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Abstract. The Arctic Ocean is undergoing rapid transformation due to climate change, with decreasing sea ice contributing to a predicted increase in
primary productivity. A critical factor determining future productivity in this region is the availability of nitrogen, a key nutrient that often limits
biological growth in Arctic waters. The fixation of dinitrogen (N-) gas, a biological process mediated by diazotrophs, provides a source of new nitrogen
to marine ecosystems and has been increasingly recognized as a potential contributor to nitrogen supply in the Arctic Ocean. Historically it was
believed to be limited to oligotrophic tropical and subtropical oceans, Arctic N» fixation has only garnered significant attention over the past decade,
leaving a gap in our understanding of its magnitude, the diazotrophic community, and potential environmental drivers. In this study, we investigated
N, fixation rates and the diazotrophic community in Arctic coastal waters, using a combination of isotope labeling, genetic analyses and
biogeochemical profiling, in order to explore its response to glacial meltwater, nutrient availability and its impact on primary productivity. We
observed N, fixation rates ranging from 0.16 to 2.71 nmol N L' d!, notably higher than many previously reported rates for Arctic waters. The diazotrophic
community was predominantly composed of UCYN-A. The highest N, fixation rates co-occurred with peaks in chlorophyll @ and primary production
at a station in the Vaigat Strait, likely influenced by glacial meltwater input. On average, N, fixation contributed 1.6% of the estimated nitrogen requirement
of primary production, indicating that while its role is modest, it may still represent a nitrogen source in certain conditions. These findings illustrate the
potential importance of N, fixation in an environment previously not considered important for this process and provide insights into its response to the

projected melting of the polar ice cover.

1 Introduction

Nitrogen is a key element for life and often acts as a growth-limiting factor for primary productivity (Gruber and Sarmiento, 1997; Gruber, 2004;
Gruber and Galloway, 2008). Despite nitrogen gas (N2) making up approximately 78% of the atmosphere, it remains inaccessible to most marine life
forms. Diazotrophs, which are specialized bacteria and archaea, have the ability to convert N» into biologically available nitrogen, facilitated by the

nitrogenase enzyme complex carrying out the process of
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biological nitrogen fixation (N fixation) (Capone and Carpenter (1982)). Despite the fact that these organisms are highly spe- cialized and N> fixation
is energetically demanding, the ability to carry out this process is widespread amongst prokaryotes. However, it is controlled by several factors such
as temperature, light, nutrients and trace metals such as iron and molybdenum (Sohm et al., 2011; Tang et al., 2019). Oceanic N, fixation is the major
source of nitrogen to the marine system (Karl et al., 2002; Gruber and Sarmiento, 1997), thus, diazotrophs determine the biological productivity of
our planet (Falkowski et al. (2008), impact the global carbon cycle and the formation of organic matter (Galloway et al., 2004; Zehr and Capone,
2020). Traditionally it has been believed that the distribution of diazotrophs was limited to warm and oligotrophic waters (Buchanan et al., 2019;
Sohm et al., 2011; Luo et al., 2012) until putative diazotrophs were identified in the central Arctic Ocean and Baffin Bay (Farnelid et al., 2011; Damm
et al., 2010). First rate measurements have been reported for the Canadian Arctic by Blais et al. (2012) and recent studies have reported rate
measurements in adjacent seas (Harding et al., 2018; Sipler et al., 2017; Shiozaki et al., 2017, 2018), drawing attention to cold and temperate waters
as significant contributors to the global nitrogen budget through diverse organisms.

UCYN-A has been described as the dominant active N» fixing cyanobacterial diazotroph in arctic waters (Harding et al. (2018)), while other
cyanobacteria have only occasionally been reported (Diez et al., 2012; Fernandez-Méndez et al., 2016; Blais et al.,). However, other recent studies
suggest, that the majority of the arctic marine diazotrophs are NCDs (non-cyanobacterial diazotroph) and those may contribute significantly to N
fixation in the Arctic Ocean (Shiozaki et al., 2018; Fernandez-Méndez et al., 2016; Harding et al., 2018; Von Friesen and Rie-mann, 2020). Recent
work by Robicheau et al. (2023) nearby Baffin Bay, geographically close to the sampling area, document low nifH gene abundance while still detecting diazotrophs
in Arctic surface waters, highlighting the patchy distribution of diazotrophs across Arctic coastal environments. Studies on the Arctic diazotroph community
remain scarce, leaving Arctic environments poorly understood regarding N fixation. Shao et al. (2023) note the impossibility of estimating Arctic N
fixation rates due to the sparse spatial coverage, which currently represents only approximately 1 % of the Arctic Ocean. Increasing data coverage in
future studies will aid in better constraining the contribution of N, fixation to the global oceanic nitrogen budget (Tang et al. (2019)).

The Arctic ecosystem is undergoing significant changes driven by rising temperatures and the accelerated melting of sea ice, a trend predicted to
intensify in the future (Arrigo et al., 2008; Hanna et al., 2008; Haine et al., 2015). These climate-driven shifts have stimulated primary productivity in
the Arctic by 57 % from 1998 to 2018, elevating nutrient demands in the Arctic Ocean (Ardyna and Arrigo, 2020; Arrigo and van Dijken, 2015; Lewis
et al., 2020). This increase is attributed to prolonged phytoplankton growing seasons and expanding ice-free areas suitable for phytoplankton growth
(Arrigo et al. (2008)). However, despite these dramatic changes, the role of N, fixation in sustaining Arctic primary production remains poorly
understood. While recent studies suggest that diazotrophic activity may contribute to nitrogen inputs in polar regions (Sipler et al. (2017)), fundamental
uncertainties remain regarding the extend, distribution and environmental drivers of N, Fixation in the Arctic Ocean. Specifically, it is unclear
whether increased glacial meltwater input enhances or inhibits N> Fixation through changes in nutrient availability, stratification, and microbial
community composition. Thus, the question of whether nitrogen limitation will emerge as a key factor constraining Arctic primary production under future
climate scenarios remains unresolved. In this study, we investigate the diversity of diazotrophic communities alongside in situ N, fixation rate

measurements in Disko Bay (Qeqertarsuaq), a coastal Arctic system strongly influenced by glacial meltwater input. By linking environmental parameters to N»



