

1 **Nitrogen Fixation in Arctic Coastal Waters (Qeqertarsuaq, West**
2 **Greenland): Influence of Glacial Melt on Diazotrophs, Nutrient**
3 **Availability, and Seasonal Blooms**

4 Schlangen Isabell¹, Leon-Palmero Elizabeth^{1,2}, Moser Annabell¹, Xu Peihang¹, Laursen Erik¹, and
5 Löscher Carolin R.^{1,3}

6 ¹Nordceee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

7 ²Department of Geosciences, Princeton University, Princeton, New Jersey

8 ³DIAS, University of Southern Denmark, Odense, Denmark

9 **Correspondence:** Carolin R. Löscher (cloescher@biology.sdu.dk)

0 **Abstract.** The Arctic Ocean is undergoing rapid transformation due to climate change, with decreasing sea ice contributing to
1 a predicted increase in primary productivity. A critical factor determining future productivity in this region is the availability
2 of nitrogen, a key nutrient that often limits biological growth in Arctic waters. The fixation of dinitrogen (N₂) gas, a biological
3 process mediated by diazotrophs, provides a source of new nitrogen to marine ecosystems and has been increasingly recognized
4 as a potential contributor to nitrogen supply in the Arctic Ocean. Historically it was believed to be limited to oligotrophic
5 tropical and subtropical oceans, Arctic N₂ fixation has only garnered significant attention over the past decade, leaving a
6 gap in our understanding of its magnitude, the diazotrophic community, and potential environmental drivers. In this study, we
7 investigated N₂ fixation rates and the diazotrophic community in Arctic coastal waters, using a combination of isotope labeling,
8 genetic analyses and biogeochemical profiling, in order to explore its response to glacial meltwater, nutrient availability and
9 its impact on primary productivity. We observed N₂ fixation rates ranging from 0.16 to 2.71 nmol N L⁻¹ d⁻¹, notably higher than
0 many previously reported rates for Arctic waters. The diazotrophic community was predominantly composed of UCYN-A. The
1 highest N₂ fixation rates co-occurred with peaks in chlorophyll *a* and primary production, at a station in the Vaigat Strait, likely
2 influenced by glacial meltwater input. On average, N₂ fixation contributed 1.6% of the estimated nitrogen requirement of primary
3 production, indicating that while its role is modest, it may still represent a nitrogen source in certain conditions. These findings
4 illustrate the potential importance of N₂ fixation in an environment previously not considered important for this process and
5 provide insights into its response to the projected melting of the polar ice cover.

7 **1 Introduction**

8 Nitrogen is a key element for life and often acts as a growth-limiting factor for primary productivity (Gruber and Sarmiento,
9 1997; Gruber, 2004; Gruber and Galloway, 2008). Despite nitrogen gas (N₂) making up approximately 78% of the atmosphere,
0 it remains inaccessible to most marine life forms. Diazotrophs, which are specialized bacteria and archaea, have the ability to
1 convert N₂ into biologically available nitrogen, facilitated by the nitrogenase enzyme complex carrying out the process of
2 biological nitrogen fixation (N₂ fixation) (Capone and Carpenter (1982)). Despite the fact that these organisms are highly spe-

Deleted: The fixation of dinitrogen (N₂) gas, a biological process mediated by diazotrophs, not only supplies new nitrogen to the ecosystem but also plays a central role in shaping the biological productivity of the Arctic.

Deleted: Here we

Deleted: show

Deleted: to be

Deleted: those observed in many other oceanic regions, suggesting a previously unrecognized significance of N₂ fixation in these high-latitude waters.

Deleted: is

Deleted: We found

Deleted: ing

Deleted: maximum

Deleted: concentrations

Deleted: rates

Deleted: close impacted by glacier meltwater inflow, possibly providing otherwise limiting nutrients.

Deleted: Our

i4 cialized and N₂ fixation is energetically demanding, the ability to carry out this process is widespread amongst prokaryotes.
i5 However, it is controlled by several factors such as temperature, light, nutrients and trace metals such as iron and molybdenum
i6 (Sohm et al., 2011; Tang et al., 2019). Oceanic N₂ fixation is the major source of nitrogen to the marine system (Karl et al.,
i7 2002; Gruber and Sarmiento, 1997), thus, diazotrophs determine the biological productivity of our planet (Falkowski et al.
i8 (2008), impact the global carbon cycle and the formation of organic matter (Galloway et al., 2004; Zehr and Capone, 2020).
i9 Traditionally it has been believed that the distribution of diazotrophs was limited to warm and oligotrophic waters (Buchanan
i0 et al., 2019; Sohm et al., 2011; Luo et al., 2012) until putative diazotrophs were identified in the central Arctic Ocean and
i1 Baffin Bay (Farnelid et al., 2011; Damm et al., 2010). First rate measurements have been reported for the Canadian Arctic by
i2 Blais et al. (2012) and recent studies have reported rate measurements in adjacent seas (Harding et al., 2018; Sipler et al., 2017;
i3 Shiozaki et al., 2017, 2018), drawing attention to cold and temperate waters as significant contributors to the global nitrogen
i4 budget through diverse organisms.

i5 UCYN-A has been described as the dominant active N₂ fixing cyanobacterial diazotroph in arctic waters (Harding et al.
i6 (2018)), while other cyanobacteria have only occasionally been reported (Diez et al., 2012; Fernández-Méndez et al., 2016; Blais
i7 et al.,) However, other recent studies suggest that the majority of the arctic marine diazotrophs are NCDs (non-cyanobacterial
i8 diazotroph) and those may contribute significantly to N₂ fixation in the Arctic Ocean (Shiozaki et al., 2018; Fernández-Méndez
i9 et al., 2016; Harding et al., 2018; Von Friesen and Rie- mann, 2020). Recent work by Robicheau et al. (2023) nearby Baffin Bay,
i0 geographically close to the sampling area, document low *npH* gene abundance while still detecting diazotrophs in Arctic surface waters,
i1 highlighting the patchy distribution of diazotrophs across Arctic coastal environments. Studies on the Arctic diazotroph community
i2 remain scarce, leaving Arctic environments poorly understood regarding N₂ fixation. Shao et al. (2023) note the impossibility
i3 of estimating Arctic N₂ fixation rates due to the sparse spatial coverage, which currently represents only approximately 1 % of
i4 the Arctic Ocean. Increasing data coverage in future studies will aid in better constraining the contribution of N₂ fixation to
i5 the global oceanic nitrogen budget (Tang et al. (2019)).

i6 The Arctic ecosystem is undergoing significant changes driven by rising temperatures and the accelerated melting of sea ice, a
i7 trend predicted to intensify in the future (Arrigo et al., 2008; Hanna et al., 2008; Haine et al., 2015). These climate-driven shifts
i8 have stimulated primary productivity in the Arctic by 57 % from 1998 to 2018, elevating nutrient demands in the Arctic Ocean
i9 (Ardyna and Arrigo, 2020; Arrigo and van Dijken, 2015; Lewis et al., 2020). This increase is attributed to prolonged
i0 phytoplankton growing seasons and expanding ice-free areas suitable for phytoplankton growth (Arrigo et al. (2008)).
i1 However, despite these dramatic changes, the role of N₂ fixation in sustaining Arctic primary production remains poorly
i2 understood. While recent studies suggest that diazotrophic activity may contribute to nitrogen inputs in polar regions (Sipler
i3 et al. (2017)), fundamental uncertainties remain regarding the extend, distribution and environmental drivers of N₂ Fixation in
i4 the Arctic Ocean. Specifically, it is unclear whether increased glacial meltwater input enhances or inhibits N₂ Fixation through
i5 changes in nutrient availability, stratification, and microbial community composition. Thus, the question of whether nitrogen
i6 limitation will emerge as a key factor constraining Arctic primary production under future climate scenarios remains unresolved. In this
i7 study, we investigate the diversity of diazotrophic communities alongside in situ N₂ fixation rate measurements in Disko Bay

Deleted: N₂ fixation is performed by diverse group of cyanobacteria as well as by non-cyanobacteria diazotrophs (NCDs).

Deleted: in those waters

Deleted: while

Deleted: 2012).

Deleted: R

Deleted: found

Formatted: Font: Italic

Deleted: Still, s

Deleted: Additionally, t

Deleted: consequent reduc- tion

Deleted: in

Formatted: Indent: Left: 0,14 cm, Right: 0,66 cm

Deleted: extent due to accelerated melting, which is

Deleted: increase

Deleted: severe

Deleted: thereby

Deleted: can be

Deleted: the extension of the

Deleted: the

Deleted: sion of

Deleted:

Deleted: available

Deleted: The Greenland Ice Sheet is strongly affected by climate change and the waters of Baffin Bay have experienced a substantial sea surface temperature (SST) increase of 47.4 % along with a significant increase in chlorophyll a (Chl a) concentration of 26.4 % over the last two decades (1998–2018) (Lewis et al. (2020)). Coastal sites are particularly impacted by melting, receiving glacial runoff enriched with nutrients and trace elements triggering phytoplankton blooms and altering near-shore biogeochemical cycling (Ardyna and Arrigo, 2020; Arrigo et al., 2017; Hendry et al., 2019; Bhatia et al., 2013).

(Qeqertarsuaq), a coastal Arctic system strongly influenced by glacial meltwater input. By linking environmental parameters to N₂ fixation dynamics, we aim to clarify the role of diazotrophs in Arctic nutrient cycling and assess their potential contribution to sustaining primary production in a changing Arctic. Understanding these processes is essential for refining biogeochemical models and predicting ecosystem responses to future climate change.

2 Material and methods

2.1 Seawater sampling

The research expedition was conducted from August 16 to 26 in 2022 aboard the Danish military vessel P540 within the waters of Qeqertarsuaq, located in the western region of Greenland (Kalaallit Nunaat). Discrete water samples were obtained using a 10 L Niskin bottle, manually lowered with a hand winch to five distinct depths (surface, 5, 25, 50, and 100 m). A comprehensive sampling strategy was employed at 10 stations (Fig. 1), covering the surface to a depth of 100 m. The sampled parameters included water characteristics, such as nutrient concentrations, chl *a*, particulate organic carbon (POC) and nitrogen (PON), molecular samples for nucleic acid extractions (DNA), dissolved inorganic carbon (DIC) as well as CTD sensor data. At three selected stations (3,7,10) N₂ fixation and primary production rates were quantified through concurrent incubation experiments. Samples for nutrient analysis, nitrate (NO₃⁻), nitrite (NO₂⁻) and phosphate (PO₄³⁻) were taken in triplicates, filtered through a 0.22 μ m syringe filter (Avantor VWR® Radnor, Pa, USA) and stored at -20 °C until further analysis. Concentrations were spectrophotometrically determined (Thermo Scientific, Genesys 10S UV-VIS spectrophotometer) following the established protocols of Murphy and Riley (1962) for PO₄³⁻; García-Robledo et al. (2014) for NO₃⁻ & NO₂⁻ (detection limits: 0.01 μ mol L⁻¹ (NO₃⁻, NO₂⁻, and PO₄³⁻), 0.05 μ mol L⁻¹ (NH₄⁺)). Chl *a* samples were filtered onto 47 mm ϕ GF/F filters (GE Healthcare Life Sciences, Whatman, USA), placed into darkened 15 mL LightSafe centrifuge tubes (Merck, Rahway, NJ, USA) and were subsequently stored at -20 °C until further analysis. To determine the Chl *a* concentration, the samples were immersed in 8 mL of 90 % acetone overnight at 5 °C. Subsequently, 1 mL of the resulting solution was transferred to a 1.5 mL glass vial (Mikrolab Aarhus A/S, Aarhus, Denmark) the following day and subjected to analysis using the Trilogy® Fluorometer (Model #7200-00) equipped with a Chl *a* in vivo blue module (Model #7200-043, both Turner Designs, San Jose, CA, USA). Measurements of serial dilutions from a 4 mg L⁻¹ stock standard and 90 % acetone (serving as blank) were performed to calibrate the instrument. In addition, measurements of a solid-state secondary standard were performed every 10 samples. Water (1 L) water from each depth was filtered for the determination of POC and PON concentrations, as well as natural isotope abundance (δ ¹³C POC / δ ¹⁵N PON) using 47 mm ϕ , 0.7 μ m nominal pore size precombusted GF/F filter (GE Healthcare Life Sciences, Whatman, USA), which were subsequently stored at -20 °C until further analysis. Seawater samples for DNA were filtered through 47 mm ϕ , 0.22 μ m MCE membrane filter (Merck, Millipore Ltd., Ireland) for a maximum of 20 minutes, employing a gentle vacuum (200 mbar). The filtered volumes varied depending on the amount of material captured on the filter, ranging from 1.3 L to 2 L, with precise measurements recorded. The filters were promptly stored at -20 °C on the ship and moved to -80 °C upon arrival to the lab until further analysis.

