Mid-Holocene ITCZ migration: impacts on Hadley cell dynamics and terrestrial hydroclimate

Jianpu Bian¹, Jouni Räisänen¹, and Heikki Seppä²

¹Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland ²Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

Correspondence: Jianpu Bian (bian.jianpu@helsinki.fi)

Table S1. List of the nine PMIP4-CMIP6 models

	Model	Realization	Used years	Model reference
1	EC-Earth3-LR	r1i1p1	100	(Wyser et al., 2020)
2	CESM2	r1i1p1	100	(Gettelman et al., 2019)
3	IPSL-CM6A-LR	r1i1p1	100	(Boucher et al., 2020)
4	ACCESS-ESM1-5	r1i1p1	100	(Ziehn et al., 2020)
5	AWI-ESM-1-1-LR	r1i1p1	100	(Sidorenko et al., 2015)
6	GISS-E2-1-G	r1i1p1	100	(Kelley et al., 2020)
7	MPI-ESM1-2-LR	r1i1p1	100	(Mauritsen et al., 2019)
8	MRI-ESM2-0	r1i1p1	100	(Yukimoto et al., 2019)
9	NorESM2-LM	r1i1p1	100	(Seland et al., 2020)

Defining ITCZ position metrics

We quantify zonal and annual ITCZ locations by applying two different precipitation metrics (Adam et al., 2016; Bian and Räisänen, 2024).

The first metric is the precipitation centroid for ITCZ location, denoted as

5
$$\phi_{ITCZ} = \frac{\int_{\phi_S}^{\phi_N} \phi[\overline{P}(\phi)\cos\phi]^X d\phi}{\int_{\phi_S}^{\phi_N} [\overline{P}(\phi)]^X \cos\phi d\phi}$$
(S1)

where $[\overline{P}(\phi)]$ is the zonal and time mean precipitation. The boundaries ϕ_S and ϕ_N are defined as $20^{\circ}S/N$, and the integer power X is 1 (Adam et al., 2016).

The second metric locates the ITCZ location where the total area-weighted precipitation between boundaries ϕ_S and ϕ_N are equally divided (Adam et al., 2016; Bian and Räisänen, 2024):

10
$$\int_{\phi_S}^{\phi_{ITCZ}} \overline{P}(\phi) \cos \phi d\phi = \int_{\phi_{ITCZ}}^{\phi_N} \overline{P}(\phi) \cos \phi d\phi$$
(S2)

where ϕ_S and ϕ_N have the same definition as the first metric.

Table S2. Annual precipitation (unit: mm/year) difference between the MH and PI from the pollen proxy dataset adapted from Herbert and Harrison (2016) and Lowry and McGowan (2024). SE denotes the pooled standard error.

Latitude(°)	Longitude(°)	MAP	SE
-43	145	33.9	±316.12
-43	147	488.81	±400.77
-43	149	340.52	±337.83
-41	145	-192.24	±362.11
-41	147	-134.7	±351.44
-39	141	-1.39	±345.53
-39	143	127.76	±320.8
-39	145	-34.94	±332.51
-39	147	648.35	±589.47
-37	141	344.4	±314.35
-37	143	435.95	±350.25
-37	145	733.33	±310.24
-37	147	347.46	±387.13
-37	149	236.91	±338.02
-37	151	-118.95	±294.92
-35	115	94.1	±405.65
-35	117	360.51	±361.18
-35	119	145.4	±315.22
-35	139	337.95	±409.06
-35	143	-6.69	±294.87
-35	149	218.66	±346.99
-35	151	92.32	±304.07
-33	115	149.26	±354.93
-33	141	350.91	±300.04
-33	151	329.92	±315.23
-31	115	974.56	±323.65
-31	127	366.88	±330.12
-31	139	227.16	±334.44
-31	143	9.63	±295.29
-31	151	529.72	±328.49
-27	153	-100.25	±412.28
-25	153	-35.77	±320.7
-17	127	105.82	±300.74
-17	145	896.86	±476.2
-17	147	-2065.91	±630.63
-15	127	746.57	±357.96
-15	137	298.54	±298.73
-15	145	137.11	±319.76
-13	137	37.03	±334.55
-13	141	-789.8	±330.85
-13	143	8.88	±363.29
-11	143	-22.07	±334.56

Table S3. Alpha index difference between the MH and PI from the pollen proxy dataset adapted from Herbert and Harrison (2016) and Lowry and McGowan (2024). SE denotes the pooled standard error.

