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1. Abstract 10 

Marine heatwaves (MHWs) have become longer, more frequent and more intense in recent 

decades. MHWs have caused large-scale ecological impacts, such as coral bleaching, mass mortality of 

seagrass, fishes and invertebrates, and shifts in abundance and distribution of marine species. 

However, the implications of these MHW-induced impacts on marine species for the structure and 

functioning of marine food webs are not clearly understood. In this study, we use the EcoTroph-Dyn 15 

ecosystem modelling approach to examine the impacts of MHWs occurring during the year's warmest 

month on the trophodynamics of marine ecosystems. EcoTroph-Dyn represents marine ecosystem 

dynamics at a spatial resolution of 1° longitude by 1° latitude and a temporal resolution of 15 days. We 

applied the model to simulate changes in trophodynamic processes, energy transfer and ecosystem 

biomass using daily temperature and monthly net primary production (NPP) data that were derived 20 

from satellite observations from 1998 to 2021. We compared and contrasted the simulated changes 

in biomass by trophic level with results generated from temperature and NPP time series that had 

been filtered to remove MHWs. Our results show a significant decline in biomass between 1998 and 

2021 specifically caused by MHWs. For example, in the Northeast Pacific Ocean, our model simulated 

a MHW-induced decline in biomass of 8.7% ± 1.0 (standard error) from 2013 to 2016. Overall, MHW-25 

induced biomass declines are more pronounced in the northern hemisphere and Pacific Ocean. 

Moreover, the MHW-induced declines in high trophic level biomass were larger than in lower trophic 

levels and lasted longer post-MHW. Finally, this study highlights the need to integrate MHWs into 

modelling the effects of climate change on marine ecosystems. It shows that the EcoTroph approach, 

and especially its new dynamic version, provides a framework to understand more comprehensively 30 

the implications of climate change for marine ecosystem structure and functioning. 
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2. Introduction  

Over the last century, marine heatwaves (MHWs) - defined as period of more than 5 days of 

anomalously warm sea surface temperatures (SSTs) exceeding a specific threshold, typically 

determined by natural climatological variations - have increased in frequency, duration, and 35 

intensity(Frölicher and Laufkötter, 2018; Oliver et al., 2018). Between the 1920s and the 2010s, their 

duration and frequency increased by 17% and 34%, respectively, resulting in more than a doubling of 

the number of MHW days at a global scale (Oliver et al., 2018). Since the 2000s, MHWs that are 

spatially and temporally extensive have been recorded in the world oceans, such as the North Pacific 

MHW (‘the Blob’) in 2013-2016 (Bond et al., 2015; Cavole et al., 2016), the Mediterranean Sea 2003 40 

and 2022 MHW (Garrabou et al., 2009, 2022), the Western Australia MHW in 2011 (Pearce et al., 2011), 

and the Tasman Sea MHW in 2015-2016 (Oliver et al., 2017).  

Marine ectotherms' physiological functions are directly affected by ocean temperature 

changes that are closely related to impacts on their body temperature (Guibourd de Luzinais et al., 

2024; Pörtner and Farrell, 2008). These species are adapted to perform optimally at a range of body 45 

temperatures, with upper and lower temperature limits within which they can survive (Pörtner and 

Farrell, 2008). When environmental temperatures exceed the temperature optima, e.g., during MHWs, 

the organism is stressed, leading to functional constraints and declines in performance (Pörtner and 

Farrell, 2008). Particularly, abnormally high temperatures during MHWs often exceed organisms' 

thermal limits, impacting their distribution, growth and survival (Guibourd de Luzinais et al., 2024; 50 

Smale et al., 2019; Smith et al., 2023). Moreover, the impacts of MHWs at the population level have 

cascading effects at the community and ecosystem levels. For example, MHW-induced declines in 

phytoplankton biomass and diversity have led to significant changes in zooplankton and other marine 

invertebrate diversity and biomass (Cavole et al., 2016). MHWs cause coral bleaching that also impacts 

coral reef ecosystems (Garrabou et al., 2009, 2022; Pearce et al., 2011). Range shifts driven by MHWs 55 

result in “tropicalization” of fish communities (Wernberg et al., 2016). Ultimately, MHWs result in mass 

mortality of fish and invertebrates, modifying ecosystem functioning (Cannell et al., 2019; Cavole et 

al., 2016; Collins et al., 2019). However, these ecological impacts of MHWs are not ubiquitous and vary 

largely between MHW events, species and ecosystems (Fredston et al., 2023; Oliver et al., 2021; 

Pershing et al., 2018; Smale et al., 2019; Smith et al., 2023). 60 

 The ecological impacts of MHWs have predominantly been studied using laboratory 

experimentations, analyses of ecological time series, and numerical modelling (Joyce et al., 2024). For 

example, Carneiro et al. (2020) assessed the evolution of physiological and biochemical parameters 

and survival rates of the clam Anomalocardia flexuosa in response to simulated MHWs. Under 

laboratory conditions, Anomalocardia flexuosa was allowed to adapt to a stable control condition 65 
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before being exposed to simulated conditions of MHWs occurrence lasting up to 21 days by warming 

the tank water by 3°C above the control temperature. Fredston et al. (2023) studied the effects of 

MHWs on marine species biomass by analysing scientific trawl survey data (FishGlob data) and 

historical temperature records. Previous studies assessed MHWs impacts through numerical modelling 

approaches. For example Cheung et al. (2021) and Cheung & Frölicher (2020) employed climate-fish-70 

fisheries models to investigate MHW implications for biomass and potential catches of exploited 

marine species and their implications for fisheries. They found that MHWs may cause biomass 

decreases and shifts in the biogeography of fish stocks that are faster and bigger in magnitude than 

the effects of decadal-scale mean changes. They projected a doubling of impact levels by 2050 amongst 

the most important fisheries species over previous assessments that focus only on long-term climate 75 

change. Gomes et al. (2024) use the Ecopath with Ecosim (EwE) modelling approach to assess the 

ecological impacts of ‘the Blob’ MHW (2013-2016). They highlighted the alteration of trophic 

interactions and energy flux following the MHW, which might have profound consequences for the 

specific ecosystem structure and function. However, there is a gap in applying the ecosystem modelling 

framework to study the global impacts of MHWs on ecosystem structure and functions. 80 

Trophic dynamics of marine ecosystems are affected by ocean temperature (Eddy et al., 2021; 

du Pontavice et al., 2020).  In particular, ocean warming affects biomass transfer efficiency and the 

flow kinetic, which corresponds to the speed of energy transfer through the food web (du Pontavice 

et al., 2020). Faster flow kinetic under ocean warming represent the increasing dominance of short-

lived species so that each unit of biomass spends less time at a given trophic level (TL) and, on average, 85 

across all TLs, ultimately leading to a decrease in total biomass (Gascuel et al., 2008). Simultaneously, 

ocean warming is expected to induce a decrease in biomass transfer efficiency, altering both consumer 

production and biomass due to larger energy losses between each TL (du Pontavice et al., 2020). 

Therefore, ocean warming alters both the amount and speed of matter and energy transfer within the 

food web, potentially leading to a decline in consumer biomass through independent and cumulative 90 

effects  (du Pontavice et al., 2021; Guibourd de Luzinais et al., 2023). We expect that temperature 

changes during MHWs will also impact trophodynamics and marine animal biomass. However, the 

effects of MHWs on ecosystem structure and function have not yet been clearly understood on a global 

scale.   

This study aimed to disentangle the additional or synergistic consequences of MHWs occurring 95 

during the year's warmest month, when species are undergoing thermal stress, from the effects of the 

slow-onset climate change in marine ecosystems. We used the EcoTroph-Dyn ecosystem model that 

was developed and applied to study the responses of marine ecosystems to MHWs (see Guibourd de 

Luzinais et al., 2024). We explored the effects of different scenarios of MHW-induced community 

mortality that were dependent on climatic conditions and species' resistance capacities. We undertook 100 
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a global-scale hindcast analysis over the 1998 to 2021 period and analysed the added impacts of MHWs 

on marine ecosystem biomass and trophodynamics under climate change. Subsequently, we delved 

into distinct geographical characteristics and identified marine ecosystems that are particularly 

sensitive to MHW-induced biological impacts.  Last but not least, as a case study, we examined a 

recognised MHW (‘the Blob’, which occurred in the Northeast Pacific Ocean from 2013 to 2016) and 105 

highlighted how MHWs can trigger long-term changes in the ecosystem.  

3. Material and methods  

3.1 The EcoTroph dynamic model 

We used EcoTroph-Dyn, a dynamic version derived from the steady-state EcoTroph 

trophodynamic modelling approach first proposed by Gascuel, (2005) and further developed by 110 

Gascuel & Pauly (2009). In EcoTroph, biomass is produced by primary producers (trophic level, TL = 1) 

and consumed by heterotrophic organisms (TL>1). Thus, the food web’s functioning is represented as 

a continuous flow of biomass surging up the food webs, from primary producers (low TLs) to top 

predators (high TLs). The resulting ecosystem structure is a continuous distribution of biomass along a 

gradient of TLs, i.e., biomass trophic spectra (Gascuel et al., 2005, Figure 1). Practically, each biomass 115 

trophic spectrum with TL above 1 is split into small trophic classes bounded by pre-defined lower and 

upper trophic levels (with conventional TL width = 0.1 - primarily because of computational efficiency 

while maintaining a good representation of food web structure and functions - in the steady-state 

version of EcoTroph). The biomass spectrum in EcoTroph generally refers to the total biomass of all 

consumers, including organisms living in pelagic, mid-water, and benthic habitats. The time needed for 120 

the biomass to flow from one to the next trophic class varies along the food chain, with biomass 

transfers generally being faster in lower TLs (as species generally have short life-expectancy) than in 

the higher ones.  