Deleted: Given the changes, there is an urgency to explore the role of N₂ fixation in shaping the response of the Arctic ecosystem to these environmental changes. While the general magnitude of N₂ fixation is suspected to have a substantial impact (Sipler et al. (2017)), the complexity of Arctic biogeochemical processes necessitates further studies and broader spatial and temporal investigations to facilitate robust predictions. The question of whether primary

Deleted: production in the Arctic will be limited by nitrogen availability and the extent to which species will adapt to these conditions remains unknown and needs to be addressed. This study aims to contribute to the understanding of N₂ fixation dynamics and its implications for ecosystem productivity with the rapidly evolving Arctic Ocean.

We explored the diazotroph diversity in combination with N₂ fixation rate measurements, to elucidate the importance of this process in the Arctic ecosystem. We hope that understanding the dynamics of N₂ fixation and its impact on the ecosystem productivity can inform predictions and help managing the consequences of ongoing environmental changes in the Arctic Ocean. Our study has been carried out in Disko Bay (Qeqertarsuaq), which can serve as a model for Arctic coastal systems influenced by large meltwater runoff and thus potentially an addition of high levels of iron and nutrients, both of which have the ability to affect N₂ fixation (Lewis et al., 2020; Bhatia et al., 2013).

Deleted: -

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Formatted: Superscript

Formatted: Subscript

Formatted: Superscript

Deleted: -

Deleted:

Deleted: Seawater (40 ml) was filtered through a 0.22 μ m syringe filter (Avantor VWR® Radnor, Pa, USA) and stored at 4 °C in an amber glass vial, sealed with closed caps, affixed with a PTFE-faced silicon liner (Thermo Fisher Scientific, Waltham, MA, USA) for subsequent DIC measurements in the laboratory using an AS-C5 DIC analyzer (ApolloSciTech, Newark, Delaware, USA) equipped with a laser-based CO₂ detector. Sample anal... [11]

16 To achieve detailed vertical profiles, a conductivity-temperature-depth-profiler (CTD, Seabird X) equipped with supplemen-
17 tary sensors for dissolved oxygen (DO), photosynthetic active radiation (PAR), and fluorescence (Fluorometer) was manually
18 deployed.

19 2.2 Nitrogen fixation and primary production

0 Water samples were collected at three distinct depths (0, 25 and 50 m) for the investigation of N₂ fixation rates and primary
1 production rates, encompassing the euphotic zone, chlorophyll maximum, and a light-absent zone. Three incubation stations
2 (Fig. 2: station 3, 7, 10) were chosen, in a way to cover the variability of the study area. This strategic sampling aimed to
3 capture a gradient of the water column with varying environmental conditions, relevant to the aim of the study. N₂ fixation
4 rates were assessed through triplicate incubations employing the modified ¹⁵N-N₂ dissolution technique after Großkopf et al.
5 (2012) and Mohr et al. (2010).

6 To ensure minimal contamination, 2.3 L glass bottles (Schott-Duran, Wertheim, Germany) underwent pre-cleaning and acid
7 washing before being filled with seawater samples. Oxygen contamination during sample collection was mitigated by gently
8 and bubble-free filling the bottles from the bottom, allowing the water to overflow. Each incubation bottle received a 100 mL
9 amendment of ¹⁵N-N₂ enriched seawater (98 %, Cambridge Isotope Laboratories, Inc., USA) achieving an average dissolved
10 N₂ isotope abundance (¹⁵N atom %) of 3.90 ± 0.02 atom % (mean \pm SD). Additionally, 1 mL of H¹³CO₃ (1 g/50 mL) (Sigma-
11 Aldrich, Saint Louis Missouri US) was added to each incubation bottle, roughly corresponding to 10 atom % enrichment and
12 thus measurements of primary production and N₂ fixation were conducted in the same bottle. Following the addition of both
13 isotopic components, the bottles were closed airtight with septa-fitted caps and incubated for 24 hours on-deck incubators with
14 a continuous surface seawater flow. These incubators, partially shaded ([using daylight-filtering foil](#)) to simulate in situ
15 photosynthetically active radiation (PAR) conditions, aimed to replicate environmental parameters experienced at the sampled
16 depths. Control incubations utilizing atmospheric air served as controls to monitor any natural changes in δ ¹⁵N not attributable
17 to ¹⁵N-N₂ addition. These control incubations were conducted using the dissolution method, like the ¹⁵N-N₂ enrichment
18 experiments, but with the substitution of atmospheric air instead of isotopic tracer.

19 After the incubation period, subsamples for nutrient analysis were taken from each incubation sample, and the remaining
0 content was subjected to the filtration process and were gently filtered (200 mbar) onto precombusted GF/F filters (Advantec,
1 47 mm \varnothing , 0.7 μ m nominal pore size). This step ensured a comprehensive examination of both nutrient dynamics and the
2 isotopic composition of the particulate pool in the incubated samples. Samples were stored at -20 °C until further analysis.

3 Upon arrival in the lab, the filters were dried at 60 °C and to eliminate particulate inorganic carbon, subsequently subject to acid
4 fuming during which they were exposed to concentrated hydrochloric acid (HCL) vapors overnight in a desiccator. After
5 undergoing acid treatment, the filters were carefully dried, then placed into tin capsules and pelletized for subsequent analysis.
6 The determination of POC and PON, as well as isotopic composition (δ ¹³C POC / δ ¹⁵N PON), was carried out using an
7 elemental analyzer (Flash EA, ThermoFisher, USA) connected to a mass spectrometer (Delta V Advantage Isotope Ratio MS,
8 ThermoFisher, USA) with the ConFlo IV interface. This analytical setup was applied to all filters. These values, derived from

Deleted: In the same manner, discrete water samples were obtained using a 10 L Niskin bottle, manually lowered with a hand winch to five distinct depths (Surface, 5, 25, 50, 100 m). These systematic and multifaceted sampling methodologies provide a robust dataset for a comprehensive analysis of the hydrographic conditions in Qeqertarsuaq.

Formatted: Indent: Left: 0,15 cm, Right: 0,36 cm, Space Before: 0,7 pt

|6 triplicate incubation measurements, exhibited no omission of data points or identification of outliers. Final rate calculations for N₂
|7 fixation rates were performed after Mohr et al. (2010) and primary production rates after Slawyk et al. (1977). [A detailed](#)
|8 [sensitivity analysis for N₂ fixation rates and the contribution of each source of error of all parameters can be found as a](#)
|9 [supplementary table.](#)

|0 **2.3 Molecular methods**

|1 The filters were flash-frozen in liquid nitrogen, crushed and DNA was extracted using the Qiagen DNA/RNA AllPrep Kit (Qi-
|2 agen, Hildesheim, DE), following the procedure outlined by the manufacturer. The concentration and quality of the extracted
|3 DNA was assessed spectrophotometrically using a MySpec spectrofluorometer (VWR, Darmstadt, Germany). The prepara-
|4 tion of the metagenome library and sequencing were performed by BGI (China). Sequencing libraries were generated using
|5 MGIEasy Fast FS DNA Library Prep Set following the manufacturer's protocol. Sequencing was conducted with 2x150bp on
|6 a DNBSEQ-G400 platform (MGI). SOAPnuke1.5.5 (Chen et al. (2018)) was used to filter and trim low quality reads and
|7 adaptor contaminants from the raw sequence reads, as clean reads. In total, fifteen metagenomic datasets were produced with
|8 an average of 9.6G bp per sample.

|9 **2.3.1 Metagenomic De Novo assembly, gene prediction, and annotation**

|0 Megahit v1.2.9 (Li et al. (2015)) was used to assemble clean reads for each dataset with its minimum contig length as 500.
|1 Prodigal v2.6.3 (Hyatt et al. (2010)) with the setting of “-p meta” was then used to predict the open reading frames (ORFs) of
|2 the assembled contigs. ORFs from all the available datasets were filtered (>100bp), dereplicated and merged into a catalog of
|3 non-redundant genes using cd-hit-est (>95 % sequence identity) (Fu et al. (2012)). Salmon v1.10.0 (Patro et al. (2017)) with
|4 the “- meta” option was employed to map clean reads of each dataset to the catalog of non-redundant genes and generate the
|5 GPM (genes per million reads) abundance. Eggnog mapper v2.1.12 (Cantalapiedra et al. (2021)) was then performed to assign
|6 KEGG Orthology (KO) and identify specific functional annotation for the catalog of non-redundant genes. The marker genes,
|7 *nifDK* (K02586, K02591 nitrogenase molybdenum-iron protein alpha/beta chain) and *nifH* (K02588, nitrogenase iron protein),
|8 were used for the evaluation of microbial potential of N₂ fixation. *RbcL* (K01601, ribulose-bisphosphate carboxylase large
|9 chain) and *psba* (K02703, photosystem II P680 reaction center D1 protein) were selected to evaluate the microbial potential
|0 of carbon fixation and photosynthesis, respectively. [The molecular datasets have been deposited with the accession number:](#)
|1 [Bioproject PRJNA1133027.](#)

|2 **3 Results and discussion**

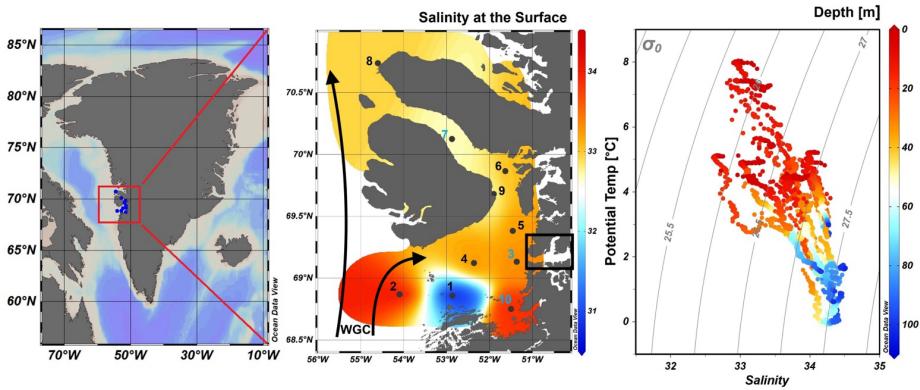
|3 **3.1 Hydrographic conditions in Qeqertarsuaq (Disco Bay) and Sullorsuaq (Vaigat) Strait**

|4 Disko Bay (Qeqertarsuaq) is located along the west coast of Greenland (Kalaallit Nunaat) at approximately 69 °N (Figure 1),
|5 and is strongly influenced by the West Greenland Current (WGC) which is associated with the broader Baffin Bay Polar Waters
|6 (BBPW) (Mortensen et al., 2022; Hansen et al., 2012). The WGC does not only significantly shape the hydrographic conditions

Formatted: Indent: Left: 0,14 cm, Right: 0,66 cm, Space Before: 0,05 pt

Field Code Changed

Field Code Changed

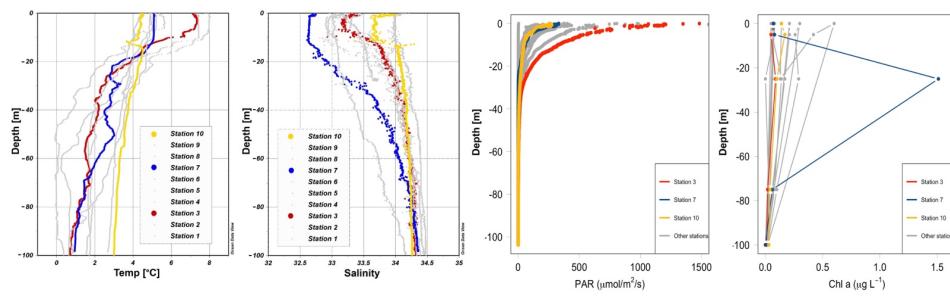

Deleted: ,

Deleted: ¶

Formatted: Font: 10 pt

3 within the bay but also plays an important role in the larger context of Greenland Ice Sheet melting (Mortensen et al. (2022)).
 4 Central to the hydrographic system of the Qeqertarsuaq area is the Jakobshavn Isbræ, which is the most productive glacier in
 5 the northern hemisphere and believed to drain about 7 % of the Greenland Ice Sheet and thus contributes substantially to the
 6 water influx into the Qeqertarsuaq (Holland et al. (2008)). A predicted increased inflow of warm subsurface water, originating
 7 from North Atlantic waters, has been suggested to further affect the melting of the Jakobshavn Isbræ and thus adds another
 8 layer of complexity to this dynamic system (Holland et al., 2008; Hansen et al., 2012).

