Kashan 467 

on 23th April 2023 (Source: https://earth.jpl.nasa.gov/emit-mmgis-lb/?s=e7z1z). (d) 468 

EDGAR v7.0 averaged annual methane total emission in 2019. (e) CEDS 469 

v_2021_04_21 averaged annual total methane emissions in 2019. (f) GEFI v2 averaged 470 

annual methane emissions from the fuel exploitation in 2019. (g) Energy-related 471 

methane emissions from EDGAR v7.0 overlapped with the industrial heat sources 472 

identified by the VIIRS instrument. (h) Averaged annual EDGAR v6.1 NOX total 473 

emission in 2019. (i) Averaged annual DECSO v6.2 NOX total emission in 2019. 474 

https://earth.jpl.nasa.gov/emit-mmgis-lb/?s=e7z1z
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3.2 Annual CH4 emissions over the Middle East based on TROPOMI 475 

In Figure 8, we select five hotspot regions in the Middle East to further assess the annual 476 

regional emissions from 2019 to 2022. Before we calculate the emissions of each region, 477 

we checked spatial patterns of XCH4 and albedo from TROPOMI, as well as land 478 

features, to ensure no suspicious retrieval artifact is included as a source. The emissions 479 

are based on all possible sources and only confident sources are shown. The results of 480 

all possible sources (pink bars) may be more representative of the total emissions in 481 

these areas, and the emissions passing the temporal filters (blue bars) can be used to 482 

estimate the contribution of constant sources. Here we should clarify that the constant 483 

source in our paper does not refer to one with a constant emission factor but indicates 484 

a source that continually releases methane for most days of a year. The areas used to 485 

calculate annual emissions (bars in Fig. 8) are shown as dark green rectangles in the 486 

insets on the top. The emission map in each panel of Fig. 8 is the annual methane 487 

emissions of EDGAR v7.0 in 2019. The energy-related sectors and the other categories 488 

(waste, agriculture, and transportation) of EDGAR v7.0 methane emissions from 2018 489 

to 2021 are displayed by the first stacked green/yellow bars in Fig. 8a–e. The category-490 

based annual emissions of CEDS in 2018 and 2019 are shown in the last stacked 491 

purple/orange bars. The estimate of GFEI for the fuel exploration in 2019 is shown as 492 

a red asterisk overlapped on the third column. We should clarify that our estimate for 493 

the total emission in each year is the sum of sources that are higher than 3kg/km2/h in 494 

the study area, but the total emission reported by a bottom-up emission inventory 495 

includes grid cells with emissions across all ranges. Thus, theoretically our estimates 496 

will underestimate the real emissions.  497 

The main type of methane sources in Tehran and Isfahan given by EDGAR and CEDS 498 

is waste, and the energy-related sources are not oil/gas production based on VIIRS 499 

detected fire types and EDGAR’s prediction (Fig. 7g). The derived methane emissions 500 

are also more constant. Smaller differences are found between the blue and pink bars 501 

than Riyadh, West of Turkmenistan and Iran & Iraq (Fig. 8c-e). Our estimates in Tehran 502 

are 12-30% higher and 33-52% higher than EDGAR’s and CEDS’s estimates for 503 

constant sources, respectively. Our result (220 kt/yr for 2018-2021) is much lower than 504 

the emission estimated by de Foy et al., (2023) (953 kt/yr for 2017-2021) over Tehran, 505 

which is 8.3 times higher than EDGAR v6.0’s estimates (114 kt/yr) used in that paper. 506 

The possible reasons could be different assumptions of the regional background and the 507 

methods to calculate the emission of the area. The Gaussian model used by de Foy et 508 

al., (2023) treated an urban area as one large source and integrated the emissions along 509 

the “plume”, whereas our total emission for a certain area is the sum of individual 510 

sources that are derived from the divergence method. GEFI’s estimate for the fuel 511 

exploration is 2-3 times higher than EDGAR’s and CEDS’s estimates, indicating 512 

possible underestimations of the two inventories in Tehran. The sources in Isfahan, 513 

another Iranian metropolis, are also constant over time (very small difference between 514 
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blue and pink bars). However, our derived emissions are about 3 times higher than the 515 

two inventories. Sources in our inventory are distributed over a wider area in Isfahan, 516 

and their spatial distributions are similar to NOX sources of EDGAR and DECSO, 517 

indicating the emissions are very likely from activities in the city. Although Isfahan has 518 

been attempting to gradually transform the landfill-based disposal system into a modern 519 

system with less production of greenhouse gases, the high methane emissions we 520 

derived might also imply that waste management is still a challenge (Abdoli et al., 521 

2016). A similar result was found by Chen et al. (2023), in which they found waste 522 

emissions could be underestimated by more than 50% in certain Middle Eastern 523 

countries like Iran, Iraq, and Saudi Arabia. 524 

The total constant emissions we derived for Riyadh are half that of EDGAR but close 525 

to CEDS’s estimate. As shown in Fig. 5, the spatial distributions of various inventories 526 

can be very different. The domain we used to calculate the total emission is defined by 527 

the spatial distribution of EDGAR, but oil/gas-related flares are located in the northeast 528 

of Riyadh (blue dots in Fig. 5g). However, including these cells only increases total 529 

emissions by 5–8% because they are smaller than 3kg/km2/h therefore below the 530 

detection threshold of TROPOMI.  Moreover, ~50% of the emissions in Riyadh are 531 

constant (have constant emission factor), which can be another reason of the large 532 

discrepancy between different inventories. 533 

Western Turkmenistan near the Caspian Sea and the coastal regions of Iran and Iraq are 534 

two well-known oil/gas production areas in the Middle East. The energy-related sectors 535 