EcoTroph has been applied to study the long-term effects of fishing (e.g., du Pontavice et al., 

2023; Gasche et al., 2012; Gasche & Gascuel, 2013; Halouani et al., 2015; Tremblay-Boyer et al., 2011) 125 

and climate change (du Pontavice et al., 2021) on ecosystem biomass and production. EcoTroph-Dyn, 

the dynamic version of EcoTroph, simulates changes in biomass flows in each trophic biomass 

spectrum at a 15days time step. This time step was used because it represents the average duration 

of most naturally occurring or experimentally simulated MHWs (Smale et al., 2015). EcoTroph-Dyn 

includes algorithms that model changes in flow kinetics, boundaries of trophic classes and the resulting 130 

biomass states and flow between trophic classes, and an algorithm that models the biomass loss 

associated with MHW occurrence. EcoTroph-Dyn’s algorithm details are described in Guibourd de 

Luzinais et al., 2024. Here, we provide a summary of these algorithms.  
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The quantity of biomass flowing from a trophic class to the next, due to predation or ontogeny, 

is not conservative and can be calculated at each time step as:  135 

 Ф𝜏+𝛥𝜏,𝑡+1 =   Ф𝜏,𝑡  ⋅  𝑒−(𝜇𝑡+𝜂𝜏,𝑡)⋅𝛥𝜏𝑡,   (1) 

where μτ (expressed in TL−1) represents the mean natural losses (due to non-predation mortalities, 

excretion and respiration). The ητ,t parameter (expressed in TL−1) represents the additional loss rate 

specifically due to mortalities induced by MHW events (section 3.2.2). Equation (1) additionally 

describes the transfer efficiency (TE) between continuous trophic levels (TLs), representing the 140 

estimated proportion of biomass flow passed from one TL to the next. TE can be formulated as an 

empirical equation based on SST, as presented by du Pontavice et al. (2021): 

𝑇𝐸 =  𝑒−𝜇𝜏 =  𝑒(−2.162+𝑏 +(−0.025 + 𝑎 )⋅𝑆𝑆𝑇) ⋅ 1.038013 ,       (2) 

where a and b are specific parameters for each biome type (du Pontavice et al., 2021) and SST 

the sea surface temperature of the time simulated. 145 

The flow kinetic parameter Kτ (expressed in TL.year-1), representing the speed of biomass flows  

(trophic transfers) from low to high TLs, is inversely proportional to biomass residence time (the time 

each biomass unit stays at a given TL). 𝐾𝜏  is expressed as a function of trophic level, using the empirical 

equation described in Gascuel et al., (2008): 

𝐾𝜏 =  20.19 ⋅  𝜏𝑗
−3.258  ⋅ 𝑒 0.041 ⋅ 𝑆𝑆𝑇𝑦  ,                  (3) 150 

where SSTy corresponds to the annual moving average sea surface temperature in year y and 𝜏𝑗  

corresponds to the trophic level of the j TL class. 

MHWs cause marine organism mortality, impacting their life expectancy (Smith et al., 2023). 

In EcoTroph-Dyn, these changes in life expectancy are reflected in the loss rate within the biomass 

spectrum, representing the proportion of biomass that neither persists nor progresses through the 155 

food web (Gascuel et al., 2008; Guibourd de Luzinais et al., 2024; du Pontavice et al., 2021). Therefore, 

according to equations used in the steady-state version of EcoTroph, the flow kinetic, during MHWs,  

increases as follows: 

𝐾𝜏   =  20.19 ⋅  𝜏𝑗
−3.258  ⋅ 𝑒 0.041 ⋅  𝑆𝑆𝑇𝑦   ⋅  (1+ 𝜂𝜏)  ,   (4) 

where 𝜂𝜏  is the MHW-associated additional loss rate. 160 

Biomass spectra in EcoTroph-Dyn are split into trophic classes of variable width. The width of 

trophic classes [τj; τi+1[ was determined based on the estimated mean flow kinetics so that biomass 

could transfer up a trophic class in each time step (Δt = 1/24 year). Thus:  

∆𝜏 =  𝜏𝑗+1 − 𝜏𝑗  = Kτ ⋅ Δt  =  20.19 ⋅  𝜏𝑗
−3.258  ⋅ 𝑒 0.041 ⋅  𝑆𝑆𝑇𝑦   ⋅  (1+ 𝜂𝜏) ⋅ Δt , (5) 

where 𝜂𝜏, the MHW-associated additional loss rate, is only considered during MHWs. 165 

According to fluid dynamic equations, the EcoTroph-Dyn state variable 𝐵𝜏,𝑡 , represents the 

biomass present at time step t within the TL class [τ,τ+Δτ[. It is expressed as: 
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Bτ,t =
1

Kτ,t
 ⋅ Фτ,t ⋅ ∆τ  ,   (6) 

where Ф𝜏,𝑡  is the mean quantity of biomass flowing within the trophic class [τ, τ + Δτ[ at time step t, 

and  𝐾𝜏,𝑡 is the mean flow kinetic within the trophic class [τ, τ + Δτ[. 170 

Finally, the production 𝑃𝜏,𝑡 of the trophic class [τ, τ + Δτ[ at time step t is:  

𝑃𝜏,𝑡 =  ∫ 𝛷(𝑠, 𝑡)
𝑠=𝜏+𝛥𝜏

𝑠=𝜏
⋅ 𝑑𝑠 =  𝛷𝜏,𝑡 ⋅ 𝛥𝜏 ,     (7). 

Hence, according to equations (6) and (7), EcoTroph highlights that biomass stems from the 

ratio of the production to the flow kinetic. Production is expressed in t⋅TL⋅year−1, that is, biomass in 

weight moving up the food web by one TL on average during one year. 175 

Figure 1: Schematic diagram illustrating the ecological framework represented by EcoTroph-Dyn 
(adapted from du Pontavice et al., 2021). The trophic functioning of marine food webs is represented 
by a biomass flow, starting with biomass entering the system at trophic level 1 through net primary 
production (NPP). Biomass then moves through each trophic level according to trophic transfer 
efficiency. The flow kinetics, temperature and MHW dependant, is crucial in defining trophic class 180 
boundaries and estimating biomass for each trophic level over time. When MHWs occur, there is a loss 
of biomass flow at each trophic level. The empirical models used for each parameter (MHW losses (η), 
transfer Efficiency (TE), and flow kinetic (K)) and where satellite data (SST and NPP) are incorporated 
into the model to account for marine heatwaves are noted in the figure. 

3.2 MHW loss rate algorithm  185 

We compute the loss rate in the biomass flow associated with MHWs based on the percentage 

of species undergoing thermal stress, i.e., species exposed to temperatures exceeding their thresholds. 

A detailed description of the MHW loss rate algorithm is described in Appendix A1. Here, we provide 

the main steps for the incorporation of the effects of marine heatwaves into EcoTroph-Dyn: 

1. Detection and characterisation of MHWs with climatology (period 1982-2011) 190 

2. Estimation of species distribution and associated thermal niche 

3. Matching historical MHW distributions and characteristics with species distribution 
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4. Calculation of the percentage of species undergoing thermal stress in each ocean spatial cell  

5. Based on this percentage estimation of an additional loss rate associated with MHWs 

Finally, we assumed in the mathematical expression of loss rate (ηi) that species are continuously 195 

challenged by increased MHW intensity, which is expressed as: 

𝜂𝑖 =  𝑒−𝑒
𝑏_𝑡𝑙𝑖⋅𝛼⋅(𝑀𝐻𝑊𝑐𝑎𝑡,𝑖−

𝑙𝑡50_𝑡𝑙𝑖
𝛼

)

⋅  𝛽, (7) 

where b_tli and lt50_tli correspond to the slope of the function and the index of marine 

heatwave intensity (MHWcat,i) at which 50% of the species are undergoing thermal stress in cell i, β 

corresponds to the MHW duration, with β ranging from β=0 (no MHW) to β=1 (MHW lasting 15 days 200 

(see section 3.3.1)). MHWcat,i corresponds to an MHW intensity index (defined in Appendix A1) and α 

is a coefficient assumed to represent the species’ resistance capacity to MHW conditions, thus 

reducing the mortality rate due to species’ exposure to thermal stress.  

We used an α = 0.2 in our simulations. However, we also explored the sensitivity of the results 

to community resistance capacity by testing four alternative values of α. The α values that we tested 205 

were full resistance (α = 0, i.e., we fixed 𝜂𝑖=0; no mortality due to thermal stress), partial resistance (α 

= 0.2, 0.5; 20%, and 50% of the species die because of thermal stress, respectively) and no resistance 

(α =1; all species die when they are under thermal stress). We performed a three-way ANOVA, that is 

a statistical test we used to analyse the effects of trophic levels, biomes, and α value on biomass 

change. We also related the loss rate to the MHW duration over the 15 days by assuming that the 210 

duration increased the mortality rate.  

3.3 EcoTroph-Dyn simulations 

The EcoTroph-Dyn model was applied to simulate consumer biomass and production (between 

TLs 2 and 5.5) from 1998 to 2021 for each 1° × 1° spatial cell of the global ocean (Fig. S1).  Model 

outputs were summarised spatially by biomes: tropical, temperate, or upwelling biomes, based on 215 

Reygondeau et al., (2013). We excluded polar biomes because net primary production (NPP) data, one 

of the forcing variables of the EcoTroph-Dyn model, were not available in high-latitude regions during 

the winter period. 

3.3.1 Environmental forcing data  

 We simulated and compared consumer biomass and production under scenarios with and 220 

without MHWs. The simulations were driven by daily SST observations from the National Oceanic and 

Atmospheric Administration - Advanced Very High-Resolution Radiometer (NOAA _AVHRR) data 

(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680) and 

NPP data predicted from the EPPLEY-VGPM algorithm and satellite remote sensing data 

(http://orca.science.oregonstate.edu/npp_products.php).  225 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680
http://orca.science.oregonstate.edu/npp_products.php
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From the daily SST time series in each ocean cell, we identified every MHW day. We defined 

an MHW as when the daily SSTs exceed an extreme temperature threshold value for at least five 

consecutive days (Hobday et al., 2016). The extreme temperature threshold value was calculated for 

each 1° latitude x 1° longitude spatial cell as the 90th percentile of daily SST from the 30-year historical 

time series from January 1982 to December 2011. We did not calculate threshold values by season; 230 

thus, MHW events were identified by a single threshold across the year. As a result, we detected MHWs 

mostly occurring during the year's warmest months. We used the R package heatwaveR described at 

https://robwschlegel.github.io/heatwaveR/ (Schlegel and Smit, 2018) to detect MHWs in each spatial 

cell from January 1998 to December 2021. 