9 The hydrographic conditions in Qeqertarsuaq have a significant influence on biological processes, nutrient availability, and the



1 **Figure 1.** Map of Greenland (Kalaallit Nunaat) with indication of study area (red box), on the left. Interpolated distribution of Sea Surface
 2 Salinity (SSS) values with corresponding isosurface lines and indication of 10 sampled stations (normal stations in black, incubation stations
 3 in blue), **black arrows indicate the West Greenland Current (WGC)** and the black box indicate the location of the Jakobshavn Isbræ, in the
 4 middle. Scatterplot of the potential temperature and salinity for all station data. The plot is used for the identification of the main water
 5 masses within the study area. Isopleths (kg m^{-3}) are depicted in grey lines, on the right. Figures were created in Ocean Data View (ODV)
 6 (Schlitzer (2022)).

7 broader marine ecosystem (Munk et al., 2015; Hendry et al., 2019; Schiott, 2023).

8 During our survey, we found very heterogenous hydrographic conditions at the different stations across Qeqertarsuaq (Fig. 1 &
 9 Fig. 2). The three selected stations for N_2 fixation analysis (stations 3, 7, and 10) were strategically chosen to capture the spatial
 10 variability of the area. Surface salinity and temperature measurements at these stations indicate the influence of freshwater
 11 input. The surface temperature exhibit a range of 4.5 to 8 °C, while surface salinity varies between 31 and 34, as illustrated in
 12 Fig. 1. The profiles sampled during our survey extend to a maximum depth of 100 m. Comparison of temperature/salinity (T/S)
 13 plots with recent studies suggests the presence of previously described water masses, including Warm Fjord Water (WFjW)
 14

17 and Cold Fjord Water (CFjW) with an overlaying surface glacial meltwater runoff. Those water masses are defined with a
18 density range of $27.20 \leq \sigma_0 \leq 27.31$ but different temperature profiles. Thus water masses can be differentiated by their
19 temperature within the same density range (Gladish et al. (2015)). Other water masses like upper subpolar mode water
0 (uSPMW), deep subpolar mode water (dSPMW) and Baffin Bay polar Water (BBPW) which has been identified in the Disko
1 Bay (Qeqertarsuaq) before, cannot be identified from this data and may be present in deeper layers (Mortensen et al., 2022;
2 Sherwood et al., 2021; Myers and Ribergaard, 2013; Rysgaard et al., 2020). The temperature and salinity profiles across the 10

3
4
5
6 **Figure 2.** Profiles of temperature (°C), salinity, photosynthetically active radiation (PAR) (μmol/m²/s) and Chl *a* (mg m⁻³) across stations 1 to
7 10 with depth (m). Stations 3, 7, and 10 are highlighted in red, blue, and yellow, respectively, to emphasize incubation stations. Figures were
8 created in Ocean Data View and R-Studio (Schlitzer (2022)).

9 stations in the study area show distinct stratification and variability, which is represented through the three incubation stations
10 (highlighted stations 3, 7, and 10 in Fig. 2). They display varying degrees of stratification and mixing, with notable differences
11 in the salinity and temperature profiles. Station 3 and station 7 exhibit clear stratification in both temperature and salinity
12 marked by the presence of thermoclines and haloclines. These features suggest significant freshwater input influenced by local
13 weather conditions and climate dynamics, like surface heat absorption. In contrast, Station 10 exhibits a narrower range of
14 temperature and salinity values throughout the water column compared to Stations 3 and 7, indicating more well-mixed
15 conditions. This uniformity is likely influenced by the regional circulation pattern and partial upwelling (Hansen et al., 2012;
16 Krawczyk et al., 2022). The distinct characteristics observed at station 10, as illustrated in the surface plot (Fig. 1), show an
17 elevated salinity and colder temperatures compared

18 to the other stations. This feature suggests upwelling of deeper waters along the shallower shelf, likely facilitated by the local
19 seafloor topography. Specifically, the seafloor shallowing off the coast of Station 10 may act as a barrier, disrupting typical
0 circulation and forcing deeper, saltier, and colder waters to the surface. This pattern aligns with previous studies that describe
1 similar mechanisms in the region (Krawczyk et al. (2022)). Their description of the bathymetry in Qeqertarsuaq, featuring
2 depths ranging from ca. 50 to 900 m, suggests its impact on turbulent circulation patterns, leading to the mixing of different

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
553670
553671
553672
553673
553674
553675
553676
553677
553678
553679
553680
553681
553682
553683
553684
553685
553686
553687
553688
553689
553690
553691
553692
553693
553694
553695
553696
553697
553698
553699
553700
553701
553702
553703
553704
553705
553706
553707
553708
553709
553710
553711
553712
553713
553714
553715
553716
553717
553718
553719
553720
553721
553722
553723
553724
553725
553726
553727
553728
553729
553730
553731
553732
553733
553734
553735
553736
553737
553738
553739
5537340
5537341
5537342
5537343
5537344
5537345
5537346
5537347
5537348
5537349
5537350
5537351
5537352
5537353
5537354
5537355
5537356
5537357
5537358
5537359
5537360
5537361
5537362
5537363
5537364
5537365
5537366
5537367
5537368
5537369
5537370
5537371
5537372
5537373
5537374
5537375
5537376
5537377
5537378
5537379
5537380
5537381
5537382
5537383
5537384
5537385
5537386
5537387
5537388
5537389
5537390
5537391
5537392
5537393
5537394
5537395
5537396
5537397
5537398
5537399
5537400
5537401
5537402
5537403
5537404
5537405
5537406
5537407
5537408
5537409
55374010
55374011
55374012
55374013
55374014
55374015
55374016
55374017
55374018
55374019
55374020
55374021
55374022
55374023
55374024
55374025
55374026
55374027
55374028
55374029
55374030
55374031
55374032
55374033
55374034
55374035
55374036
55374037
55374038
55374039
55374040
55374041
55374042
55374043
55374044
55374045
55374046
55374047
55374048
55374049
55374050
55374051
55374052
55374053
55374054
55374055
55374056
55374057
55374058
55374059
55374060
55374061
55374062
55374063
55374064
55374065
55374066
55374067
55374068
55374069
55374070
55374071
55374072
55374073
55374074
55374075
55374076
55374077
55374078
55374079
55374080
55374081
55374082
55374083
55374084
55374085
55374086
55374087
55374088
55374089
55374090
55374091
55374092
55374093
55374094
55374095
55374096
55374097
55374098
55374099
55374100
55374101
55374102
55374103
55374104
55374105
55374106
55374107
55374108
55374109
55374110
55374111
55374112
55374113
55374114
55374115
55374116
55374117
55374118
55374119
553741100
553741101
553741102
553741103
553741104
553741105
553741106
553741107
553741108
553741109
553741110
553741111
553741112
553741113
553741114
553741115
553741116
553741117
553741118
553741119
5537411100
5537411101
5537411102
5537411103
5537411104
5537411105
5537411106
5537411107
5537411108
5537411109
5537411110
5537411111
5537411112
5537411113
5537411114
5537411115
5537411116
5537411117
5537411118
5537411119
55374111100
55374111101
55374111102
55374111103
55374111104
55374111105
55374111106
55374111107
5

17 water masses. Evident variability in oceanographic conditions that can be observed throughout the study area occurs particularly
18 along characteristic topographical features like steep slopes, canyons, and shallower areas. The summer melting of sea ice and
19 glaciers introduces freshwater influxes that create distinct vertical and horizontal gradients in salinity and temperature in the
20 Qeqertarsuaq area Hansen et al. (2012). Additionally, the accelerated melting of the Jakobshavn Isbraæ, influenced by the
21 warmer inflow from the West Greenland Intermediate Current (WGIC), further alters the hydrographic conditions. Recent
22 observations indicate significant warming and shoaling of the WGIC, potentially enabling it to overcome the sill separating the
23 Ilulissat Fjord from the Qeqertarsuaq area (Hansen et al., 2012; Holland et al., 2008; Myers and Ribergaard, 2013). This shift
24 intensifies glacier melting, driving substantial changes in the local ecological dynamics (Ardyna et al., 2014; Arrigo et al., 2008;
25 Bhatia et al., 2013).

3.2 N₂ Fixation Rate Variability and Associated Environmental Conditions

1 We quantified N₂ fixation rates within the waters of Qeqertarsuaq, spanning from the surface to a depth of 50 m (Table 1). The
2 rates ranged from 0.16 to 2.71 nmol N L⁻¹ d⁻¹ with all rates surpassing the minimum quantifiably rate (Appendix Table 1).
3 Our findings represent rates at the upper range of those observed in the Arctic Ocean. Previous measurements in the region
4 have been limited, with only one study in Baffin Bay by Blais et al. (2012), reporting rates of 0.02 nmol N L⁻¹ d⁻¹, which are 1-
5 2 orders of magnitude lower than our observations. Moreover, Sipler et al. (2017), reported rates in the coastal Chukchi Sea,
6 with average values of 7.7 nmol N L⁻¹ d⁻¹. These values currently represent some of the highest rates measured in Arctic shelf
7 environments. Compared to these, our highest measured rate (2.71 nmol N L⁻¹ d⁻¹) is lower, but still important, particularly
8 considering the more Atlantic-influenced location of our study site. Sipler et al. (2017) also noted that a significant fraction of
9 diazotrophs were <3 µm in size, suggesting that small unicellular diazotrophs play a dominant role in Arctic nitrogen fixation.
10 Altogether, our data contribute to the growing evidence that N₂ fixation is a widespread and potentially significant nitrogen
11 source across various Arctic regions. Simultaneous primary production rate measurements ranged from 0.07 to 3.79 µmol N L⁻¹
12 d⁻¹, with the highest rates observed at station 7 and generally higher values in the surface layers. Employing Redfield
13 stoichiometry, the measured N₂ fixation rates accounted for 0.47 to 2.6 % (averaging 1.57 %) of primary production at our
14 stations. The modest contribution to primary production suggests that N₂ fixation does not exert a substantial influence on the
15 productivity of these waters during the time of the sampling. Rather, our N₂ fixation rates suggest primary production to depend
16 mostly on additional nitrogen sources including regenerated, meltwater or land based sources.

17 The N:P ratio, calculated as DIN to DIP, indicates a deficit in N for primary production based on Redfield stoichiometry (Fig.
18 3). This aligns with findings presented by Jensen et al. (1999) and Tremblay and Gagnon (2009), who observed a similar nitro-
19 gen limitation in this region. Such biogeochemical conditions would be expected to generate a niche for N₂ fixing organisms
20 (Sohm et al. (2011)). While N₂ fixation did not chiefly sustain primary production during our sampling campaign, we hypoth-
21 esize that N₂ fixation has the potential to play a role in bloom dynamics under certain conditions. As nitrogen availability
22 decreases,

23 during a bloom, it may provide a niche for N₂ fixation, potentially helping to extend the productive period of the bloom period

Deleted: Elevated N₂ fixation rates might play a role in nutrient dynamics and bloom development

Formatted: Space Before: 0,05 pt, Line spacing: Multiple 1,44 li

Deleted: detection

Deleted: limit

Deleted: Compared to other European Arctic waters, our rates at the surface and at 25 m water depth fall within the reported range for Arctic estuarine stations (1.04 to 1.87 nmol N L⁻¹ d⁻¹, (SD ± 0.76 to 1.19) and marine stations (0.11 to 0.12 nmol N L⁻¹ d⁻¹, (SD ± 0.09 to 0.09) (Blais et al. (2012)). However, we observed some of the highest rates reported so far,¹ particularly at the surface.

Deleted: relatively

Deleted: may

Formatted: Right: 0,66 cm, Space Before: 0,1 pt

Deleted: the relatively high

Deleted: rates observed

Deleted: may

Deleted: 1

Deleted: ing

1 (Reeder et al. (2021)). Satellite data indicates that a fall bloom began in early August, following the annual spring bloom, as
 2 described by Ardyna et al. (2014). This double bloom situation may be driven by increased melting and the subsequent input of
 3 bioavailable nutrients and iron (Fe) from meltwater runoff (Arrigo et al., 2017; Hopwood et al., 2016; Bhatia et al., 2013). The
 4 meltwater from the Greenland Ice Sheet is a significant source of Fe (Bhatia et al., 2013; Hawkings et al., 2015, 2014), which is
 5 a limiting factor especially for diazotrophs (Sohm et al. (2011)). Consequently, it is plausible that Fe and nutrients from the
 6 Isbræ glacier create favorable conditions for both bloom development and diazotroph activity in Qeqertarsuaq. However, we
 7 emphasize that confirming a causal link between N₂ fixation and secondary bloom development requires further evidence, such
 8 as time-series data on nutrient concentrations, diazotroph abundance, and bloom dynamics.

0 **Table 1.** N₂ fixation (nmol N L⁻¹ d⁻¹), standard deviation (SD), primary productivity (PP; $\mu\text{mol C L}^{-1} \text{d}^{-1}$), SD, percentage of estimated new
 1 primary productivity (% New PP) sustained by N₂ fixation, dissolved inorganic nitrogen compounds (NO_x), phosphorus (PO₄), and the molar
 2 nitrogen-to-phosphorus ratio (N:P) at stations 3, 7, and 10.

