

1 **Nitrogen Fixation in Arctic Coastal Waters**
2 **(Qeqertarsuaq, West Greenland): Influence of Glacial**
3 **Melt on Diazotrophs, Nutrient Availability, and**
4 **Seasonal Blooms**

5 Schlangen Isabell¹, Leon-Palmero Elizabeth^{1,2}, Moser Annabell¹, Xu Peihang¹,
6 Laursen Erik¹, and Löscher Carolin R.^{1,3}

7 ¹Nordceee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M,
8 Denmark

9 ²Department of Geosciences, Princeton University, Princeton, New Jersey

10 ³DIAS, University of Southern Denmark, Odense, Denmark

11 **Correspondence:** Carolin R. Löscher (cloescher@biology.sdu.dk)

12 **Abstract.** The Arctic Ocean is undergoing rapid transformation due to climate change, with
13 decreasing sea ice contributing to a predicted increase in primary productivity. A critical factor
14 determining future productivity in this region is the availability of nitrogen, a key nutrient that
15 often limits biological growth in Arctic waters. The fixation of dinitrogen (N₂) gas, a biological
16 process mediated by diazotrophs, provides a source of new nitrogen to marine ecosystems and has
17 been increasingly recognized as a potential contributor to nitrogen supply in the Arctic
18 Ocean. Historically it was believed to be limited to oligotrophic tropical and subtropical oceans,
19 Arctic N₂ fixation has only garnered significant attention over the past decade, leaving a gap in
20 our understanding of its magnitude, the diazotrophic community, and potential environmental
21 drivers. In this study, we investigated N₂ fixation rates and the diazotrophic community in Arctic
22 coastal waters, using a combination of isotope labeling, genetic analyses and biogeochemical
23 profiling, in order to explore its response to glacial meltwater, nutrient availability and its impact
24 on primary productivity. We observed N₂ fixation rates ranging from 0.16 to 2.71 nmol N L⁻¹ d⁻¹,
25 notably higher than many previously reported rates for Arctic waters. The diazotrophic community was
26 predominantly composed of UCYN-A. The highest N₂ fixation rates co-occurred with peaks in
27 chlorophyll *a* and primary production at a station in the Vaigat Strait, likely influenced by glacial
28 meltwater input. On average, N₂ fixation contributed 1.6% of the estimated nitrogen requirement of
29 primary production, indicating that while its role is modest, it may still represent a nitrogen source in
30 certain conditions. These findings illustrate the potential importance of N₂ fixation in an
31 environment previously not considered important for this process and provide insights into its
32 response to the projected melting of the polar ice cover.

Deleted: The fixation of dinitrogen (N₂) gas, a biological process mediated by diazotrophs, not only supplies new nitrogen to the ecosystem but also plays a central role in shaping the biological productivity of the Arctic.

Deleted: Here we

Deleted: show

Deleted: to be

Deleted: those observed in many other oceanic regions, suggesting a previously unrecognized significance of N₂ fixation in these high-latitude waters.

Deleted: is

Deleted: We found

Deleted: ing

Deleted: maximum

Deleted: concentrations

Deleted: rates

Deleted: close impacted by glacier meltwater inflow, possibly providing otherwise limiting nutrients.

Deleted: Our

53

54

1 Introduction

55

56 Nitrogen is a key element for life and often acts as a growth-limiting factor for primary
 57 productivity (Gruber and Sarmiento, 1997; Gruber, 2004; Gruber and Galloway, 2008). Despite
 58 nitrogen gas (N_2) making up approximately 78% of the atmosphere, it remains inaccessible to most
 59 marine life forms. Diazotrophs, which are specialized bacteria and archaea, have the ability to
 60 convert N_2 into biologically available nitrogen, facilitated by the nitrogenase enzyme complex
 61 carrying out the process of

62 biological nitrogen fixation (N_2 fixation) (Capone and Carpenter (1982)). Despite the fact that these
 63 organisms are highly specialized and N_2 fixation is energetically demanding, the ability to carry
 64 out this process is widespread amongst prokaryotes. However, it is controlled by several factors
 65 such as temperature, light, nutrients and trace metals such as iron and molybdenum (Sohm et al.,
 66 2011; Tang et al., 2019). Oceanic N_2 fixation is the major source of nitrogen to the marine system
 67 (Karl et al., 2002; Gruber and Sarmiento, 1997), thus, diazotrophs determine the biological
 68 productivity of our planet (Falkowski et al. (2008), impact the global carbon cycle and the
 69 formation of organic matter (Galloway et al., 2004; Zehr and Capone, 2020). Traditionally it has
 70 been believed that the distribution of diazotrophs was limited to warm and oligotrophic waters
 71 (Buchanan et al., 2019; Sohm et al., 2011; Luo et al., 2012) until putative diazotrophs were
 72 identified in the central Arctic Ocean and Baffin Bay (Farnelid et al., 2011; Damm et al., 2010).
 73 First rate measurements have been reported for the Canadian Arctic by Blais et al. (2012) and
 74 recent studies have reported rate measurements in adjacent seas (Harding et al., 2018; Sipler et al.,
 75 2017; Shiozaki et al., 2017, 2018), drawing attention to cold and temperate waters as significant
 76 contributors to the global nitrogen budget through diverse organisms.

77

JUCYN-A has been described as the dominant active N_2 fixing cyanobacterial diazotroph in arctic
waters (Harding et al. (2018)), while other cyanobacteria have only occasionally been reported
 (Díez et al., 2012; Fernández-Méndez et al., 2016; Blais et al.). However, other recent studies
 suggest, that the majority of the arctic marine diazotrophs are NCDs (non-cyanobacterial
diazotroph) and those may contribute significantly to N_2 fixation in the Arctic Ocean (Shiozaki et
 al., 2018; Fernández-Méndez et al., 2016; Harding et al., 2018; Von Friesen and Rie-
 mann, 2020). Recent work by Robicheau et al. (2023) nearby Baffin Bay, geographically close to the sampling area,
document low *nifH* gene abundance while still detecting diazotrophs in Arctic surface waters, highlighting
the patchy distribution of diazotrophs across Arctic coastal environments. Studies on the Arctic
 diazotroph community remain scarce, leaving Arctic environments poorly understood regarding
 N_2 fixation. Shao et al. (2023) note the impossibility of estimating Arctic N_2 fixation rates due to

87

Deleted: N_2 fixation is performed by diverse group of cyanobacteria as well as by non-cyanobacteria diazotrophs (NCDs). ...

Deleted: in those waters

Deleted: while

Deleted: 2012).

Deleted: R

Deleted: found

Deleted:

Formatted: Font: Italic

Deleted: Still, s

98 the sparse spatial coverage, which currently represents only approximately 1 % of the Arctic
99 Ocean. Increasing data coverage in future studies will aid in better constraining the contribution
100 of N₂ fixation to the global oceanic nitrogen budget (Tang et al. (2019)).

101 The Arctic ecosystem is undergoing significant changes driven by rising temperatures and the
102 accelerated melting of sea ice, a trend predicted to intensify in the future (Arrigo et al., 2008; Hanna
103 et al., 2008; Haine et al., 2015). These climate-driven shifts have stimulated primary productivity
104 in the Arctic by 57 % from 1998 to 2018, elevating nutrient demands in the Arctic Ocean (Ardyna
105 and Arrigo, 2020; Arrigo and van Dijken, 2015; Lewis et al., 2020). This increase is attributed to
106 prolonged phytoplankton growing seasons and expanding ice-free areas suitable for
107 phytoplankton growth (Arrigo et al. (2008)). However, despite these dramatic changes, the role of
108 N₂ fixation in sustaining Arctic primary production remains poorly understood. While recent
109 studies suggest that diazotrophic activity may contribute to nitrogen inputs in polar regions (Sipler
110 et al. (2017)), fundamental uncertainties remain regarding the extend, distribution and
111 environmental drivers of N₂ Fixation in the Arctic Ocean. Specifically, it is unclear whether
112 increased glacial meltwater input enhances or inhibits N₂ Fixation through changes in nutrient
113 availability, stratification, and microbial community composition. Thus, the question of whether
114 nitrogen limitation will emerge as a key factor constraining Arctic primary production under future climate
115 scenarios remains unresolved. In this study, we investigate the diversity of diazotrophic
116 communities alongside in situ N₂ fixation rate measurements in Disko Bay (Qeqertarsuaq), a coastal
117 Arctic system strongly influenced by glacial meltwater input. By linking environmental parameters to N₂
118 fixation dynamics, we aim to clarify the role of diazotrophs in Arctic nutrient cycling and assess
119 their potential contribution to sustaining primary production in a changing Arctic. Understanding
120 these processes is essential for refining biogeochemical models and predicting ecosystem
121 responses to future climate change.

122 2 Material and methods

123 2.1 Seawater sampling

124 The research expedition was conducted from August 16 to 26 in 2022 aboard the Danish military
125 vessel P540 within the waters of Qeqertarsuaq, located in the western region of Greenland
126 (Kalaallit Nunaat). Discrete water samples were obtained using a 10 L Niskin bottle, manually
127 lowered with a hand winch to five distinct depths (surface, 5, 25, 50, and 100 m). A comprehensive
128 sampling strategy was employed at 10 stations (Fig. 1), covering the surface to a depth of 100 m.
129 The sampled parameters included water characteristics, such as nutrient concentrations, chl *a*,

Deleted: Additionally, t
Formatted: Indent: Left: 0,14 cm, Right: 0,66 cm

Deleted: consequent reduc- tion

Deleted: in

Deleted: extent due to accelerated melting, which is

Deleted: increase

Deleted: severe

Deleted: thereby

Deleted: can be

Deleted: the extension of the

Deleted: the

Deleted: sion of

Deleted:

Deleted: available

Deleted: The Greenland Ice Sheet is strongly affected by climate change and the waters of Baffin Bay have experienced a substantial sea surface temperature (SST) increase of 47.4 % along with a significant increase in chlorophyll *a* (Chl *a*) concentration of 26.4 % over the last two decades (1998–2018) (Lewis et al. (2020)). Coastal sites are particularly impacted by melting, receiving glacial runoff enriched with nutrients and trace elements triggering phytoplankton blooms and altering near-shore biogeochemical cycling (Ardyna and Arrigo, 2020; Arrigo et al., 2017; Hendry et al., 2019; Bhatia et al., 2013).

Deleted: Given the changes, there is an urgency to explore the role of N₂ fixation in shaping the response of the Arctic ecosystem to these environmental changes. While the general magnitude of N₂ fixation is suspected to have a substantial impact (Sipler et al. (2017)), the complexity of Arctic biogeochemical processes necessitates further studies and broader spatial and temporal investigations to facilitate robust predictions. The question of whether primary

Deleted: production in the Arctic will be limited by nitrogen availability and the extent to which species will adapt to these conditions remains unknown and needs to be addressed. This study aims to contribute to the understanding of N₂ fixation dynamics and its implications for ecosystem productivity with the rapidly evolving Arctic Ocean.¹

We explored the diazotroph diversity in combination with N₂ fixation rate measurements, to elucidate the importance of this process in the Arctic ecosystem. We hope that understanding the dynamics of N₂ fixation and its impact on the ecosystem productivity can inform predictions and help managing the consequences of ongoing environme... [1]

Deleted: -

198 particulate organic carbon (POC) and nitrogen (PON), molecular samples for nucleic acid
199 extractions (DNA), dissolved inorganic carbon (DIC) as well as CTD sensor data. At three selected
200 stations (3,7,10) N₂ fixation and primary production rates were quantified through concurrent
201 incubation experiments.

202 Samples for nutrient analysis, nitrate (NO₃⁻), nitrite (NO₂⁻) and phosphate (PO₄³⁻) were taken in
203 triplicates, filtered through a 0.22 μ m syringe filter (Avantor VWR® Radnor, Pa, USA) and stored
204 at -20 °C until further analysis. Concentrations were spectrophotometrically determined (Thermo
205 Scientific, Genesys 1OS UV-VIS spectrophotometer) following the established protocols of
206 Murphy and Riley (1962) for PO₄³⁻; García-Robledo et al. (2014) for NO₃⁻ & NO₂⁻ (detection
207 limits: 0.01 μ mol L⁻¹ (NO₃⁻, NO₂⁻, and PO₄³⁻), 0.05 μ mol L⁻¹ (NH₄⁺)). Chl *a* samples were filtered
208 onto 47 mm ϕ GF/F filters (GE Healthcare Life Sciences, Whatman, USA), placed into darkened
209 15 mL LightSafe centrifuge tubes (Merck, Rahway, NJ, USA) and were subsequently stored at -
210 20 °C until further analysis. To determine the Chl *a* concentration, the samples were immersed in
211 8 mL of 90 % acetone overnight at 5 °C. Subsequently, 1 mL of the resulting solution was
212 transferred to a 1.5 mL glass vial (Mikrolab Aarhus A/S, Aarhus, Denmark) the following day and
213 subjected to analysis using the Trilogy® Fluorometer (Model #7200-00) equipped with a Chl *a*
214 in vivo blue module (Model #7200-043, both Turner Designs, San Jose, CA, USA). Measurements
215 of serial dilutions from a 4 mg L⁻¹ stock standard and 90 % acetone (serving as blank) were
216 performed to calibrate the instrument. In addition, measurements of a solid-state secondary
217 standard were performed every 10 samples. Water (1 L) from each depth was filtered for the
218 determination of POC and PON concentrations, as well as natural isotope abundance (δ ¹³C POC
219 / δ ¹⁵N PON) using 47 mm ϕ , 0.7 μ m nominal pore size precombusted GF/F filter (GE Healthcare
220 Life Sciences, Whatman, USA), which were subsequently stored at -20 °C until further analysis.
221 Seawater samples for DNA were filtered through 47 mm ϕ , 0.22 μ m MCE membrane filter (Merck,
222 Millipore Ltd., Ireland) for a maximum of 20 minutes, employing a gentle vacuum (200 mbar).
223 The filtered volumes varied depending
224 on the amount of material captured on the filter, ranging from 1.3 L to 2 L, with precise
225 measurements recorded. The filters were promptly stored at -20 °C on the ship and moved to -80
226 °C upon arrival to the lab until further analysis.
227 To achieve detailed vertical profiles, a conductivity-temperature-depth-profiler (CTD, Seabird X)
228 equipped with supplementary sensors for dissolved oxygen (DO), photosynthetic active radiation
229 (PAR), and fluorescence (Fluorometer) was manually deployed.