(green bars) contribute more than 92% in the two regions based on EDGAR estimates. 536 

The constant emissions derived from TROPOMI (blue bars) in the west of 537 

Turkmenistan are quite comparable to GFEI’s estimate but nearly two times higher than 538 

estimates of EDGAR and CEDS. Although total methane emissions estimated by 539 

EDGAR and CEDS are very similar, the spatial distributions of sources are different 540 

(Figure S3). The constant sources of oil/gas there contribute to ~55% of the total 541 

emissions over the four years based on our estimates, which agrees with Varon et al. 542 

(2021), who concluded the sources here are intermittent, and the persistence rate is 543 

~40%. Our estimates will be four times higher than the total emissions of these two 544 

inventories if all possible sources are included. The large uncertainty also implies that 545 

resolving the sources here can be quite difficult because of the few observations near 546 

the coast and the variabilities of the sources.  547 

The annual variations in the coastal area of Iraq and Iran are consistent in EDGAR’s 548 

and our estimates (the offshore emissions in bottom-up emission inventories are 549 

ignored because the observation of TROPOMI over ocean can be quite difficult). It 550 

increased to surpass the total emission of 2018 in 2021 after a modest decline from 551 

2018 to 2020. The fraction of constant sources is much less than in Western 552 

Turkmenistan. Our estimates are comparable to EDGAR if all possible sources are 553 

included. However, the total emissions from constant sources are quite low, and they 554 
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are comparable to the other methane emissions estimated by CEDS, which mainly come 555 

from waste and are quite low in EDGAR estimates. Chen et al. (2023) found that oil/gas 556 

emission derived from their inverse modeling with the TROPOMI observation is 43% 557 

and 58% lower than in their bottom-up emission inventory over Iran and Iraq, 558 

respectively. Lauvaux et al. (2022) also showed fewer ultra-emitters of methane are 559 

detected by using the TROPOMI CH4 operational product (Lorente et al., 2021) in 560 

Middle Eastern countries such as Kuwait and Saudi Arabia, which could be attributed 561 

to fewer accidental releases and/or stringent maintenance operations. Thus, for an area 562 

with many occasionally released methane, using a constant emission factor or flaring 563 

data as an index may lead to an overestimation of methane leakage from the oil/gas 564 

industry. In addition, we checked plume complexes detected by EMIT, and find that the 565 

max value of each plume complex can differ by an order of magnitude, implying the 566 

large variabilities of released methane here. The coarse spatial resolution of our 567 

emission data may smooth plume complexes and can be another reason of predicted 568 

lower emissions. 569 

 570 

Figure 8. Regional total methane annual emissions estimated by EDGAR v7.0 and 571 

TROPOMI from 2018 to 2021. The areas used to generate bars in (a–e) are shown in 572 

dark green rectangles in embraced emission maps of total emissions of EDGAR in 2019. 573 

The ranges in latitudes and longitudes can be found in Table S1 in SI. A green bar 574 

represents the energy-related emissions, and a yellow bar represents the remaining 575 

methane emissions in EDGAR v7.0. A purple bar represents the energy-related 576 

emissions, and an orange bar represents the remaining methane emissions in CEDS 577 

v_2021_04_21. The blue bar is the total emission of sources that pass the temporal filter 578 

and are higher than 3kg/km2/h. The pink bar represents the total emission of all possible 579 
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sources that are higher than 3kg/km2/h. All the emissions over water (the Caspian Sea 580 

and the Persian Gulf) are ignored because of too few observations and large 581 

uncertainties. An error bar represents the sum of uncertainties associated with each 582 

source in this area. The calculation of the uncertainty of a source (grid cell) is presented 583 

in Sect. 2.4. 584 

 585 

4 Conclusions 586 

An improved divergence method using non-divergent wind fields with a temporal filter 587 

has been developed to better estimate CH4 emissions from observations of the 588 

TROPOMI instrument over areas with complicated orography and/or high albedo, like 589 

the Middle East. The non-divergent wind largely reduces the biases caused by drastic 590 

topography changes. The residue of the background (e.g., sources in Tehran, located in 591 

a valley) is further subtracted from the emission through spatial correction. The 592 

temporal filter is built to further exclude false sources due to retrieval issues. It also can 593 

be used to test the persistency of sources over an area free of artifacts. We found that 594 

emissions from wastes (e.g., landfills, wastewater) or agriculture (e.g., livestock farms) 595 

can be quite persistent in time compared to the oil/gas-related sources in the Middle 596 

East.  597 

We further compared our annual regional total emissions with EDGAR v7.0, CEDS 598 

v2021_04_21 and GFEI v2 for various regions in the Middle East with different source 599 

categories from 2018 to 2021. The oil/gas productions at the coast of Iran and Iraq are 600 

quite intermittent compared to the west of Turkmenistan where our estimate for 601 

constant sources is quite comparable to the emission from the fuel exploitation 602 

estimated by GFEI v2. The continuous release of methane from waste or farms can 603 

contribute considerably to the total methane emissions in several metropolises in the 604 

Middle East, which can be two times higher than EDGAR’s and CEDS’s estimates. 605 

In future work, the role of the temporal filter can be largely reduced with new improved 606 

retrieval products of TROPOMI CH4. This will especially allow better estimates of 607 

intermittent methane emissions. 608 
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The CH4 plume complexes detected by EMIT instrument are available at: 637 

https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases/ 638 

https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/
https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview
https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG
https://data.pnnl.gov/dataset/CEDS-4-21-21
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HH4EUM&version=2.0
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HH4EUM&version=2.0
https://search.earthdata.nasa.gov/search
http://www.globemission.eu/
https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases/
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