61 fixation dynamics, we aim to clarify the role of diazotrophs in Arctic nutrient cycling and assess their potential contribution to sustaining primary
62 production in a changing Arctic. Understanding these processes is essential for refining biogeochemical models and predicting ecosystem responses

63 to future climate change.
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2 Material and methods
2.1 Seawater sampling

The research expedition was conducted from August 16 to 26 in 2022 aboard the Danish military vessel P540 within the waters of Qeqertarsuag, located
in the western region of Greenland (Kalaallit Nunaat). Discrete water samples were obtained using a 10 L Niskin bottle, manually lowered with a
hand winch to five distinct depths (surface, 5, 25, 50, and 100 m). A comprehensive sampling strategy was employed at 10 stations (Fig. 1), covering
the surface to a depth of 100 m. The sampled parameters included water characteristics, such as nutrient concentrations, chl a, particulate organic
carbon (POC) and nitrogen (PON), molecular samples for nucleic acid extractions (DNA), dissolved inorganic carbon (DIC) as well as CTD sensor
data. At three selected stations (3,7,10) N fixation and primary production rates were quantified through concurrent incubation experiments.

Samples for nutrient analysis, nitrate (NO; ~), nitrite (NO, ~ ) and phosphate (PO4*~) were taken in triplicates, filtered through a 0.22 um syringe filter
(Avantor VWR® Radnor, Pa, USA) and stored at -20 °C until further analysis. Concentrations were spectrophotometrically determined (Thermo
Scientific, Genesys 10S UV-VIS spectrophotometer) following the established protocols of Murphy and Riley (1962) for PO+~ ; Garcia-Robledo et
al. (2014) for NO;~ & NO, ~ (detection limits: 0.01 pmol L' (NO5~, NO; -, and PO4>*), 0.05 pmol L' (NH4"). Chl a samples were filtered onto 47
mm @ GF/F filters (GE Healthcare Life Sciences, Whatman, USA), placed into darkened 15 mL LightSafe centrifuge tubes (Merck, Rahway, NJ,
USA) and were subsequently stored at -20 °C until further analysis. To determine the Chl a concentration, the samples were immersed in 8 mL of 90
% acetone overnight at 5 °C. Subsequently, 1 mL of the resulting solution was transferred to a 1.5 mL glass vial (Mikrolab Aarhus A/S, Aarhus,
Denmark) the following day and subjected to analysis using the Triology® Fluorometer (Model #7200-00) equipped with a Chl a in vivo blue module
(Model #7200-043, both Turner Designs, San Jose, CA, USA). Measurements of serial dilutions from a 4 mg L' stock standard and 90 % acetone
(serving as blank) were performed to calibrate the instrument. In addition, measurements of a solid-state secondary standard were performed every
10 samples. Water (1 L) from each depth was filtered for the determination of POC and PON concentrations, as well as natural isotope abundance (6
13C POC / 6 >N PON) using 47 mm @, 0.7um nominal pore size precombusted GF/F filter (GE Healthcare Life Sciences, Whatman, USA), which
were subsequently stored at -20 °C until further analysis. Seawater samples for DNA were filtered through 47 mm g, 0.22 ym MCE membrane filter

(Merck, Millipore Ltd., Ireland) for a maximum of 20 minutes, employing a gentle vacuum (200 mbar). The filtered volumes varied depending
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on the amount of material captured on the filter, ranging from 1.3 L to 2 L, with precise measurements recorded. The filters were promptly stored at
-20 °C on the ship and moved to -80 °C upon arrival to the lab until further analysis.
To achieve detailed vertical profiles, a conductivity-temperature-depth-profiler (CTD, Seabird X) equipped with supplemen- tary sensors for dissolved

oxygen (DO), photosynthetic active radiation (PAR), and fluorescence (Flourometer) was manually deployed.
2.2 Nitrogen fixation and primary production

Water samples were collected at three distinct depths (0, 25 and 50 m) for the investigation of N, fixation rates and primary production rates,
encompassing the euphotic zone, chlorophyll maximum, and a light-absent zone. Three incubation stations (Fig. 2: station 3, 7, 10) were chosen, in
a way to cover the variability of the study area. This strategic sampling aimed to capture a gradient of the water column with varying environmental
conditions, relevant to the aim of the study. N, fixation rates were assessed through triplicate incubations employing the modified '>N-N; dissolution
technique after GroB3kopf et al. (2012) and Mohr et al. (2010).

To ensure minimal contamination, 2.3 L glass bottles (Schott-Duran, Wertheim, Germany) underwent pre-cleaning and acid washing before being
filled with seawater samples. Oxygen contamination during sample collection was mitigated by gently and bubble-free filling the bottles from the
bottom, allowing the water to overflow. Each incubation bottle received a 100 mL amendment of ""N-N; enriched seawater (98 %, Cambridge Isotope
Laboratories, Inc.,USA) achieving an average dissolved N; isotope abundance ('°N atom %) 0f3.90 =+ 0.02 atom % (mean %+ SD). Additionally, 1 mL
of H'3CO3s (1g/50 mL) (Sigma- Aldrich, Saint Louis Missouri US) was added to each incubation bottle, roughly corresponding to 10 atom %
enrichment and thus measurements of primary production and N, fixation were conducted in the same bottle. Following the addition of both isotopic
components, the bottles were closed airtight with septa-fitted caps and incubated for 24 hours on-deck incubators with a continuous surface seawater
flow. These incubators, partially shaded (using daylight-filtering foil) to simulate in situ photosynthetically active radiation (PAR) conditions, aimed
to replicate environmental parameters experienced at the sampled depths. Control incubations utilizing atmospheric air served as controls to monitor
any natural changes in 6 '>N not attributable to ">N-N, addition. These control incubations were conducted using the dissolution method, like the
15N-N, enrichment experiments, but with the substitution of atmospheric air instead of isotopic tracer.