For the scenarios ‘with MHWs’, we used the SST time series from NOAA _AVHRR data. 235 

To simulate scenarios without MHW in the SST time series, we decomposed the daily SST time 

series (𝑌𝑡) of each ocean spatial cell using a Census X-11 procedure (Pezzulli et al., 2005; Shiskin, 1967; 

Vantrepotte and Mélin, 2011). With this method, the time series can be decomposed as:  

𝑌𝑡 =  𝑇𝑡 + 𝑆𝑡 + 𝐻𝑡    ,  

where 𝑌𝑡  represents the daily SST at day t, 𝑇𝑡  represents the long-term mean annual changes in 240 

temperature, 𝑆𝑡  represents the seasonal component (repetitive pattern over time), and 𝐻𝑡  represents 

the additional temperature variability that is not attributed to the annual trend or seasonality. 

The 𝑇𝑡  underlying long-term direction is obtained from the 365-day running average of the initial series 

𝑌𝑡 . The seasonal component (𝑆𝑡) is then computed by applying a centered moving average to the trend-

adjusted series (𝑌𝑡−𝑇𝑡). The estimation of 𝑆𝑡  on the trend-adjusted series avoids any confusion with 245 

the inter-annual (trend) signal. After the revised estimation of these two components (see the method 

in Pezzulli et al., 2005; Vantrepotte & Mélin, 2011), the additional temperature variability component 

was computed as  𝐻𝑡  =  𝑌𝑡 − 𝑆𝑡 −  𝑇𝑡 . 

We applied the following procedure to create a daily SST time series for the scenarios without 

MHW. When the daily 𝑌𝑡  value was identified as MHW and 𝑌𝑡  was above the value (𝑇𝑡 + 𝑆𝑡), we 250 

replaced the daily SST value (𝑌𝑡) with the expected temperature without the additional variability (𝐻𝑡) 

component, i.e., 𝑇𝑡 + 𝑆𝑡 . For MHW days with 𝑌𝑡   below 𝑇𝑡 + 𝑆𝑡 or non-MHW-days, we keep the daily 

SST value 𝑌𝑡   (see Fig. S2, where the process of creating this time series is illustrated). In our study, we 

can have an MHW day declared even though Yt<Tt + St. This specific situation is rare (less than 0.5% 

of time series) and occurs because of the use of an annual threshold value to detect MHW events that 255 

mainly occurred during the year’s warmest months. (See Fig. S2 just before April month for schematic 

visualisation). The time series created using this algorithm is referred to here as ‘without MHW’. 

Finally, to adapt the daily SST time series to EcoTroph-Dyn time-step resolution (1/24 year), 

we aggregated the initial temperature time series 𝑌𝑡  and the ‘without MHW’ time series at a 15 days 

scale.  Specifically, we averaged the daily SST for every 15 days of a year. We then computed the 260 

https://robwschlegel.github.io/heatwaveR/
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proportion of MHW days (β) within each 15 days. Thus, β = 0 when no MHW day is identified in a 15-

day time step and β=1 when an MHW last the 15 days of the time step. 

Gridded monthly NPP data from 1998 to 2021 were obtained from satellite-derived estimation. 

The NPP data were estimated using the EPPLEY-Vertically Generalized Production Model (VGPM) 

computation method (Behrenfeld and Falkowski, 1997). The EPPLEY-VGPM method is a hybrid model 265 

that employs the basic model structure and parameterisation of the standard VGPM (Vertically 

Generalized Production Model) computation. This model estimates net primary production (NPP) 

based on chlorophyll concentration, incorporating the vertical distribution of primary production. The 

specificity of the EPPLEY-VGPM method is that the polynomial description of the maximum daily net 

primary production found within a given water column (Pb_opt, expressed in units of mg carbon fixed 270 

per mg chlorophyll per hour) is replaced by the exponential relationship described by Morel(1991), 

based on the curvature of the temperature-dependent growth function described by Eppley (1972). 

After excluding spatial cells from the polar biome, we had a total of 34,643 cells, 13,340 of 

which contained incomplete time series of NPP. For cells with incomplete time series, we utilised the 

spline function from the R package "stats" to interpolate the missing Net Primary Production (NPP) 275 

values. In each ocean cell, the interpolation was constrained by the minimum and maximum satellite 

data values of the NPP observed over their respective time series. This approach ensured reliable 

interpolation and reduced potential bias.  

Finally, to match the NPP time series with the resolution of the EcoTroph-Dyn time step (1/24 

of a year), we duplicated the monthly NPP values to cover the two sets of 15 days of each month. 280 

3.3.2 Biomass simulations 

We simulated the changes in biomass spectra in each spatial cell from 1998 to 2021 for the 

scenarios with and without MHW. We calculated the differences in consumer biomass change 

between scenarios with and without MHW. Biomass change was computed using the reference period 

from 1998 to 2009 under the ‘without MHW’ scenario, allowing us to examine the projected declines 285 

in biomass specifically attributable to MHWs. We explored the sensitivity of the results to species’ 

resistance capacity to MHW conditions using the four resistance capacity settings represented by the 

values of the coefficient α.  

We initialised the model by applying a ‘burn-in’ period of 12 years without any environmental 

forcing. Indeed, simulation testing indicates that a ‘burn-in’ period of at least 10 years is needed for 290 

biomass spectra to reach equilibrium (Fig. S3). Increasing the ‘burn-in’ period beyond 12 years does 

not significantly change the equilibrium biomass spectra (t test p-value=0.6118).  We thus used the 

average of the time series (1998 to 2021) as the ‘burn-in’ period in each ocean spatial cell.    
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3.3.3 Northeast Pacific Ocean MHW case study 

An analysis focusing on the MHW that occurred in the Northeast Pacific Ocean from 2013 to 295 

2016 (commonly known as ‘the Blob’, Bond et al., 2015) was undertaken to assess the capability of 

EcoTroph-Dyn to transcribe past MHW events. First, we extracted the EcoTroph-Dyn simulation 

outputs (with and without MHW) in the region, delineated by the boundary of nine biogeochemical 

provinces that had been identified by Reygondeau et al., (2013) and adapted from Longhurst, (2007). 

These biogeochemical provinces include: Central American coast (CAMR), California Ocean and Coastal 300 

current (OCAL and CCAL), Alaska coastal downwelling (ALSK), North Pacific Tropical gyre (NPTG), 

Northeast Pacific subtropical (NPSE), North Pacific polar front (NPPF), Eastern Pacific subarctic gyres 

(PSAE), and the Western Pacific subarctic gyres (PSAW). Second, we computed biomass change using 

the reference period from 1998 to 2009 under the ‘without MHW’ scenario, allowing us to examine 

the projected declines in biomass specifically attributable to ‘the Blob’. Finally, we discussed and 305 

compared our results with the literature. 

4. Results 

4.1 Environmental forcing with and without MHWs 

In response to climate change, the NPP and SST are already perturbed. Global total NPP 

decreased by 1% in the period 2015-2021 compared to the 1998-2009 period. However, large spatial 310 

variability was observed in NPP changes (Figure 2a). In particular, NPP decreased by 20% in the 

Northeast Pacific, while an increase of 20% was estimated for the Southern Ocean. Under the ‘without 

MHW’ scenario (Figure 2b), global average SST increased by 0.28°C in the period 2015-2021 compared 

to the 1998-2009 period, with some areas warming up to 0.5°C. However, under the ‘with MHWs’ 

scenario (Figure 2c), SST increased by 0.32°C in 2015-2021 compared to the period 1998-2009, with 315 

some areas, such as the Northeast Pacific, warming up by 1°C over the same period. Globally, the 

estimated increase in average SST from 2015 to 2021 was 4% higher in the ‘with MHWs’ scenario 

compared to the ‘without MHW’ scenario.  
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Figure 2: Changes in SST and NPP between the average of 2015-2021 relative to the average between 320 
1998-2009. (a) NPP, (b) SST under the ‘without MHW’ scenario, and (c) SST under the ‘with MHWs’ 
scenario. 

Under the ‘with MHWs’ scenario, MHWs occurring during the year's warmest month increased 

in intensity, duration, and surface extent from 1998 to 2021 (Figures 3a, b) with large spatial variability 

(Figures 3c, d). MHWs with intensity lower than 3°C above the climatology were identified on average 325 

in 28.5 % of the ocean surface (Figures 3a). These MHWs lasted, on average, more than 40 days (Figures 

3b). In contrast, MHWs characterised as higher intensity (≥3°C above climatology) were identified in 

<20% of the ocean surface area (Figures 3a). These relatively more intensive MHWs lasted, on average, 

32 days (Figures 3b). Furthermore, more MHW days of lower intensity were identified for low latitude 

regions (23°N - 6°S) (Figure 3c, 3d) compared to MHW days identified in higher latitude regions (> 23°N 330 

and 25°S).  
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Figure 3: Temporal and spatial characteristics of MHWs identified for the period 1998 to 2021. (a) 
Changes in the percentage of the oceans’ total surface area with MHW in each year categorised by 
their intensity, (b) Evolution of average duration of MHWs categorised by their intensity, and (c) 335 
Average duration of each MHW event in days that occurred over the period 2015-2021. (d) Average 
intensity of each MHW event over the period 2015-2021. 