Station (no.)	Depth (m)	N ₂ fixation (nmol N L ⁻¹ d ⁻¹)	SD (\pm)	Primary Productivity ($\mu\text{mol C L}^{-1} \text{d}^{-1}$)	SD (\pm)	% New PP (%)	NO _x ($\mu\text{mol L}^{-1} \text{d}^{-1}$)	PO ₄ ($\mu\text{mol L}^{-1} \text{d}^{-1}$)
3	0	1.20	0.21	0.466	0.08	1.71	0	0
3	25	1.88	0.11	0.588	0.04	2.11	0	0.70
3	50	0.29	0.01	0.209	0.00	0.91	0.33	1.48
7	0	2.49	0.44	0.63	0.20	2.60	0	0
7	25	2.71	0.22	3.79	2.45	0.47	0	0.45
7	50	0.53	0.24	0.33	0.36	1.08	0	0.97
10	0	1.48	0.12	0.74	0.15	1.33	0	0
10	25	0.31	0.01	0.29	0.07	0.73	0	0
10	50	0.16	0	0.07	0.07	1.40	0	0

4 A near-Redfield stoichiometry in POC:PON indicates that the particulate organic matter (POM) is freshly derived from an
 5 ongoing phytoplankton bloom, as phytoplankton generally assimilate carbon and nitrogen in relatively consistent proportions
 6 during active growth. In contrast, deviations from the Redfield ratio (e.g., elevated C:N or C:P) typically indicate microbial
 7 degradation and preferential remineralization of nitrogen and phosphorus (Redfield 1934; Geider and La Roche 2002; Sterner
 8 and Elser 2017). The absence of NO_x and the observed low N:P ratios suggest that nitrogen from earlier bloom phases has
 9 been largely depleted, potentially creating a niche for N₂ fixation as a supplementary nitrogen source. The onset and
 10 development of the bloom would be expected to lead to high nitrogen demands and intense competition for nitrogen sources.
 11 Notably, despite the apparent balance in the POM pool, the N:P ratio indicates strong nitrogen depletion and nutrient exhaustion
 12 within the ecosystem. This deficiency can be partly alleviated by N₂ fixation, providing possibly increasing amounts of nitrogen
 13

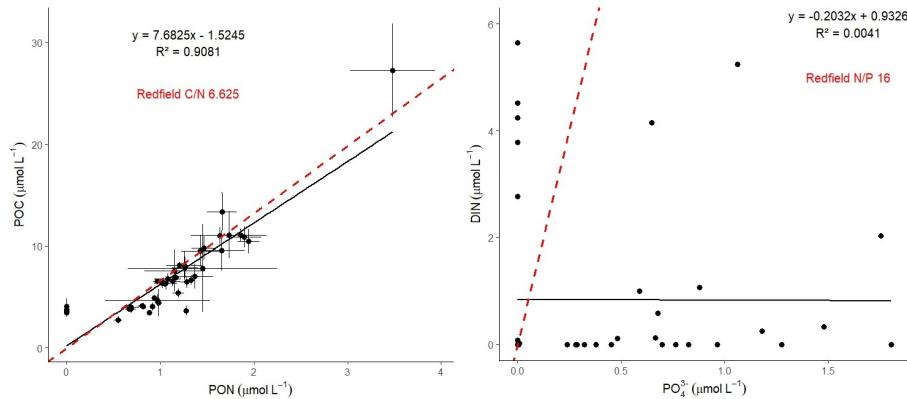
Deleted: Consequently, it is possible that nutrients and Fe from the Isbræ glacier introduced into the Qeqertarsuaq are promoting a bloom and further provide a niche for diazotrophs to thrive (Arrigo et al. (2017)).

Deleted: compunds

Deleted: 3

Formatted: Line spacing: Multiple 1,46 li

Deleted: bloom. However, the absence of NO_x (with the exception of one station) and the observed low N:P ratios suggest that any available nitrogen from earlier phases of the bloom has likely been depleted. This could create a niche for N₂ fixation as a supplementary nitrogen source, potentially supporting continued production during this stage of the bloom.


17 over the course of the bloom. Moreover, DIP is generally limited in the environment (Table 1); however, some organisms may
18 still access it through luxury phosphorus uptake, storing excess phosphate when it is sporadically available. A recent study
19 by Laso Perez et al. (2024) documented changes in microbial community composition during an Arctic bloom, focusing on
20 nitrogen cycling. They observed a shift from chemolithotrophic to heterotrophic organisms throughout the summer bloom and
21 noted increased activity to compete for various nitrogen sources. However, no *nifH* gene copies, indicative of nitrogen-fixing
22 organisms, were found in their dataset based on metagenome-assembled genomes (MAGs). This is not unexpected due to the
23 classically low abundance of diazotrophs in marine microbial communities which has often been described (Turk-Kubo et al.,
24 2015; Farnelid et al., 2019). Given the high productivity and metabolic activity observed in Qeqertarsuaq during a similar
25 bloom period, the detected diazotrophs (Section 3.3) may play a more significant role than previously thought. Across the 10
26 stations there is considerable variability in POC and PON concentrations (Fig. 3). PON concentrations range from 0.0 $\mu\text{mol N}$
27 L^{-1} to 3.48 $\mu\text{mol N L}^{-1}$ (n=124), while POC concentrations range from 2.7 $\mu\text{mol C L}^{-1}$ to 27.2 $\mu\text{mol C L}^{-1}$ (n=144). The highest
28 concentrations for both PON and POC were observed at station 7 at a depth of 25 m and coincide with the highest reported N_2
29 fixation rate (Figure Appendix A2 & A3). Generally, POC and PON concentrations decrease with depth, peaking at the deep
30 chl *a* maximum (DCM), identified between 15 to 30 m across all stations. The DCM was identified based on measured chl *a*
31 concentrations and previous descriptions in the region (Fox and Walker, 2022; Jensen et al., 1999). The variability in chl *a*
32 concentrations indicates differences in phytoplankton abundance among the stations, with concentrations ranging between 0 to
33 0.42 mg m^{-3} . Excluding station 7, which exhibited the highest chl *a* concentration at the DCM (1.51 mg m^{-3}). While Tang et
34 al. (2019) found that N_2 fixation measurements strongly correlated to satellite estimates of chl *a* concentrations, our results did
35 not show a statistically significant correlation between nitrogen fixation rates and chl *a* concentrations overall (Figures A2 &
36 A3). However, as noted, Station 7 at 25 m represents a unique case. The elevated concentration of chl *a* at this station likely
37 resulted from a local phytoplankton bloom induced by meltwater outflow from the Isbræ glacier and sea ice melting, which
38 may help explain the observed nitrogen fixation rates (Arrigo et al., 2017; Wang et al., 2014). This study's findings are in
39 agreement with prior reports of analogous blooms occurring in the region (Fox and Walker, 2022; Jensen et al., 1999).

Deleted: ¶

Field Code Changed

Deleted: ¶

i2

i3
i4 **Figure 3.** The POC/PON and DIN/DIP ratios at all 10 stations. The red line represents the Redfield ratios of POC/PON (106:16) and DIN/DIP (16:1).
i5

3.3 Potential Contribution of UCYN-A to Nitrogen Fixation During a Diatom Bloom: Insights and Uncertainties

i6
i7 In our metagenomic analysis, we filtered the *nifH*, *nifD*, *nifK* genes, which code for the nitrogenase enzyme responsible for
i8 catalyzing N₂ fixation. We could identify sequences related to UCYN-A, which dominated the sequence pool of diazotrophs,
i9 particularly in the upper water masses (0 to 5 m) (Fig. 4). UCYN-A, a unicellular cyanobacterial symbiont, has a cosmopolitan
i10 distribution and is thought to substantially contribute to global N₂ fixation, as documented by (Martínez-Pérez et al., 2016;
i11 Tang et al., 2019). This conclusion is based on our metagenomic analysis, in which we set a sequence identity threshold of
i12 95% for both *nif* and photosystem genes. Notably, we only recovered sequences related to UCYN-A within our *nif* sequence
i13 pool, suggesting its predominance among detected diazotrophs. However, metagenomic approaches may underestimate overall
i14 diazotroph diversity, and we cannot fully exclude the presence of other, less abundant diazotrophs that may have been missed
i15 using this method. While UCYN-A was primarily detected in surface waters, we also observed relatively high *nifK* values at
i16 S3 100m, an unusual finding given that UCYN-A is typically constrained to the euphotic zone. Previous studies have
i17 predominantly reported UCYN-A in surface waters; for instance Harding et al. (2018) and Shiozaki et al. (2017) detected
i18 UCYN-A exclusively in the upper layers of the Arctic Ocean. Additionally, Shiozaki et al. (2020) found UCYN-A at depths
i19 extending to the 0.1% light level but not below 66 m in the Chukchi Sea. The detection of UCYN-A at 100 m in our study
i20 suggests that alternative mechanisms, such as particle association, vertical transport, or local environmental conditions, may

Deleted: stations there is considerable variability in POC and PON concentrations (Fig. 3). PON concentrations range from 0.5 µmol N L⁻¹ to 4.0 µmol N L⁻¹ (n=124), while POC concentrations range from 2.5 µmol C L⁻¹ to 32.6 µmol C L⁻¹ (n=144). The highest concentrations for both PON and POC were observed at station 7 at a depth of 25 m and coincide with the highest reported N₂ fixation rate (Figure Appendix A2 & A3). Generally, POC and PON concentrations decrease with depth, peaking at the deep chl *a* maximum (DCM), identified between 15 to 30 m across all stations. The variability in chl *a* concentrations indicates differences in phytoplankton abundance among the stations, with concentrations ranging between 0 to 0.42 mg m⁻³. Excluding station 7, which exhibited the highest chl *a* concentration at the DCM (1.51 mg m⁻³). Tang et al. (2019) have found that N₂ fixation measurements strongly correlated to satellite estimates of chl *a* concentrations and thus may be an explanation for the presented N₂ fixation rates. The elevated concentration of chl *a* likely result from a local phytoplankton bloom induced by meltwater outflow from the Isbrae glacier and sea ice melting (Arrigo et al., 2017; Wang et al., 2014). This can also be seen[†]

Deleted: from satellite images (Appendix A1). This study's findings are in agreement with prior reports of analogous blooms occurring in the region (Fox and Walker, 2022; Jensen et al., 1999).[†]

UCYN

Deleted: -A might contribute to N₂ fixation during a diatom bloom...

3 facilitate its presence at depth. Interestingly, despite very low *niH* copy numbers being reported in nearby Baffin Bay by
4 Robicheau et al. (2023), UCYN-A dominated the metagenomic *niH* community in our study, further underscoring this
5 organisms's presence in Arctic surface coastal areas under certain environmental conditions. This warrants further
6 investigation into the environmental drivers and potential processes enabling its occurrence in Arctic waters.

Formatted: Font: Italic

7 Due to the lack of genes such as those encoding Photosystem II and Rubisco, UCYN-A plays a significant role within the host
8 cell and participates in fundamental cellular processes. Consequently it has evolved to become a closely integrated component
9 of the host cell. Very recent findings demonstrate that UCYN-A imports proteins encoded by the host genome and has been
10 described as an early form of N₂ fixing organelle termed a "Nitroplast" (Coale et al. (2024)).

11 Previous investigations document that they are critical for primary production, supplying up to 85% of the fixed nitrogen to their
12 haptophyte host (Martínez-Pérez et al. (2016)). In addition to its high contribution to primary production, studies have shown
13 that UCYN-A in high latitude waters fix similar amounts of N₂ per cell as in the tropical Atlantic Ocean, even in nitrogen-
14 replete waters (Harding et al., 2018; Shiozaki et al., 2020; Martínez-Pérez et al., 2016; Krupke et al., 2015; Mills et al., 2020).
15 However, estimating their contribution to N₂ fixation in our study is challenging, particularly since we detected cyanobacteria
16 only at the surface but observe significant N₂ fixation rates below 5 m. The diazotrophic community is often underrepresented
17 in metagenomic datasets due to the low abundance of nitrogenase gene copies, implying our data does not present a complete
18 picture. We suspect a more diverse diazotrophic community exists, with UCYN-A being a significant contributor to N₂ fixation
19 in Arctic waters. However, the exact proportion of its contribution requires further investigation.

