Supporting Information

Table S1. The average and monthly average value of T, RH, WS.

Meteorological I	T (°C)	RH (%)	WS (m/sec)	
averag	23.36	55.84	1.18	
monthly average	June	28.38	34.48	1.67
	July	26.69	70.85	1.17
	August	25.98	58.82	1.16
	September	22.33	65.40	0.97
	October	13.42	49.64	0.94

Table S2. Overview on HONO field observations performed in Beijing since 2000.

Date	Site Property	HONO (ppbV)	HONO/NO ₂	Emission Factor	Reference	
May 16 th -25 th , 2000 Jun. 24 th - Jul. 4 th , 2000 Sep.7 th -11 th , 2000 Dec. 18 th -28 th , 2000	Urban site (Peking University) 39.54°N,116.23°E	3.51 3.05 2.66 2.97	-		(Hu et al., 2002)	
JulAug., 2002 JulAug., 2003	Urban site (Peking University) 39.54°N,116.23°E	3.6	-	-	(Wu et al., 2009)	
Jan.23 nd -Feb.14 th ., 2007 Aug.2 nd -Aug.31 st ., 2007	Urban site (Peking University) 39.99°N,116.28°E	1.04 1.45	0.03 0.05	0.0065	(Spataro et al., 2013)	
Jul.2008-Apr.2009	Urban site (Institute of Atmospheric	0.19 (Spring) 0.18 (Summer)	0.015 (Spring) 0.008 (Summer)	-	(Hendrick et al., 2014)	

	Physics of the Chinese Academy of Sciences, IAPCAS) 39.98°N.116.38°E	0.46 (Fall) 0.48 (Winter)	0.020 (Fall) 0.015 (Winter)		
Oct.28 th -Nov.3 rd , 2014	Urban site (Institute of Chemistry, Chinese Academy of Sciences, ICCAS) 39.99°N,116.32°E	1.45	0.039		(Tong et al.,
	Suburban Site (Lake yanqi campus of University of Chinese Academy of Sciences, UCAS) 40.4°N, 116.6°E	0.74	0.088	0.0065	2015)
Feb.22 nd -Mar.2 nd , 2014	Urban site (ICCAS) 39.99°N,116.32°E	0.28-3.24	-		(Hou et al., 2016)
Dec 12th Dec 22nd 2015	Urban site (ICCAS) 39.99°N,116.32°E	0.86	0.052	0.0065	(Tong et al.,
Dec.12 -Dec.22 , 2013	Suburban Site (Lake yanqi campus of UCAS) 40.4°N, 116.6°E	0.52	0.08		2016)
Sep.22 nd -Oct.21 th ,2015 Jan.3 rd -Jan.27 th ,2016 Apr.1 st -May14th,2016 Jun.20 th -Jul.25 th ,2016	Urban site (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences) 40.0078°N, 116.33°E	2.27 (Fall) 1.05 (Winter) 1.05 (Spring) 1.38 (Summer)	$\begin{array}{c} 0.070{\pm}0.033\\ 0.046{\pm}0.024\\ 0.041{\pm}0.023\\ 0.079{\pm}0.014\end{array}$	-	(Wang et al., 2017)
Dec. 16 th -23 nd , 2016	Urban site (ICCAS) 39.99°N,116.32°E	3.5±2.7	-	0.013	(Zhang et al., 2019)
Apr. 14 th -28 th , 2017	Urban site (ICCAS) 39.99°N,116.32°E	1.21	-	0.008	(Lin et al., 2022)
Dec. 15 th ,2017-Jan. 4 th , 2018	Urban site (ICCAS) 39.99°N,116.32°E	1.17±1.20	-	0.0051-0.0081	(Zhang et al., 2022a)
May 7 th -30 th , 2017 Jan. 15 th -30 th , 2018	Urban site (Chinese Research Academy of Environmental Sciences) (CRAES) 40°04'N, 116°42'E	1.25±0.94 (Summer) 1.04±1.27 (Winter)	0.072±0.052 (Summer) 0.041±0.026 (Winter)	0.008	(Gu et al., 2022)
AprMay, 2016 JulAug., 2017 OctNov., 2017 Dec. 2017- Feb., 2018	Urban site the Institute of Urban Meteorological 39°56'N,116°17'E	3.17 (Spring) 3.53 (Summer) 4.30 (Autumn) 1.70 (Winter)	-	-	(Su et al., 2021)
Aug. 18 th -Sep. 16 th , 2018	Suburban Site Qingyuan campus of Beijing Institute of Petrochemical Technology (BIPT)	0.38 ± 0.35	-	0.0085	(Xuan et al., 2023)