4.2 Biological impacts of MHWs at the global scale  

4.2.1 Impact on total consumer biomass 

The projected changes in total consumer biomass were higher under the ‘with MHWs’ scenario 340 

relative to the ‘without MHW’ scenario.  Globally, total consumer biomass was projected to decrease, 

on average by 0.07 ± 0.02% per year (standard error) relative to the baseline period of 1998-2009 

(Figure 4a) (GLS, Generalized Least Squares, p-value < 0.05). In contrast, simulations under the ‘with 

MHWs’ scenario with an MHW resistance capacity setting of α=0.2 projected an average decrease in 

total consumer biomass of 0.12 ± 0.02% per year relative to the baseline period of 1998-2009 (p-value 345 

< 0.05). Thus, simulations that focused on annual mean changes in temperature only masked the 

effects of MHWs on the long-term changes in consumer biomass in the ecosystem (Fig. S4).  
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Figure 4: Simulated total consumer biomass change in the ocean from 1998 to 2021 under the 350 
‘without MHW’ (black lines) and with MHWs (light orange lines) scenarios, with a resistance capacity 
setting of α=0.2. (a) the world ocean (excluding polar biome), (b) temperate biomes, (c) tropical 
biomes, and (d) upwelling biomes, respectively (S1 for biome spatial definition). The horizontal grey 
line separates positive and negative total consumer biomass changes.  

 355 

While total consumer biomass was projected to decrease slightly across the three biomes 

(temperate, tropical, and upwelling biomes represented in Figures 4b, c, and d, respectively), in the 

scenario ‘with MHWs’ the declines in tropical biomes were larger than the global average. Under the 

‘without MHW’ scenario, total consumer biomass in temperate biomes was projected to increase by 

0.01% ± 0.01 (standard error), while in tropical and upwelling biomes, it was projected to decrease by 360 

0.18% ± 0.01, and 0.02% ± 0.01 per year, respectively, relative to the baseline period. Under the ‘with 

MHWs’ scenario with α=0.2, total consumer biomass in temperate, tropical, and upwelling biomes was 

projected to decrease more strongly by 0.03% ± 0.01%, 0.23% ± 0.02%, and 0.10% ± 0.02, respectively, 

relative to the baseline. 

4.2.2 Impacts by trophic level 365 

MHWs exacerbated the projected climate change impacts on biomass, particularly for higher 

trophic level groups.  Indeed, our model projected a similar level of biomass loss across trophic levels 

in the ‘without MHW’ scenario, with a projected decrease in global total consumer biomass by 1.0 ± 

0.1% SE in the period 2015-2021 relative to 1998-2009 (Figure 5a, b, and c black lines). In contrast, 

under the ‘with MHWs’ scenario and with a resistance capacity setting of α=0.2, total consumer 370 

biomass was projected to decrease by 4.4 ± 0.1% for high trophic level classes (TL ∈ [4;5.5]), while the 

decrease was smaller for low trophic level (TL ∈ [2;3[, 3.4 ± 0.1%) and mid trophic level (TL ∈ [3;4[, 4.1 

± 0.1%) classes (Figure 5a, b, and c light orange lines).  



Page 14 of 42 
 

The impact on high trophic levels differed between biomes, with the tropical and upwelling 

biomes being notably more impacted. Under the ‘without MHW’ scenario, our model projected a 375 

decrease in high trophic level consumer biomass of 0.5 ± 0.1%SE, 2.4 ± 0.1%, and 2.2 ± 0.1% in 

temperate, tropical, and upwelling biomes, respectively, in the period 2015-2021 relative to 1998-2009 

(Figures 5f, i, and m black lines). In contrast, under the ‘with MHWs’ scenario and with a resistance 

capacity setting of α=0.2, high trophic level consumer biomass was projected to decrease by 3.3 ± 

0.1%, 6.6 ± 0.1%, and 5.9 ± 0.1% in temperate, tropical, and upwelling biomes, respectively, while a 380 

smaller biomass decrease for low and mid-trophic level was expected (Figures 5f, i, and m light orange 

lines).  

 

Figure 5:  Projected changes in consumer biomass for each trophic level and biome relative to the 
1998-2009 average under the ‘without MHW’ (black lines) and ‘with MHWs’ (light orange lines) 385 
scenarios. With low trophic level (TL ∈ [2;3[), medium TL (TL ∈ [3;4[), and high TL (TL ∈ [4;5.5]). (a, b, 
and c) correspond to the global scale, (d, e, and f) to the temperate biome, (g, h, and i) to the tropical 
biome, and (k, l, and m) to the upwelling biomes. (a, d, g, and l) correspond to Low TLs, (b, e, h, and l) 
correspond to Medium TLs, and (c, f, i, and m) correspond to High TLs. The simulation results under 
the ‘with MHWs’ scenario used a resistance capacity setting of α=0.2. 390 

4.2.2 Various responses of ecosystems to MHWs 

Over the 2015 to 2021 period, MHWs impacted total consumer biomass with large variations 

in both the direction and magnitude of the impacts between biomes (Figure 6). Under the ‘without 

MHW’ scenario, the model projected an increase in total consumer biomass in 33.5% of the ocean 

area, especially in temperate biomes (Figure 6a). Under the ‘with MHWs’ scenario, this proportion 395 

decreased and a biomass increase was projected to occur in only 24% of the global ocean, with a 

projected global biomass decrease of 4.8% in the period 2015-2021 relative to 1998-2009 compared 

to an only 2.4% biomass loss under ‘without MHW’ scenario. In high latitudes (> 25°N and 25°S), MHWs 



Page 15 of 42 
 

exhibiting high intensity but short duration (Figures 3c and d) resulted in moderate additional biomass 

losses, up to 8% in 2015-2021 (Figure 6c). Conversely, in low latitudes (25°N - 25°S), MHWs led to 400 

substantial additional biomass losses, exceeding 10% on average (Figure 6c) and up to 20% in 

biodiversity hotspots such as Indonesia, off the coast of Papua New Guinea, and Central America. Thus, 

high latitude and upwelling areas appeared to be refuge zones from MHWs compared to low latitudes. 

Looking at the MHW's additional impact within food webs (Figs. S5, S6, and S7), similar spatial patterns 

and responses are projected with a higher impact (biomass decreases) on high trophic levels compared 405 

to lower trophic levels. 

 

Figure 6: Changes in total consumer biomass in 2015-2021 compared to 1998-2009. (a) total 
consumer biomass under the “without MHW” scenario, (b) total consumer biomass under the ‘with 
MHWs’ scenario with α=0.2, and (c) differences in consumer biomass between scenarios. 410 
 

4.3 Sensitivity to resistance capacity setting (α)  

Ecosystem total consumer biomass response to MHWs depended on community resistance 

capacity. Assuming species to have full resistance (α=0) or no resistance (α=1) to MHWs, total 

consumer biomass was projected to decrease by 2.3% and 15.3% in the period 2015-2021 relative to 415 

1998-2009, respectively (Figure 7a). Simulations using different α values projected changes in total 

consumer biomass that were consistent in direction but differed significantly in magnitude. A three-

way ANOVA was performed to analyse the effect of trophic levels, biomes, and α value on biomass 

change. This ANOVA revealed a statistically significant effect on biomass change of trophic levels, 

biomes, and α values (p-value <2e-16), individually. Additionally, the interaction between biomes, 420 

trophic levels, and α value also had a significant effect on biomass change (F (27, 16737) = 442.4, p-

value < 2e-16). The lower the resistance capacity of species (higher α value), the greater the loss of total 

consumer biomass. On a biome scale, these variations in biomass loss were greater for the tropics, 

with values ranging from 3.1% (α=0) to 20.2% (α=1) (Figure 7c). In comparison, sensitivity was lower in 

the temperate and upwelling biomes with a decrease between 1.4% (α=0) and 11.2% (α=1) and 3.8% 425 

(α=0) and 12.3% (α=1), respectively (Figures 7b and d). 
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Figure 7: Sensitivity of changes in total consumer biomass to different resistance capacity settings. 
Changes are aggregated for the whole biomass spectrum (TCB) and by trophic level (TL) (low TL, 
medium TL and high TL). Colours represent different resistance capacity settings (α values). (a) Global 430 
ocean, (b) temperate biomes, (c) tropical biomes, and (d) upwelling biomes. The different horizontal 
lines of the box plot refer to the median, 25th, and 75th quantiles.   
 

The sensitivity of changes in total consumer biomass to the resistance setting increased with 

trophic level. At a global scale, the response of low TLs ranged from a consumer biomass decrease of 435 

1.4% (α=0) to 8.0% (α=1), while high TLs exhibited values ranging from 0% (α=0) to 11% (α=1) (Figure 

7a). Furthermore, the sensitivity of trophic levels to the α value was greater in the tropical biome and 

lower in the temperate and upwelling biomes relative to that of the global ocean. 

 

4.4 A case study of a Northeast Pacific MHW  440 

Our model projected that the MHW in the Northeast Pacific from 2013 to 2016 (‘the Blob’) 

resulted in long-term changes in the biomass spectrum in the region (Figure 8c). Temperature 

anomalies were on average≥4 °C (between 2013 to 2016) and up to 8 °C in 2015 relative to 1982-2011. 

This temperature anomaly had some ecological repercussions. On average, without accounting for 

MHWs, total consumer biomass in our simulation was hindcast to decrease by 1.5% ± 0.3, 3.1% ± 0.4, 445 

6.6% ± 0.2, and 5.2% ± 0.3 in 2013, 2014, 2015, and 2016, respectively, compared to the reference 

period of 1998 to 2009 (black line in Figure 8c). However, when accounting for MHWs with α=0.2, the 

total consumer biomass loss decreased on average by an additional 3.1% in 2013, 2014, 2015, and 

2016. Furthermore, the difference in linear trend (slope and intercept) between the biomass time 
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series 1998 to 2013 and 2017 to 2021 indicated that the MHW (‘the Blob’) had a significant effect on 450 

long-term changes in biomass (GLS, Generalized least squares, p-value < 0.05).  