230 2.2 Nitrogen fixation and primary production

231

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Superscript

Deleted: -

Deleted: -

Deleted:

Deleted: Seawater (40 ml) was filtered through a 0.22 μ m syringe filter (Avantor VWR® Radnor, Pa, USA) and stored at 4 °C in an amber glass vial, sealed with closed caps, affixed with a PTFE-faced silicon liner (Thermo Fisher Scientific, Waltham, MA, USA) for subsequent DIC measurements in the laboratory using an AS-C5 DIC analyzer (ApolloSciTech, Newark, Delaware, USA) equipped with a laser-based CO₂ detector. Sample analysis was carried out following the manufacturer's guidelines and the use of a certified seawater reference (Batch 187, Scripps Institution of Oceanography, University of California, San Diego, USA).

Deleted: In the same manner, discrete water samples were obtained using a 10 L Niskin bottle, manually lowered with a hand winch to five distinct depths (Surface, 5, 25, 50, 100 m). These systematic and multifaceted sampling methodologies provide a robust dataset for a comprehensive analysis of the hydrographic conditions in Qeqertarsuaq.

254 Water samples were collected at three distinct depths (0, 25 and 50 m) for the investigation of N₂
255 fixation rates and primary production rates, encompassing the euphotic zone, chlorophyll
256 maximum, and a light-absent zone. Three incubation stations (Fig. 2: station 3, 7, 10) were chosen,
257 in a way to cover the variability of the study area. This strategic sampling aimed to capture a
258 gradient of the water column with varying environmental conditions, relevant to the aim of the
259 study. N₂ fixation rates were assessed through triplicate incubations employing the modified ¹⁵N-
260 N₂ dissolution technique after Großkopf et al. (2012) and Mohr et al. (2010).

261 To ensure minimal contamination, 2.3 L glass bottles (Schott-Duran, Wertheim, Germany)
262 underwent pre-cleaning and acid washing before being filled with seawater samples. Oxygen
263 contamination during sample collection was mitigated by gently and bubble-free filling the bottles
264 from the bottom, allowing the water to overflow. Each incubation bottle received a 100 mL
265 amendment of ¹⁵N-N₂ enriched seawater (98 %, Cambridge Isotope Laboratories, Inc., USA)
266 achieving an average dissolved N₂ isotope abundance (¹⁵N atom %) of 3.90 ± 0.02 atom % (mean
267 ± SD). Additionally, 1 mL of H³CO₃ (1g/50 mL) (Sigma- Aldrich, Saint Louis Missouri US) was
268 added to each incubation bottle, roughly corresponding to 10 atom % enrichment and thus
269 measurements of primary production and N₂ fixation were conducted in the same bottle. Following
270 the addition of both isotopic components, the bottles were closed airtight with septa-fitted caps and
271 incubated for 24 hours on-deck incubators with a continuous surface seawater flow. These
272 incubators, partially shaded (using daylight-filtering foil) to simulate in situ photosynthetically
273 active radiation (PAR) conditions, aimed to replicate environmental parameters experienced at the
274 sampled depths. Control incubations utilizing atmospheric air served as controls to monitor any
275 natural changes in δ ¹⁵N not attributable to ¹⁵N-N₂ addition. These control incubations were
276 conducted using the dissolution method, like the ¹⁵N-N₂ enrichment experiments, but with the
277 substitution of atmospheric air instead of isotopic tracer.

278 After the incubation period, subsamples for nutrient analysis were taken from each incubation
279 sample, and the remaining content was subjected to the filtration process and were gently filtered
280 (200 mbar) onto precombusted GF/F filters (Advantec,
281 47 mm ø, 0.7 μ m nominal pore size). This step ensured a comprehensive examination of both
282 nutrient dynamics and the isotopic composition of the particulate pool in the incubated samples.
283 Samples were stored at -20 °C until further analysis.

284 Upon arrival in the lab, the filters were dried at 60 °C and to eliminate particulate inorganic carbon,
285 subsequently subject to acid fuming during which they were exposed to concentrated hydrochloric
286 acid (HCL) vapors overnight in a desiccator. After undergoing acid treatment, the filters were
287 carefully dried, then placed into tin capsules and pelletized for subsequent analysis. The

← Formatted: Indent: Left: 0,15 cm, Right: 0,36 cm, Space
Before: 0,7 pt

288 determination of POC and PON, as well as isotopic composition ($\delta^{13}\text{C}$ POC / $\delta^{15}\text{N}$ PON), was
289 carried out using an elemental analyzer (Flash EA, ThermoFisher, USA) connected to a mass
290 spectrometer (Delta V Advantage Isotope Ratio MS, ThermoFisher, USA) with the ConFlo IV
291 interface. This analytical setup was applied to all filters. These values, derived from triplicate
292 incubation measurements, exhibited no omission of data points or identification of outliers. Final rate
293 calculations for N_2 fixation rates were performed after Mohr et al. (2010) and primary production
294 rates after Slawyk et al. (1977). [A detailed sensitivity analysis of \$\text{N}_2\$ fixation rates, including the
contribution of each source of error for all parameters, is provided in a supplementary table and
summarized form in the Appendix \(Table A1\).](#)

297 **2.3 Molecular methods**

298 The filters were flash-frozen in liquid nitrogen, crushed and DNA was extracted using the Qiagen
299 DNA/RNA AllPrep Kit (Qi- agen, Hildesheim, DE), following the procedure outlined by the
300 manufacturer. The concentration and quality of the extracted DNA was assessed
301 spectrophotometrically using a MySpec spectrophotometer (VWR, Darmstadt, Germany). The
302 prepara- tion of the metagenome library and sequencing were performed by BGI (China).
303 Sequencing libraries were generated using MGIEasy Fast FS DNA Library Prep Set following the
304 manufacturer's protocol. Sequencing was conducted with 2x150bp on a DNBSEQ-G400 platform
305 (MGI). SOAPnuke1.5.5 (Chen et al. (2018)) was used to filter and trim low quality reads and
306 adaptor contaminants from the raw sequence reads, as clean reads. In total, fifteen metagenomic
307 datasets were produced with an average of 9.6G bp per sample.

309 **2.3.1 Metagenomic De Novo assembly, gene prediction, and annotation**

310 Megahit v1.2.9 [\(Li et al. \(2015\)\)](#) was used to assemble clean reads for each dataset with its
311 minimum contig length as 500. Prodigal v2.6.3 (Hyatt et al. (2010)) with the setting of “-p meta”
312 was then used to predict the open reading frames (ORFs) of the assembled contigs. ORFs from all
313 the available datasets were filtered (>100bp), dereplicated and merged into a catalog of non-
314 redundant genes using cd-hit-est (>95 % sequence identity) (Fu et al. (2012)). Salmon v1.10.0
315 (Patro et al. (2017)) with the “– meta” option was employed to map clean reads of each dataset to
316 the catalog of non-redundant genes and generate the GPM (genes per million reads) abundance.
317 Eggnog mapper v2.1.12 (Cantalapiedra et al. (2021)) was then performed to assign KEGG
318 Orthology (KO) and identify specific functional annotation for the catalog of non-redundant genes.
319 The marker genes, *nifDK* (K02586, K02591 nitrogenase molybdenum-iron protein alpha/beta
320 chain) [and](#) *nifH* (K02588, nitrogenase iron protein), were used for the evaluation of microbial

Formatted: Indent: Left: 0,14 cm, Right: 0,66 cm, Space Before: 0,05 pt

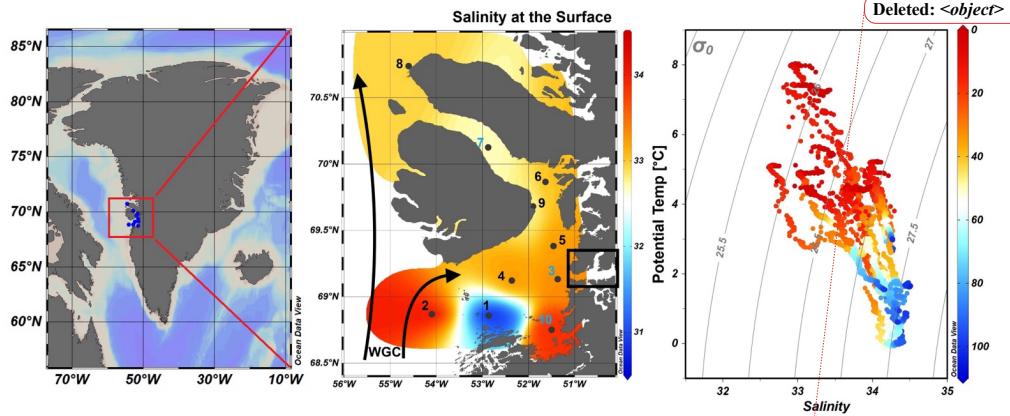
Field Code Changed

Field Code Changed

Deleted: ,

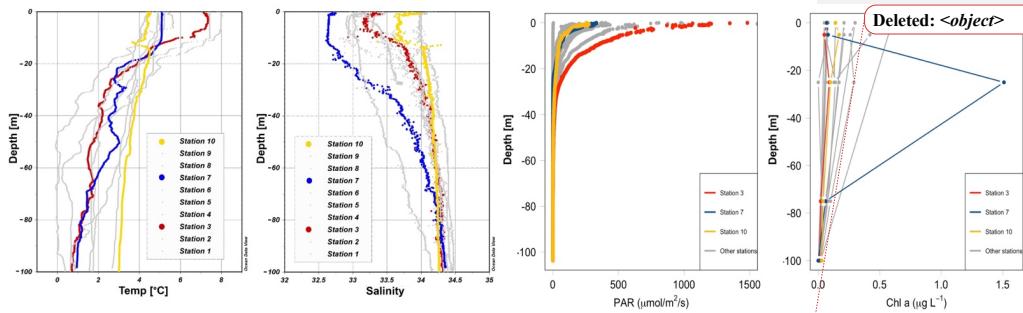
323 potential of N₂ fixation. *RbcL* (K01601, ribulose-bisphosphate carboxylase large chain) and *psbA*
324 (K02703, photosystem II P680 reaction center D1 protein) were selected to evaluate the microbial
325 potential of carbon fixation and photosynthesis, respectively. [The molecular datasets have been](#)
326 [deposited with the accession number: Bioproject PRJNA1133027.](#)

Deleted: ¶


Formatted: Font: 10 pt

327 3 Results and discussion

328 3.1 Hydrographic conditions in Qeqertarsuaq (Disco Bay) and Sullorsuaq (Vaigat) Strait


329 Disko Bay (Qeqertarsuaq) is located along the west coast of Greenland (Kalaallit Nunaat) at
330 approximately 69 °N (Figure 1), and is strongly influenced by the West Greenland Current (WGC)
331 which is associated with the broader Baffin Bay Polar Waters (BBPW) (Mortensen et al., 2022;
332 Hansen et al., 2012). The WGC does not only significantly shape the hydrographic conditions
333 within the bay but also plays an important role in the larger context of Greenland Ice Sheet melting
334 (Mortensen et al. (2022)). Central to the hydrographic system of the Qeqertarsuaq area is the
335 Jakobshavn Isbræ, which is the most productive glacier in the northern hemisphere and believed
336 to drain about 7 % of the Greenland Ice Sheet and thus contributes substantially to the water influx
337 into the Qeqertarsuaq (Holland et al. (2008)). A predicted increased inflow of warm subsurface
338 water, originating from North Atlantic waters, has been suggested to further affect the melting of
339 the Jakobshavn Isbræ and thus adds another layer of complexity to this dynamic system (Holland
340 et al., 2008; Hansen et al., 2012).