After the incubation period, subsamples for nutrient analysis were taken from each incubation sample, and the remaining content was subjected to

the filtration process and were gently filtered (200 mbar) onto precombusted GF/F filters (Advantec,

47 mm @, 0.7 um nominal pore size). This step ensured a comprehensive examination of both nutrient dynamics and the isotopic composition of the
particulate pool in the incubated samples. Samples were stored at -20 °C until further analysis.

Upon arrival in the lab, the filters were dried at 60 °C and to eliminate particulate inorganic carbon, subsequently subject to acid fuming during which
they were exposed to concentrated hydrochloric acid (HCL) vapors overnight in a desiccator. After undergoing acid treatment, the filters were carefully
dried, then placed into tin capsules and pelletized for subsequent analysis. The determination of POC and PON, as well as isotopic composition (§ '3C

POC / 6 >N PON), was carried out using an elemental analyzer (Flash EA, ThermoFisher, USA) connected to a mass spectrometer (Delta V Advantage



119 Isotope Ratio MS, ThermoFisher, USA) with the ConFlo IV interface. This analytical setup was applied to all filters. These values, derived from triplicate
120 incubation measurements, exhibited no omission of data points or identification of outliers. Final rate calculations for N, fixation rates were performed
121 after Mohr et al. (2010) and primary production rates after Slawyk et al. (1977). A detailed sensitivity analysis of N» fixation rates, including the

122 contribution of each source of error for all parameters, is provided in a supplementary table and summarized form in the Appendix (Table Al).

123 2.3 Molecular methods

124
125 The filters were flash-frozen in liquid nitrogen, crushed and DNA was extracted using the Qiagen DNA/RNA AllPrep Kit (Qi- agen, Hildesheim, DE),

126 following the procedure outlined by the manufacturer. The concentration and quality of the extracted DNA was assessed spectrophotometrically using
127 a MySpec spectrofluorometer (VWR, Darmstadt, Germany). The prepara- tion of the metagenome library and sequencing were performed by BGI
128 (China). Sequencing libraries were generated using MGIEasy Fast FS DNA Library Prep Set following the manufacturer’s protocol. Sequencing was
129 conducted with 2x150bp on a DNBSEQ-G400 platform (MGI). SOAPnukel.5.5 (Chen et al. (2018)) was used to filter and trim low quality reads
130 and adaptor contaminants from the raw sequence reads, as clean reads. In total, fifteen metagenomic datasets were produced with an average of 9.6G

131 bp per sample.

132 2.3.1 Metagenomic De Novo assembly, gene prediction, and annotation

133
134 Megahit v1.2.9 (Li et al. (2015)) was used to assemble clean reads for each dataset with its minimum contig length as 500. Prodigal v2.6.3 (Hyatt et

135 al. (2010)) with the setting of “~p meta” was then used to predict the open reading frames (ORFs) of the assembled contigs. ORFs from all the available
136 datasets were filtered (>100bp), dereplicated and merged into a catalog of non-redundant genes using cd-hit-est (>95 % sequence identity) (Fu et al.
137 (2012)). Salmon v1.10.0 (Patro et al. (2017)) with the “— meta” option was employed to map clean reads of each dataset to the catalog of non-
138 redundant genes and generate the GPM (genes per million reads) abundance. Eggnog mapper v2.1.12 (Cantalapiedra et al. (2021)) was then performed
139 to assign KEGG Orthology (KO) and identify specific functional annotation for the catalog of non-redundant genes. The marker genes, nifDK
140 (K02586, K02591 nitrogenase molybdenum-iron protein alpha/beta chain) and nif H (K02588, nitrogenase iron protein), were used for the evaluation
141 of microbial potential of N> fixation. RbcL (K01601, ribulose-bisphosphate carboxylase large chain) and psbA (K02703, photosystem II P680 reaction
142 center D1 protein) were selected to evaluate the microbial potential of carbon fixation and photosynthesis, respectively. The molecular datasets have

143 been deposited with the accession number: Bioproject PRINA1133027.

144 3 Results and discussion

145
146 3.1 Hydrographic conditions in Qeqertarsuaq (Disco Bay) and Sullorsuaq (Vaigat) Strait

147
148 Disko Bay (Qegertarsuaq) is located along the west coast of Greenland (Kalaallit Nunaat) at approximately 69 °N (Figure 1), and is strongly influenced
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by the West Greenland Current (W GC) which is associated with the broader Baffin Bay Polar Waters (BBPW) (Mortensen et al., 2022; Hansen et al.,
2012). The WGC does not only significantly shape the hydrographic conditions within the bay but also plays an important role in the larger context of
Greenland Ice Sheet melting (Mortensen et al. (2022)). Central to the hydrographic system of the Qeqertarsuaq area is the Jakobshavn Isbre, which
is the most productive glacier in the northern hemisphere and believed to drain about 7 % of the Greenland Ice Sheet and thus contributes substantially
to the water influx into the Qeqertarsuaq (Holland et al. (2008)). A predicted increased inflow of warm subsurface water, originating from North
Atlantic waters, has been suggested to further affect the melting of the Jakobshavn Isbrae and thus adds another layer of complexity to this dynamic
system (Holland et al., 2008; Hansen et al., 2012).

The hydrographic conditions in Qeqertarsuaq have a significant influence on biological processes, nutrient availability, and the
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Figure 1. Map of Greenland (Kalaallit Nunaat) with indication of study area (red box), on the left. Interpolated distribution of Sea Surface Salinity (SSS) values with
corresponding isosurface lines and indication of 10 sampled stations (normal stations in black, incubation stations in blue), black arrows indicate the West Greenland
Current (WGC) and the black box indicate the location of the Jakobshavn Isbrz, in the middle. Scatterplot of the potential temperature and salinity for all station data.
The plot is used for the identification of the main water masses within the study area. Isopycnals (kg m™3) are depicted in grey lines, on the right. Figures were created
in Ocean Data View (ODV) (Schlitzer (2022)).