Oct. 25 th -Dec. 7 th , 2018	Urban site (ICCAS) 39.99°N,116.32°E IAPCAS 39.98°N,116.38°E	2.52±1.61		0.00973	(Zhang et al., 2023b)
May 25 th -Jul.15 th , 2018 Nov. 26 th , 2018-Jan. 15 th , 2019	IAPCAS 39.98°N,116.38°E	1.27±0.44 (Summer) 1.13±0.68 (Winter)	6.75±1.43% (Summer) 5.09±2.69% (Winter)	0.0078	(Liu et al., 2021)
Dec. 22 nd , 2018-Jan. 23 rd , 2019	Urban site (ICCAS) 39.99°N,116.32°E	0.98±0.85	-	0.0051-0.0081	(Zhang et al., 2022b)
Jun. 13 th -Jul.4 th , 2019	Urban site (CRAES) 40°04'N, 116°42'E	0.44±0.24	-	0.003,0.0065,0.008	(Li et al., 2021)
Jan. 22 th -Feb. 28 th , 2018; Dec. 1 st , 2018-Feb. 28 th , 2019; Dec. 1 st , 2019-Feb. 28 th , 2020; Dec. 1 st , 2020-Feb. 28 th , 2021;	Urban site, (West Campus of Beijing University of Chemical Technology) 39.95°N,116.31°E	0.66 (2018) 1.38 (2019) 0.95 (2020) 1.30 (2021)	0.038(2018) 0.052 (2019) 0.042 (2020) 0.067 (2021)	0.0079	(Lian et al., 2022)
Oct. 1 st -Oct. 31 st ,2019	Urban site (ICCAS) 39.99°N,116.32°E	0.99	-	-	(Jia et al., 2023)
Mar. 1 st -30 th , 2021	Urban site (ICCAS) 39.99°N,116.32°E	1.48±1.09	0.07	0.008	(Zhang et al., 2023a)
Jun.18 th -Oct.25 th , 2021	Urban site (CRAES) 40°04'N, 116°42'E	1.06	0.052	0.0172	This work

Table S3. Correlations of Punknown against various parameters during the observation period.

Parameters June July August summer September October autumn sum	ober autumn sum
---	-----------------

	R, N = 42	R, N = 82	R, N = 103	R, N= 227	R, N = 102	R, N = 64	R, N= 166	R, N= 393
NO ₂	0.42	0.42	-0.3	0.19	-0.05	0.08	-0.21	-0.09
JNO ₂	-0.18	0.038	-0.076	-0.044	0.21	-0.13	0.23	0.12
PM _{2.5}	0.66	0.49	0.06	0.30	-0.20	0.16	-0.088	0.05
RH	0.63	0.04	-0.38	0.05	-0.23	0.11	-0.067	-0.003
NO ₃ -	0.39	0.48	-0.17	0.21	-0.16	0.16	-0.083	0.007
JNO ₂ *RH	0.71	0.15	-0.36	0.039	-0.024	-0.025	0.20	0.13
NO ₂ *PM _{2.5}	0.57	0.50	-0.1	0.28	-0.19	0.034	-0.17	-0.077
NO ₂ *OC	0.57	0.45	-0.058	0.26	-0.15	0.062	-0.17	-10-4
NO ₂ *EC	0.22	0.32	-0.12	0.15	-0.14	0.11	-0.16	-0.078
NO ₂ *JNO ₂ *PM _{2.5}	0.62	0.32	-0.12	0.24	-0.11	-0.06	-0.11	-0.02
NO ₂ *JNO ₂ *RH*PM _{2.5}	0.60	0.33	-0.18	0.22	-0.12	-0.049	-0.092	0.019
NO ₂ *JNO ₂ *OC	0.58	0.21	-0.12	0.19	-0.031	-0.1	-0.013	0.09
NO ₂ *JNO ₂ *RH*OC	0.62	0.26	-0.18	0.20	-0.07	-0.04	0.008	0.12
NO ₂ *JNO ₂ *EC	0.36	0.22	-0.15	0.095	-0.11	-0.1	-0.12	-0.05
NO ₂ *JNO ₂ *RH*EC	0.41	0.22	-0.19	0.088	-0.13	-0.07	-0.10	-0.021
JNO ₂ *NO ₃ -	0.48	0.29	-0.20	0.18	-0.09	0.032	0.005	0.065
JNO ₂ *RH*NO ₃ -	0.50	0.30	-0.24	0.16	-0.10	0.006	0.047	0.11
JNO ₂ *NO ₃ *SO ₄ ²⁻	0.26	0.32	-0.14	0.10	-0.16	0.13	-0.023	0.021
JNO ₂ *RH*NO ₃ *SO ₄ ²⁻	0.23	0.33	-0.17	0.092	-0.15	0.16	0.0069	0.049
JNO2*NO3*Cl-	0.16	0.46	-0.26	0.17	-0.12	0.093	-0.074	-0.0085
JNO2*RH*NO3*Cl-	0.14	0.44	-0.27	-0.029	-0.11	0.075	-0.058	0.052
JNO ₂ *NO ₃ -*OC	0.55	0.26	-0.05	0.19	-0.14	0.045	-0.05	0.038
JNO ₂ *RH*NO ₃ *OC	0.52	0.29	-0.23	0.18	-0.11	0.027	-0.020	-0.079