341 The hydrographic conditions in Qeqertarsuaq have a significant influence on biological processes,
342 nutrient availability, and the

348 **Figure 1.** Map of Greenland (Kalaallit Nunaat) with indication of study area (red box), on the left.
 349 Interpolated distribution of Sea Surface Salinity (SSS) values with corresponding isosurface lines and
 350 indication of 10 sampled stations (normal stations in black, incubation stations in blue), black arrows indicate
 351 the West Greenland Current (WGC) and the black box indicate the location of the Jakobshavn Isbrae, in
 352 the middle. Scatterplot of the potential temperature and salinity for all station data. The plot is used for the
 353 identification of the main water masses within the study area. Isopycnals (kg m^{-3}) are depicted in grey lines,
 354 on the right. Figures were created in Ocean Data View (ODV) (Schlitzer (2022)).

355 broader marine ecosystem (Munk et al., 2015; Hendry et al., 2019; Schiøtt, 2023).
 356 During our survey, we found very heterogeneous hydrographic conditions at the different stations
 357 across Qeqertarsuaq (Fig. 1 & Fig. 2). The three selected stations for N_2 fixation analysis (stations
 358 3, 7, and 10) were strategically chosen to capture the spatial
 359 variability of the area. Surface salinity and temperature measurements at these stations indicate
 360 the influence of freshwater input. The surface temperature exhibit a range of 4.5 to 8 °C, while
 361 surface salinity varies between 31 and 34, as illustrated in Fig. 1. The profiles sampled during
 362 our survey extend to a maximum depth of 100 m. Comparison of temperature/salinity (T/S) plots
 363 with recent studies suggests the presence of previously described water masses, including Warm
 364 Fjord Water (WFjW) and Cold Fjord Water (CFjW) with an overlaying surface glacial meltwater
 365 runoff. Those water masses are defined with a density range of $27.20 \leq \sigma_0 \leq 27.31$ but different
 366 temperature profiles. Thus water masses can be differentiated by their temperature within the same
 367 density range (Gladish et al. (2015)). Other water masses like upper subpolar mode water
 368 (uSPMW), deep subpolar mode water (dSPMW) and Baffin Bay polar Water (BBPW) which has
 369 been identified in the Disko Bay (Qeqertarsuaq) before, cannot be identified from this data and
 370 may be present in deeper layers (Mortensen et al., 2022; Sherwood et al., 2021; Myers and
 371 Ribegaard, 2013; Rysgaard et al., 2020). The temperature and salinity profiles across the 10
 372

Deleted: conservative

Deleted: <object>

376

377

378 **Figure 2.** Profiles of temperature (°C), salinity, photosynthetically active radiation (PAR) (μmol/m²/s) and
379 Chl *a* (mg m⁻³) across stations 1 to 10 with depth (m). Stations 3, 7, and 10 are highlighted in red, blue, and
380 yellow, respectively, to emphasize incubation stations. Figures were created in Ocean Data View and R-
381 Studio (Schlitzer (2022)).

382

383 stations in the study area show distinct stratification and variability, which is represented through
384 the three incubation stations (highlighted stations 3, 7, and 10 in Fig. 2). They display varying
385 degrees of stratification and mixing, with notable differences in the salinity and temperature
386 profiles. Station 3 and station 7 exhibit clear stratification in both temperature and salinity marked
387 by the presence of thermoclines and haloclines. These features suggest significant freshwater input
388 influenced by local weather conditions and climate dynamics, like surface heat absorption. In
389 contrast, Station 10 exhibits a narrower range of temperature and salinity values throughout the
390 water column compared to Stations 3 and 7, indicating more well-mixed conditions. This
391 uniformity is likely influenced by the regional circulation pattern and partial upwelling (Hansen et
392 al., 2012; Krawczyk et al., 2022). The distinct characteristics observed at station 10, as illustrated
393 in the surface plot (Fig. 1), show an elevated salinity and colder temperatures compared

394

395 to the other stations. This feature suggests upwelling of deeper waters along the shallower shelf,
396 likely facilitated by the local seafloor topography. Specifically, the seafloor shallowing off the coast
397 of Station 10 may act as a barrier, disrupting typical circulation and forcing deeper, saltier, and
398 colder waters to the surface. This pattern aligns with previous studies that describe similar
399 mechanisms in the region (Krawczyk et al. (2022)). Their description of the bathymetry in
400 Qeqertarsuaq, featuring depths ranging from ca. 50 to 900 m, suggests its impact on turbulent
401 circulation patterns, leading to the mixing of different water masses. Evident variability in
402 oceanographic conditions that can be observed throughout the study area occurs particularly along
403 characteristic topographical features like steep slopes, canyons, and shallower areas. The summer
404 melting of sea ice and glaciers introduces freshwater influxes that create distinct vertical and
405 horizontal gradients in salinity and temperature in the Qeqertarsuaq area Hansen et al. (2012).
406 Additionally, the accelerated melting of the Jakobshavn Isbraæ, influenced by the warmer inflow
407 from the West Greenland Intermediate Current (WGIC), further alters the hydrographic conditions.
408 Recent observations indicate significant warming and shoaling of the WGIC, potentially enabling
409 it to overcome the sill separating the Ilulissat Fjord from the Qeqertarsuaq area (Hansen et al.,
410 2012; Holland et al., 2008; Myers and Ribergaard, 2013). This shift intensifies glacier melting,
411 driving substantial changes in the local ecological dynamics (Ardyna et al., 2014; Arrigo et al.,
412 2008; Bhatia et al., 2013).

← Formatted: Indent: Left: 0,14 cm, Right: 0,66 cm

Deleted: In contrast station 10 shows more homogeneous salinity and temperature throughout the water column, indicative of well-mixed conditions.

Deleted: ¶

← Formatted: Indent: Left: 0 cm

Deleted: likely influenced by the seafloor shallowing off the coast of station 10, which acts as a barrier and disrupts typical circulation. The presence of water masses forced to the surface due to this topographical feature may explain the observed properties at station 10. Furthermore, the variability in temperature and salinity conditions between stations, particularly in relation to topography, aligns with the findings of

424 3.2 N₂ Fixation Rate Variability and Associated Environmental Conditions

425
426 We quantified N₂ fixation rates within the waters of Qeqertarsuaq, spanning from the surface to a
427 depth of 50 m (Table 1). The rates ranged from 0.16 to 2.71 nmol N L⁻¹ d⁻¹ with all rates
428 surpassing the minimum quantifiably rate (Appendix Table 1). Our findings represent rates at the
429 upper range of those observed in the Arctic Ocean. Previous measurements in the region have
430 been limited, with only one study in Baffin Bay by Blais et al. (2012), reporting rates of 0.02 nmol
431 N L⁻¹ d⁻¹, which are 1-2 orders of magnitude lower than our observations. Moreover, Sipler et al.
432 (2017), reported rated in the coastal Chukchi Sea, with average values of 7.7 nmol N L⁻¹ d⁻¹. These
433 values currently represent some of the highest rates measured in Arctic shelf environments.
434 Compared to these, our highest measured rate (2.71 nmol N L⁻¹ d⁻¹) is lower, but still important,
435 particularly considering the more Atlantic-influenced location of our study site. Sipler et al. (2017)
436 also noted that a significant fraction of diazotrophs were <3 µm in size, suggesting that small
437 unicellular diazotrophs play a dominant role in Arctic nitrogen fixation. Altogether, our data
438 contribute to the growing evidence that N₂ fixation is a widespread and potentially significant
439 nitrogen source across various Arctic regions. Simultaneous primary production rate
440 measurements ranged from 0.07 to 3.79 µmol N L⁻¹ d⁻¹, with the highest rates observed at station 7
441 and generally higher values in the surface layers. Employing Redfield stoichiometry, the measured
442 N₂ fixation rates accounted for 0.47 to 2.6 % (averaging 1.57 %) of primary production at our
443 stations. The modest contribution to primary production suggests that N₂ fixation does not exert a
444 substantial influence on the productivity of these waters during the time of the sampling. Rather,
445 our N₂ fixation rates suggest primary production to depend mostly on additional nitrogen sources
446 including regenerated, meltwater or land-based sources.

447 While the N:P ratio is commonly used to assess nutrient limitations relative to Redfield
448 stoichiometry, most DIN and DIP measurements in our study were below detection limit (BDL),
449 preventing a reliable calculation for this ratio. As such, we refrain from drawing conclusions based
450 on N:P stoichiometry. Nevertheless, previous studies by Jensen et al. (1999) and Tremblay and
451 Gagnon (2009), have identified nitrogen limitation in this region. Such biogeochemical conditions,
452 when present, would be expected to generate a niche for N₂ fixing organisms (Sohm et al. (2011)).
453 While N₂ fixation did not chiefly sustain primary production during our sampling campaign, we
454 hypothesize that N₂ fixation has the potential to play a role in bloom dynamics under certain
455 conditions. As nitrogen availability decreases
456 during a bloom, it may provide a niche for N₂ fixation, potentially helping to extend the productive
457 period of the bloom (Reeder et al. (2021)). Satellite data indicates that a fall bloom began in
458 early August, following the annual spring bloom, as described by Ardyna et al. (2014). This double

Deleted: Elevated N₂ fixation rates might play a role in nutrient dynamics and bloom development

Deleted: Space Before: 0,05 pt, Line spacing: Multiple 1,44 li

Deleted: detection

Deleted: limit

Deleted: Compared to other European Arctic waters, our rates at the surface and at 25 m water depth fall within the reported range for Arctic estuarine stations (1.04 to 1.87 nmol N L⁻¹ d⁻¹, (SD ± 0.76 to 1.19) and marine stations (0.11 to 0.12 nmol N L⁻¹ d⁻¹, (SD ± 0.09 to 0.09) (Blais et al. (2012)). However, we observed some of the highest rates reported so far, particularly at the surface.

Deleted: relatively

Deleted: may

Deleted:

Formatted: Right: 0,66 cm, Space Before: 0,1 pt

Deleted: The N:P ratio, calculated as DIN to DIP, indicates a deficit in N for primary production based on Redfield stoichiometry (Fig. 3).

Deleted: The N:P ratio, calculated as DIN to DIP, indicates a deficit in N for primary production based on Redfield stoichiometry (Fig. 3). This aligns with findings presented

Deleted: who observed a similar

Deleted: -

Deleted: -

Deleted: the relatively high

Deleted: rates observed

Deleted: may

Deleted: ¶

Deleted: ing

489 bloom situation may be driven by increased melting and the subsequent input of bioavailable
490 nutrients and iron (Fe) from meltwater runoff (Arrigo et al., 2017; Hopwood et al., 2016; Bhatia et
491 al., 2013). The meltwater from the Greenland Ice Sheet is a significant source of Fe (Bhatia et
492 al., 2013; Hawkings et al., 2015, 2014), which is a limiting factor especially for diazotrophs (Sohm et
493 al. (2011)). Consequently, it is plausible that Fe and nutrients from the Isbrae glacier create
494 favorable conditions for both bloom development and diazotroph activity in Qeqertarsuaq.
495 However, we emphasize that confirming a causal link between N₂ fixation and secondary bloom
496 development requires further evidence, such as time-series data on nutrient concentrations,
497 diazotroph abundance, and bloom dynamics.

Table 1. N_2 fixation (nmol N L⁻¹ d⁻¹), standard deviation (SD), primary productivity (PP; $\mu\text{mol C L}^{-1} \text{d}^{-1}$), SD, percentage of estimated new primary productivity (% New PP) sustained by N_2 fixation, dissolved inorganic nitrogen compounds (NO_x), phosphorus (PO₄), and the molar nitrogen-to-phosphorus ratio (N:P) at stations 3, 7, and 10. BDL= Below detection limit.

Station (no.)	Depth (m)	N ₂ fixation (nmol N L ⁻¹ d ⁻¹)	SD (±)	Primary Productivity (μmol C L ⁻¹ d ⁻¹)	SD (±)	% New PP (%)	NO _x (μmol L ⁻¹ d ⁻¹)	PO ₄ (μmol L ⁻¹ d ⁻¹)
3	0	1.20	0.21	0.466	0.08	1.71	BDL	0
3	25	1.88	0.11	0.588	0.04	2.11	BDL	0
3	50	0.29	0.01	0.209	0.00	0.91	0.33	1
7	0	2.49	0.44	0.63	0.20	2.60	BDL	0
7	25	2.71	0.22	3.79	2.45	0.47	BDL	0
7	50	0.53	0.24	0.33	0.36	1.08	BDL	0
10	0	1.48	0.12	0.74	0.15	1.33	BDL	0
10	25	0.31	0.01	0.29	0.07	0.73	BDL	0
10	50	0.16	0	0.07	0.07	1.40	BDL	0

504 A near-Redfield stoichiometry in POC:PON suggests, that the particulate organic matter (POM)
505 likely originates, from an ongoing phytoplankton bloom, as phytoplankton generally assimilate
506 carbon and nitrogen in relatively consistent proportions during active growth (Redfield 1934).
507 However this assumption is based on a global average, and POM stoichiometry can exhibit
508 substantial latitudinal variation. Deviations may also arise during particle production and
509 remineralization processes (Redfield 1934; Geider and La Roche 2002; Sterner and Elser 2017;
510 Quigg et al., 2003). Recent studies have further shown that POM composition vary widely across

Deleted: Consequently, it is possible that nutrients and Fe from the Isbrae glacier introduced into the Qeqertarsuaq are promoting a bloom and further provide a niche for diazotrophs to thrive (Arrigo et al. (2017)).