The magnitude of the hindcast total consumer biomass differed significantly between 

biogeochemical provinces (ANOVA, F(1, 2906) = 7.854, p-value < 0.05, Figure 8d). Comparing the 

consumer biomass before (1998 to 2012) and during (2013 to 2016) the occurrence of ‘the Blob’, all 

biogeochemical provinces in the Northeast Pacific, except Alaska coastal downwelling (ALSK) and 455 

Central American coast (CAMR), exhibited a significant total consumer biomass decrease (ANOVA, F(1, 

151) = 155.443, p-value < 2e-16) under the scenario with and without MHWs. Under the ‘without MHW’ 

scenario, total consumer biomass in the North Pacific Tropical gyre (NPTG) biogeochemical provinces, 

followed by the California current (CCAL+OCAL biogeochemical provinces), was hindcast to decline the 

most amongst the provinces when comparing before, during, and after ‘the Blob’ (Figure 8d).  Under 460 

the ‘with MHWs’ scenario and with a resistance capacity setting of α=0.2, all biogeochemical provinces 

were hindcast to have an additional biomass decrease during and after ‘the Blob’.  This additional 

biomass decrease ranged from 0.9% to 5% and 1.4% to 5.1% during and after ‘the Blob’, with an 

average decrease of 2.7% ±0.4% and 3.1% ± 0.3%, respectively (Figure 8d). Particularly, the California 

current and the Alaska coastal downwelling provinces were most affected by the MHW, with additional 465 

biomass decreases of 5% and 3.8% relative to the ‘without MHW’ scenario, during and after ‘the Blob’. 

The impact of ‘the Blob' on various trophic levels was similar to the global pattern, with a rapid 

reaction (in terms of biomass loss) observed at lower TLs and higher TLs exhibiting a delayed response 

(S8). Considering the influence of MHWs from 2013 to 2016 using the ‘with MHWs’ scenario and α=0.2 

resistance capacity, there was a hindcast biomass reduction of 6.8% ± 0.7, 6.3% ± 0.6, and 4.3% ± 0.3 470 

for low, medium, and high TLs, respectively, when compared to the reference period of 1998 to 2009. 

Compared to pre-event conditions, by 2021, aside from low TLs, medium and high TLs gave no sign of 

recovery from ‘the Blob’ MHW event.  
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 475 

Figure 8: Hindcast of temporal and spatial biological impacts of the MHW from 2013 to 2016 in the 
Northeast Pacific (‘the Blob’). (a) Temperature anomalies between 2013 and 2016, (b) biogeochemical 
provinces definition, with Central American coast (CAMR), California Ocean and Coastal current (OCAL 
and CCAL), Alaska coastal downwelling (ALSK), North Pacific Tropical gyre (NPTG), Northeast Pacific 
subtropical (NPSE), North Pacific polar front (NPPF), Eastern Pacific subarctic gyres (PSAE), and the 480 
Western Pacific subarctic gyres (PSAW). (c) Generalised least squares models (lines) and total 
consumer biomass change in the ‘without MHW’ and ‘with MHWs’ scenarios in the black and light 
orange colour, respectively. The vertical grey shaded area indicates the duration of ‘the Blob’.  (d) 
Average total consumer biomass changes before (1998 to 2012, pink), during (2013 to 2016, green), 
and after (2017 to 2021, blue) ‘the Blob’ for each biogeochemical province. The error bars correspond 485 
to standard errors.     
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Trophic dynamics of the biomass spectra in the Northeast Pacific were hindcast to be impacted 

by ‘the Blob’ (S9). The trophodynamic indicators flow kinetic and trophic efficiency increased and 

decreased, respectively, in the model. Under the scenario ‘without MHW’, the average hindcast flow 

kinetic of the biomass spectra in the Northeast Pacific increased by 0.6% ± 0.2, while the transfer 490 

efficiency decreased by 0.7% ± 0.2 in the period 2013-2016 relative to 1998-2009. Consideration of the 

MHW under the ‘with MHWs’ scenario exacerbated the increase in flow kinetic and decrease in trophic 

efficiency significantly by 0.7% and 0.4%, respectively (t test p-value < 0.05). 

5. Discussion 

In this study, we accounted for MHWs in the last four decades using hindcast simulations and 495 

showed the potential of synergistic impacts of MHWs (pulses) and long-term climate change (presses) 

on biomass and trophodynamics of ecosystems (Bender et al., 1984; Harris et al., 2018). These 

reconstructed MHW impacts varied spatially because of MHW spatial dynamics, regional differences 

in ocean biogeochemical and physical conditions and ecosystem trophodynamic characteristics.  

Furthermore, studying ‘the Blob’, we highlighted that MHWs could exacerbate the long-term impacts 500 

of climate change that vary between biogeochemical provinces.  

5.1 Impacts of MHWs on global marine consumer biomass 

Over the past two decades, MHWs have led to increased mortality rates and significant 

alterations in the functioning and structure of ecosystems (Smith et al., 2023; Wernberg et al., 2013, 

2016). Our modelling analysis suggests that, without accounting for MHWs and their ecological effects, 505 

the decline in global-scale biomass associated with climate change may have been significantly 

underestimated. We show that MHWs exacerbated the impacts of long-term climate change, 

impacting trophodynamic parameters such as the flow kinetic and transfer efficiency within 

ecosystems, which is congruent with studies by Arimitsu et al. 2021, Gomes et al. 2024, Smith et al. 

2023 . These perturbations of ecosystem functioning result in biomass loss through food webs. 510 

Although MHW temperature anomalies have mostly lasted for weeks to months only, we emphasise 

that the resulting ecosystem perturbations last for a longer time (decades) and influence long-term 

biomass change (Figure 8, Babcock et al., 2019; Cheung & Frölicher, 2020; Guibourd de Luzinais et al., 

2024). Finally, the intensity and duration of MHWs influenced the magnitude of the perturbation in 

ecosystem functioning (Oliver et al., 2021; Smith et al., 2023). We highlighted that the intensity and 515 

duration of MHWs have continuously increased since the beginning of the 21st century (Figure 3), 

leading to a sharp biomass decrease over the hindcast period (Figure 4). Such short-term biomass 

decreases strengthened the impacts of long-term climate change (Cheung and Frölicher, 2020; Collins 

et al., 2019). 
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At a global scale, over the whole time series and different MHW resistance capacity scenarios, 520 

high TL biomass experienced greater impacts from MHWs, and was not able to recover to pre-

perturbation levels as effectively as the low and medium TL biomass. The gap in biomass recovery was 

most apparent in tropical and upwelling biomes, where the hindcast biomass of high TLs consistently 

decreased over time. The time needed for the biomass to return to pre-perturbed levels was related 

to the rate of biomass turnover, which was also dependent on the speed of biomass flows. This 525 

turnover decreased with trophic level and was low for organisms at the top of the food chain (Gascuel 

et al., 2008; du Pontavice et al., 2020; Schoener, 1983).  Thus, the high frequency of MHWs in recent 

years may be greater than the time that high TLs need to recover from the impacts of individual MHWs 

and could contribute to the continued decline in high-TL biomass. 

5.2 Trophodynamics approach as a framework for deciphering 530 

ecosystem responses to MHWs 

In our modelling approach, trophodynamic changes were assessed through transfer efficiency 

(TE) and flow kinetics. TE (dimensionless) is defined as the fraction of energy transferred from one 

trophic level (TL) to the next and summarises all the losses in the trophic network (Jennings et al., 2002; 

Libralato et al., 2008; Lindeman, 1942; Niquil et al., 2014; Pauly and Christensen, 1995; Schramski et 535 

al., 2015; Stock et al., 2017). It is an emergent property of marine ecosystems and an essential 

parameter in many applications of marine ecology, such as estimating biomass flux in production 

models (e.g., Carozza et al., 2016; du Pontavice et al., 2021; Gascuel et al., 2011; Jennings et al., 2008; 

Tremblay-Boyer et al., 2011). Unlike previous applications of EcoTroph at an annual timescale (du 

Pontavice et al., 2021, 2023), where changes in transfer efficiency reflected long-term changes in 540 

species assemblages, having a transfer efficiency that evolved on a biweekly basis (14 days) allowed us 

to take into account metabolic fluctuations over a shorter period. The temperature during MHWs 

increases the basal metabolism (catabolism) of marine organisms (Grimmelpont et al., 2023; Minuti et 

al., 2021), thus reducing the energy available for anabolic processes that can only occur once catabolic 

needs are met (Eddy et al., 2021). The estimation of transfer efficiency only considers anabolic 545 

processes (Eddy et al., 2021); hence, this balance between catabolism and anabolism is how MHWs 

could disrupt transfer efficiency on a biweekly scale. The flow kinetics expressed in TL∙year−1 quantifies 

the speed of the trophic flux, i.e., the rate of biomass transfer from lower trophic levels to higher ones, 

due to predation and/or ontogenesis (Gascuel et al., 2008; du Pontavice et al., 2020). This rate is 

inversely proportional to the biomass residence time (BRT, du Pontavice et al., 2020), which is the 550 

average time a unit of biomass spends moving from one TL to the next higher one through predation 

(Gascuel et al., 2008; Schramski et al., 2015). This flow kinetics can be measured by the 
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production/biomass ratio (P/B, Gascuel et al., 2008), which is used in many ecosystem models, 

particularly EwE (Ecopath with Ecosim, Christensen & Pauly, 1992). 