Deleted: may

20 The contribution of N₂ fixation to carbon fixation (as percent of PP) is relatively low, at the time of our study. We identified
21 genes such as *rbcL*, which encodes Rubisco, a key enzyme in the carbon fixation pathway and *psbA*, a gene encoding
22 Photosystem II, involved in light-driven electron transfer in photosynthesis, in our metagenomic dataset. The gene *rbcL* (for the
23 carbon fixation pathway) and the gene *psbA* (for primary producers) were used to track the community of photosynthetic primary
24 producers in our metagenomic dataset. At station 7, elevated carbon fixation rates are correlated with high diatom
25 (*Bacillariophyta*) abundance and increased chl *a* concentration (Fig. 4), suggesting the onset of a bloom, which is also
26 observable via satellite images (Appendix A1). We hypothesize that meltwater, carrying elevated nutrient and trace metal
27 concentrations, was rapidly transported away from the glacier through the Vaigat Strait by strong winds, leading to increased
28 productivity, as previously described by Fox and Walker (2022) & Jensen et al. (1999). The elevated diatom abundance and
29 primary production rates at station 7 coincide with the highest N₂ fixation rates, which could possibly point toward a possible
30 diatom-diazotroph symbiosis (Foster et al., 2022, 2011; Schvarcz et al., 2022). However, we did not detect a clear diazotrophic
31 signal directly associated with the diatoms in our metagenomic dataset, which might be due to generally underrepresentation of
32 diazotrophs in metagenomes due to low abundance or low sequencing coverage. To investigate this further, we examined
33 the taxonomic composition of *Bacillariophyta* at higher resolution. Among the various abundant diatom genera,
34 *Rhizosolenia* and *Chaetoceros* have been identified as symbiosis with diazotrophs (Grosse, et al., 2010; Foster, et al.,
35 2010), representing less than 6% or 15% of *Bacillariophyta*, based on *rbcL* or *psbA*, respectively (Figure Appendix A4).
36 Although we underestimate diazotrophs to an extent, the presence of certain diatom-diazotroph symbiosis could help

Deleted: but may increase with a further onset of bloom periods.

Formatted: Indent: Left: 0 cm

Deleted: s

Deleted: However,

Deleted: ny relevant

Deleted: group

Deleted: observed

Deleted: their absence or due to the

Deleted: .

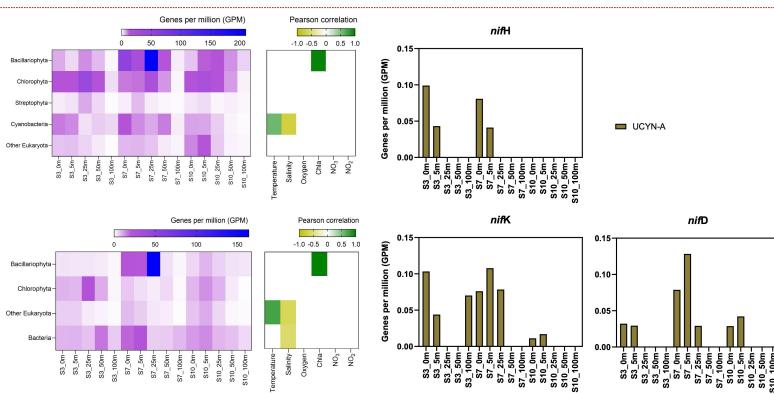
Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

7 explain the high nitrogen fixation rates in the diatom bloom to a certain degree. Compilation of *nif* sequences identified
 8 from this study as well as homologous from their NCBI top hit were added in Table S1. However, we cannot tell if the
 9 diazotrophs belong to UCYN-A1 or UCYN-A2, or UCYN-A3. Based on the Pierella Karlusich et al. (2021), they
 10 generated clonal *nifH* sequences from Tara Oceans, which the length of *nifH* sequences is much shorter than the two
 11 *nifH* sequences we generated in our study. Also, the available UCYN-A2 or UCYN-A3 *nifH* sequences from NCBI were
 12 shorter than the two *nifH* sequences we generated. Therefore, it would be not accurate to assign the *nifH* sequences to
 13 either group under UCYN-A. Furthermore, not much information is available regarding the different groups of UCYN-
 14 A using marker genes of *nifD* and *nifK*.

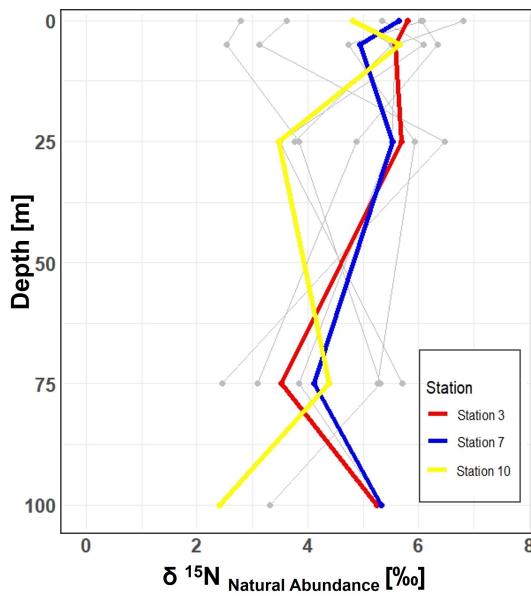

Formatted: Font: Italic

Moved (insertion) [1]

Deleted: Therefore, we can only assume that such a symbiosis explains the elevated rates. Additional molecular approaches would be necessary to enhance our understanding show a more detailed picture of the diazotrophic community.¶

Moved up [1]: a symbiosis explains the elevated rates. Additional molecular approaches would be necessary to enhance our understanding show a more detailed picture of the diazotrophic community.¶

Deleted: ¶


5
 6
 7
 8
 9 **Figure 4.** Upper left image: *psbA* with correlation plot. Lower left image: *rbcL* with correlation plot. Right image: *nifH*, *nifD*, *nifK* genes
 0 per million reads in the metagenomic datasets. All figures display molecular data from metagenomic dataset for all sampled depth of station
 1 3,7,10

2
 3 There is evidence that UCYN-A have a higher Fe demand, with input through meltwater or river runoff potentially being
 4 advantageous to those organisms (Shiozaki et al., 2017, 2018; Cheung et al., 2022). Consequently, UCYN-A might play a
 5 more critical role in the future with increased Fe-rich meltwater runoff. UCYN-A can potentially fuel primary productivity by
 6 supplying nitrogen, especially with increased melting, nutrient inputs, and more light availability due to rising temperatures as-
 7 sociated with climate change. This predicted enhancement of primary productivity may contribute to the biological drawdown
 8 of CO₂, acting as a negative feedback mechanism. These projections are based on studies forecasting increased temperatures,
 9 melting, and resulting biogeochemical changes leading to higher primary productivity. However large uncertainties make pre-
 10 dictions very difficult and should be handled with care. Thus we can only hypothesize that UCYN-A might be coupled to these

11 dynamics by providing essential nitrogen.

12 3.4 $\delta^{15}\text{N}$ Signatures in particulate organic nitrogen show no clear evidence of nitrogen fixation

13
14 Stable isotopic composition, expressed using the $\delta^{15}\text{N}$ notation, serve as indicators for understanding nitrogen dynamics
15 because different biogeochemical processes fractionate nitrogen isotopes in distinct ways (Montoya (2008)). However, it is
16 important to keep in mind that the final isotopic signal is a combination of all processes and an accurate distinction between
17 processes cannot be made. N_2 fixation tends to enrich nitrogenous compounds with lighter isotopes, producing OM with
18 isotopic values ranging approximately from -2 to +2 ‰ (Dähnke and Thamdrup (2013)). Upon complete remineralization and
19 oxidation, organic matter contributes to a reduction in the average δ -values in the open ocean (e.g. Montoya et al. (2002);
20 Emeis et al. (2010)). Whereas processes like denitrification and anammox preferentially remove lighter isotopes, leading to
21 enrichment in heavier isotopes and delta values up to -25 ‰.

13
14
15 **Figure 5.** Vertical profiles of $\delta^{15}\text{N}$ natural abundance signatures in PON across 10 stations in the study area. Incubation stations 3, 7, and 10
16 are highlighted in red, blue, and yellow, respectively. The figure shows variations in $\delta^{15}\text{N}$ signatures with depth at each station, providing

17 insight into nitrogen cycling in the study area.

18 Thus, $\delta^{15}\text{N}$ values help to identify different processes of the nitrogen cycle generally present in a system (Dähnke and Tham-
19 drup (2013)). In our study, the $\delta^{15}\text{N}$ values of PON from all 10 stations, range between 2.45‰ and 8.30‰ within the 0 to
0 100 m depth range, thus do not exhibit a clear signal indicative of N_2 fixation. This suggests that N_2 fixation ~~may~~ contributes
1 only a certain fraction to export production or that it ~~might have begun~~, to play a role in, isotopic fractionation ~~during later~~
2 stages of the bloom. However, due to the limited temporal resolution and lack of direct measurements of N sources over time,
3 we cannot confirm this dynamic. Additional data – including time-series isotopic profiles and turnover measurements of
4 subsurface nitrate and diazotroph activity – would be needed to establish a causal link between N_2 fixation and the observed
5 isotopic patterns in the bloom context. The composition of OM in the surface ocean is influenced by the nitrogen substrate and
6 the fractionation factor during photosynthesis. When nitrate is depleted in the surface ocean, the isotopic signature of OM
7 produced during photosynthesis will mirror that of the nitrogen substrate. This substrate can originate from either nitrate in the
8 subsurface or N_2 fixation. Notably, nitrate, the primary form of dissolved nitrogen in the open ocean, typically exhibits an
9 average stable isotope value of around
10

11 5‰. No fractionation occurs during photosynthesis because the nitrogen source is entirely taken up in the surface waters
12 (Sigman et al. (2009)). In Qeqertarsuaq, where similar conditions prevail, this suggests that factors other than N_2 fixation ~~are~~
13 influencing the observed δ -values and POM is sustained by nitrogen sources from deeper subsurface waters, as observed in
14 earlier studies (Fox and Walker (2022)).

15 In the eastern Baffin Bay waters, Atlantic water masses serve as an important source of nitrate for sustaining primary produc-
16 tivity, which is also reflected in the nitrogen isotopic signature in this study (Sherwood et al. (2021)). The influx of Atlantic
17 waters, characterized by NO_3^- values of approximately 5‰, closely matches the $\delta^{15}\text{N}$ values of observed PON concentrations
18 in our study. This suggests that Atlantic-derived NO_3^- serves as a primary source of new nitrogen to the initial stages of bloom
19 development (Fox and Walker, 2022; Knies, 2022). The mechanisms through which subsurface nitrate reaches the euphotic
0 layer are not well understood. However, potential pathways include vertical migration of phytoplankton and physical mixing.
1 Subsequently, nitrogen undergoes rapid recycling and remineralization processes to meet the system's nitrogen demands
2 (Jensen et al. (1999)).

3 4 Conclusion

4 Our study highlights the occurrence of elevated rates of N_2 fixation in Arctic coastal waters, particularly prominent at station 7,
5 where they coincide with high chl a values, indicative of heightened productivity. Satellite observations tracing the origin of a
6 bloom near the Isbræ Glacier, subsequently moving through the Vaigat strait, suggest a recurring phenomenon likely triggered
7 by increased nutrient-rich meltwater originating from the glacier. This aligns with previous reports by Jensen et al. (1999) &
8 Fox and Walker (2022), underlining the significance of such events in driving primary productivity in the region. The contribu-
9 tion of N_2 fixation to primary production was low (average 1.57 %) across the stations. Since the demand was high relative to
10

Deleted: likely

Deleted: only started

Deleted: contribute

Deleted: to

Deleted: e

Deleted: in

Deleted: dynamic

Deleted: -

Deleted: may

Deleted: be

Deleted: As the bloom progresses and nitrogen from
Atlantic waters is depleted, N_2 fixation may provide an
additional nitrogen source, supporting continued primary
productivity. ...

the new nitrogen provided by N₂ fixation, the observed primary production must be sustained by the already present or adequate amount of subsurface supply of NO_x nutrients in the seawater. This is also visible in the isotopic signature of the POM (Fox and Walker, 2022; Sherwood et al., 2021). However, the detected N₂ fixation rates are likely linked to the development of the fresh secondary summer bloom, which could be sustained by high nutrient and Fe availability from melting, potentially leading the system into a nutrient-limited state. The ongoing high demand for nitrogen compounds may suggest an onset to further sustain the bloom, but it remains speculative whether Fe availability definitively contributes to this process. The occurrence of such double blooms has increased by 10 % in the Qeqertarsuaq and even 33 % in the Baffin Bay, with further projected increases moving north from Greenland (Kalaallit Nunaat) waters (Ardyna et al. (2014)). Thus, nutrient demands are likely to increase, and the role of N₂ fixation can become more significant. The diazotrophic community in this study is dominated by UCYN-A in surface waters and may be linked to diatom abundance in deeper layers. This co-occurrence of diatoms and N₂ fixers in the same location is probably due to the co-limitation of similar nutrients, rather than a symbiotic relationship. Thus, this highlights the significant presence of diazotrophs despite their limited representation in datasets. It also highlights the potential for further discoveries, as existing datasets likely underestimate the full extent of the diazotrophic community (Laso Perez et al., 2024; Shao et al., 2023; Shiozaki et al., 2017, 2023). The reported N₂ fixation rates in the Vaigat strait within the Arctic Ocean are notably higher than those observed in many other oceanic regions, emphasizing that N₂ fixation is an active and significant process in these high-latitude waters. When compared to measured rates across various ocean systems using the ¹⁵N approach, the significance of these findings becomes clear. For instance, N₂ fixation rates are sometimes below the detection limit and often relatively low ranging from 0.8 to 4.4 nmol N L⁻¹ d⁻¹ (Löscher et al., 2020, 2016; Turk et al., 2011). In contrast, higher rates reach up to 20 nmol N L⁻¹ d⁻¹ (Rees et al. (2009)) and sometime exceptional high rates range from 38 to 610 nmol N L⁻¹ d⁻¹ (Bonnet et al. (2009)). The Arctic Ocean rates are thus significant in the global context, underscoring the region's role in the global nitrogen cycle and the importance of N₂ fixation in supporting primary productivity in these waters.