broader marine ecosystem (Munk et al., 2015; Hendry et al., 2019; Schiett, 2023).
During our survey, we found very heterogenous hydrographic conditions at the different stations across Qeqertarsuaq (Fig. 1 & Fig. 2). The three

selected stations for N fixation analysis (stations 3, 7, and 10) were strategically chosen to capture the spatial
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variability of the area. Surface salinity and temperature measurements at these stations indicate the influence of freshwater input. The surface
temperature exhibit a range of 4.5 to 8 °C, while surface salinity varies between 31 and 34, as illustrated in Fig. 1. The profiles sampled during our
survey extend to a maximum depth of 100 m. Comparison of temperature/salinity (T/S) plots with recent studies suggests the presence of previously
described water masses, including Warm Fjord Water (WFjW) and Cold Fjord Water (CFjW) with an overlaying surface glacial meltwater runoff.
Those water masses are defined with a density range of 27.20 < go < 27.31 but different temperature profiles. Thus water masses can be differentiated
by their temperature within the same density range (Gladish et al. (2015)). Other water masses like upper subpolar mode water (uSPMW), deep
subpolar mode water (dSPMW) and Baffin Bay polar Water (BBPW) which has been identified in the Disko Bay (Qeqertarsuaq) before, cannot be
identified from this data and may be present in deeper layers (Mortensen et al., 2022; Sherwood et al., 2021; Myers and Ribergaard, 2013; Rysgaard
etal., 2020). The temperature and salinity profiles across the 10
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Figure 2. Profiles of temperature (°C), salinity, photosynthetically active radiation (PAR) (umol/m?/s) and Chl a (mg m3) across stations 1 to 10 with depth (m). Stations
3,7, and 10 are highlighted in red, blue, and yellow, respectively, to emphasize incubation stations. Figures were created in Ocean Data View and R-Studio (Schlitzer

(2022)).

stations in the study area show distinct stratification and variability, which is represented through the three incubation stations (highlighted stations 3,
7,and 10 in Fig. 2). They display varying degrees of stratification and mixing, with notable differences in the salinity and termperature profiles. Station
3 and station 7 exhibit clear stratification in both temperature and salinity marked by the presence of thermoclines and haloclines. These features
suggest significant freshwater input influenced by local weather conditions and climate dynamics, like surface heat absorption. In contrast, Station 10
exhibits a narrower range of temperature and salinity values throughout the water column compared to Stations 3 and 7, indicating more well-mixed
conditions. This uniformity is likely influenced by the regional circulation pattern and partial upwelling (Hansen et al., 2012; Krawczyk et al., 2022).

The distinct characteristics observed at station 10, as illustrated in the surface plot (Fig. 1), show an elevated salinity and colder temperatures
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compared

to the other stations. This feature suggests upwelling of deeper waters along the shallower shelf, likely facilitated by the local seafloor topography.
Specifically, the seafloor shallowing off the coast of Station 10 may act as a barrier, disrupting typical circulation and forcing deeper, saltier, and
colder waters to the surface. This pattern aligns with previous studies that describe similar mechanisms in the region (Krawczyk et al. (2022)). Their
description of the bathymetry in Qeqertarsuaq, featuring depths ranging from ca. 50 to 900 m, suggests its impact on turbulent circulation patterns,
leading to the mixing of different water masses. Evident variability in oceanographic conditions that can be observed throughout the study area occurs
particularly along characteristic topographical features like steep slopes, canyons, and shallower areas. The summer melting of sea ice and glaciers
introduces freshwater influxes that create distinct vertical and horizontal gradients in salinity and temperature in the Qeqertarsuaq area Hansen et al.
(2012). Additionally, the accelerated melting of the Jakobshavn Isbraz, influenced by the warmer inflow from the West Greenland Intermediate
Current (WGIC), further alters the hydrographic conditions. Recent observations indicate significant warming and shoaling of the WGIC, potentially
enabling it to overcome the sill separating the Illulissat Fjord from the Qeqertarsuaq area (Hansen et al., 2012; Holland et al., 2008; Myers and
Ribergaard, 2013). This shift intensifies glacier melting, driving substantial changes in the local ecological dynamics (Ardyna et al., 2014; Arrigo et
al., 2008; Bhatia et al., 2013).

3.2 N; Fixation Rate Variability and Associated Environmental Conditions

We quantified N, fixation rates within the waters of Qegertarsuaq, spanning from the surface to a depth of 50 m (Table 1). The rates ranged from
0.16 to 2.71 nmol N L' d"! with all rates surpassing the minimum quantifiably rate (Appendix Table 1). Our findings represent rates at the upper
range of those observed in the Arctic Ocean. Previous measurements in the region have been limited, with only one study in Baffin Bay by Blais et
al. (2012), reporting rates of 0.02 nmol N L' d!, which are 1-2 orders of magnitude lower than our observations. Moreover, Sipler et al. (2017),
reported rated in the coastal Chukchi Sea, with average values of 7.7 nmol N L ! d"!. These values currently represent some of the highest rates measured
in Arctic shelf environments. Compared to these, our highest measured rate (2.71 nmol N L™! d™!) is lower, but still important, particularly considering
the more Atlantic-influenced location of our study site. Sipler et al. (2017) also noted that a significant fraction of diazotrophs were <3 pum in size,
suggesting that small unicellular diazotrophs play a dominant role in Arctic nitrogen fixation. Altogether, our data contribute to the growing evidence
that N: fixation is a widespread and potentially significant nitrogen source across various Arctic regions. Simultaneous primary production rate
measurements ranged from 0.07 to 3.79 umol N L d"!, with the highest rates observed at station 7 and generally higher values in the surface layers.
Employing Redfield stoichiometry, the measured N fixation rates accounted for 0.47 to 2.6 % (averaging 1.57 %) of primary production at our stations.
The modest contribution to primary production suggests that N, fixation does not exert a substantial influence on the productivity of these waters
during the time of the sampling. Rather, our N, fixation rates suggest primary production to depend mostly on additional nitrogen sources including
regenerated, meltwater or land-based sources.