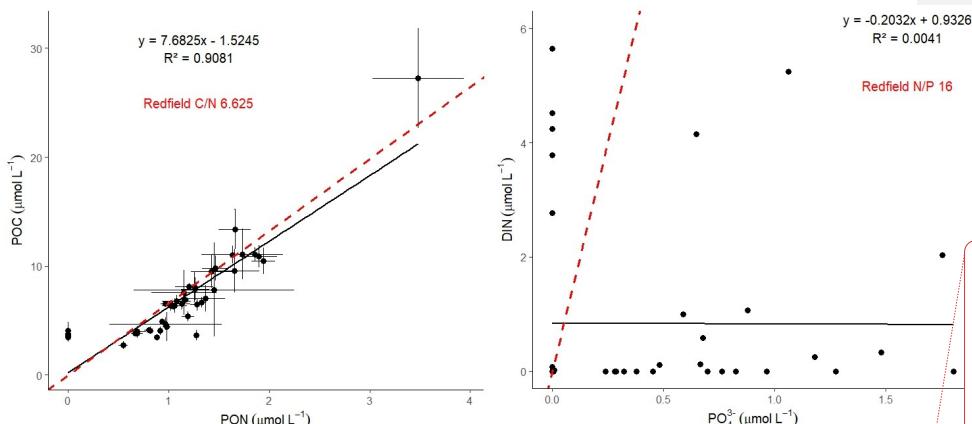
Deleted: compounds

- Deleted:** 0
- Deleted:** 3 indicates
- Formatted:** Indent: Left: 0 cm, Line spacing: Multiple 1,46
li
- Deleted:** is freshly derived

532 plankton communities, influenced by factors such as growth rates, community composition, ad
533 physiological status (e.g. fast- vs- slow-growing organisms), with degradation often playing a
534 secondary role (Tanioka et al., 2022). Additionally, terrestrial organic material—likely introduced
535 via glacial outflow in the study area—may also contribute to the observed POM composition
536 (Schneider et al., 2003). Latitudinal variability in organic matter stoichiometry has also been linked
537 to differences in nutrient supply and phosphorus stress (Fagan et al., 2024; Tanioka et al., 2022).
538 Consequently, the near-Redfield stoichiometry observed here cannot be clearly attributed to freshly
539 produced organic material. Nevertheless, satellite-derived surface chlorophyll *a* concentration and
540 associated primary production support the interpretation that recently produced organic matter does
541 contribute, at least in part, to the sinking POM captured in our samples. Since inorganic nitrogen
542 species (e.g., NO_x) were below detection limits, direct calculation or interpretation of the N:P ratio
543 in the dissolved nutrient pool was not possible and has been avoided. The absence of available
544 nitrogen may nonetheless reflect nitrogen depletion, potentially creating ecological niches for
545 diazotrophs and nitrogen-fixing organisms. Such conditions may promote shifts in microbial
546 community structure, as observed by Laso-Perez et al. (2024). ▶▶ Laso Perez et al. (2024)
547 documented changes in microbial community composition during an Arctic bloom, focusing on
548 nitrogen cycling. They observed a shift from chemolithotrophic to heterotrophic organisms
549 throughout the summer bloom and noted increased activity to compete for various nitrogen sources.
550 However, no *nifH* gene copies, indicative of nitrogen-fixing organisms, were found in their dataset
551 based on metagenome-assembled genomes (MAGs). This is not unexpected due to the classically
552 low abundance of diazotrophs in marine microbial communities which has often been described
553 (Turk-Kubo et al., 2015; Farnelid et al., 2019). Given the high productivity and metabolic activity
554 observed in Qeqertarsuaq during a similar bloom period, the detected diazotrophs (Section 3.3)
555 may play a more significant role than previously thought. Across the 10 stations there is
556 considerable variability in POC and PON concentrations (Fig. 3). PON concentrations range from
557 0.0 $\mu\text{mol N L}^{-1}$ to 3.48 $\mu\text{mol N L}^{-1}$ (n=124), while POC concentrations range from 2.7 $\mu\text{mol C L}^{-1}$
558 to 27.2 $\mu\text{mol C L}^{-1}$ (n=144). The highest concentrations for both PON and POC were observed at
559 station 7 at a depth of 25 m and coincide with the highest reported N₂ fixation rate (Figure Appendix
560 A2 & A3). Generally, POC and PON concentrations decrease with depth, peaking at the deep chl
561 *a* maximum (DCM), identified between 15 to 30 m across all stations. The DCM was identified
562 based on measured chl *a* concentrations and previous descriptions in the region (Fox and Walker,
563 2022; Jensen et al., 1999). The variability in chl *a* concentrations indicates differences in
564 phytoplankton abundance among the stations, with concentrations ranging between 0 to 0.42 mg m⁻³.
565 Excluding station 7, which exhibited the highest chl *a* concentration at the DCM (1.51 mg m⁻³).

Deleted: In contrast, deviations from the Redfield ratio (e.g., elevated C:N or C:P) typically indicate microbial degradation and preferential remineralization of nitrogen and phosphorus (Redfield 1934; Geider and La Roche 2002; Sterner and Elser 2017).

Formatted: Font: Italic


Deleted: bloom. However, the absence of NO_x (with the exception of one station) and the observed low N:P ratios suggest that any available nitrogen from earlier phases of the bloom has likely been depleted. This could create a niche for N₂ fixation as a supplementary nitrogen source, potentially supporting continued production during this stage of the bloom. The onset and development of the bloom would be expected to lead to high nitrogen demands and intense competition for nitrogen sources. Notably, despite the apparent balance in the POM pool, the N ratio indicates strong nitrogen depletion and nutrient exhaustion within the ecosystem. This deficiency can be partly alleviated by N₂ fixation, providing possibly increasing amounts of nitrogen over the course of the bloom. Moreover, DIP is generally limited in the environment (Table 1); however, some organisms may still access it through luxury phosphorus uptake, storing excess phosphate when it is sporadically available.

Deleted: A recent study¹
by

Deleted: ¹

592 While Tang et al. (2019) found that N_2 fixation measurements strongly correlated to satellite
 593 estimates of chl *a* concentrations, our results did not show a statistically significant correlation
 594 between nitrogen fixation rates and chl *a* concentrations overall (Figures A2 & A3). However, as
 595 noted, Station 7 at 25 m represents a unique case. The elevated concentration of chl *a* at this station
 596 likely resulted from a local phytoplankton bloom induced by meltwater outflow from the Isbrae
 597 glacier and sea ice melting, which may help explain the observed nitrogen fixation rates (Arrigo et
 598 al., 2017; Wang et al., 2014). This study's findings are in agreement with prior reports of analogous
 599 blooms occurring in the region (Fox and Walker, 2022; Jensen et al., 1999).

600

601
 602 **Figure 3.** The POC/PON and DIN/DIP ratios at all 10 stations. The red line represents the Redfield ratios of
 603 POC/PON (106:16) and DIN/DIP (16:1).

604

605

606 3.3 Potential Contribution of UCYN-A to Nitrogen Fixation During a Diatom Bloom: Insights 607 and Uncertainties

608

609 In our metagenomic analysis, we filtered the *nif H*, *nif D*, *nif K* genes, which code for the
 610 nitrogenase enzyme responsible for catalyzing N_2 fixation. We could identify sequences related to
 611 UCYN-A, which dominated the sequence pool of diazotrophs, particularly in the upper water
 612 masses (0 to 5 m) (Fig. 4). UCYN-A, a unicellular cyanobacterial symbiont, has a cosmopolitan
 613 distribution and is thought to substantially contribute to global N_2 fixation, as documented by

• **Deleted:** stations there is considerable variability in POC and PON concentrations (Fig. 3). PON concentrations range from $0.5 \mu\text{mol N L}^{-1}$ to $4.0 \mu\text{mol N L}^{-1}$ ($n=124$), while POC concentrations range from $2.5 \mu\text{mol C L}^{-1}$ to $32.6 \mu\text{mol C L}^{-1}$ ($n=144$). The highest concentrations for both PON and POC were observed at station 7 at a depth of 25 m and coincide with the highest reported N_2 fixation rate (Figure Appendix A2 & A3). Generally, POC and PON concentrations decrease with depth, peaking at the deep chl *a* maximum (DCM), identified between 15 to 30 m across all stations. The variability in chl *a* concentrations indicates differences in phytoplankton abundance among the stations, with concentrations ranging between 0 to 0.42 mg m^{-3} . Excluding station 7, which exhibited the highest chl *a* concentration at the DCM (1.51 mg m^{-3}). Tang et al. (2019) have found that N_2 fixation measurements strongly correlated to satellite estimates of chl *a* concentrations and thus may be an explanation for the presented N_2 fixation rates. The elevated concentration of chl *a* likely result from a local phytoplankton bloom induced by meltwater outflow from the Isbrae glacier and sea ice melting (Arrigo et al., 2017; Wang et al., 2014). This can also be seen¹

Deleted: from satellite images (Appendix A1). This study's findings are in agreement with prior reports of analogous blooms occurring in the region (Fox and Walker, 2022; Jensen et al., 1999).¹
 UCYN...

Deleted: -A might contribute to N_2 fixation during a diatom bloom...

643 (Martínez-Pérez et al., 2016; Tang et al., 2019). This conclusion is based on our metagenomic
644 analysis, in which we set a sequence identity threshold of 95% for both *nif* and photosystem genes.
645 Notably, we only recovered sequences related to UCYN-A within our *nif* sequence pool,
646 suggesting its predominance among detected diazotrophs. However, metagenomic approaches
647 may underestimate overall diazotroph diversity, and we cannot fully exclude the presence of other,
648 less abundant diazotrophs that may have been missed using this method. While UCYN-A was
649 primarily detected in surface waters, we also observed relatively high *nifK* values at S3_100m, an
650 unusual finding given that UCYN-A is typically constrained to the euphotic zone. Previous studies
651 have predominantly reported UCYN-A in surface waters; for instance Harding et al. (2018) and
652 Shiozaki et al. (2017) detected UCYN-A exclusively in the upper layers of the Arctic Ocean.
653 Additionally, Shiozaki et al. (2020) found UCYN-A2 at depths extending to the 0.1% light level
654 but not below 66 m in the Chukchi Sea. The detection of UCYN-A at 100 m in our study suggests
655 that alternative mechanisms, such as particle association, vertical transport, or local environmental
656 conditions, may facilitate its presence at depth. Interestingly, despite very low *nifH* copy numbers
657 being reported in nearby Baffin Bay by Robicheau et al. (2023), UCYN-A dominated the
658 metagenomic *nifH* community in our study, further underscoring this organism's presence in
659 Arctic surface coastal areas under certain environmental conditions. This warrants further
660 investigation into the environmental drivers and potential processes enabling its occurrence in
661 Arctic waters.

662 Due to the lack of genes such as those encoding Photosystem II and Rubisco, UCYN-A plays a
663 significant role within the host cell and participates in fundamental cellular processes.
664 Consequently, it has evolved to become a closely integrated component of the host cell. Very
665 recent findings demonstrate that UCYN-A imports proteins encoded by the host genome and has
666 been described as an early form of N₂ fixing organelle termed a "Nitroplast" (Coale et al. (2024)).
667 Previous investigations document that they are critical for primary production, supplying up to 85%
668 of the fixed nitrogen to their haptophyte host (Martínez-Pérez et al. (2016)). In addition to its high
669 contribution to primary production, studies have shown that UCYN-A in high latitude waters fix
670 similar amounts of N₂ per cell as in the tropical Atlantic Ocean, even in nitrogen- replete waters
671 (Harding et al., 2018; Shiozaki et al., 2020; Martínez-Pérez et al., 2016; Krupke et al., 2015; Mills
672 et al., 2020). However, estimating their contribution to N₂ fixation in our study is challenging,
673 particularly since we detected cyanobacteria only at the surface but observe significant N₂ fixation
674 rates below 5 m. The diazotrophic community is often underrepresented in metagenomic datasets
675 due to the low abundance of nitrogenase gene copies, implying our data does, not present a
676 complete picture. We suspect a more diverse diazotrophic community exists, with UCYN-A being

Formatted: Font: Italic

Deleted: Consequently

Deleted: may

679 a significant contributor to N₂ fixation in Arctic waters. However, the exact proportion of its
680 contribution requires further investigation.