MHWs disrupt the metabolism of individuals and, on a larger scale, impact the entire 555 

ecosystem with trophodynamic changes throughout the trophic network (S9, Arimitsu et al., 2021; 

Collins et al., 2019; Gomes et al., 2024; Smith et al., 2023). However, due to their different physical 

characteristics depending on the ecosystems and the varying functioning of these ecosystems, they do 

not induce the same structural and functional changes, leading to different biomass losses. Tropical 

ecosystems are composed of species with low transfer efficiency (TE, low ratio between stored energy 560 

and ingested energy), with significant energy losses that increase with temperature (Brown et al., 

2004; du Pontavice et al., 2020; Schramski et al., 2015). To compensate for this low efficiency, 

predation activity is high, resulting in rapid biomass transfers between prey and predators (biomass 

flow, du Pontavice et al., 2020). In these ecosystems, communities (which may be dominated by short-

lived and fast-growing species) are generally living at the upper end of their thermal preferences 565 

(Begon and Townsend, 2021; Pinsky et al., 2019; Vinagre et al., 2016). They experience thermal stress 

associated with MHWs, leading to substantial mortality across the trophic network, with a higher 

proportion occurring in lower trophic levels regardless of the intensity of the MHWs as low TLs tend to 

have lower thermal limits than high TLs (Guibourd de Luzinais et al., 2024). MHWs scarcely affect 

transfer efficiency (TE), with an estimated average decrease of 0.05% between 1998 and 2021 because 570 

the metabolism of species is already very high (du Pontavice et al., 2020). However, MHWs exacerbate 

prey mortality rates, resulting in proportionally higher predation rates; i.e., biomass remains for a 

shorter time at each trophic level, corresponding to an acceleration of biomass flow (estimated at 1 % 

on average between 1998 and 2021). Given the relatively high number of MHW days (Figure 3, Hobday 

et al., 2018; Marin et al., 2021; Oliver et al., 2018), these modifications to biomass flow are "persistent" 575 

and involve significant biomass losses. 

In temperate ecosystems, biomass is transferred more slowly between trophic levels with less 

loss (higher trophic efficiency, du Pontavice et al., 2020; Eddy et al., 2021). In EcoTroph-Dyn, temperate 

communities experience thermal stress and mortality only during high-intensity MHWs (Guibourd de 

Luzinais et al., 2024). MHWs affect the metabolic efficiency of species by increasing basal metabolism 580 

and respiration-related losses, which decreases TE across the trophic spectrum, estimated in our 

simulations at an average of 0.2% between 1998 and 2021. These higher metabolic demands lead to 

an increase in predation activity, which, combined with lower mortality (compared to tropical waters), 

reduces the biomass residence time at each trophic level in the food chain, i.e., a slight acceleration of 

the speed of biomass flow between each trophic level (estimated in our simulations at an average of 585 

0.3% between 1998 and 2021). Since MHWs in these ecosystems are characterised by significant 
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temperature anomalies but over relatively short durations (Figure 3, Frölicher et al., 2018; Oliver et al., 

2018), these modifications to biomass flow are "temporary" and involve lower biomass losses. 

Finally, in upwelling ecosystems, communities are characterised by low transfer efficiencies 

with high biomass residence times, indicating slow biomass transfers between prey and predators (du 590 

Pontavice et al., 2020). MHWs cause thermal stress and moderate mortality in these ecosystems 

(Guibourd de Luzinais et al., 2024). They lead to a decrease in the metabolic efficiency of species 

(estimated in our simulations at an average of 0.03% between 1998 and 2021), along with an increase 

in predation activity, moderately impacting the rate of biomass flows within the ecosystem (estimated 

in our simulations at an average of 0.3% between 1998 and 2021). The MHWs occurring in these 595 

ecosystems are of high intensity and last relatively long (an average of 23 days per year between 1998 

and 2021). One might expect more significant impacts than in tropical environments; however, this 

was not the case. This could potentially be explained by (i) the high productivity of these ecosystems, 

which supports a highly biodiverse food web (Largier, 2020; Pauly and Christensen, 1995; Rykaczewski 

and Checkley, 2008; Ryther, 1969), leading to better resilience to environmental changes and extreme 600 

temperature events (Bernhardt and Leslie, 2013), and (ii) the specific functioning of these ecosystems 

with cool water rising from depth to the surface, which tends to reduce the number of MHW days 

compared to their adjacent open ocean(Varela et al., 2021). More generally, it has been highlighted 

that ocean warming does not affect coastal regions with upwelling in the same way as the open ocean 

(Varela et al., 2021). 605 

Generally, in our simulations, higher temperatures and frequent mortality events promoted 

the emergence of species, and the growth of populations, adapted to warm waters, both characterised 

by rapid growth and short lifespans (Beukhof et al., 2019; du Pontavice et al., 2020). This phenomenon 

was observed, for example, during ‘the Blob’ event in the California Ocean and Coastal Current (OCAL 

and CCAL) provinces, with an increase of tropical species that usually live much further south, such as 610 

tuna, sailfish, and marlin (Cavole et al., 2016). 

 The specific examination of 'the Blob' allowed us to elucidate how this MHW differentially 

affected the biogeochemical provinces (Longhurst, 2007; Reygondeau et al., 2013) and influenced their 

long-term responses. According to our simulations (Figure 8), the biomass in the affected oceanic 

regions had not returned to their reference levels (1998-2009) by 2021. Following the MHW, all 615 

biogeochemical regions experienced significant biomass losses (ANOVA, p-value < 0.05), though with 

varying magnitudes. Differences in exposure to the intensity and duration of temperature anomalies 

can potentially explain these differences in responses. For example, the coastal part of the California 

Current and the subarctic gyres of the North Eastern Pacific were subject to lower anomalies over 

different durations (Varela et al., 2021). In addition, differences in the structure and functioning of 620 

trophic networks may also have contributed to the variation in responses to MHWs between provinces 
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(Morgan et al., 2019; Peterson et al., 2017; Ruzicka et al., 2012). The biogeochemical zones have 

different compositions of pelagic communities that may respond differently to MHWs (Peterson et al., 

2017). For instance, the Gulf of Alaska saw its planktonic community shift towards smaller plankton 

and zooplankton, resulting in a loss in the nutritional quality and quantity of the forage portion of the 625 

pelagic community for their predators, highlighting the disruption of biomass flow (Arimitsu et al., 

2021; Piatt et al., 2020; Suryan et al., 2021). In contrast, in the California Current biogeochemical 

region, the MHW was associated with a substantial increase in the abundance of pyrosomes which 

implied a limitation of energy flow moving toward higher trophic levels (Gomes et al., 2024). This was 

not necessarily the case for the oceanic part of the California Current. These different changes in the 630 

composition and abundance of the lower trophic levels are represented in EcoTroph-Dyn by changes 

in the amount of energy flowing through the food web. EcoTroph-Dyn also takes into account the 

differences in trophodynamic characteristics (e.g., transfer efficiency, flow kinetics) between 

biogeochemical zones. For example, communities in the Gulf of Alaska are more efficient than those 

in the Californian Current (du Pontavice et al., 2020), and the energy entering the food web was less 635 

disrupted than in the California Current, which may explain the greater impact of the MHW on the 

California Current. 

5.3 Model validation and sources of uncertainties 

We have developed an innovative approach to modelling marine ecosystems, linking trophic 

ecology with MHW hindcast to assess their ecological impacts on a seasonal time scale and at a global 640 

scale. Despite its apparent simplicity and the reduced number of parameters, EcoTroph-Dyn is part of 

the family of "complete ecosystem models and dynamic system models" (Plagányi, 2007) as it 

represents all trophic levels, from primary producers to top predators. It merges individual "species" 

into categories defined solely by their trophic level and describes ecosystems through a continuous 

distribution of biomass (trophic biomass spectrum), from primary producers to top predators. 645 

EcoTroph-Dyn does not account for specific climate effects on individual species and populations. The 

model assumes that variations in environmental conditions will lead to new biomass transfer dynamics 

in theoretical ecosystems at equilibrium. EcoTroph-Dyn meets the criteria described by Link, (2010) to 

be considered a plausible representation of marine ecosystems. These criteria include: i) the biomass 

values of all functional groups must cover 5 to 7 orders of magnitude, ii) there must be a 5 to 10% 650 

decrease in biomass density (on a logarithmic scale) for each unit increase in trophic level, iii) specific 

biomass production values (P/B) must never exceed specific biomass consumption values (C/B), and 

iv) the ecotrophic efficiency (EE) for each group must be less than 1. Additionally, the model relies on 

empirically obtained equations (Gascuel et al., 2008; du Pontavice et al., 2020) and has demonstrated 
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its ability to replicate the effects of fishing and climate change on marine ecosystems (e.g., du 655 

Pontavice et al., 2021, 2023; Tremblay-Boyer et al., 2011). 

To discuss the validity of our hindcasts, we focussed on the most studied MHW (‘the Blob’) in 

the literature with available quantitative data (e.g., Arimitsu et al., 2021; Bond et al., 2015; Cavole et 

al., 2016; Cheung & Frölicher, 2020; Gomes et al., 2024; Piatt et al., 2020; Suryan et al., 2021). The 

historical biomass change simulations from our ‘with MHWs’ simulations and the α=0.2 scenarios 660 

showed the same biomass evolution per trophic group as the observational data based on species 

biomass surveys (Suryan et al., 2021). However, our historical simulations estimated lower biomass 

and also showed a smaller biomass decrease compared to observed data (Suryan et al., 2021). This 

would indicate a possible underestimation of biomass and ecosystem response to MHWs by EcoTroph-

Dyn. The underestimation of ecological responses to MHWs is likely caused by the choice of a lower α 665 

value that lowers the sensitivity of the ecosystem to MHWs. To reduce the uncertainty over the α 

value, future studies could calibrate it for specific regions using observational data of MHW impacts 

on marine ecosystems’ biomass. 