While the N:P ratio is commonly used to assess nutrient limitations relative to Redfield stoichiometry, most DIN and DIP measurements in our study
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were below detection limit (BDL), preventing a reliable calculation for this ratio. As such, we refrain from drawing conclusions based on N:P
stoichiometry. Nevertheless, previous studies by Jensen et al. (1999) and Tremblay and Gagnon (2009), have identified nitrogen limitation in this
region. Such biogeochemical conditions, when present, would be expected to generate a niche for N, fixing organisms (Sohm et al. (2011)). While N
fixation did not chiefly sustain primary production during our sampling campaign, we hypothesize that N, fixation has the potential to play a role in

bloom dynamics under certain conditions. As nitrogen availability decreases
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during a bloom, it may provide a niche for N, fixation, potentially helping to extend the productive period of the bloom period (Reeder et al. (2021)).
Satellite data indicates that a fall bloom began in early August, following the annual spring bloom, as described by Ardyna et al. (2014). This double
bloom situation may be driven by increased melting and the subsequent input of bioavailable nutrients and iron (Fe) from meltwater runoff (Arrigo et
al., 2017; Hopwood et al., 2016; Bhatia et al., 2013). The meltwater from the Greenland Ice Sheet is a significant source of Fe (Bhatia et al., 2013;
Hawkings etal., 2015,2014), which is a limiting factor especially for diazotrophs (Sohm et al. (2011)). Consequently, it is plausible that Fe and nutrients
from the Isbrae glacier create favorable conditions for both bloom development and diazotroph activity in Qeqertarsuaq. However, we emphasize that
confirming a causal link between N: fixation and secondary bloom development requires further evidence, such as time-series data on nutrient

concentrations, diazotroph abundance, and bloom dynamics.

Table 1. N, fixation (nmol N L'! d!), standard deviation (SD), primary productivity (PP; umol C L'! d'!), SD, percentage of estimated new primary productivity (%
New PP) sustained by N, fixation, dissolved inorganic nitrogen compounds (NOx), phosphorus (POs), and the molar nitrogen-to-phosphorus ratio (N:P) at stations 3,

7, and 10. BDL= Below detection limit.

Station  Depth N: fixation SD  Primary Productivity SD % New PP NOy POy
(no.) (m) (mmolNL1dY) (¥) (umol C L' d) (%) (%) (umolL'd?')  (umol L' dY)
3 0 1.20 0.21 0.466 0.08 1.71 BDL BDL
3 25 1.88 0.11 0.588 0.04 2.11 BDL 0.70
3 50 0.29 0.01 0.209 0.00 091 033 1.48
7 0 249 0.44 0.63 0.20 2.60 BDL BDL
7 25 2.71 0.22 3.79 245 0.47 BDL 0.45
7 50 0.53 0.24 033 0.36 1.08 BDL 0.97
10 0 1.48 0.12 0.74 0.15 1.33 BDL BDL
10 25 0.31 0.01 0.29 0.07 0.73 BDL BDL
10 50 0.16 0 0.07 0.07 1.40 BDL BDL

A near-Redfield stoichiometry in POC:PON suggests that the particulate organic matter (POM) likely originates from an ongoing phytoplankton
bloom, as phytoplankton generally assimilate carbon and nitrogen in relatively consistent proportions during active growth (Redfield 1934). However
this assumption is based on a global average, and POM stoichiometry can exhibit substantial latitudinal variation. Deviations may also arise during

particle production and remineralization processes (Redfield 1934; Geider and La Roche 2002; Sterner and Elser 2003; Quigg et al., 2003). Recent
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studies have further shown that POM composition vary widely across plankton communities, influenced by factors such as growth rates, community
composition, ad physiological status (e.g. fast- vs- slow-growing organisms), with degradation often playing a secondary role (Tanioka et al., 2022).
Additionally, terrestrial organic material—likely introduced via glacial outflow in the study area—may also contribute to the observed POM
composition (Schneider et al., 2003). Latitudinal variability in organic matter stoichiometry has also been linked to differences in nutrient supply and
phosphorus stress (Fagan et al., 2024; Tanioka et al., 2022). Consequently, the near-Redfield stoichiometry observed here cannot be clearly attributed
to freshly produced organic material. Nevertheless, satellite-derived surface chlorophyll a concentration and associated primary production support
the interpretation that recently produced organic matter does contribute, at least in part, to the sinking POM captured in our samples. Since inorganic
nitrogen species (e.g., NOx) were below detection limits, direct calculation or interpretation of the N:P ratio in the dissolved nutrient pool was not
possible and has been avoided. The absence of available nitrogen may nonetheless reflect nitrogen depletion, potentially creating ecological niches for
diazotrophs and nitrogen-fixing organisms. Such conditions may promote shifts in microbial community structure, as observed by Laso-Perez et al.
(2024). Laso Perez et al. (2024) documented changes in microbial community composition during an Arctic bloom, focusing on nitrogen cycling.
They observed a shift from chemolithotrophic to heterotrophic organisms throughout the summer bloom and noted increased activity to compete for
various nitrogen sources. However, no nif H gene copies, indicative of nitrogen-fixing organisms, were found in their dataset based on metagenome-
assembled genomes (MAGs). This is not unexpected due to the classically low abundance of diazotrophs in marine microbial communities which has
often been described (Turk-Kubo et al., 2015; Farnelid et al., 2019). Given the high productivity and metabolic activity observed in Qeqertarsuaq
during a similar bloom period, the detected diazotrophs (Section 3.3) may play a more significant role than previously thought. Across the 10 stations
there is considerable variability in POC and PON concentrations (Fig. 3). PON concentrations range from 0.0 pmol N L' to 3.48 umol N L'! (n=124),
while POC concentrations range from 2.7 pumol C L! to 27.2 umol C L' (n=144). The highest concentrations for both PON and POC were observed
at station 7 at a depth of 25 m and coincide with the highest reported N, fixation rate (Figure Appendix A2 & A3). Generally, POC and PON
concentrations decrease with depth, peaking at the deep chl @ maximum (DCM), identified between 15 to 30 m across all stations. The DCM was
identified based on measured chl a concentrations and previous descriptions in the region (Fox and Walker, 2022; Jensen et al., 1999). The variability
in chl a concentrations indicates differences in phytoplankton abundance among the stations, with concentrations ranging between 0 to 0.42 mg m?.
Excluding station 7, which exhibited the highest chl @ concentration at the DCM (1.51 mg m™). While Tang et al. (2019) found that N, fixation
measurements strongly correlated to satellite estimates of chl a concentrations, our results did not show a statistically significant correlation between
nitrogen fixation rates and chl a concentrations overall (Figures A2 & A3). However, as noted, Station 7 at 25 m represents a unique case. The elevated
concentration of chl a at this station likely resulted from a local phytoplankton bloom induced by meltwater outflow from the Isbre glacier and sea ice
melting, which may help explain the observed nitrogen fixation rates (Arrigo et al., 2017; Wang et al., 2014). This study’s findings are in agreement

with prior reports of analogous blooms occurring in the region (Fox and Walker, 2022; Jensen et al., 1999).