Figure S1. Temporal trends of hourly average RH, T, WD, WS, and JNO2 during the measurement.

Figure S2. Daily averaged variation of several meteorology data during the observation.

10 Figure S3. Daily averaged values of several parameters during the observation. The shaded areas represent the standard deviation of the corresponding pollutant concentration.

Figure S4. Daily averaged values of several parameters during the observation. The shaded areas represent the standard deviation of the corresponding pollutant concentration. The gray shading areas indicate nighttime, 18:00-06:00 LT.

Figure S5. Daytime HONO budget proportion in average production (Pemis, PNO+OH, Punknown) and loss rates (LOH+HONO, Lphot, Ldep) during the five months: (a) June, (b) July, (c) August, (d) September, (e) October.

20 Figure S6. Distributions of NO₅⁻, SO₄²⁻, NH₄⁺, Cl⁻, OC, EC, and HONO mean concentrations under different months. The upper panel was the daytime average value (7:00-18:00), and the bottom panel was the nighttime average value (19:00-6:00)

Figure S7. Scatter plots of Punkown versus NO₂ and PM_{2.5} concentrations by month with colormaps to distinguish the changes in relative humidity (RH) and JNO₂

25 References

65

- Gu, R., Shen, H., Xue, L., Wang, T., Gao, J., Li, H., Liang, Y., Xia, M., Yu, C., Liu, Y., and Wang, W.: Investigating the sources of atmospheric nitrous acid (HONO) in the megacity of Beijing, China, Sci. Total Environ., 812, 152270, doi: 10.1016/j.scitotenv.2021.152270, 2022.
- Hendrick, F., Müller, J. F., Clémer, K., Wang, P., De Mazière, M., Fayt, C., Gielen, C., Hermans, C., Ma, J. Z., Pinardi, G.,
 Stavrakou, T., Vlemmix, T., and Van Roozendael, M.: Four years of ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area, Atmos. Chem. Phys., 14, 765–781, doi: 10.5194/acp-14-765-2014, 2014.
 - Hou, S., Tong, S., Ge, M., and An, J.: Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China, Atmos. Environ., 124, 199–206, doi: 10.1016/j.atmosenv.2015.06.023, 2016.
- Hu, M., Zhou, F., Shao, K., Zhang, Y., Tang, X., and Slanina, J.: Diurnal variations of aerosol chemical compositions and related gaseous pollutants in Beijing and Guangzhou, J. Environ. Sci. Health A, Part A, 37, 479–488, doi: 10.1081/ese-120003229, 2002.
 - Jia, C., Tong, S., Zhang, X., Li, F., Zhang, W., Li, W., Wang, Z., Zhang, G., Tang, G., Liu, Z., and Ge, M.: Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O₃ and PM_{2.5} episodes based on observation-based model, J. Environ. Sci. (China), 124, 557–569, doi: 10.1016/j.jes.2021.11.020, 2023.
- 40 Li, Y., Wang, X., Wu, Z., Li, L., Wang, C., Li, H., Zhang, X., Zhang, Y., Li, J., Gao, R., Xue, L., Mellouki, A., Ren, Y., and Zhang, Q.: Atmospheric nitrous acid (HONO) in an alternate process of haze pollution and ozone pollution in urban Beijing in summertime: Variations, sources and contribution to atmospheric photochemistry, Atmos. Res., 260, 105689, doi: 10.1016/j.atmosres.2021.105689, 2021.
- Lian, C., Wang, W., Chen, Y., Zhang, Y., Zhang, J., Liu, Y., Fan, X., Li, C., Zhan, J., Lin, Z., Hua, C., Zhang, W., Liu, M., Li,
 J., Wang, X., An, J., and Ge, M.: Long-term winter observation of nitrous acid in the urban area of Beijing, J. Environ. Sci. (China), 114, 334–342, doi: 10.1016/j.jes.2021.09.010, 2022.
 - Lin, D., Tong, S., Zhang, W., Li, W., Li, F., Jia, C., Zhang, G., Chen, M., Zhang, X., Wang, Z., Ge, M., and He, X.: Formation mechanisms of nitrous acid (HONO) during the haze and non-haze periods in Beijing, China, J. Environ. Sci. (China), 114, 343–353, doi: 10.1016/j.jes.2021.09.013, 2022.