These findings highlight the urgent need to understand the interplay between seasonal variations, sea-ice dynamics, and hydrographic conditions in Qeqertarsuaq. As climate change accelerates the melting of the Greenland Ice Sheet at Jakobshavn Isbræ, shifts in hydrodynamic patterns and hydrographic conditions in Qeqertarsuaq are anticipated. The resulting influx of warmer waters could significantly reshape the bay's hydrography, making it crucial to comprehend the coupling of climate-driven changes and oceanic processes in this vital Arctic region. Our study provides key insights into these dynamics and underscores the importance of continued investigation to predict Qeqertarsuaq's future hydrographic state. By detailing the environmental and hydrographic changes, we contribute valuable knowledge to the broader context of N₂ fixation in the Arctic Ocean. Given nitrogen's pivotal role in Arctic ecosystem productivity, it is essential to explore diazotrophs, quantify N₂ fixation, and assess their impact on ecosystem services as climate change progresses.

Deleted: may

Field Code Changed
Deleted: ?;

Appendix A

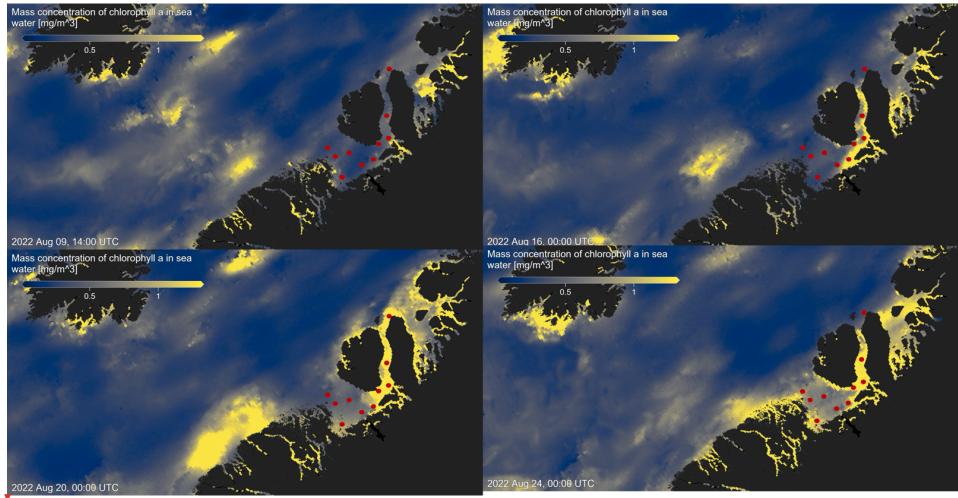
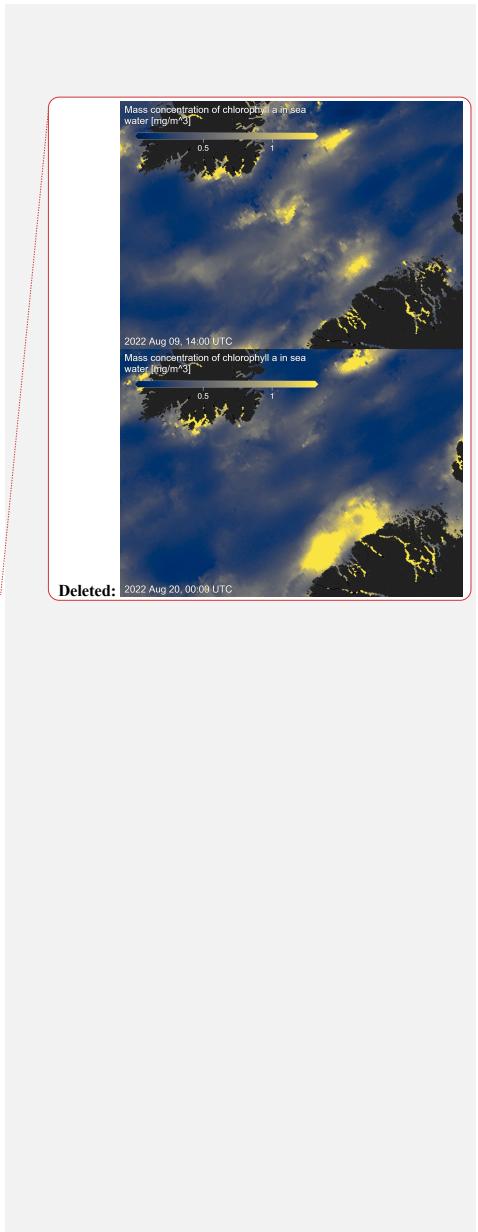
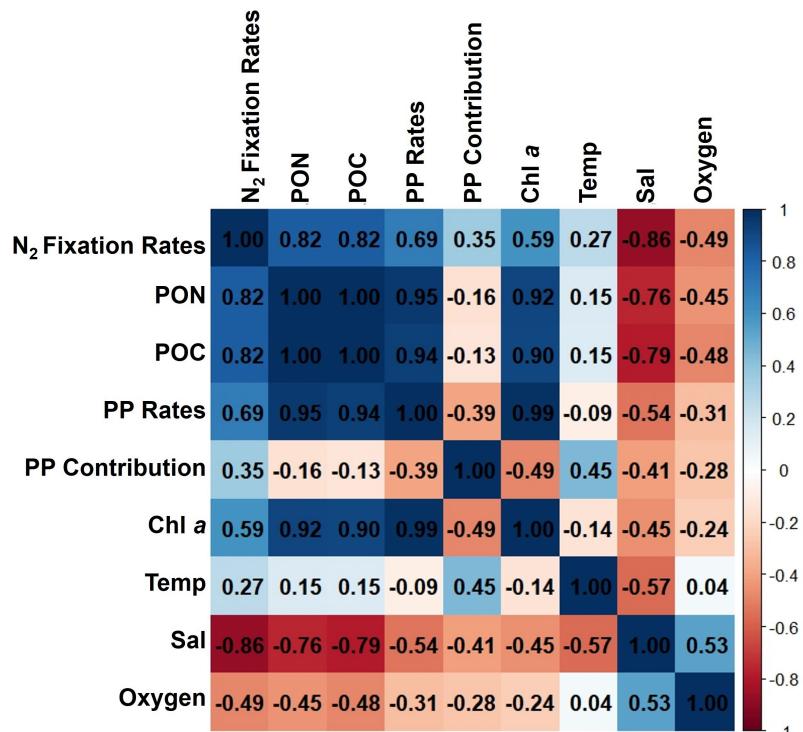
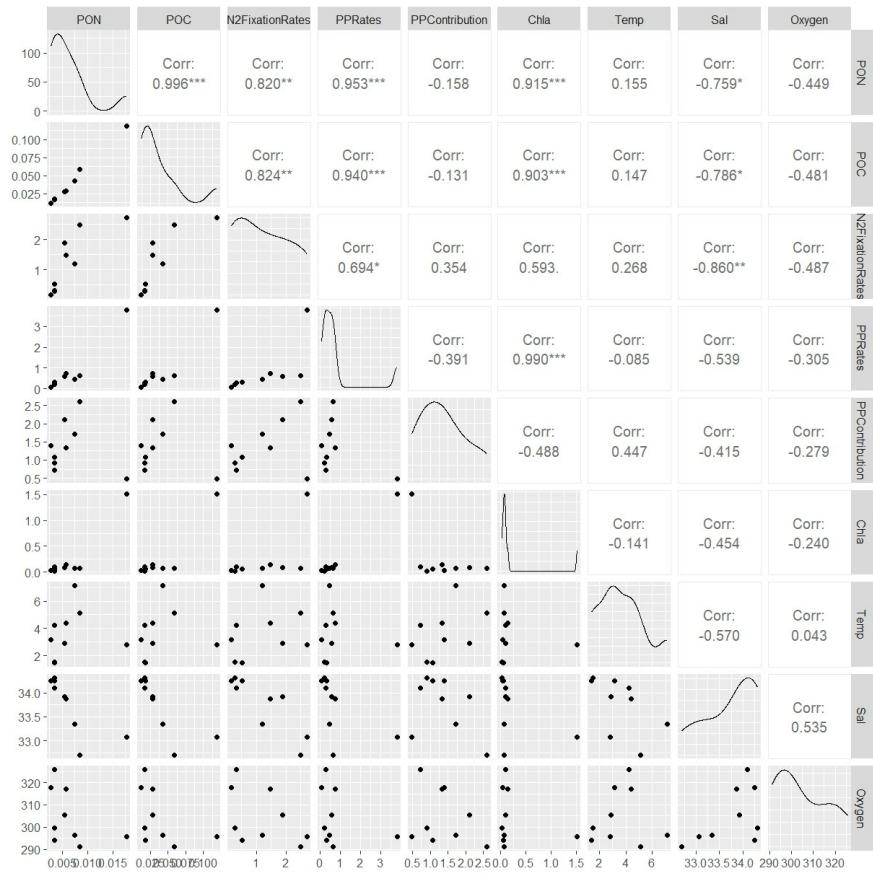





Figure A1. Chlorophyll *a* concentration mg m^{-3} at four time points before, during, and after sea water sampling in August 2022 (sampling stations indicated by red dots), obtained from MODIS-Aqua; <https://giovanni.gsfc.nasa.gov> (Aqua MODIS Global Mapped Chl *a* Data, version R2022.0, DOI:10.5067/AQUA/MODIS/L3M/CHL/2022), 4 km resolution, last access 03 June 2024

16
17
18 **Figure A2.** Correlation matrix of environmental and biological variables. The plot shows the correlation coefficients between the following
19 parameters: N₂ fixation rates, PON, POC, PP rates, the contribution N₂ fixation to PP (PP contribution), Chl a, temperature (Temp),
20 salinity (Sal), and Oxygen. The scale ranges from -1 to 1, where values close to 1 or -1 indicate strong positive or negative correlations, respectively,
21 and values near 0 indicate weak or no correlation. The color intensity represents the strength and direction of the correlations, facilitating the
22 identification of relationships among the variables

13
14
15 **Figure A3.** This figure displays a ggpairs plot, showing pairwise relationships and correlations between biological and environmental vari-
16 ables. Pearson correlation coefficients displayed in the upper triangular panel, indicating the strength and significance of linear relationships.
17 Statistical significance levels are indicated by stars (*), where * indicates $p < 0.05$, ** indicates $p < 0.01$ and *** indicates $p < 0.001$

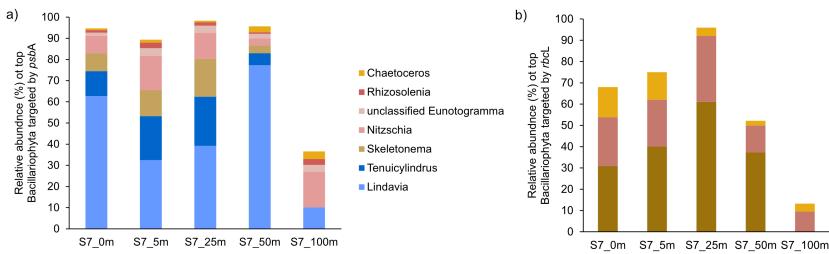


Figure A4: Taxonomic composition of Bacillariophyta at Station 7 based on a) psbA and b) rbcL marker genes. The figure shows the relative abundance of Bacillariophyta genera detected in the metagenomic dataset, grouped by gene-specific classifications.