12



271

272
273

274
275

276

277
278

279
280
281
282
283
284
285
286
287
288

» i y = -0.2032x + 0.9326
y = 7.6825x - 1.5245 3 3 R?*=0.0041
R?=0.9081 ]
> ' .
5 s I Redfield N/P 16
Redfield C/N 6.625 s’ ]
4 . '
.
7’ 7 4 ! *

~ 201 S s . /

? - » ;

g & [<}

£ s £ !

S = 3

) . !

Q T 7 % g !

a » i

( % 2 ) .
‘
- !
> ! . .
[ T
P S XD 2 .
i . .
o 0 css e o R ™ . .
0 1 2 3 4 0.0 1.0 1.5
PON (umol L") PO (umol L")

Figure 3. The POC/PON and DIN/DIP ratios at all 10 stations. The red line represents the Redfield ratios of POC/PON (106:16) and DIN/DIP (16:1).

3.3 Potential Contribution of UCYN-A to Nitrogen Fixation During a Diatom Bloom: Insights and Uncertainties

In our metagenomic analysis, we filtered the nifH, nif D, nif K genes, which code for the nitrogenase enzyme responsible for catalyzing N, fixation.

We could identify sequences related to UCYN-A, which dominated the sequence pool of diazotrophs, particularly in the upper water masses (0 to 5

m) (Fig. 4). UCYN-A, a unicellular cyanobacterial symbiont, has a cosmopolitan distribution and is thought to substantially contribute to global N,

fixation, as documented by (Martinez-Pérez et al., 2016; Tang et al., 2019). This conclusion is based on our metagenomic analysis, in which we set
a sequence identity threshold of 95% for both nif and photosystem genes. Notably, we only recovered sequences related to UCYN-A within
our nif sequence pool, suggesting its predominance among detected diazotrophs. However, metagenomic approaches may underestimate overall
diazotroph diversity, and we cannot fully exclude the presence of other, less abundant diazotrophs that may have been missed using this method.
While UCYN-A was primarily detected in surface waters, we also observed relatively high #ifK values at S3_100m, an unusual finding given that
UCYN-A is typically constrained to the euphotic zone. Previous studies have predominantly reported UCYN-A in surface waters; for instance
Harding et al. (2018) and Shiozaki et al. (2017) detected UCYN-A exclusively in the upper layers of the Arctic Ocean. Additionally, Shiozaki et al.
(2020) found UCYN-A2 at depths extending to the 0.1% light level but not below 66 m in the Chukchi Sea. The detection of UCYN-A at 100 m in
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our study suggests that alternative mechanisms, such as particle association, vertical transport, or local environmental conditions, may facilitate its
presence at depth. Interestingly, despite very low nifH copy numbers being reported in nearby Baffin Bay by Robicheau et al. (2023), UCYN-A
dominated the metagenomic nifH community in our study, further underscoring this organisms’s presence in Arctic surface coastal areas under certain
environmental conditions. This warrants further investigation into the environmental drivers and potential processes enabling its occurrence in Arctic
waters.
Due to the lack of genes such as those encoding Photosystem II and Rubisco, UCYN-A plays a significant role within the host cell and participates
in fundamental cellular processes. Consequently, it has evolved to become a closely integrated component of the host cell. Very recent findings
demonstrate that UCYN-A imports proteins encoded by the host genome and has been described as an early form of N> fixing organelle termed a
"Nitroplast" (Coale et al. (2024)).
Previous investigations document that they are critical for primary production, supplying up to 85% of the fixed nitrogen to their haptophyte host
(Martinez-Pérez et al. (2016)). In addition to its high contribution to primary production, studies have shown that UCYN-A in high latitude waters fix
similar amounts of N; per cell as in the tropical Atlantic Ocean, even in nitrogen- replete waters (Harding et al., 2018; Shiozaki et al., 2020; Martinez-
Pérez etal., 2016; Krupke et al., 2015; Mills et al., 2020). However, estimating their contribution to N fixation in our study is challenging, particularly
since we detected cyanobacteria only at the surface but observe significant N, fixation rates below 5 m. The diazotrophic community is often
underrepresented in metagenomic datasets due to the low abundance of nitrogenase gene copies, implying our data does not present a complete
picture. We suspect a more diverse diazotrophic community exists, with UCYN-A being a significant contributor to N> fixation in Arctic waters.
However, the exact proportion of its contribution requires further investigation.
The contribution of N, fixation to carbon fixation (as percent of PP) is relatively low, at the time of our study. We identified genes such as 7bcL, which
encodes Rubisco, a key enzyme in the carbon fixation pathway and psbA, a gene encoding Photosystem II, involved in light-driven electron transfer in
photosynthesis, in our metagenomic dataset. The gene rbcL (for the carbon fixation pathway) and the gene psbA (for primary producers) were used to
track the community of photosynthetic primary producers in our metagenomic dataset. At station 7, elevated carbon fixation rates are correlated with
high diatom (Bacillariophyta) abundance and increased chl a concentration (Fig. 4), suggesting the onset of a bloom, which is also observable via
satellite images (Appendix Al). We hypothesize that meltwater, carrying elevated nutrient and trace metal concentrations, was rapidly transported
away from the glacier through the Vaigat Strait by strong winds, leading to increased productivity, as previously described by Fox and Walker (2022)
& Jensen et al. (1999). The elevated diatom abundance and primary production rates at station 7 coincide with the highest N, fixation rates, which
could point toward a possible diatom-diazotroph symbiosis (Foster et al., 2022, 2011; Schvarcz et al., 2022). However, we did not detect a clear
diazotrophic signal directly associated with the diatoms in our metagenomic dataset, which might be due to generally underrepresentation of diazotrophs
in metagenomes due to low abundance or low sequencing coverage. To investigate this further, we examined the taxonomic composition of
Bacillariophyta at higher resolution. Among the various abundant diatom genera, Rhizosolenia and Chaetoceros have been identified as