- 50 Liu, J., Liu, Z., Ma, Z., Yang, S., Yao, D., Zhao, S., Hu, B., Tang, G., Sun, J., Cheng, M., Xu, Z., and Wang, Y.: Detailed budget analysis of HONO in Beijing, China: Implication on atmosphere oxidation capacity in polluted megacity, Atmos. Environ., 244, 117957, doi: 10.1016/j.atmosenv.2020.117957, 2021.
 - Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., and Hu, M.: Occurrence of atmospheric nitrous acid in the urban area of Beijing (China), Sci. Total Environ., 447, 210–224, doi: 10.1016/j.scitotenv.2012.12.065, 2013.
- 55 Su, J., Zhao, P., Ding, J., Du, X., and Dou, Y.: Insights into measurements of water-soluble ions in PM_{2.5} and their gaseous precursors in Beijing, J. Environ. Sci. (China), 102, 123–137, doi: 10.1016/j.jes.2020.08.031, 2021.
- Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge, M.: Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014, Sci. China Chem., 58, 1393–1402, doi: 10.1007/s11426-015-5454-2, 2015.
- 60 Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge, M.: Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas, Faraday Discuss., 189, 213–230, doi: 10.1039/c5fd00163c, 2016.
 - Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget, Sci. Total Environ., 587–588, 350–359, doi: 10.1016/j.scitotenv.2017.02.159, 2017.
 - Wu, Z., Hu, M., Shao, K., and Slanina, J.: Acidic gases, NH₃ and secondary inorganic ions in PM₁₀ during summertime in Beijing, China and their relation to air mass history, Chemosphere, 76, 1028–1035, doi: 10.1016/j.chemosphere.2009.04.066, 2009.
- Xuan, H., Zhao, Y., Ma, Q., Chen, T., Liu, J., Wang, Y., Liu, C., Wang, Y., Liu, Y., Mu, Y., and He, H.: Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM_{2.5} and O₃ pollution periods in Beijing, Sci. Total Environ., 857, 159538, doi: 10.1016/j.scitotenv.2022.159538, 2023.

Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y., Zhang, H., Chu, B., Sun, Y., and He, H.: Variations and

sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016, Sci. Total Environ., 648, 253–262, doi: 10.1016/j.scitotenv.2018.08.133, 2019.

- Zhang, W., Tong, S., Jia, C., Ge, M., Ji, D., Zhang, C., Liu, P., Zhao, X., Mu, Y., Hu, B., Wang, L., Tang, G., Li, X., Li, W., and Wang, Z.: Effect of different combustion processes on atmospheric nitrous ccid formation mechanisms: A winter comparative observation in urban, suburban and rural areas of the North China Plain, Environ. Sci. Technol., 56, 4828– 4837, doi: 10.1021/acs.est.1c07784, 2022a.
- 80 Zhang, W., Tong, S., Lin, D., Li, F., Zhang, X., Wang, L., Ji, D., Tang, G., Liu, Z., Hu, B., and Ge, M.: Atmospheric chemistry of nitrous acid and its effects on hydroxyl radical and ozone at the urban area of Beijing in early spring 2021, Environ. Pollut., 316, 120710, doi: 10.1016/j.envpol.2022.120710, 2023a.
 - Zhang, X., Tong, S., Jia, C., Zhang, W., Li, J., Wang, W., Sun, Y., Wang, X., Wang, L., Ji, D., Wang, L., Zhao, P., Tang, G., Xin, J., Li, A., and Ge, M.: The levels and sources of nitrous acid (HONO) in winter of Beijing and Sanmenxia, J. Geophys. Res. Atmos., 127, e2021JD036278, doi: 10.1029/2021jd036278, 2022b.
 - Zhang, X., Tong, S., Jia, C., Zhang, W., Wang, Z., Tang, G., Hu, B., Liu, Z., Wang, L., Zhao, P., Pan, Y., and Ge, M.: Elucidating HONO formation mechanism and its essential contribution to OH during haze events, NPJ Clim. Atmos. Sci., 6, doi: 10.1038/s41612-023-00371-w, 2023b.

85