681 The contribution of N₂ fixation to carbon fixation (as percent of PP) is relatively low, at the time of
682 our study. We identified genes such as *rbcL*, which encodes Rubisco, a key enzyme in the carbon
683 fixation pathway and *psbA*, a gene encoding Photosystem II, involved in light-driven electron
684 transfer in photosynthesis, in our metagenomic dataset. The gene *rbcL* (for the carbon fixation
685 pathway) and the gene *psbA* (for primary producers) were used to track the community of
686 photosynthetic primary producers in our metagenomic dataset. At station 7, elevated carbon
687 fixation rates are correlated with high diatom (*Bacillariophyta*) abundance and increased chl *a*
688 concentration (Fig. 4), suggesting the onset of a bloom, which is also observable via satellite images
689 (Appendix A1). We hypothesize that meltwater, carrying elevated nutrient and trace metal
690 concentrations, was rapidly transported away from the glacier through the Vaigat Strait by strong
691 winds, leading to increased productivity, as previously described by Fox and Walker (2022) &
692 Jensen et al. (1999). The elevated diatom abundance and primary production rates at station 7
693 coincide with the highest N₂ fixation rates, which could point toward a possible diatom-diazotroph
694 symbiosis (Foster et al., 2022, 2011; Schwarcz et al., 2022). However, we did not detect a clear
695 diazotrophic signal directly associated with the diatoms in our metagenomic dataset, which might be
696 due to generally underrepresentation of diazotrophs in metagenomes due to low abundance or
697 low sequencing coverage. To investigate this further, we examined the taxonomic
698 composition of *Bacillariophyta* at higher resolution. Among the various abundant diatom
699 genera, *Rhizosolenia* and *Chaetoceros* have been identified as symbiosis with diazotrophs
700 (Grosse, et al., 2010; Foster, et al., 2010), representing less than 6% or 15% of
701 *Bacillariophyta*, based on *rbcL* or *psbA*, respectively (Figure Appendix A4). Although we
702 underestimate diazotrophs to an extent, the presence of certain diatom-diazotroph symbiosis
703 could help explain the high nitrogen fixation rates in the diatom bloom to a certain degree.
704 Compilation of *nif* sequences identified from this study as well as homologous from their
705 NCBI top hit were added in Table S1. However, we cannot tell if the diazotrophs belong to
706 UCYN-A1 or UCYN-A2, or UCYN-A3. Based on the Pierella Karlusich et al. (2021), they
707 generated clonal *nifH* sequences from Tara Oceans, which the length of *nifH* sequences is
708 much shorter than the two *nifH* sequences we generated in our study. Also, the available
709 UCYN-A2 or UCYN-A3 *nifH* sequences from NCBI were shorter than the two *nifH* sequences
710 we generated. Therefore, it would be not accurate to assign the *nifH* sequences to either group
711 under UCYN-A. Furthermore, not much information is available regarding the different
712 groups of UCYN-A using marker genes of *nifD* and *nifK*.

713 ↶ Formatted: Indent: Left: 0 cm

Deleted: but may increase with a further onset of bloom periods.

Deleted: possibly

Deleted: s

Deleted: However,

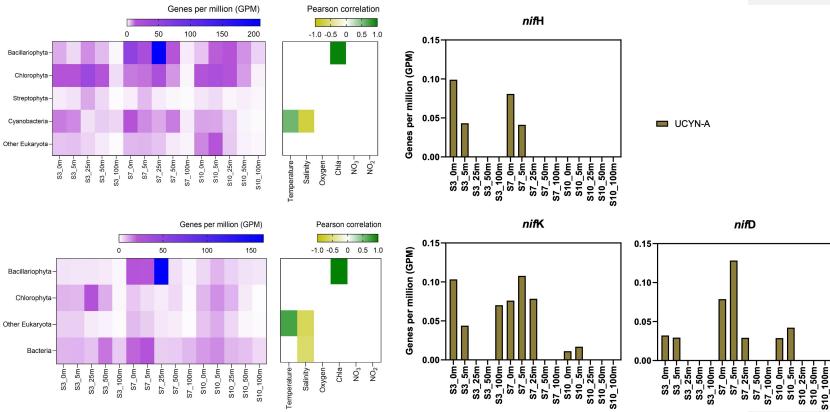
Deleted: ny relevant

Deleted: group

Deleted: observed

Deleted: their absence or due to the

Deleted: .


Formatted: Font: Italic

Moved (insertion) [1]

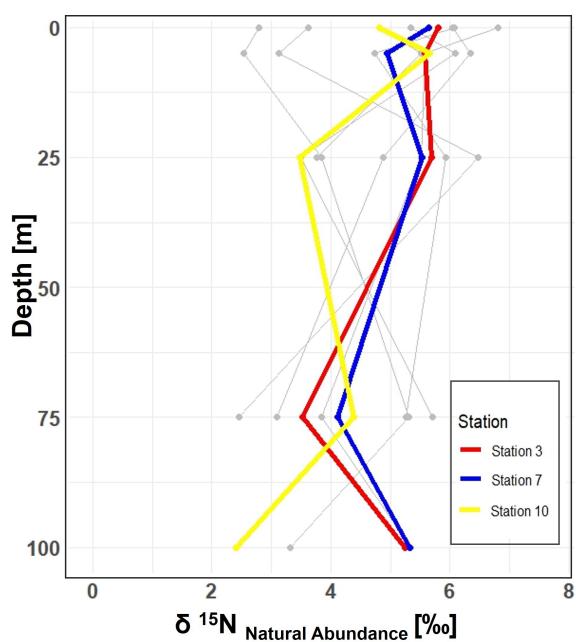
Deleted: Therefore, we can only assume that such a symbiosis explains the elevated rates. Additional molecular approaches would be necessary to enhance our understanding show a more detailed picture of the diazotrophic community.¶

Moved up [1]: a symbiosis explains the elevated rates. Additional molecular approaches would be necessary to enhance our understanding show a more detailed picture of the diazotrophic community.¶

Deleted: ¶

734
 735 **Figure 4.** Upper left image: *psbA* with correlation plot. Lower left image: *rbcL* with correlation plot. Right
 736 image: *nifH*, *nifD*, *nifK* genes per million reads in the metagenomic datasets. All figures display molecular
 737 data from metagenomic dataset for all sampled depth of station 3,7,10

740
 741 There is evidence that UCYN-A have a higher Fe demand, with input through meltwater or river
 742 runoff potentially being advantageous to those organisms (Shiozaki et al., 2017, 2018; Cheung et
 743 al., 2022). Consequently, UCYN-A might play a more critical role in the future with increased Fe-
 744 rich meltwater runoff. UCYN-A can potentially fuel primary productivity by supplying nitrogen,
 745 especially with increased melting, nutrient inputs, and more light availability due to rising
 746 temperatures associated with climate change. This predicted enhancement of primary productivity
 747 may contribute to the biological drawdown of CO₂, acting as a negative feedback mechanism.
 748 These projections are based on studies forecasting increased temperatures, melting, and resulting
 749 biogeochemical changes leading to higher primary productivity. However large uncertainties make
 750 predictions very difficult and should be handled with care. ~~Thus~~, we can only hypothesize that
 751 UCYN-A might be coupled to these dynamics by providing essential nitrogen.


Deleted: Thus

Deleted: show no clear evidence of nitrogen fixation

752 3.4 $\delta^{15}\text{N}$ Signatures in particulate organic nitrogen

753 Stable isotopic composition, expressed using the $\delta^{15}\text{N}$ notation, serve as indicators for
 754 understanding nitrogen dynamics because different biogeochemical processes fractionate nitrogen
 755 isotopes in distinct ways (Montoya (2008)). However, it is important to keep in mind that the final
 756 isotopic signal is a combination of all processes and an accurate distinction between processes

760 cannot be made. N_2 fixation tends to enrich nitrogenous compounds with lighter isotopes,
761 producing OM with isotopic values ranging approximately from -2 to +2 ‰ (Dähnke and
762 Thamdrup (2013)). Upon complete remineralization and oxidation, organic matter contributes to
763 a reduction in the average δ -values in the open ocean (e.g. Montoya et al. (2002);
764 Emeis et al. (2010)). Whereas processes like denitrification and anammox preferentially remove
765 lighter isotopes, leading to enrichment in heavier isotopes and delta values up to -25 ‰.
766

767
768 **Figure 5.** Vertical profiles of $\delta^{15}\text{N}$ natural abundance signatures in PON across 10 stations in the study area.
769 Incubation stations 3, 7, and 10 are highlighted in red, blue, and yellow, respectively. The figure shows
770 variations in $\delta^{15}\text{N}$ signatures with depth at each station, providing insight into nitrogen cycling in the study
771 area.

772
773 In our study, the $\delta^{15}\text{N}$ values of PON from all 10 stations, range between 2.45 ‰ and 8.30 ‰
774 within the 0 to 100 m depth range. While N_2 fixation typically produces OM ranging from -2 ‰ to 0.5

Deleted: Thus, $\delta^{15}\text{N}$ values help to identify different processes of the nitrogen cycle generally present in a system (Dähnke and Thamdrup (2013)).

779 ~~%, this signal can be masked by processes such as remineralization, mixing with nitrate from~~
780 ~~deeper waters or other biological transformations (Emeis et al. (2010); Sigman et al. (2009)). The~~
781 ~~composition of OM in the surface ocean is influenced by the nitrogen substrate and the~~
782 ~~fractionation factor during assimilation. When nitrate is depleted in the surface ocean, the isotopic~~
783 ~~signature of OM produced during photosynthesis will mirror that of the nitrogen source. Nitrate,~~
784 ~~the primary form of dissolved nitrogen in the open ocean, typically exhibits an average stable~~
785 ~~isotope value of around~~
786 5 %. No fractionation occurs during photosynthesis because the nitrogen source is entirely taken
787 up in the surface waters (Sigman et al. (2009)). ~~This matches conditions observed in Qeqertarsuaq,~~
788 ~~suggesting that subsurface nitrate is a dominant nitrogen source (Fox and Walker (2022)).~~
789 In the eastern Baffin Bay waters, Atlantic water masses serve as an important source of nitrate ~~to~~
790 ~~surface waters with $\delta^{15}\text{N}$ values around 5 %~~ (Sherwood et al. (2021)). ~~This is consistent with our~~
791 ~~observed PON values and supports the view that primary productivity in the region is largely~~
792 ~~fueled by nitrate input from deeper Atlantic waters, particularly during early bloom stages (Fox~~
793 and Walker, 2022; Knies, 2022). The mechanisms through which subsurface nitrate reaches the
794 euphotic layer are not well understood. However, potential pathways include vertical migration of
795 phytoplankton and physical mixing. Subsequently, nitrogen undergoes rapid recycling and
796 remineralization processes to meet the system's nitrogen demands (Jensen et al. (1999)). ~~Taken~~
797 ~~together, the $\delta^{15}\text{N}$ signatures observed in this study are best interpreted as indicative of a system~~
798 ~~influenced by multiple nitrogen sources and biogeochemical processes, where nitrate input and~~
799 ~~remineralization appear to dominate.~~

801 4 Conclusion

802 Our study highlights the occurrence of elevated rates of N_2 fixation in Arctic coastal waters,
803 particularly prominent at station 7, where they coincide with high chl *a* values, indicative of
804 heightened productivity. Satellite observations tracing the origin of a bloom near the Isbrae Glacier,
805 subsequently moving through the Vaigat strait, suggest a recurring phenomenon likely triggered by
806 increased nutrient-rich meltwater originating from the glacier. This aligns with previous reports
807 by Jensen et al. (1999) & Fox and Walker (2022), underlining the significance of such events in
808 driving primary productivity in the region. The contribution of N_2 fixation to primary production
809 was low (average 1.57 %) across the stations. Since the demand was high relative to the new
810 nitrogen provided by N_2 fixation, the observed primary production must be sustained by the already

811 **Deleted:** , thus do not exhibit a clear signal indicative of N_2 fixation.

812 **Deleted:** This suggests that N_2 fixation likely contributes only a certain fraction to export production or that it only started to contribute to isotope fractionation in the bloom dynamic.