symbiosis with diazotrophs (Grosse, et al., 2010; Foster, et al., 2010), representing less than 6% or 15% of Bacillariophyta, based on rbcL or
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psbA, respectively (Figure Appendix A4). Although we underestimate diazotrophs to an extent, the presence of certain diatom-diazotroph
symbiosis could help explain the high nitrogen fixation rates in the diatom bloom to a certain degree. Compilation of nif'sequences identified
from this study as well as homologous from their NCBI top hit were added in Table S1. However, we cannot tell if the diazotro phs belong to
UCYN-A1 or UCYN-A2, or UCYN-A3. Based on the Pierella Karlusich et al. (2021), they generated clonal nifH sequences from Tara Oceans,
which the length of nifH sequences is much shorter than the two nifH sequences we generated in our study. Also, the available UCYN-A2 or
UCYN-A3 nifH sequences from NCBI were shorter than the two nifH sequences we generated. Therefore, it would be not accurate to assign
the nifH sequences to either group under UCYN-A. Furthermore, not much information is available regarding the different groups of UCYN-

A using marker genes of nifD and nifK.
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Figure 4. Upper left image: pshA with correlation plot. Lower left image: rbcL with correlation plot. Right image: nif H, nif D, nif K genes per million reads in the

metagenomic datasets. All figures display molecular data from metagenomic dataset for all sampled depth of station 3,7,10

There is evidence that UCYN-A have a higher Fe demand, with input through meltwater or river runoff potentially being advantageous to those
organisms (Shiozaki et al., 2017, 2018; Cheung et al., 2022). Consequently, UCYN-A might play a more critical role in the future with increased Fe-
rich meltwater runoff. UCYN-A can potentially fuel primary productivity by supplying nitrogen, especially with increased melting, nutrient inputs,
and more light availability due to rising temperatures as- sociated with climate change. This predicted enhancement of primary productivity may

contribute to the biological drawdown of CO,, acting as a negative feedback mechanism. These projections are based on studies forecasting increased
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temperatures, melting, and resulting biogeochemical changes leading to higher primary productivity. However large uncertainties make pre- dictions
very difficult and should be handled with care. Thus, we can only hypothesize that UCYN-A might be coupled to these dynamics by providing essential

nitrogen.
3.4 ¢ '°N Signatures in particulate organic nitrogen

Stable isotopic composition, expressed using the § '°N notation, serve as indicators for understanding nitrogen dynamics because different
biogeochemical processes fractionate nitrogen isotopes in distinct ways (Montoya (2008)). However, it is important to keep in mind that the final
isotopic signal is a combination of all processes and an accurate distinction between processes cannot be made. N, fixation tends to enrich nitrogenous
compounds with lighter isotopes, producing OM with isotopic values ranging approximately from -2 to +2 %o(Déhnke and Thamdrup (2013)). Upon
complete remineralization and oxidation, organic matter contributes to a reduction in the average 6-values in the open ocean (e.g.Montoya et al.

(2002);

Emeis et al. (2010)). Whereas processes like denitrification and anammox preferentially remove lighter isotopes, leading to enrichment in heavier

isotopes and delta values up to -25 %o.
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358 In our study, the § '°N values of PON from all 10 stations, range between 2.45 %o and 8.30 %o within the 0 to 100 m depth range. While N, fixation
359 typically produces OM ranging from -2 %o to 0.5 %o, this signal can be masked by processes such as remineralization, mixing with nitrate from deeper
360 waters or other biological transformations (Emeis et al. (2010); Sigman et al. (2009)). The composition of OM in the surface ocean is influenced by
361 the nitrogen substrate and the fractionation factor during assimilation. When nitrate is depleted in the surface ocean, the isotopic signature of OM
362 produced during photosynthesis will mirror that of the nitrogen source. Nitrate, the primary form of dissolved nitrogen in the open ocean, typically
363 exhibits an average stable isotope value of around
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5 %o. No fractionation occurs during photosynthesis because the nitrogen source is entirely taken up in the surface waters (Sigman et al. (2009)). This
matches conditions observed in Qeqertarsuaq, suggesting that subsurface nitrate is a dominant nitrogen source (Fox and Walker (2022)).

In the eastern Baffin Bay waters, Atlantic water masses serve as an important source of nitrate to surface waters with 6 '°N values around 5 %o (Sherwood
et al. (2021)). This is consistent with our observed PON values and supports the view that primary productivity in the region is largely fueled by
nitrate input from deeper Atlantic waters, particularly during early bloom stages (Fox and Walker, 2022; Knies, 2022). The mechanisms through which
subsurface nitrate reaches the euphotic layer are not well understood. However, potential pathways include vertical migration of phytoplankton and
physical mixing. Subsequently, nitrogen undergoes rapid recycling and remineralization processes to meet the system’s nitrogen demands (Jensen et
al. (1999)). Taken together, the 6 >N signatures observed in this study are best interpreted as indicative of a system influenced by multiple nitrogen

sources and biogeochemical processes, where nitrate input and remineralization appear to dominate.