Our simulations of biomass changes, according to the ‘with MHWs’ and α=0.2 scenarios, also 

fell within the range of historical biomass simulations reported by studies using other approaches to 670 

represent ecosystem functioning (e.g., species-based Dynamic Bioclimate Envelope Model (DBEM) by 

Cheung & Frölicher, 2020, and Ecotran, an extension of the popular Ecopath modelling framework by 

Gomes et al., 2024, see Figure 9). Additionally, we projected that the trophodynamic kinetic parameter 

of biomass flow increased by 3% in the ‘with MHWs’ and α=0.2 scenarios, which is consistent with the 

estimates highlighted by Gomes et al., 2024 (3.7%). Finally, the decreases in trophodynamic transfer 675 

efficiency parameters highlighted in EcoTroph-Dyn with ‘the Blob' case study correspond to previous 

estimates (e.g., Arimitsu et al., 2021) showing a reduction in the availability and quality of food in the 

food web. It is worth noting that historical simulations obtained using a smaller (larger) α led to an 

underestimation (overestimation) of biomass losses and changes in biomass flow parameters relative 

to the estimates of Cheung & Frölicher (2020) and Gomes et al. (2024). 680 
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Figure 9: Biomass change associated with the Northeast Pacific MHW (2013-2016) per 
biogeochemical province. Grey violin plots correspond to results from Cheung & Frölicher (2020), 
while the red ones correspond to our hindcast EcoTroph-Dyn simulation with α=0.2 . (Figure adapted 685 
from Cheung & Frölicher (2020)). 
 

One of the main uncertainties in modelling MHWs in EcoTroph-Dyn is the assumption of the 

resilience of the biomass spectrum to MHWs, i.e., parameter α. It is important to note that the α values 

applied in this study were chosen arbitrarily, albeit reasonably, and were able to capture a broad range 690 

of potential responses to MHWs. It would therefore have been valuable to test EcoTroph-Dyn against 

other MHWs in the world ocean in order to acquire better estimates of the α parameter and more 

reliable results regarding the consequences of MHWs. However, to date, few MHWs are as well studied 

as ‘the Blob', limiting these analyses. As discussed in Guibourd de Luzinais et al., 2024, given the 

diversity of ecosystem functioning, there is no reason why communities in different ecosystems, 695 

biogeochemical regions or trophic levels should have the same capacity to resist MHWs. Thus, we 

encourage future studies to use various observational data on the impacts of MHWs across the ocean 

(if available) to better estimate the α parameter as a function of different ecosystems, biogeochemical 

regions or trophic levels in order to reduce the uncertainties in projections. 

Here, we focused solely on the direct impacts of MHWs occurring during the year's warmest 700 

month via thermal stress, resulting in species mortality (Oliver et al., 2021; Smith et al., 2023). 

However, MHWs in other seasons can also have consequences on populations by affecting a specific 

stage of the life cycle of certain species (Crickenberger and Wethey, 2018; Oliver et al., 2021; Smith 

and Thatje, 2013). For example, MHWs that stress adult breeders can lead to a decrease in 

reproductive investment and, consequently, fewer, smaller, and lower quality gametes (e.g., Shanks 705 

et al., 2020), resulting in a loss of abundance and biomass of some species (Johansen et al., 2021). 

While taking seasonality into account will increase the number of detected extreme events, some may 
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not have ecological consequences (Oliver et al., 2021; Smith et al., 2023). Thus, our approach can be 

seen as conservative and may underestimate the impact of MHWs. Nevertheless, we detected MHWs 

with potentially significant ecological impacts. Studying MHWs occurring in seasons other than 710 

summer would involve considering the phenological effects of MHWs. However, since the EcoTroph-

Dyn model does not directly represent this phenological aspect of marine organisms, future studies 

can apply other approaches that explicitly represent seasonal processes such as spawning and 

migration to elucidate the effects of phenology. 

Furthermore, uncertainties in our results arise from the environmental drivers of EcoTroph-715 

Dyn.  In our current investigation, EcoTroph-Dyn was driven by satellite data. For the NPP forcing 

variable, we implemented the EPPLEY-VGMP algorithm (Behrenfeld and Falkowski, 1997; Morel, 1991), 

which, like other algorithms such as CbPM and CAFE, derives NPP from satellite-derived estimates of 

Chl-a and SST. Firstly, in this study, we did not consider the 'with' and 'without' MHWs scenarios for 

NPP. Acknowledging that MHWs generally increase NPP at high latitudes while decreasing it at low 720 

latitudes (Arteaga and Rousseaux, 2023; Bouchard et al., 2017; Le Grix et al., 2022; LeBlanc et al., 2020), 

we may have overestimated MHW impacts on ecosystem functioning at high latitudes and 

underestimated their impact at low latitudes. Furthermore, the variability and uncertainty in the 

estimation of the NPP by satellites directly affects the reliability of our results. In EcoTroph-Dyn, as well 

as in other Marine Ecosystem Models, ocean primary production (and its related phytoplankton 725 

biomass) plays a crucial role in both sustaining and constraining the biomass of higher trophic levels 

(e.g., Blanchard et al., 2012; Carozza et al., 2016; Cheung et al., 2011; Jennings & Collingridge, 2015). 

However, there exists significant variability in NPP estimation among satellite NPP algorithms 

(Milutinović and Bertino, 2011; Westberry et al., 2023). These discrepancies are particularly 

pronounced over continental shelves and oligotrophic gyres, primarily due to variations in model 730 

parametrisation and growth rate representation (Milutinović and Bertino, 2011; Westberry et al., 

2023). Secondly, in this study, in order to propose a suitable representation of the world ocean, we 

use an interpolation method to reconstruct an incomplete NPP time series. The interpolation was 

constrained by the minimum and maximum satellite data values of the NPP observed over their 

respective time series to ensure reliable interpolation and reduce potential bias. Thirdly and lastly, in 735 

this study, we duplicated NPP monthly values to able the EcoTroph-Dyn to run with 15-day timesteps. 

This duplication may have smoothed marine ecosystem responses to the historical changes in marine 

environment; however, it has not changed trends and conclusions of our results. Consequently, 

elucidating the sources of the current uncertainty associated with satellite-derived NPP and refining 

these estimates pose significant challenges in comprehending the responses of marine food webs to 740 

MHWs. 
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Moreover, EcoTroph-Dyn does not account explicitly for species; thus, we could only assess 

aggregated food web responses to MHWs. The model projected that the aggregated response across 

species is expected to be negative, although it is known that some species would exhibit positive 

effects from MHW occurrence (Cavole et al., 2016; Smith et al., 2023; Suryan et al., 2021; Wernberg et 745 

al., 2016). To be cautious, we considered various loss rate scenarios to obtain a complete range of 

responses from marine ecosystems. Running the aforementioned five MHW-induced loss rate-

scenarios, we found that the aggregated resistance capacities α had a significant (ANOVA, p-value<2e-

16) and large effect. All scenarios are consistent with each other, with an increasing biomass loss over 

marine ecosystems with decreasing resistance capacities (increasing α).  Even though the global impact 750 

of MHWs is negative, species explicit modelling could improve our understanding of how various 

impacts of climate change and species-level responses will affect trophodynamics and ecosystem 

structure and function.  

5.4 Implications and future research 

In our study, we highlighted the specific impacts of MHWs on ecosystem structure and 755 

function, particularly through the case study of the MHW known as ‘the Blob’ (the longest and 

strongest period of abnormal temperature ever recorded (Collins et al., 2019; Oliver et al., 2021)). The 

anomalously low wind during the 2013-2014 winter induced anomalously weak Ekman transport of 

colder water from the north and, coupled with anomalously low air-sea heat exchange, triggered ‘the 

Blob’ (Bond et al., 2015). Furthermore, these processes as well as the El Niño Southern Oscillation 760 

(ENSO) have already contributed to the increased average duration and intensity of MHWs in the 

North-eastern Pacific Ocean. Given that projections for the 21st century indicate that ENSO events will 

increase in intensity and frequency (Holbrook, Gupta, et al., 2020; Oliver et al., 2021), events such as 

‘the Blob’ are expected to occur more frequently (Holbrook, Gupta, et al., 2020; Oliver et al., 2021). 

This underscores the need for ongoing research to better understand how MHWs disrupt ecosystems. 765 

Finally, throughout the 21st century, ecosystem responses will depend on the ability of communities 

to adapt to the long-term increase in ocean temperature and their ability to withstand short-term 

extreme temperatures (Johansen et al., 2021). Therefore, to enhance our understanding of how 

marine ecosystems will respond to climate change, future studies should focus on potential scenarios 

of adaptive responses to future climate and associated MHWs. The EcoTroph Dyn model is a tool to 770 

understand the ecological consequences of MHWs at global and local scales, and to project their 

impacts under future scenarios. However, the model focuses on aggregated energy flows between 

trophic groups while ecological responses to MHWs of species within each group may vary 

substantially. Some species may acclimatise or adapt to MHWs. Consideration of the potential 
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acclimatization/adaptation in the model requires the development of specific adaptation scenarios 775 

and model settings in addition to the model settings presented here. 

6. Conclusion 

Utilising the EcoTroph-Dyn trophodynamic framework for MHWs, we highlighted substantial 

and latent repercussions of MHWs, notably biomass loss and biomass flow alteration, which are 

particularly consequential for higher TLs. As a result, the recovery/restoration time can extend over 780 

several years, if not decades. EcoTroph-Dyn model demonstrates its capacity to characterize the 

impacts of MHWs on ecosystem structure and functions, with a slight underestimation of the 

magnitude of the impacts when the model is applied to examine ‘the Blob’ MHW. However, 

considering the dynamics and characteristics of current and future MHWs, it can be anticipated that 

ecosystems might not be afforded the necessary temporal window to recover between successive 785 

MHW events, which can significantly disrupt long-term trends associated with climate change. 