813 **Deleted:** pho- tosynthesis

814 **Deleted:** substrate

815 **Deleted:** This substrate can originate from either nitrate in the subsurface or N_2 fixation. Notably, n

816 **Deleted:** In

817 **Deleted:** where similar conditions prevail, this suggests that factors other than N_2 fixation may be influencing the observed δ -values and POM is sustained by nitrogen sources from deeper subsurface waters, as observed in earlier studies

818 **Deleted:** for sustaining primary productivity, which is also reflected in the nitrogen isotopic signature in this study

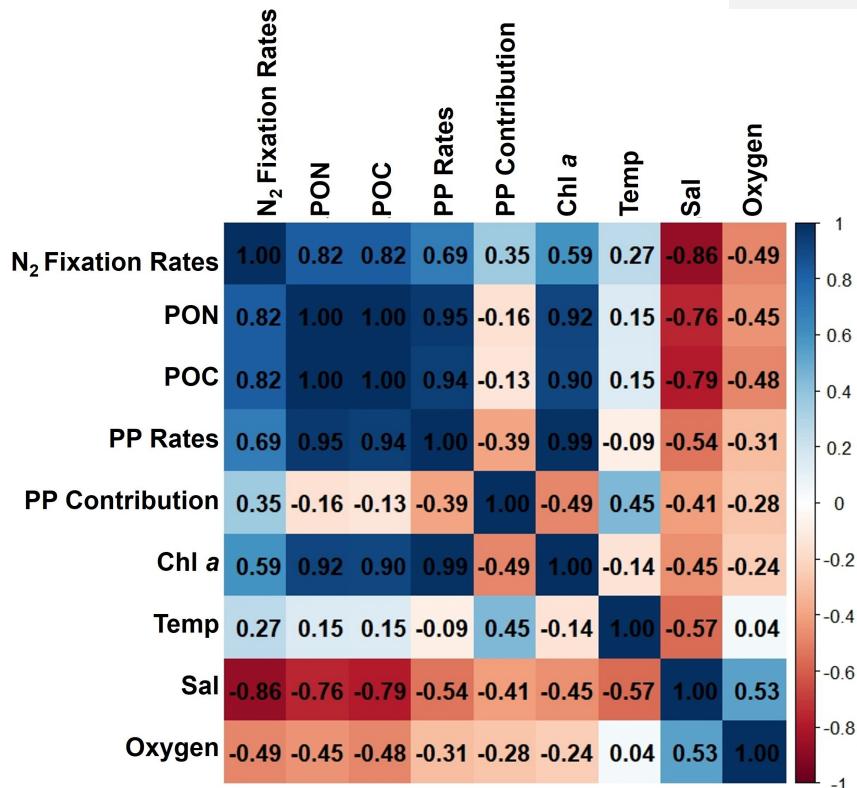
819 **Deleted:** The influx of Atlantic waters, characterized by NO_3^- values of approximately 5 %, closely matches the $\delta^{15}\text{N}$ values of observed PON concentrations in our study. This suggests that Atlantic-derived NO_3^- serves as a primary source of new nitrogen to the initial stages of bloom development

820 **Deleted:** As the bloom progresses and nitrogen from Atlantic waters is depleted, N_2 fixation may provide an additional nitrogen source, supporting continued primary productivity. ...

841 present or adequate amount of subsurface supply of NO_x nutrients in the seawater. This is also
842 visible in the isotopic signature of the POM (Fox and Walker, 2022; Sherwood et al., 2021).
843 However, the detected N_2 fixation rates are likely linked to the development of the fresh secondary
844 summer bloom, which could be sustained by high nutrient and Fe availability from melting,
845 potentially leading the system into a nutrient-limited state. The ongoing high demand for nitrogen
846 compounds may suggest an onset to further sustain the bloom, but it remains speculative whether
847 Fe availability definitively contributes to this process. The occurrence of such double blooms has
848 increased by 10 % in the Qeqertarsuaq and even 33 % in the Baffin Bay, with further projected
849 increases moving north from Greenland (Kalaallit Nunaat) waters (Ardyna et al. (2014)). Thus,
850 nutrient demands are likely to increase, and the role of N_2 fixation ~~can~~ become more significant.
851 The diazotrophic community in this study is dominated by UCYN-A in surface waters and may be
852 linked to diatom abundance in deeper layers. This co-occurrence of diatoms and N_2 fixers in the
853 same location is probably due to the co-limitation of similar nutrients, rather than a symbiotic
854 relationship. Thus, this highlights the significant presence of diazotrophs despite their limited
855 representation in datasets. It also highlights the potential for further discoveries, as existing datasets
856 likely underestimate the full extent of the diazotrophic community (Laso Perez et al., 2024;
857 Shao et al., 2023; Shiozaki et al., 2017, 2023). The reported N_2 fixation rates in the Vaigat strait
858 within the Arctic Ocean are notably higher than those observed in many other oceanic regions,
859 emphasizing that N_2 fixation is an active and significant process in these high-latitude waters.
860 When compared to measured rates across various ocean systems using the ^{15}N approach, the
861 significance of these findings becomes clear. For instance, N_2 fixation rates are sometimes below
862 the detection limit and often relatively low ranging from 0.8 to 4.4 nmol $\text{N L}^{-1} \text{d}^{-1}$ (Löschner et al.,
863 2020, 2016; Turk et al., 2011). In contrast, higher rates reach up to 20 nmol $\text{N L}^{-1} \text{d}^{-1}$ (Rees et al.
864 (2009)) and sometime exceptional high rates range from 38 to 610 nmol $\text{N L}^{-1} \text{d}^{-1}$ (Bonnet et al.
865 (2009)). The Arctic Ocean rates are thus significant in the global context, underscoring the
866 region's role in the global nitrogen cycle and the importance of N_2 fixation in supporting primary
867 productivity in these waters.
868 These findings highlight the urgent need to understand the interplay between seasonal variations,
869 sea-ice dynamics, and hydro- graphic conditions in Qeqertarsuaq. As climate change accelerates
870 the melting of the Greenland Ice Sheet at Jakobshavn Isbræ, shifts in hydrodynamic patterns and
871 hydrographic conditions in Qeqertarsuaq are anticipated. The resulting influx of warmer waters
872 could significantly reshape the bay's hydrography, making it crucial to comprehend the coupling
873 of climate-driven changes and oceanic processes in this vital Arctic region. Our study provides key
874 insights into these dynamics and underscores the importance of continued investigation to predict

Deleted: may

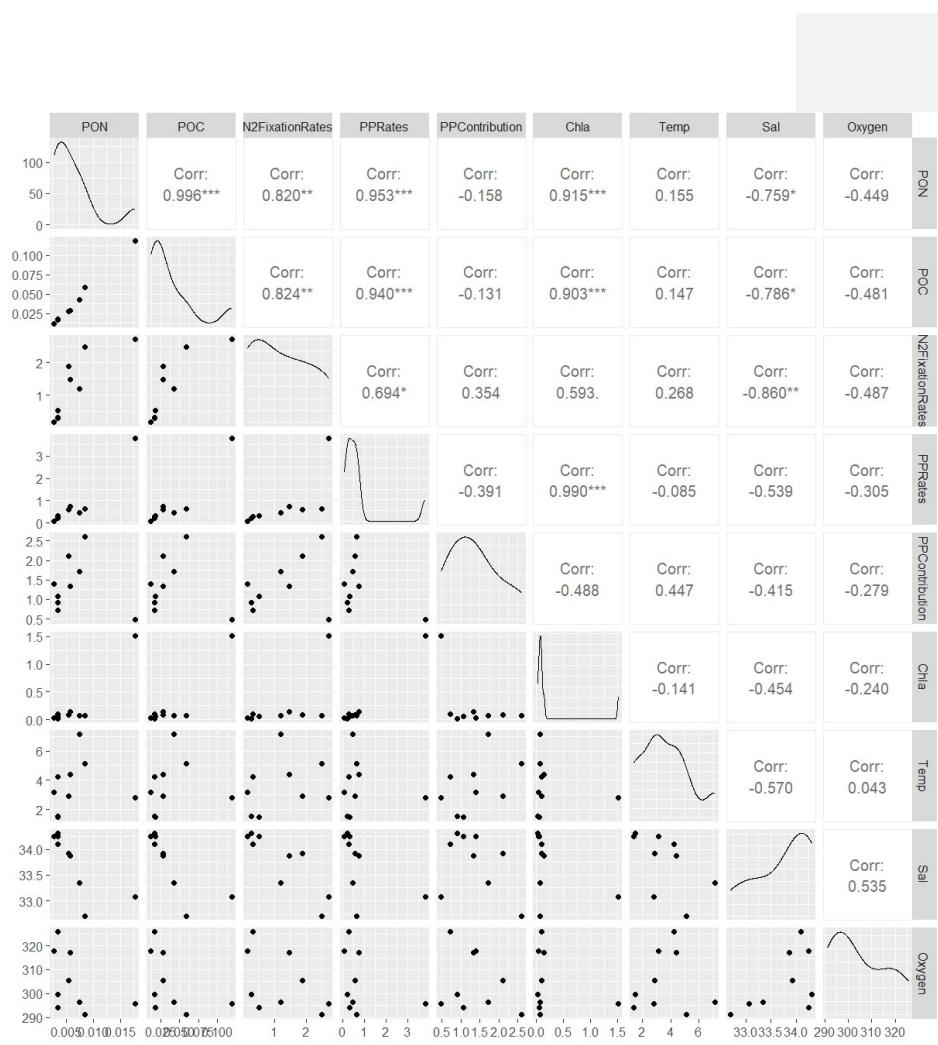
Field Code Changed
Field Code Changed


Deleted: ?;

877 Qeqertarsuaq's future hydrographic state. By detailing the environmental and hydrographic
878 changes, we contribute valuable knowledge to the broader context of N₂ fixation in the Arctic
879 Ocean. Given nitrogen's pivotal role in Arctic ecosystem productivity, it is essential to explore
880 diazotrophs, quantify N₂ fixation, and assess their impact on ecosystem services as climate change
881 progresses.

882 **Appendix A**

883
884



891

892

893

Figure A2. Correlation matrix of environmental and biological variables. The plot shows the correlation coefficients between the following parameters: N₂ fixation rates, PON, POC, PP rates, the contribution N₂ fixation to PP (PP contribution), Chl a, temperature (Temp), salinity (Sal), and Oxygen. The scale ranges from -1 to 1, where values close to 1 or -1 indicate strong positive or negative correlations, respectively, and values near 0 indicate weak or no correlation. The color intensity represents the strength and direction of the correlations, facilitating the identification of relationships among the variables

899

900

901 **Figure A3.** This figure displays a ggpairs plot, showing pairwise relationships and correlations between
 902 biological and environmental variables. Pearson correlation coefficients displayed in the upper triangular
 903 panel, indicating the strength and significance of linear relationships. Statistical significance levels are
 904 indicated by stars (*), where * indicates $p < 0.05$, ** indicates $p < 0.01$ and *** indicates $p < 0.001$

905

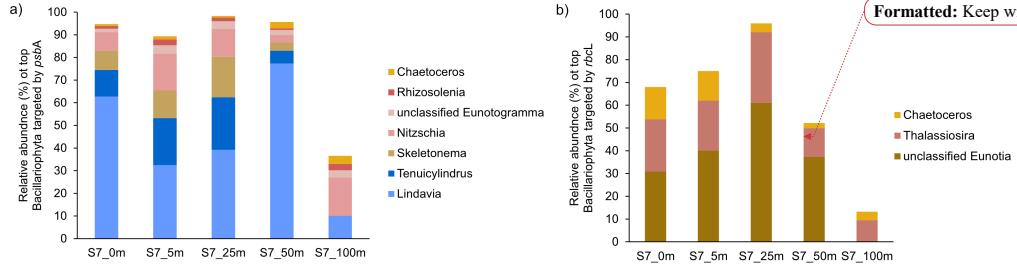

906
907
908909
910
911
912

Figure A4 . Taxonomic composition of Bacillariophyta at Station 7 based on a) psbA and b) rbcL marker genes. The figure shows the relative abundance of Bacillariophyta genera detected in the metagenomic dataset, grouped by gene-specific classifications.

913

Station	Parameter (X)	Value	SD	$\delta NFR/\delta X$	Error contribution ($SD_x/ \delta NFR/\delta X $) ²	% Total error	Summary (nmol N L ⁻¹ d ⁻¹)
3	Δt	1.00	0.00	0.00	0.00	0.00	Mean = 1.13 LOD = 0.73 MQR = 0.12
	A_{N2}	3.92%	0.00	0.00	0.00	0.00	
	A_{PN0}	0.370%	4.24×10^{-6}	2.63×10^2	2.46×10^2	29.49	
	A_{PNf}	0.420%	3.7×10^{-5}	2.36×10^5	3.03×10^2	35.54	
	$[PN]_f$	1.69×10^3	1.24×10^2	5.12×10^2	3.21×10^2	34.97	
7	Δt	1.00	0.00	0.00	0.00	0.00	Mean = 1.92 LOD =

Formatted: Keep with next

Formatted: Font: 9 pt, Bold, Font colour: Text 2

Formatted: Font: Not Bold

Formatted: Font: Not Bold, Italic

Formatted: Normal, Left

							<u>1.91</u> <u>MQR =</u> <u>0.47</u>
	<u>A_{N2}</u>	<u>3.92%</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	
	<u>A_{PNO}</u>	<u>0.369%</u>	<u>4.0</u> <u>x 10⁻⁶</u>	<u>1.57 x</u> <u>10⁷</u>	<u>2.06 x 10³</u>	<u>25.17</u>	
	<u>A_{PNF}</u>	<u>0.407%</u>	<u>5.47</u> <u>x 10⁻⁵</u>	<u>9.25 x</u> <u>10⁵</u>	<u>2.79 x 10³</u>	<u>36.88</u>	
	<u>[PN]_f</u>	<u>4.62 x</u> <u>10³</u>	<u>8.2</u> <u>x</u> <u>10²</u>	<u>6.77 x</u> <u>10²</u>	<u>2.87 x 10³</u>	<u>37.95</u>	
10	<u>Δt</u>	<u>1.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>Mean =</u> <u>0.90</u> <u>LOD =</u> <u>0.96</u> <u>MQR =</u> <u>0.06</u>
	<u>A_{N2}</u>	<u>3.92%</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	
	<u>A_{PNO}</u>	<u>0.371%</u>	<u>1.89</u> <u>x 10⁻⁶</u>	<u>-2.01 x</u> <u>10²</u>	<u>1.44 x 10⁻³</u>	<u>31.24</u>	
	<u>A_{PNF}</u>	<u>0.371%</u>	<u>2.22</u> <u>x 10⁻⁶</u>	<u>2.01 x</u> <u>10²</u>	<u>2.05 x 10⁻³</u>	<u>34.85</u>	
	<u>[PN]_f</u>	<u>5.91 x</u> <u>10²</u>	<u>1.89</u> <u>x</u> <u>10²</u>	<u>-1.56 x</u> <u>10⁻⁴</u>	<u>3.69 x 10⁻³</u>	<u>33.91</u>	

914 *Table A1: Sensitivity analysis for N₂ fixation rates. The contribution of each source of error to the total*
915 *uncertainty was determined and calculated after Montoya et al., (1996). Average values and standard deviations*
916 *(SD) are provided for all parameters at each station. The partial derivative ($\partial NFR / \partial X$) of the N₂ fixation rate*
917 *measurements is calculated for each parameter and evaluated using the provided average and standard*
918 *deviation. The total and relative error are given for each parameter. Mean represents the average N₂ fixation*
919 *rate measurement. MQR (minimal quantifiable rate) represents the total uncertainty linked to every measurement*
920 *and is calculated using standard propagation of error. LOD (limit of detection) represents an alternative*
921 *detection limit defined as AAPN = 0.00146.*

922
923 *Data availability.* The presented data collected during the cruise will be made accessible on PANGEA. The
924 molecular datasets have been deposited with the accession number: Bioproject PRJNA1133027.