Station	Parameter (X)	Value	SD	$\delta\text{NFR}/\delta X$	Error contribution ($(SD \times \delta\text{NFR}/\delta X)^2$)	% Total error	Summary (nmol N L ⁻¹ d ⁻¹)
3	Δt	1.00	0.00	0.00	0.00	0.00	Mean = 1.13 LOD = 0.73 MQR = 0.12
	A_{N2}	3.92%	0.00	0.00	0.00	0.00	
	A_{PNO}	0.370%	4.24 x 10 ⁻⁶	2.63 x 10 ⁶	2.46 x 10 ²	29.49	
	A_{PNf}	0.420%	3.7 x 10 ⁻⁵	2.36 x 10 ⁵	3.03 x 10 ²	35.54	
	$[PN]_t$	1.69 x 10 ³	1.24 x 10 ³	5.12 x 10 ⁻²	3.21 x 10 ²	34.97	
7	Δt	1.00	0.00	0.00	0.00	0.00	Mean = 1.92 LOD = 1.91 MQR = 0.47
	A_{N2}	3.92%	0.00	0.00	0.00	0.00	
	A_{PNO}	0.369%	4.0 x 10 ⁻⁷	1.57 x 10 ⁷	2.06 x 10 ³	25.17	

			10^{-6}				
	<u>Apnf</u>	<u>0.407%</u>	<u>5.47</u> <u>$\times 10^{-5}$</u>	<u>9.25×10^5</u>	<u>2.79×10^3</u>	<u>36.88</u>	
	<u>[PN]t</u>	<u>4.62 x</u> <u>10^3</u>	<u>8.2 x</u> <u>10^2</u>	<u>6.77×10^{-2}</u>	<u>2.87×10^3</u>	<u>37.95</u>	
10	<u>At</u>	<u>1.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>Mean =</u> <u>0.90</u> <u>LOD =</u> <u>0.96</u> <u>MQR =</u> <u>0.06</u>
	<u>AN2</u>	<u>3.92%</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.00</u>	
	<u>Apno</u>	<u>0.371%</u>	<u>1.89</u> <u>$\times 10^{-6}$</u>	<u>-2.01 x</u> <u>10^2</u>	<u>1.44×10^{-3}</u>	<u>31.24</u>	
	<u>Apnf</u>	<u>0.371%</u>	<u>2.22</u> <u>$\times 10^{-6}$</u>	<u>2.01×10^2</u>	<u>2.05×10^{-3}</u>	<u>34.85</u>	
	<u>[PN]t</u>	<u>5.91 x</u> <u>10^2</u>	<u>1.89</u> <u>$\times 10^3$</u>	<u>-1.56×10^{-4}</u>	<u>3.69×10^{-3}</u>	<u>33.91</u>	

Formatted: Keep with next

Formatted: Caption

6 *Appendix Table 1: Sensitivity analysis for N_2 fixation rates. The contribution of each source of error to the total uncertainty was determined and*
7 *calculated after Montoya et al., (1996). Average values and standard deviations (SD) are provided for all parameters at each station. The partial*
8 *derivative ($\partial NFR / \partial X$) of the N_2 fixation rate measurements is calculated for each parameter and evaluated using the provided average and*
9 *standard deviation. The total and relative error are given for each parameter. Mean represents the average N_2 fixation rate measurement. MOR*
10 *(minimal quantifiable rate) represents the total uncertainty linked to every measurement and is calculated using standard propagation of error.*
11 *LOD (limit of detection) represents an alternative detection limit defined as $\Delta APN = 0.00146$.*

12 *Data availability.* The presented data collected during the cruise will be made accessible on PANGEA. The molecular datasets have been
13 deposited with the accession number: Bioproject PRJNA1133027.

Deleted: Bioproject PRJNA1133027.

14 *Author contributions.* IS carried out fieldwork and laboratory work at the University of Southern Denmark, and wrote the majority of the
15 manuscript. ELP, AM, and EL conducted fieldwork and laboratory work at the University of Southern Denmark. PX performed metagenomic
16 analysis and created the corresponding graphs. CRL designed the study, provided supervision and guidance throughout the project, and
17 contributed to the writing and revision of the manuscript. All authors contributed to the conception of the study and participated in the writing
18 and revision of the manuscript.

19 *Competing interests.* The authors declare that they have no known competing financial interests or personal relationships that could have
20 appeared to influence the work reported in this paper. One of the authors, CRL, serves as an Associate Editor for Biogeosciences.

|2 *Acknowledgements.* This work was supported by the Velux Foundation (grant no.29411 to Carolin R. Löscher) and through the DFF grant
|3 from the the Independent Research Fund Denmark (grant no. 0217-00089B to Lasse Riemann, Carolin R. Löscher and Stiig Markager). ELP
|4 was supported by a postdoctoral contract from Danmarks Frie Forskningsfond (DFF, 1026-00428B) at SDU, and by a Marie Skłodowska-
|5 Curie postdoctoral fellowship (HORIZON291 MSCA-2021-PF-01, project number: 101066750) by the European Commission at Princeton
|6 University. We sincerely thank the captain and crew of the P540 during the cruise on the Danish military vessel for their invaluable support and
|7 cooperation at sea. Our gratitude extends to Isaaffik Arctic Gateway for providing the infrastructure and opportunities that made this project
|8 possible. We also acknowledge Zarah Kofoed for her technical support in the laboratory and thank all the Nordceee laboratory technicians for
|9 their general assistance.

|0 **References**

|1 Ardyna, M. and Arrigo, K. R.: Phytoplankton dynamics in a changing Arctic Ocean, *Nature Climate Change*, 10, 892–903, 2020.
|2 Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay, J.-É.: Recent Arctic Ocean sea ice loss triggers novel fall
|3 phytoplankton blooms, *Geophysical Research Letters*, 41, 6207–6212, 2014.
|4 Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, *Progress in oceanography*, 136, 60–70, 2015.
|5 Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary production, *Geophysical Research
|6 Letters*, 35, 2008.
|7 Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm, Å. K., Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.:
|8 Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters, *Geophysical Research Letters*, 44, 6278–
|9 6285, 2017.
|10 Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.: Greenland meltwater as a significant and
|11 potentially bioavailable source of iron to the ocean, *Nature Geoscience*, 6, 274–278, 2013.
|12 Blais, M., Tremblay, J.-É., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of
|13 potential diazotrophs in the Canadian Arctic, *Global Biogeochemical Cycles*, 26, 2012.
|14 Bonnet, S., Biegala, I. C., Dutrieux, P., Slemmons, L. O., and Capone, D. G.: Nitrogen fixation in the western equatorial Pacific: Rates,
|15 diazotrophic cyanobacterial size class distribution, and biogeochemical significance, *Global Biogeochemical Cycles*, 23, 2009.
|16 Buchanan, P. J., Chase, Z., Matear, R. J., Phipps, S. J., and Bindoff, N. L.: Marine nitrogen fixers mediate a low latitude pathway for
|17 atmospheric CO₂ drawdown, *Nature Communications*, 10, 4611, 2019.
|18 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J.: eggNOG-mapper v2: functional annotation, orthology
|19 assignments, and domain prediction at the metagenomic scale, *Molecular biology and evolution*, 38, 5825–5829, 2021.
|20 Capone, D. G. and Carpenter, E. J.: Nitrogen fixation in the marine environment, *Science*, 217, 1140–1142, 1982.
|21 Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al.: SOAPnuke: a MapReduce acceleration-supported
|22 software for integrated quality control and preprocessing of high-throughput sequencing data, *Gigascience*, 7, gix120, 2018.
|23 Cheung, S., Liu, K., Turk-Kubo, K. A., Nishioka, J., Suzuki, K., Landry, M. R., Zehr, J. P., Leung, S., Deng, L., and Liu, H.: High biomass
|24 turnover rates of endosymbiotic nitrogen-fixing cyanobacteria in the western Bering Sea, *Limnology and Oceanography Letters*, 7, 501–
|25 509, 2022.
|26 Coale, T. H., Loconte, V., Turk-Kubo, K. A., Vanslembrouck, B., Mak, W. K. E., Cheung, S., Ekman, A., Chen, J.-H., Hagino, K., Takano,
|27 Y., et al.: Nitrogen-fixing organelle in a marine alga, *Science*, 384, 217–222, 2024.
|28 Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknafjord, Baltic Sea,

0 Biogeosciences, 10, 3079–3088, 2013.

1 Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., and Kiene, R.: Methane production in aerobic oligotrophic surface

2 water in the central Arctic Ocean, Biogeosciences, 7, 1099–1108, 2010.

3 Diez, B., Bergman, B., Pedrós-Alió, C., Antó, M., and Snoeijs, P.: High cyanobacterial nifH gene diversity in Arctic seawater and sea ice

4 brine, Environmental microbiology reports, 4, 360–366, 2012.

5 Emeis, K.-C., Mara, P., Schlarbaum, T., Möbius, J., Dähnke, K., Struck, U., Mihalopoulos, N., and Krom, M.: External N inputs and internal

6 N cycling traced by isotope ratios of nitrate, dissolved reduced nitrogen, and particulate nitrogen in the eastern Mediterranean Sea, Journal

7 of Geophysical Research: Biogeosciences, 115, 2010.

8 Falkowski, P. G., Fenchel, T., and Delong, E. F.: The microbial engines that drive Earth's biogeochemical cycles, science, 320, 1034–1039,

9 2008.

10 Farnelid, H., Andersson, A. F., Bertilsson, S., Al-Soud, W. A., Hansen, L. H., Sørensen, S., Steward, G. F., Hagström, Å., and Riemann, L.:

11 Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria, PLoS one, 6, e19 223, 2011.

12 Farnelid, H., Turk-Kubo, K., Ploug, H., Ossolinski, J. E., Collins, J. R., Van Mooy, B. A., and Zehr, J. P.: Diverse diazotrophs are present on

13 sinking particles in the North Pacific Subtropical Gyre, The ISME journal, 13, 170–182, 2019.

14 Fernández-Méndez, M., Turk-Kubo, K. A., Buttigieg, P. L., Rapp, J. Z., Krumpen, T., and Zehr, J. P.: Diazotroph diversity in the sea ice, melt

15 ponds, and surface waters of the Eurasian Basin of the Central Arctic Ocean, Frontiers in microbiology, 7, 217 140, 2016.

16 [Foster, R. A., Goebel, N. L., & Zehr, J. P.: Isolation of calothrix rhizosoleniae \(cyanobacteria\) strain SC01 from chaetoceros](#)

17 [\(bacillariophyta\) spp. diatoms of the subtropical north pacific ocean 1. Journal of Phycology, 46\(5\), 1028-1037, 2010.](#)

18 Foster, R. A., Kuypers, M. M., Vagner, T., Paerl, R. W., Musat, N., and Zehr, J. P.: Nitrogen fixation and transfer in open ocean diatom–

19 cyanobacterial symbioses, The ISME journal, 5, 1484–1493, 2011.

20 Foster, R. A., Tienken, D., Littmann, S., Whitehouse, M. J., Kuypers, M. M., and White, A. E.: The rate and fate of N2 and C fixation by

21 marine diatom-diazotroph symbioses, The ISME journal, 16, 477–487, 2022.

22 Fox, A. and Walker, B. D.: Sources and Cycling of Particulate Organic Matter in Baffin Bay: A Multi-Isotope $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\Delta^{14}\text{C}$

23 Approach, Frontiers in Marine Science, 9, 846 025, 2022.

24 Fu, L., Niu, B., Zhu, Z., Wu, S., and Cd-hit, W. L.: Accelerated for clustering the next-generation sequencing data, Bioinformatics, 28,

25 3150–3152, 2012.

26 Galloway, J., Dentener, F., Capone, D., Boyer, E., Howarth, R., Seitzinger, S., Asner, G., Cleveland, C., Green, P., Holland, E., et al.: Nitrogen

27 cycles: past, present, and future. Biogeochemistry 70, 153e226, 2004.

28 García-Robledo, E., Corzo, A., and Papaspyrou, S.: A fast and direct spectrophotometric method for the sequential determination of nitrate

29 and nitrite at low concentrations in small volumes, Marine Chemistry, 162, 30–36, 2014.

30 [Geider, R. J., & La Roche, J.: Redfield revisited: variability of C \[ratio\] N \[ratio\] P in marine microalgae and its biochemical](#)

31 [basis. European Journal of Phycology, 37\(1\), 1-17, 2002.](#)

32 Gladish, C. V., Holland, D. M., and Lee, C. M.: Oceanic boundary conditions for Jakobshavn Glacier. Part II: Provenance and sources of

33 variability of Disko Bay and Ilulissat icefjord waters, 1990–2011, Journal of Physical Oceanography, 45, 33–63, 2015.

34 [Grosse, J., Bombar, D., Doan, H. N., Nguyen, L. N., & Voss, M.: The Mekong River plume fuels nitrogen fixation and determines](#)

35 [phytoplankton species distribution in the South China Sea during low and high discharge season. Limnology and Oceanography, 55\(4\),](#)

36 [1668-1680, 2010.](#)

Formatted: English (UK)

Formatted: Indent: Left: 0,14 cm, First line: 0 cm

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted

7 Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M., Lavik, G., Schmitz, R. A., Wallace, D. W., and LaRoche, J.:
8 Doubling of marine dinitrogen-fixation rates based on direct measurements, *Nature*, 488, 361–364, 2012.