Latitude(°)	Longitude(°)	Alpha	SE
-43	145	0	±0.0971
-43	147	0.0265	±0.102
-43	149	0.0152	±0.1098
-41	145	-0.1337	±0.0983
-41	147	-0.1781	±0.1527
-39	141	-0.0532	±0.1302
-39	143	0.0414	±0.1116
-39	145	-0.0495	±0.1451
-39	147	-0.0145	±0.1072
-37	141	0.2339	±0.1195
-37	143	0.0931	±0.14
-37	145	0.2544	±0.1102
-37	147	0.065	±0.129
-37	149	-0.017	±0.1211
-37	151	-0.1508	±0.0984
-35	115	0.1778	±0.1646
-35	117	0.2084	±0.1407
-35	119	0.1549	±0.1452
-35	139	0.2376	±0.1469
-35	143	-0.0034	±0.0971
-35	149	-0.0315	±0.1181
-35	151	0.0283	±0.109
-33	115	0.1347	±0.1438
-33	141	0.5122	±0.1006
-33	151	0.1332	±0.1018
-31	115	0.3877	±0.1244
-31	127	0.3249	±0.1703
-31	139	0.1824	±0.1683
-31	143	0.0089	±0.0987
-31	151	0.2113	±0.1127
-27	153	-0.0817	±0.1585
-25	153	0.0299	±0.1049
-17	127	0.2538	±0.1376
-17	145	0.2457	±0.1148
-17	147	-0.2435	±0.1209
-15	127	0.349	±0.114
-15	137	0.3037	±0.156
-15	145	0.0228	±0.106
-13	137	0.0786	±0.1244
-13	141	0.2548	±0.1142
-13	143	0.0401	±0.117
-11	143 4	0.0486	±0.1153

References

- Adam, O., Bischoff, T., and Schneider, T.: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position, Journal of Climate, 29, 3219–3230, 2016.
- 15 Bian, J. and Räisänen, J.: Mid-holocene changes in the global ITCZ: meridional structure and land-sea rainfall differences, Climate Dynamics, pp. 1–19, 2024.
 - Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., et al.: Presentation and evaluation of the IPSL-CM6A-LR climate model, Journal of Advances in Modeling Earth Systems, 12, e2019MS002 010, 2020.
- 20 Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A., Danabasoglu, G., Lamarque, J.-F., Fasullo, J., Bailey, D., Lawrence, D., et al.: High climate sensitivity in the Community Earth System Model version 2 (CESM2), Geophysical Research Letters, 46, 8329–8337, 2019.
 - Herbert, A. V. and Harrison, S. P.: Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen, Review of Palaeobotany and Palynology, 226, 65–77, 2016.
- 25 Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., et al.: GISS-E2. 1: Configurations and climatology, Journal of Advances in Modeling Earth Systems, 12, e2019MS002 025, 2020.
 - Lowry, A. L. and McGowan, H. A.: Insights into the Australian mid-Holocene climate using downscaled climate models, Climate of the Past, 20, 2309–2325, 2024.
 - Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., et al.: Devel-
- 30 opments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2, Journal of Advances in Modeling Earth Systems, 11, 998–1038, 2019.
 - Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., et al.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geoscientific Model Development, 13, 6165–6200, 2020.
- 35 Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Gößling, H. F., et al.: Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate, Climate Dynamics, 44, 757–780, 2015.
 - Wyser, K., van Noije, T., Yang, S., von Hardenberg, J., O'Donnell, D., and Döscher, R.: On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6, Geoscientific Model Development, 13, 3465–3474, 2020.
- 40 Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., et al.: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component, Journal of the Meteorological Society of Japan. Ser. II, 97, 931–965, 2019.
 - Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian earth system model: ACCESS-ESM1. 5, Journal of Southern Hemisphere Earth Systems Science, 70, 193–214, 2020.