925
926
927 *Author contributions.* IS carried out fieldwork and laboratory work at the University of Southern Denmark,
928

← Formatted: Keep with next

← Formatted: Caption

Deleted: Bioproject PRJNA1133027.

930 and wrote the majority of the manuscript. ELP, AM, and EL conducted fieldwork and laboratory work at the
931 University of Southern Denmark. PX performed metagenomic analysis and created the corresponding graphs.
932 CRL designed the study, provided supervision and guidance throughout the project, and contributed to the
933 writing and revision of the manuscript. All authors contributed to the conception of the study and participated
934 in the writing and revision of the manuscript.

935
936
937
938 *Competing interests.* The authors declare that they have no known competing financial interests or personal
939 relationships that could have appeared to influence the work reported in this paper. One of the authors, CRL,
940 serves as an Associate Editor for Biogeosciences.

941
942
943
944 *Acknowledgements.* This work was supported by the Velux Foundation (grant no.29411 to Carolin R.
945 Löscher) and through the DFF grant from the the Independent Research Fund Denmark (grant no. 0217-
946 00089B to Lasse Riemann, Carolin R. Löscher and Stig Markager). ELP was supported by a postdoctoral
947 contract from Danmarks Frie Forskningsfond (DFF, 1026-00428B) at SDU, and by a Marie Skłodowska-
948 Curie postdoctoral fellowship (HORIZON291 MSCA-2021-PF-01, project number: 101066750) by the
949 European Commission at Princeton University. We sincerely thank the captain and crew of the P540 during the
950 cruise on the Danish military vessel for their invaluable support and cooperation at sea. Our gratitude extends
951 to Isaaffik Arctic Gateway for providing the infrastructure and opportunities that made this project possible.
952 We also acknowledge Zarah Kofod for her technical support in the laboratory and thank all the Nordceo
953 laboratory technicians for their general assistance.

954 **References**

955
956 Ardyna, M. and Arrigo, K. R.: Phytoplankton dynamics in a changing Arctic Ocean, *Nature Climate Change*, 10,
957 892–903, 2020.
958 Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay, J.-É.: Recent Arctic Ocean
959 sea ice loss triggers novel fall phytoplankton blooms, *Geophysical Research Letters*, 41, 6207–6212,
960 2014.
961 Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, *Progress in
962 oceanography*, 136, 60–70, 2015. Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic
963 ice cover on marine primary production, *Geophysical Research
964 Letters*, 35, 2008.
965 Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm, Å. K., Tedesco, M., Mote, T. L.,
966 Oliver, H., and Yager, P. L.: Melting glaciers stimulate large summer phytoplankton blooms in southwest
967 Greenland waters, *Geophysical Research Letters*, 44, 6278– 6285, 2017.
968 Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.: Greenland
969 meltwater as a significant and potentially bioavailable source of iron to the ocean, *Nature Geoscience*, 6,

274–278, 2013.

Blais, M., Tremblay, J.-É., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic, *Global Biogeochemical Cycles*, 26, 2012.

Bonnet, S., Biegala, I. C., Dutrieux, P., Slemmons, L. O., and Capone, D. G.: Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance, *Global Biogeochemical Cycles*, 23, 2009.

Buchanan, P. J., Chase, Z., Matear, R. J., Phipps, S. J., and Bindoff, N. L.: Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO₂ drawdown, *Nature Communications*, 10, 4611, 2019.

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J.: eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale, *Molecular biology and evolution*, 38, 5825–5829, 2021.

Capone, D. G. and Carpenter, E. J.: Nitrogen fixation in the marine environment, *Science*, 217, 1140–1142, 1982.

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al.: SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data, *Gigascience*, 7, gix120, 2018.

Cheung, S., Liu, K., Turk-Kubo, K. A., Nishioka, J., Suzuki, K., Landry, M. R., Zehr, J. P., Leung, S., Deng, L., and Liu, H.: High biomass turnover rates of endosymbiotic nitrogen-fixing cyanobacteria in the western Bering Sea, *Limnology and Oceanography Letters*, 7, 501–509, 2022.

Coale, T. H., Loconte, V., Turk-Kubo, K. A., Vanslembrouck, B., Mak, W. K. E., Cheung, S., Ekman, A., Chen, J.-H., Hagino, K., Takano, Y., et al.: Nitrogen-fixing organelle in a marine alga, *Science*, 384, 217–222, 2024.

Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknafjord, Baltic Sea, *Biogeosciences*, 10, 3079–3088, 2013.

Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., and Kiene, R.: Methane production in aerobic oligotrophic surface water in the central Arctic Ocean, *Biogeosciences*, 7, 1099–1108, 2010.

Díez, B., Bergman, B., Pedrós-Alió, C., Antó, M., and Snoeijs, P.: High cyanobacterial *nifH* gene diversity in Arctic seawater and sea ice brine, *Environmental microbiology reports*, 4, 360–366, 2012.

Emeis, K.-C., Mara, P., Schlarbaum, T., Möbius, J., Dähnke, K., Struck, U., Mihalopoulos, N., and Krom, M.: External N inputs and internal N cycling traced by isotope ratios of nitrate, dissolved reduced nitrogen, and particulate nitrogen in the eastern Mediterranean Sea, *Journal of Geophysical Research: Biogeosciences*, 115, 2010.

Falkowski, P. G., Fenchel, T., and Delong, E. F.: The microbial engines that drive Earth's biogeochemical cycles, *science*, 320, 1034–1039, 2008.

Farnelid, H., Andersson, A. F., Bertilsson, S., Al-Soud, W. A., Hansen, L. H., Sørensen, S., Steward, G. F., Hagström, Å., and Riemann, L.: Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria, *PloS one*, 6, e19223, 2011.

1007 Farnelid, H., Turk-Kubo, K., Ploug, H., Ossolinski, J. E., Collins, J. R., Van Mooy, B. A., and Zehr, J. P.:
 1008 Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre, *The ISME*
 1009 journal, 13, 170–182, 2019.

1010 Fernández-Méndez, M., Turk-Kubo, K. A., Buttigieg, P. L., Rapp, J. Z., Krumpen, T., and Zehr, J. P.:
 1011 Diazotroph diversity in the sea ice, melt ponds, and surface waters of the Eurasian Basin of the Central
 1012 Arctic Ocean, *Frontiers in microbiology*, 7, 217 140, 2016.

1013 [Foster, R. A., Goebel, N. L., & Zehr, J. P.: Isolation of *calothrix rhizosoleniae* \(cyanobacteria\) strain SC01](#)
 1014 [from *chaetoceros* \(bacillariophyta\) spp. diatoms of the subtropical north pacific ocean 1. *Journal of*](#)
 1015 [Phycology](#), 46(5), 1028-1037, 2010.

1016 Foster, R. A., Kuypers, M. M., Vagner, T., Paerl, R. W., Musat, N., and Zehr, J. P.: Nitrogen fixation and
 1017 transfer in open ocean diatom– cyanobacterial symbioses, *The ISME journal*, 5, 1484–1493, 2011.

1018 Foster, R. A., Tienken, D., Littmann, S., Whitehouse, M. J., Kuypers, M. M., and White, A. E.: The rate and
 1019 fate of N2 and C fixation by marine diatom-diazotroph symbioses, *The ISME journal*, 16, 477–487, 2022.

1020 Fox, A. and Walker, B. D.: Sources and Cycling of Particulate Organic Matter in Baffin Bay: A Multi-Isotope
 1021 $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\Delta^{14}\text{C}$
 1022 Approach, *Frontiers in Marine Science*, 9, 846 025, 2022.

1023 Fu, L., Niu, B., Zhu, Z., Wu, S., and Cd-hit, W. L.: Accelerated for clustering the next-generation
 1024 sequencing data, *Bioinformatics*, 28, 3150–3152, 2012.

1025 Galloway, J., Dentener, F., Capone, D., Boyer, E., Howarth, R., Seitzinger, S., Asner, G., Cleveland, C., Green,
 1026 P., Holland, E., et al.: Nitrogen cycles: past, present, and future. *Biogeochemistry* 70, 153e226, 2004.

1027 García-Robledo, E., Corzo, A., and Papaspyrou, S.: A fast and direct spectrophotometric method for the
 1028 sequential determination of nitrate and nitrite at low concentrations in small volumes, *Marine Chemistry*,
 1029 162, 30–36, 2014.

1030 [Geider, R. J., & La Roche, J.: Redfield revisited: variability of C \[ratio\] N \[ratio\] P in marine microalgae and](#)
 1031 [its biochemical](#)
 1032 [basis. *European Journal of Phycology*, 37\(1\), 1-17, 2002.](#)

1033 Gladish, C. V., Holland, D. M., and Lee, C. M.: Oceanic boundary conditions for Jakobshavn Glacier. Part
 1034 II: Provenance and sources of variability of Disko Bay and Ilulissat icefjord waters, 1990–2011, *Journal*
 1035 of *Physical Oceanography*, 45, 33–63, 2015.

1036 [Grosse, J., Bombar, D., Doan, H. N., Nguyen, L. N., & Voss, M.: The Mekong River plume fuels nitrogen](#)
 1037 [fixation and determines phytoplankton species distribution in the South China Sea during low and high](#)
 1038 [discharge season. *Limnology and Oceanography*, 55\(4\), 1668-1680, 2010.](#)

1039 Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M., Lavik, G., Schmitz, R. A.,
 1040 Wallace, D. W., and LaRoche, J.: Doubling of marine dinitrogen-fixation rates based on direct
 1041 measurements, *Nature*, 488, 361–364, 2012.

1042 Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on atmospheric CO₂ variations, in:
 1043 The ocean carbon cycle and climate, pp. 97–148, Springer, 2004.

1044 Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, *Nature*, 451, 293–296,

Formatted: English (UK)

Formatted: Indent: Left: 0,14 cm, First line: 0 cm

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted

1045 2008.

1046 Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation and denitrification, *Global*
1047 *biogeochemical cycles*, 11, 235–266, 1997.

1048 Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L.,
1049 Stewart, K. D., et al.: Arctic freshwater export: Status, mechanisms, and prospects, *Global and Planetary*
1050 *Change*, 125, 13–35, 2015.

1051 Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and
1052 Griffiths, M.: Increased runoff from melt from the Greenland Ice Sheet: a response to global warming,
1053 *Journal of Climate*, 21, 331–341, 2008.

1054 Hansen, M. O., Nielsen, T. G., Stedmon, C. A., and Munk, P.: Oceanographic regime shift during 1997 in
1055 Disko Bay, western Greenland, *Limnology and Oceanography*, 57, 634–644, 2012.

1056 Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A., and Zehr, J. P.: Symbiotic
1057 unicellular cyanobacteria fix nitrogen in the Arctic Ocean, *Proceedings of the National Academy of*
1058 *Sciences*, 115, 13 371–13 375, 2018.

1059 Hawkings, J., Wadham, J., Tranter, M., Lawson, E., Sole, A., Cowton, T., Tedstone, A., Bartholomew, I.,
1060 Nienow, P., Chandler, D., et al.: The effect of warming climate on nutrient and solute export from the
1061 Greenland Ice Sheet, *Geochemical Perspectives Letters*, pp. 94–104, 2015.

1062 Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A.,
1063 Nienow, P., Lee, K., and Telling, J.: Ice sheets as a significant source of highly reactive nanoparticulate
1064 iron to the oceans, *Nature communications*, 5, 1–8, 2014.