9 Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on atmospheric CO₂ variations, in: *The ocean carbon cycle and*
0 *climate*, pp. 97–148, Springer, 2004.

1 Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, *Nature*, 451, 293–296, 2008.

2 Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation and denitrification, *Global biogeochemical cycles*, 11, 235–266,
3 1997.

4 Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., et al.: Arctic
5 freshwater export: Status, mechanisms, and prospects, *Global and Planetary Change*, 125, 13–35, 2015.

6 Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased runoff from
7 melt from the Greenland Ice Sheet: a response to global warming, *Journal of Climate*, 21, 331–341, 2008.

8 Hansen, M. O., Nielsen, T. G., Stedmon, C. A., and Munk, P.: Oceanographic regime shift during 1997 in Disko Bay, western Greenland,
9 *Limnology and Oceanography*, 57, 634–644, 2012.

10 Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A., and Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in
11 the Arctic Ocean, *Proceedings of the National Academy of Sciences*, 115, 13 371–13 375, 2018.

12 Hawking, J., Wadham, J., Tranter, M., Lawson, E., Sole, A., Cowton, T., Tedstone, A., Bartholomew, I., Nienow, P., Chandler, D., et al.:
13 The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet, *Geochemical Perspectives Letters*, pp. 94–104,
14 2015.

15 Hawking, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K., and Telling, J.:
16 Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans, *Nature communications*, 5, 1–8, 2014.

17 Hendry, K. R., Huvenne, V. A., Robinson, L. F., Annett, A., Badger, M., Jacobel, A. W., Ng, H. C., Opher, J., Pickering, R. A., Taylor, M. L.,
18 et al.: The biogeochemical impact of glacial meltwater from Southwest Greenland, *Progress in Oceanography*, 176, 102 126, 2019.

19 Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth, B.: Acceleration of Jakobshavn Isbrae triggered by warm
20 subsurface ocean waters, *Nature geoscience*, 1, 659–664, 2008.

21 Hopwood, M. J., Connelly, D. P., Arendt, K. E., Juul-Pedersen, T., Stinchcombe, M. C., Meire, L., Esposito, M., and Krishna, R.: Seasonal
22 changes in Fe along a glaciated Greenlandic fjord, *Frontiers in Earth Science*, 4, 15, 2016.

23 Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J.: Prodigal: prokaryotic gene recognition and translation
24 initiation site identification, *BMC bioinformatics*, 11, 1–11, 2010.

25 Jensen, H. M., Pedersen, L., Burneister, A., and Winding Hansen, B.: Pelagic primary production during summer along 65 to 72 N off West
26 Greenland, *Polar Biology*, 21, 269–278, 1999.

27 Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen
28 fixation in the world's oceans, *The nitrogen cycle at regional to global scales*, pp. 47–98, 2002.

29 Knies, J.: Nitrogen isotope evidence for changing Arctic Ocean ventilation regimes during the Cenozoic, *Geophysical Research Letters*, 49,
30 e2022GL099 512, 2022.

31 Krawczyk, D. W., Yesson, C., Knutz, P., Arboe, N. H., Blicher, M. E., Zinglersen, K. B., and Wagnholt, J. N.: Seafloor habitats across
32 geological boundaries in Disko Bay, central West Greenland, *Estuarine, Coastal and Shelf Science*, 278, 108 087, 2022.

33 Krupke, A., Mohr, W., LaRoche, J., Fuchs, B. M., Amann, R. I., and Kuypers, M. M.: The effect of nutrients on carbon and nitrogen fixation

i4 by the UCYN-A–haptophyte symbiosis, *The ISME journal*, 9, 1635–1647, 2015.
i5 Laso Perez, R., Rivas Santisteban, J., Fernandez-Gonzalez, N., Mundy, C. J., Tamames, J., and Pedros-Alio, C.: Nitrogen cycling during an
i6 Arctic bloom: from chemolithotrophy to nitrogen assimilation, *bioRxiv*, pp. 2024–02, 2024.
i7 Lewis, K., Van Dijken, G., and Arrigo, K. R.: Changes in phytoplankton concentration now drive increased Arctic Ocean primary production,
i8 *Science*, 369, 198–202, 2020.
i9 Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W.: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics
i0 assembly via succinct de Bruijn graph, *Bioinformatics*, 31, 1674–1676, 2015.
i1 Löscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W., Czeschel, R., Hoffmann, C., and
i2 Schmitz, R.: N₂ fixation in eddies of the eastern tropical South Pacific Ocean, *Biogeosciences*, 13, 2889–2899, 2016.
i3 Löscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?, *Biogeosciences*, 17, 851–864, 2020.
i4 Luo, Y.-W., Doney, S., Anderson, L., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D., et al.:
i5 Database of diazotroph in global ocean: abundance, biomass and nitrogen fixation rates, *Earth System Science Data*, 4, 47–73, 2012.
i6 Martínez-Pérez, C., Mohr, W., Löscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz,
i7 R. A., et al.: The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle, *Nature Microbiology*, 1,
i8 1–7, 2016.
i9 Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding, K., Wilson, S. T., Arrigo, K. R., and Zehr, J. P.: Unusual marine
i0 cyanobacteria/haptophyte symbiosis relies on N₂ fixation even in N-rich environments, *The ISME Journal*, 14, 2395–2406, 2020.
i1 Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological underestimation of oceanic nitrogen fixation rates, *PloS one*, 5,
i2 e12 583, 2010.
i3 Montoya, J. P.: Nitrogen stable isotopes in marine environments, *Nitrogen in the marine environment*, 2, 1277–1302, 2008.
i4 Montoya, J. P., Carpenter, E. J., and Capone, D. G.: Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic
i5 North Atlantic, *Limnology and Oceanography*, 47, 1617–1628, 2002.
i6 Mortensen, J., Rysgaard, S., Winding, M., Juul-Pedersen, T., Arendt, K., Lund, H., Stuart-Lee, A., and Meire, L.: Multidecadal water mass
i7 dynamics on the West Greenland Shelf, *Journal of Geophysical Research: Oceans*, 127, e2022JC018 724, 2022.
i8 Munk, P., Nielsen, T. G., and Hansen, B. W.: Horizontal and vertical dynamics of zooplankton and larval fish communities during mid-
i9 summer in Disko Bay, West Greenland, *Journal of Plankton Research*, 37, 554–570, 2015.
i0 Murphy, J. and Riley, J. P.: A modified single solution method for the determination of phosphate in natural waters, *Analytica chimica acta*,
i1 27, 31–36, 1962.
i2 Myers, P. G. and Ribergaard, M. H.: Warming of the polar water layer in Disko Bay and potential impact on Jakobshavn Isbrae, *Journal of
i3 Physical Oceanography*, 43, 2629–2640, 2013.
i4 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C.: Salmon provides fast and bias-aware quantification of transcript
i5 expression, *Nature methods*, 14, 417–419, 2017.
i6 Redfield, A. C.: *On the proportions of organic derivatives in sea water and their relation to the composition of plankton (Vol. 1)*. Liverpool:
i7 university press of liverpool, 1934.
i8 Reeder, C. F., Stoltenberg, I., Javidpour, J., and Löscher, C. R.: Salinity as a key control on the diazotrophic community composition in the
i9 Baltic Sea, *Ocean Science Discussions*, 2021, 1–30, 2021.
i0 Rees, A. P., Gilbert, J. A., and Kelly-Gerreyn, B. A.: Nitrogen fixation in the western English Channel (NE Atlantic ocean), *Marine Ecology*

Formatted: Font: Not Italic

Formatted: Indent: Left: 0 cm, First line: 0 cm

Formatted

11 Progress Series, 374, 7–12, 2009.

12 Robicheau, B. M., Tolman, J., Rose, S., Desai, D., and LaRoche, J.: Marine nitrogen-fixers in the Canadian Arctic Gateway are dominated
13 by biogeographically distinct noncyanobacterial communities. *FFMS Microbiology Ecology*, 99(12), 122, 2023.

14 Rysgaard, S., Boone, W., Carlson, D., Sejr, M., Bendtsen, J., Juul-Pedersen, T., Lund, H., Meire, L., and Mortensen, J.: An updated view on
15 water masses on the pan-west Greenland continental shelf and their link to proglacial fjords, *Journal of Geophysical Research: Oceans*,
16 125, e2019JC015 564, 2020.

17 Schiøtt, S.: The Marine Ecosystem of Ilulissat Icefjord, Greenland, Ph.D. thesis, Department of Biology, Aarhus University, Denmark, 2023.

18 Schlitzer, R.: Ocean data view, 2022.

19 Schvarcz, C. R., Wilson, S. T., Caffin, M., Stancheva, R., Li, Q., Turk-Kubo, K. A., White, A. E., Karl, D. M., Zehr, J. P., and Steward, G. F.:
20 Overlooked and widespread pennate diatom-diazotroph symbioses in the sea, *Nature communications*, 13, 799, 2022.

21 Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., Agawin, N. S. R., Ahmed, A., Benavides, M., Bentzon-Tilia, M., et al.: Global
22 oceanic diazotroph database version 2 and elevated estimate of global N 2 fixation, *Earth System Science Data*, 15, 2023.

23 Sherwood, O. A., Davin, S. H., Lehmann, N., Buchwald, C., Edinger, E. N., Lehmann, M. F., and Kienast, M.: Stable isotope ratios in
24 seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin, *Biogeosciences*, 18, 4491–4510, 2021.

25 Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale
26 variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea, *Global Biogeochemical Cycles*, 31, 996–1009, 2017.

27 Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S., Nagata, T., and Hamasaki, K.: Diazotroph community structure and
28 the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean), *Limnology and Oceanography*, 63, 2191–
2205, 2018.

29 Shiozaki, T., Fujiwara, A., Inomura, K., Hirose, Y., Hashihama, F., and Harada, N.: Biological nitrogen fixation detected under Antarctic sea
30 ice, *Nature geoscience*, 13, 729–732, 2020.

31 Shiozaki, T., Nishimura, Y., Yoshizawa, S., Takami, H., Hamasaki, K., Fujiwara, A., Nishino, S., and Harada, N.: Distribution and survival
32 strategies of endemic and cosmopolitan diazotrophs in the Arctic Ocean, *The ISME journal*, 17, 1340–1350, 2023.

33 Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D. M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual
34 isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen, *Deep Sea Research Part I: Oceanographic
35 Research Papers*, 56, 1419–1439, 2009.

36 Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N., Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the
37 contribution of Arctic nitrogen fixation to the global nitrogen budget, *Limnology and Oceanography Letters*, 2, 159–166, 2017.

38 Slawyk, G., Collos, Y., and Auclair, J.-C.: The use of the 13C and 15N isotopes for the simultaneous measurement of carbon and nitrogen
39 turnover rates in marine phytoplankton 1, *Limnology and Oceanography*, 22, 925–932, 1977.

40 Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine nitrogen fixation, *Nature Reviews Microbiology*, 9, 499–508,
41 2011.

42 Stern, R. W., & Elser, J. J. *Ecological stoichiometry: the biology of elements from molecules to the biosphere*. In *Ecological stoichiometry*,
43 Princeton university press, 2017.

44 Tang, W., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S., Gonzalez, A. G., Gallinari, M., Planquette, H., Sarthou, G., and Cassar, N.:
45 Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production, *Nature communications*,
46 7

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Condensed by 0,1 pt

:8 10, 831, 2019.
:9 Tremblay, J.-É. and Gagnon, J.: The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate
:0 change, in: Influence of climate change on the changing arctic and sub-arctic conditions, pp. 73–93, Springer, 2009.
:1 Turk, K. A., Rees, A. P., Zehr, J. P., Pereira, N., Swift, P., Shelley, R., Lohan, M., Woodward, E. M. S., and Gilbert, J.: Nitrogen fixation and
:2 nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic, *The ISME journal*, 5, 1201–1212, 2011.
:3 Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P.: Diazotroph community succession during the VAHINE
:4 mesocosm experiment (New Caledonia lagoon), *Biogeosciences*, 12, 7435–7452, 2015.
:5 Von Friesen, L. W. and Riemann, L.: Nitrogen fixation in a changing Arctic Ocean: an overlooked source of nitrogen?, *Frontiers in Microbi-
:6 ology*, 11, 596 426, 2020.
:7 Wang, S., Bailey, D., Lindsay, K., Moore, J., and Holland, M.: Impact of sea ice on the marine iron cycle and phytoplankton productivity,
:8 *Biogeosciences*, 11, 4713–4731, 2014.
:9 Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen fixation, *Science*, 368, eaay9514, 2020.

Formatted: Condensed by 0,1 pt

Page 3: [1] Deleted

Isabell Schlangen

28/03/2025 09:54:00