 

7. Appendices 

Appendix A 

• MHW characterisation and detection 790 

To characterise MHW in each ocean spatial cell, we analysed daily SST observations from the 

NOAA’s AVHRR data (Reynolds et al., 2007;  https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00680). We defined MHW as a discrete prolonged anomalously 

warm water event when the daily SSTs exceed an extreme temperature threshold value for at least 

five consecutive days (A. J. Hobday et al., 2016). The extreme temperature threshold value was 795 

calculated for each 1° latitude x 1° longitude spatial cell as the 90th percentile of daily SST from the 

30-year historical time series from January 1982 to December 2011. We did not calculate threshold 

values by season; thus, MHW events were identified by a single threshold across the year. As a result, 

we detected MHWs mostly occurring during the year's warmest months (see figure A1(a) for schematic 

explanation). This approach to identifying the MHW threshold represents biological extreme 800 

temperature in the local (spatial cell) context. It is appropriate to assess the direct mortality associated 

with MHWs (Oliver et al., 2021). We determined a reference average sea surface temperature (SST 

average) for each spatial cell by analysing data from the 1st of January 1982 to the 31st of December 

2011. Utilising this reference average SST, we classified each spatial cell into 'thermal classes,' with 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680
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each class representing a 1°C increment of the reference SST average ranging from -1°C to 29°C (refer 805 

to Figure A1(b)). We used the R package heatwaveR described at 

https://robwschlegel.github.io/heatwaveR/ to compute MHWs characteristics in each spatial cell from 

January 1982 to December 2021. Thus, we finally obtained MHW characteristics for each 1° per 1° of 

longitude and latitude ocean cell up to December 2021. The considered MHW characteristics are the 

threshold value defining MHWs, MHW’s duration (in days), category and intensity (mean SST anomaly) 810 

and declaration of MHW days over the SST time series.  

 

Figure A1: Marine heatwave detection method and reference average SST of each ocean cell. 

(a) Schematic explanation of MHWs detection for a spatial cell. The solid horizontal green and 

black lines represented the extreme threshold value and the reference temperature, 815 

respectively. (b) A map of thermal classes of 1o C intervals from -1 to 29°C categorised based 

https://robwschlegel.github.io/heatwaveR/
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on the reference temperature at each spatial cell over the period from 1st January 1982 to 

31st December 2011. 

 

• Estimation of species distribution and associated thermal niche 820 

We developed an algorithm depending on the MHWs' characteristics to express the loss rate 

of trophic transfers associated with MHW. First, we identified a list of marine species with their 

occurrence records  (3242 bivalves, 500 cephalopods species, 3116 crabs species, and 12782 fish 

species) gathered from the publicly accessible databases: OBIS (www.iobis.org), the 

Intergovernmental Oceanographic Commission (ioc-unesco.org), GBIF (www.gbif.org), Fishbase 825 

(www.fishbase.org), and the International Union for the Conservation of Nature 

(http://www.iucnredlist.org/technical-documents/spatial-data). We then cleaned the data by 

removing duplicate entries, terrestrial occurrences, and occurrences outside the known species 

habitat from the aggregated species occurrence dataset (Froese & Pauly, 2018). Additionally, we 

excluded zooplankton from the algorithm development due to limited evidence of direct mortality 830 

induced by Marine Heatwaves (MHWs), with observed responses mainly manifesting as range shifts 

and alterations in community structure (Arimitsu et al., 2021; Suryan et al., 2021; Winans et al., 2023). 

Marine mammals and seabirds were also omitted from algorithm development, as their mortality 

linked to MHWs primarily stems from secondary effects such as diminished quality and quantity of 

food supply (Cavole et al., 2016; Piatt et al., 2020) rather than direct heat stress impact. Subsequently, 835 

the data were rasterised into a grid covering the global oceans (1° longitude by 1° latitude), denoting 

the historical presence of each species. Species with occurrence records in fewer than 30 cells were 

excluded from further analysis (Hernandez et al., 2006). 

In a second step, we utilised an ensemble species distribution modelling approach (Asch et al., 

2018; Reygondeau, 2019) at a 1° grid scale. Four environmental niche models (ENMs) were applied: 840 

Bioclim, Boosted Regression Trees models (Thuiller et al., 2009), Maxent (Phillips et al., 2006), and the 

Non-Parametric Probabilistic Ecological Niche model (Beaugrand et al., 2011), using global climatology 

satellite data (AVHRR). Model accuracy was assessed using the area under the curve (AUC) analysis of 

the receiver operating characteristic (ROC), discarding models with AUC below 0.5 (Sing et al., 2005). 

The evaluation employed the pROC package in R (Robin et al., 2011). We then calculated the average 845 

Habitat Suitability Index (HSI) weighted by the AUC values of each ENM for each spatial cell and species. 

An HSI threshold for each species was estimated using their prevalence. Spatial cells with HSI below 

the threshold were deemed non-viable habitats. 

Species' predicted thermal niches were quantified from spatial distributions using averaged 

satellite sea surface temperature (SST) data (AVHRR) from 1982 to 2011. The average SST from 1982 850 

to 2011 was recorded for each spatial cell above the HSI threshold. We then characterised the 

http://www.iucnredlist.org/technical-documents/spatial-data
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predicted thermal niche (histogram of all the average values of SST), and more specifically, the upper-

temperature threshold, for each species from the 95th percentile of the SST records where they were 

predicted to occur. 

• Additional loss rate associated with MHW 855 

For each spatial cell belonging to each thermal class, we calculated the percentage of species 

in each trophic class exposed to thermal stress induced by MHWs intensity above their estimated 

temperature threshold (95th percentile of their thermal niche). Matching MHW intensity in each 

spatial cell from 1981 to 2021 with species' temperature thresholds, we determined the percentage 

of species exposed to temperatures exceeding their thresholds. Thermal stress of a species was 860 

assumed dependent on MHW category (1 to 4, based on SST anomaly) and species' trophic level (<2.5, 

2.5-3.0, 3.0-3.5, 3.5-4.0, 4.0-4.5, 4.5-5.0, >5.0), estimated from FishBase and SeaLifeBase. 

To obtain a continuous representation of the percentage of species undergoing a thermal stress 

as the intensity of MHW increases, we decided to transform the discrete MHW categorisation (Hobday 

et al., 2018) to a continuous MHW intensity index as follows: 865 

𝑀𝐻𝑊𝑐𝑎𝑡,𝑖 =
𝑀𝐻𝑊 𝑚𝑒𝑎𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦,𝑖

𝑐𝑎𝑡1 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑎𝑛𝑜𝑚𝑎𝑙𝑦,𝑖
   (Eq. A1) 

MHW mean anomaly was calculated as the difference between the MHW mean SST anomaly 

and the reference temperature of each thermal class (i), and “cat1 associated anomaly” is the mean 

threshold value used to identify category 1 MHWs in each spatial cell. 

We fit the estimated percentage of species undergoing thermal stress with the MHW intensity 870 

index and species’ trophic class to a nonlinear function. A Gompertz function was selected after 

preliminary tests because it is better fitted to data than logistic or other mathematical functions with 

similar shapes. The Gompertz function is expressed as:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑢𝑛𝑑𝑒𝑟𝑔𝑜𝑖𝑛𝑔 𝑎 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑒𝑥𝑝−𝑒𝑥𝑝
𝑏_𝑡𝑙𝑖⋅(𝑀𝐻𝑊𝑐𝑎𝑡,𝑖−𝑙𝑡50_𝑡𝑙𝑖)

 (Eq. A2);  

We estimated the parameters b_tli, lt50_tli, and MHWcat,i for each thermal class i. The 875 

parameters b_tli and lt50_tli correspond to the slope of the function and the index of marine 

heatwave intensity (MHWcat,i) at which 50% of the species are undergoing thermal stress, 

respectively. 

For each thermal class i, parameters b_tli and lt50_tli were expressed as (figure A2): 

b_tli= −1.4511 − 𝑒0.4223 ⋅(𝑖−22.4926)                      (Eq. A3) and 880 

lt50_tli= 3.29 −  0.485 ⋅  𝑖 + 0.0306 ⋅  𝑖² − 0.000608 ⋅  𝑖3 when trophic level <2.5 and 

lt50_tli = 3.55 −  0.271 ⋅  𝑖 + 0.014 ⋅  𝑖² − 0.000304 ⋅  𝑖3 when trophic level >=2.5.     (Eq. A4) 
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Figure A2: coefficient of each reference temperature individual thermal stress algorithm 

model. With (1) corresponding to the Gompertz slope at the inflexion point coefficient (b) and (2) the 885 

MHW category that causes 50% of species to undergo thermal stress (lt50) with blue and other colours 

corresponding to the trophic levels below 2.5 and above 2.5, respectively. 

 

Finally, to move from the thermally stressed stage to the loss rate (ηι), we assumed that species 

were continuously challenged by MHW increased intensity (Figure A3 for schematic differences) 890 

expressed as. 

𝜂𝑖 =  𝑒𝑥𝑝−𝑒𝑥𝑝
𝑏𝑖⋅𝛼⋅(𝑀𝐻𝑊𝑐𝑎𝑡,𝑖−

𝑙𝑡50𝑖
𝛼 )

⋅  𝛽    (Eq. A5) 
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Figure A3: loss rate associated with MHWs occurrences. With the ecological hypothesis that 

MHW increases in intensity/category continuously challenge the aggregated response across species. 895 

On the plots, b is equal to 1. The top bottom and bottom rows correspond to the loss rate of trophic 

level <2.5 and trophic level>=2.5, respectively.  

 

We explored the sensitivity of the results to species’ acclimation capacity to MHW conditions 

by assuming that acclimation reduces the mortality rate due to species’ exposure to thermal stress. 900 

We tested four acclimation capacity settings represented by the values of the coefficient α. These 

settings are full acclimation (α = 0; no mortality due to thermal stress), partial acclimation (α = 0.2, 0.5; 

20%, and 50% of the species die because of thermal stress, respectively) and no acclimation (α =1; all 

species die when they are under thermal stress). We also related the loss rate to the MHW duration 

over the fortnight by assuming that the duration increases the mortality rate. The duration of MHW is 905 

represented by β and ranges from β=0; no MHW to β=1; MHW lasting 15 days of the fortnight (see 

section 2.3.2 for β computation).  

 

8. Code availability  

The code for the EcoTroph_Dyn model that supports the findings of this study is openly 910 

available at https://doi.org/10.57745/NHVPCR .  

https://doi.org/10.57745/NHVPCR
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9. Data availability  

Daily SST observations from the NOAA _ AVHRR data are publicly available on the link 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00680. 

Species occurrence data and associated trophic levels that support the findings of this study are openly 915 

available at https://doi.org/10.57745/PI0N92. 
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