1065 Hendry, K. R., Huvenne, V. A., Robinson, L. F., Annett, A., Badger, M., Jacobel, A. W., Ng, H. C., Opher, J.,
1066 Pickering, R. A., Taylor, M. L., et al.: The biogeochemical impact of glacial meltwater from Southwest
1067 Greenland, *Progress in Oceanography*, 176, 102 126, 2019.

1068 Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth, B.: Acceleration of
1069 Jakobshavn Isbræ triggered by warm subsurface ocean waters, *Nature geoscience*, 1, 659–664, 2008.

1070 Hopwood, M. J., Connelly, D. P., Arendt, K. E., Juul-Pedersen, T., Stinchcombe, M. C., Meire, L., Esposito,
1071 M., and Krishna, R.: Seasonal changes in Fe along a glaciated Greenlandic fjord, *Frontiers in Earth*
1072 *Science*, 4, 15, 2016.

1073 Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J.: Prodigal: prokaryotic
1074 gene recognition and translation initiation site identification, *BMC bioinformatics*, 11, 1–11, 2010.

1075 Jensen, H. M., Pedersen, L., Burmeister, A., and Winding Hansen, B.: Pelagic primary production during
1076 summer along 65 to 72 N off West Greenland, *Polar Biology*, 21, 269–278, 1999.

1077 Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H.,
1078 Sigman, D., and Stal, L.: Dinitrogen fixation in the world's oceans, *The nitrogen cycle at regional to global*
1079 *scales*, pp. 47–98, 2002.

1080 Kries, J.: Nitrogen isotope evidence for changing Arctic Ocean ventilation regimes during the Cenozoic,
1081 *Geophysical Research Letters*, 49, e2022GL099 512, 2022.

1082 Krawczyk, D. W., Yesson, C., Knutz, P., Arboe, N. H., Blicher, M. E., Zinglersen, K. B., and Wagnholt, J.
1083 N.: Seafloor habitats across geological boundaries in Disko Bay, central West Greenland, *Estuarine, Coastal and Shelf Science*, 278, 108 087, 2022.

1084 Krupke, A., Mohr, W., LaRoche, J., Fuchs, B. M., Amann, R. I., and Kuypers, M. M.: The effect of nutrients
1085 on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis, *The ISME journal*, 9, 1635–1647,
1086 2015.

1087 Laso Perez, R., Rivas Santisteban, J., Fernandez-Gonzalez, N., Mundy, C. J., Tamames, J., and Pedros-Alio,
1088 C.: Nitrogen cycling during an Arctic bloom: from chemolithotrophy to nitrogen assimilation, *bioRxiv*,
1089 pp. 2024–02, 2024.

1090 Lewis, K., Van Dijken, G., and Arrigo, K. R.: Changes in phytoplankton concentration now drive increased
1091 Arctic Ocean primary production, *Science*, 369, 198–202, 2020.

1092 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W.: MEGAHit: an ultra-fast single-node solution for
1093 large and complex metagenomics assembly via succinct de Bruijn graph, *Bioinformatics*, 31, 1674–1676,
1094 2015.

1095 Lüscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W.,
1096 Czeschel, R., Hoffmann, C., and Schmitz, R.: N₂ fixation in eddies of the eastern tropical South Pacific
1097 Ocean, *Biogeosciences*, 13, 2889–2899, 2016.

1098 Lüscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?,
1099 *Biogeosciences*, 17, 851–864, 2020. Luo, Y.-W., Doney, S., Anderson, L., Benavides, M., Berman-Frank, I.,
1100 Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D., et al.: Database of diazotrophs in global ocean:
1101 abundance, biomass and nitrogen fixation rates, *Earth System Science Data*, 4, 47–73, 2012.

1102 Martínez-Pérez, C., Mohr, W., Lüscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N.,
1103 Fuchs, B. M., Lavik, G., Schmitz,
1104 R. A., et al.: The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen
1105 cycle, *Nature Microbiology*, 1, 1–7, 2016.

1106 Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding, K., Wilson, S. T., Arrigo, K. R.,
1107 and Zehr, J. P.: Unusual marine cyanobacteria/haptophyte symbiosis relies on N₂ fixation even in N-rich
1108 environments, *The ISME Journal*, 14, 2395–2406, 2020.

1109 Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological underestimation of oceanic
1110 nitrogen fixation rates, *PLoS one*, 5, e12 583, 2010.

1111 Montoya, J. P.: Nitrogen stable isotopes in marine environments, *Nitrogen in the marine environment*, 2, 1277–
1112 1302, 2008.

1113 Montoya, J. P., Carpenter, E. J., and Capone, D. G.: Nitrogen fixation and nitrogen isotope abundances in
1114 zooplankton of the oligotrophic North Atlantic, *Limnology and Oceanography*, 47, 1617–1628, 2002.

1115 Mortensen, J., Rysgaard, S., Winding, M., Juul-Pedersen, T., Arendt, K., Lund, H., Stuart-Lee, A., and Meire,
1116 L.: Multidecadal water mass dynamics on the West Greenland Shelf, *Journal of Geophysical Research: Oceans*, 127, e2022JC018 724, 2022.

1117 Munk, P., Nielsen, T. G., and Hansen, B. W.: Horizontal and vertical dynamics of zooplankton and larval
1118

1119

1120 fish communities during mid- summer in Disko Bay, West Greenland, *Journal of Plankton Research*, 37,
1121 554–570, 2015.

1122 Murphy, J. and Riley, J. P.: A modified single solution method for the determination of phosphate in natural
1123 waters, *Analytica chimica acta*, 27, 31–36, 1962.

1124 Myers, P. G. and Ribergaard, M. H.: Warming of the polar water layer in Disko Bay and potential impact on
1125 Jakobshavn Isbrae, *Journal of Physical Oceanography*, 43, 2629–2640, 2013.

1126 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C.: Salmon provides fast and bias-aware
1127 quantification of transcript expression, *Nature methods*, 14, 417–419, 2017.

1128 Quigg, A., Finkel, Z.V., Irwin, A.J., Rosenthal, Y., Ho, T.Y., Reinfelder, J.R., Schofield, O., Morel, F.M.,
1129 and Falkowski, P.G.: The evolutionary inheritance of elemental stoichiometry in marine
1130 phytoplankton, *Nature*, 425(6955), pp.291–294, 2003.

1131 Redfield, A. C.: *On the proportions of organic derivatives in sea water and their relation to the composition
1132 of plankton (Vol. 1)*. Liverpool: university press of liverpool, 1934.

1133 Reeder, C. F., Stoltenberg, I., Javidpour, J., and Löscher, C. R.: Salinity as a key control on the diazotrophic
1134 community composition in the Baltic Sea, *Ocean Science Discussions*, 2021, 1–30, 2021.

1135 Rees, A. P., Gilbert, J. A., and Kelly-Gerrey, B. A.: Nitrogen fixation in the western English Channel (NE
1136 Atlantic ocean), *Marine Ecology Progress Series*, 374, 7–12, 2009.

1137 Robicheau, B. M., Tolman, J., Rose, S., Desai, D., and LaRoche, J.: Marine nitrogen-fixers in the Canadian
1138 Arctic Gateway are dominated by biogeographically distinct noncyanobacterial communities, *FEMS
1139 Microbiology Ecology*, 99(12), 122, 2023.

1140 Rysgaard, S., Boone, W., Carlson, D., Sejr, M., Bendtsen, J., Juul-Pedersen, T., Lund, H., Meire, L., and
1141 Mortensen, J.: An updated view on water masses on the pan-west Greenland continental shelf and their
1142 link to proglacial fjords, *Journal of Geophysical Research: Oceans*, 125, e2019JC015 564, 2020.

1143 Schiøtt, S.: The Marine Ecosystem of Ilulissat Icefjord, Greenland, Ph.D. thesis, Department of Biology,
1144 Aarhus University, Denmark, 2023. Schlitzer, R.: Ocean data view, 2022.

1145 Schneider, B., Schlitzer, R., Fischer, G. and Nöthig, E.M.: Depth-dependent elemental compositions of
1146 particulate organic matter (POM) in the ocean, *Global Biogeochemical Cycles*, 17(2), 2003.

1147 Schvarcz, C. R., Wilson, S. T., Caffin, M., Stancheva, R., Li, Q., Turk-Kubo, K. A., White, A. E., Karl, D. M.,
1148 Zehr, J. P., and Steward, G. F.: Overlooked and widespread pennate diatom-diazotroph symbioses in the
1149 sea, *Nature communications*, 13, 799, 2022.

1150 Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., Agawin, N. S. R., Ahmed, A., Benavides, M.,
1151 Bentzon-Tilia, M., et al.: Global oceanic diazotroph database version 2 and elevated estimate of global N
1152 fixation, *Earth System Science Data*, 15, 2023.

1153 Sherwood, O. A., Davin, S. H., Lehmann, N., Buchwald, C., Edinger, E. N., Lehmann, M. F., and Kienast,
1154 M.: Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest
1155 Atlantic margin, *Biogeosciences*, 18, 4491–4510, 2021.

1156 Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T., Ehama, M., Hamasaki,
1157 K., and Furuya, K.: Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific,

1158 from the tropics to the subarctic Bering Sea, *Global Biogeochemical Cycles*, 31, 996–1009, 2017.

1159 Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S., Nagata, T., and Hamasaki, K.:
1160 Diazotroph community structure and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea
1161 (western Arctic Ocean), *Limnology and Oceanography*, 63, 2191–2205, 2018.

1162 Shiozaki, T., Fujiwara, A., Inomura, K., Hirose, Y., Hashihama, F., and Harada, N.: Biological nitrogen
1163 fixation detected under Antarctic sea ice, *Nature geoscience*, 13, 729–732, 2020.

1164 Shiozaki, T., Nishimura, Y., Yoshizawa, S., Takami, H., Hamasaki, K., Fujiwara, A., Nishino, S., and Harada,
1165 N.: Distribution and survival strategies of endemic and cosmopolitan diazotrophs in the Arctic Ocean, *The
1166 ISME journal*, 17, 1340–1350, 2023.

1167 Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D. M., Knapp, A. N., Lehmann, M.
1168 F., and Pantoja, S.: The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic
1169 fixed nitrogen, *Deep Sea Research Part I: Oceanographic Research Papers*, 56, 1419–1439, 2009.

1170 Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N., Mulholland, M. R., and Bronk, D. A.:
1171 Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget,
1172 *Limnology and Oceanography Letters*, 2, 159–166, 2017.

1173 Slawyk, G., Collos, Y., and Auclair, J.-C.: The use of the ^{13}C and ^{15}N isotopes for the simultaneous
1174 measurement of carbon and nitrogen turnover rates in marine phytoplankton 1, *Limnology and
1175 Oceanography*, 22, 925–932, 1977.

1176 Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine nitrogen fixation, *Nature Reviews
1177 Microbiology*, 9, 499–508, 2011.

1178 Stern, R. W., & Elser, J. J. *Ecological stoichiometry: the biology of elements from molecules to the biosphere*.
1179 In: *Ecological stoichiometry*. Princeton university press, 2017.

1180 Tanioka, T., Garcia, C.A., Larkin, A.A., Garcia, N.S., Fagan, A.J. and Martiny, A.C.: Global patterns and
1181 predictors of C: N: P in marine ecosystems, *Communications Earth & Environment*, 3(1), p.271, 2022.

1182 Tang, W., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S., Gonzalez, A. G., Gallinari, M., Planquette,
1183 H., Sarthou, G., and Cassar, N.: Revisiting the distribution of oceanic N2 fixation and estimating
1184 diazotrophic contribution to marine production, *Nature communications*, 10, 831, 2019.

1185 Tremblay, J.-É. and Gagnon, J.: The effects of irradiance and nutrient supply on the productivity of Arctic
1186 waters: a perspective on climate change, in: *Influence of climate change on the changing arctic and sub-
1187 arctic conditions*, pp. 73–93, Springer, 2009.

1188 Turk, K. A., Rees, A. P., Zehr, J. P., Pereira, N., Swift, P., Shelley, R., Lohan, M., Woodward, E. M. S., and
1189 Gilbert, J.: Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North
1190 Atlantic, *The ISME journal*, 5, 1201–1212, 2011.

1191 Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P.: Diazotroph community
1192 succession during the VAHINE mesocosm experiment (New Caledonia lagoon), *Biogeosciences*, 12,
1193 7435–7452, 2015.

1194 Von Friesen, L. W. and Riemann, L.: Nitrogen fixation in a changing Arctic Ocean: an overlooked source of

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Condensed by 0,1 pt

1195 nitrogen? *Frontiers in Microbiology*, 11, 596 426, 2020.

1196 Wang, S., Bailey, D., Lindsay, K., Moore, J., and Holland, M.: Impact of sea ice on the marine iron cycle

1197 and phytoplankton productivity, *Biogeosciences*, 11, 4713–4731, 2014.

1198 Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen fixation, *Science*, 368, eaay9514, 2020.

Formatted: Condensed by 0,1 pt

|

x

Formatted

[... [2]]