4 Conclusion

Our study highlights the occurrence of elevated rates of N, fixation in Arctic coastal waters, particularly prominent at station 7, where they coincide
with high chl a values, indicative of heightened productivity. Satellite observations tracing the origin of a bloom near the Isbra Glacier, subsequently
moving through the Vaigat strait, suggest a recurring phenomenon likely triggered by increased nutrient-rich meltwater originating from the glacier.
This aligns with previous reports by Jensen et al. (1999) & Fox and Walker (2022), underlining the significance of such events in driving primary
productivity in the region. The contribu- tion of N, fixation to primary production was low (average 1.57 %) across the stations. Since the demand was
high relative to the new nitrogen provided by N, fixation, the observed primary production must be sustained by the already present or adequate amount
of subsurface supply of NOy nutrients in the seawater. This is also visible in the isotopic signature of the POM (Fox and Walker, 2022; Sherwood et al.,
2021). However, the detected N, fixation rates are likely linked to the development of the fresh secondary summer bloom, which could be sustained
by high nutrient and Fe availability from melting, potentially leading the system into a nutrient-limited state. The ongoing high demand for nitrogen
compounds may suggest an onset to further sustain the bloom, but it remains speculative whether Fe availability definitively contributes to this process.
The occurrence of such double blooms has increased by 10 % in the Qeqertarsuaq and even 33 % in the Baffin Bay, with further projected increases
moving north from Greenland (Kalaallit Nunaat) waters (Ardyna et al. (2014)). Thus, nutrient demands are likely to increase, and the role of N
fixation can become more significant. The diazotrophic community in this study is dominated by UCYN-A in surface waters and may be linked to
diatom abundance in deeper layers. This co-occurrence of diatoms and N, fixers in the same location is probably due to the co-limitation of similar
nutrients, rather than a symbiotic relationship. Thus, this highlights the significant presence of diazotrophs despite their limited representation in
datasets. It also highlights the potential for further discoveries, as existing datasets likely underestimate the full extent of the diazotrophic community
(Laso Perez et al., 2024,
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Shao et al., 2023; Shiozaki et al., 2017, 2023). The reported N, fixation rates in the Vaigat strait within the Arctic Ocean are notably higher than those
observed in many other oceanic regions, emphasizing that N, fixation is an active and significant process in these high-latitude waters. When compared
to measured rates across various ocean systems using the >N approach, the significance of these findings becomes clear. For instance, N fixation
rates are sometimes below the detection limit and often relatively low ranging from 0.8 to 4.4 nmol N L' d"! (Léscher et al., 2020, 2016; Turk et al.,
2011). In contrast, higher rates reach up to 20 nmol N L' d"! (Rees et al. (2009)) and sometime exceptional high rates range from 38 to 610 nmol N
L' d! (Bonnet et al. (2009)). The Arctic Ocean rates are thus significant in the global context, underscoring the region’s role in the global nitrogen
cycle and the importance of N> fixation in supporting primary productivity in these waters.

These findings highlight the urgent need to understand the interplay between seasonal variations, sea-ice dynamics, and hydro- graphic conditions in
Qeqertarsuaq. As climate change accelerates the melting of the Greenland Ice Sheet at Jakobshavn Isbre, shifts in hydrodynamic patterns and
hydrographic conditions in Qeqertarsuaq are anticipated. The resulting influx of warmer waters could significantly reshape the bay’s hydrography,
making it crucial to comprehend the coupling of climate-driven changes and oceanic processes in this vital Arctic region. Our study provides key
insights into these dynamics and underscores the importance of continued investigation to predict Qeqertarsuaq’s future hydrographic state. By
detailing the environmental and hydrographic changes, we contribute valuable knowledge to the broader context of N, fixation in the Arctic Ocean.
Given nitrogen’s pivotal role in Arctic ecosystem productivity, it is essential to explore diazotrophs, quantify N, fixation, and assess their impact on

ecosystem services as climate change progresses.

Appendix A
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Figure A2. Correlation matrix of environmental and biological variables. The plot shows the correlation coefficients between the following parameters: N fixation
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Figure A4 . Taxonomic composition of Bacillariophyta at Station 7 based on a) psbA and b) rbcL marker genes. The figure shows the relative abundance of Bacillariophyta
genera detected in the metagenomic dataset, grouped by gene-specific classifications.

Station | Parameter | Value SD ONFR/ 06X | Error % Summary
X) contribution Total | (nmol N L~
(SD x error |'d7")
[0NFR/6X])2
3 At 1.00 0.00 | 0.00 0.00 0.00 Mean =
1.13
LOD =
0.73
MQR =
0.12
Anz 3.92% 0.00 | 0.00 0.00 0.00
Apno 0.370% | 424 |2.63x10° | 2.46x10° 29.49
x 10¢
Apnt 0.420% |3.7x |236x10° |3.03x10° 35.54
10°
[PN]¢ 1.69 x 1.24 |5.12x102 | 3.21 x 10? 34.97
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103 x 107
7 At 1.00 0.00 0.00 0.00 0.00 Mean =
1.92
LOD =
1.91
MQR =
0.47
Anz 3.92% 0.00 0.00 0.00 0.00
Apno 0.369% |4.0x |1.57x107 | 2.06%x10? 25.17
106
Apnt 0.407% | 5.47 9.25x10° | 2.79x 10° 36.88
x 107
[PNI: 462x  |82x |677x107 | 287x 10° 37.95
10° 10?
10 At 1.00 0.00 0.00 0.00 0.00 Mean =
0.90
LOD =
0.96
MQR =
0.06
ANz 3.92% 0.00 0.00 0.00 0.00
Apno 0.371% 1.89 -2.01 x 1.44x 1073 31.24
x 10 | 10?
Apnt 0.371% | 2.22 2.01x10% | 2.05x 1073 34.85
x 10°
[PN]¢ 591 x 1.89 -1.56x 10" | 3.69x 107 33.91
10? x 10> |4

Table Al: Sensitivity analysis for N: fixation rates. The contribution of each source of error to the total uncertainty was determined and calculated after Montoya et al.,
(1996). Average values and standard deviations (SD) are provided for all parameters at each station. The partial derivative (INFR/ 0X) of the N: fixation rate
measurements is calculated for each parameter and evaluated using the provided average and standard deviation. The total and relative error are given for each
parameter. Mean represents the average N fixation rate measurement. MOR (minimal quantifiable rate) represents the total uncertainty linked to every measurement and
is calculated using standard propagation of error. LOD (limit of detection) represents an alternative detection limit defined as AAPN = 0,00146.

Data availability. The presented data collected during the cruise will be made accessible on PANGEA.The molecular datasets have been deposited with the accession

number: Bioproject PRINA1133027
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