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Abstract. The coupling between surface ozone (O3) and vegetation significantly 12 

influences regional to global climate. O3 uptake by plant stomata inhibits 13 

photosynthetic rate and stomatal conductance, impacting evapotranspiration through 14 

land surface ecosystems. Using a climate-vegetation-chemistry coupled model (the 15 

NASA GISS ModelE2 coupled with Yale Interactive terrestrial Biosphere, or ModelE2-16 

YIBs), we assess the global climatic responses to O3-vegetation interactions during 17 

boreal summer of the present day (2005-2014). High O3 pollution reduces stomatal 18 

conductance, resulting in warmer and drier conditions worldwide. The most significant 19 

responses are found in the eastern U.S. and eastern China, where surface air temperature 20 

increases by +0.33±0.87 °C and +0.56±0.38 °C, respectively. These temperature rises 21 

are accompanied by decreased latent heat and increased sensible heat in both regions. 22 

The O3-vegetation interaction also affects atmospheric pollutants. Surface maximum 23 

daily 8-hour average O3 concentrations increase by +1.46±3.02 ppbv in eastern China 24 

and +1.15±1.77 ppbv in eastern U.S due to the O3-induced inhibition of stomatal uptake. 25 

With reduced atmospheric stability following the warmer climate, increased cloudiness 26 

but decreased relative humidity jointly reduce aerosol optical depth by -0.06±0.01 (-27 

14.67±12.15%) over eastern China. This study suggests that vegetation feedback should 28 

be considered for a more accurate assessment of climatic perturbations caused by 29 

tropospheric O3.  30 
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1 Introduction 31 

Tropospheric ozone (O3), one of the most detrimental air pollutants (Myhre et al., 32 

2013), not only poses threats to human health (Norval et al., 2011; Nuvolone et al., 2018) 33 

but also induces phytotoxic effects to vegetation (Mills et al., 2007; Pleijel et al., 2007). 34 

When exposed to certain levels of O3, plant photosynthesis and stomatal conductance 35 

is inhibited due to the O3 oxidation of cellular, enzyme, and chlorophyll (Dizengremel, 36 

2001; Fiscus et al., 2005; Jolivet et al., 2016). Consequently, the carbon assimilation of 37 

terrestrial ecosystems is limited (Yue and Unger, 2014; Oliver et al., 2018) and the land-38 

air exchange rates of water and heat fluxes are altered (Lombardozzi et al., 2015).  39 

Experimental studies have shown that the excessive O3 exposure reduced both 40 

plant photosynthesis and stomatal conductance (Ainsworth et al., 2012; Lombardozzi 41 

et al., 2013). The reduction rates are dependent on the O3 stomatal fluxes as well as the 42 

damaging sensitivities that vary among different vegetation types (Nussbaum and 43 

Fuhrer, 2000; Karlsson et al., 2004; Pleijel et al., 2004). Several exposure-based indexes 44 

such as accumulated hourly O3 concentrations over a threshold of 40 ppb (AOT40) and 45 

sum of all hourly average concentrations (SUM00) are used to assess O3-induced 46 

vegetation damage (Fuhrer et al., 1997; Paoletti et al., 2007). In addition, the flux-47 

related PODy method (phytotoxic O3 dose above a threshold flux of y) is also widely 48 

applied to consider the dynamic adjustment of stomatal conductance (Buker et al., 2015; 49 

Sicard et al., 2016). Taking into account the variability of plant sensitivities, different 50 

O3 damage schemes were proposed to quantify the O3 impacts on land carbon 51 

assimilation from regional to global scales (Anav et al., 2011; Lam et al., 2023; Lei et 52 

al., 2020). For example, Sitch et al. (2007) calculated the simultaneous damages to both 53 

photosynthesis and stomatal conductance based on the instantaneous O3 stomatal 54 

uptake. In contrast, Lombardozzi et al. (2012) estimated the decoupled reductions in 55 

plant photosynthesis and stomatal conductance using different response relationships 56 

to the cumulative O3 stomatal uptake. Applications of different schemes resulted in a 57 

wide range of reductions in gross primary productivity (GPP) by 2-12% globally with 58 

regional hotspots up to 20-30% (Lombardozzi et al., 2015; Unger et al., 2020; Zhou et 59 

al., 2024).  60 



 4 

The O3-induced inhibition in stomatal conductance decreases dry deposition and 61 

consequently enhances surface O3 concentrations (Clifton et al., 2020; Wesely and 62 

Hicks, 2000; Zhang et al., 2006). Using the Sitch et al. (2007) scheme with high O3 63 

damaging sensitivities in the ModelE2-YIBs (NASA GISS ModelE2 coupled with Yale 64 

Interactive terrestrial Biosphere model), Gong et al. (2020) revealed that O3-vegetation 65 

interactions increased regional O3 concentrations by 1.8 ppbv in the eastern U.S., 1.3 66 

ppbv in Europe, and 2.1ppbv in eastern China for the year 2010. As a comparison, Sadiq 67 

et al. (2017) found consistently stronger feedback on O3 concentrations in these polluted 68 

regions using the scheme of Lombardozzi et al (2012) embedded in the Community 69 

Earth System Model (CESM). Moreover, the inclusion of online O3-vegetation 70 

interactions in numerical models will also result in a greater loss of simulated land 71 

carbon assimilation due to the feedbacks of both ecosystems and surface O3. This is 72 

attributable to several factors. On one hand, O3 damages to leaf photosynthesis inhibit 73 

plant growth and decrease leaf area index (LAI), leading to higher reduction percentage 74 

in GPP compared to simulations without LAI changes (Yue et al., 2020). On the other 75 

hand, the O3 enhancement due to vegetation feedback may cause additional vegetation 76 

damage and result in further GPP losses (Lei et al., 2021). As a result, the O3-vegetation 77 

interactions should be considered in the global estimate of O3 damages to ecosystem 78 

functions. 79 

In addition to affecting surface O3, the O3-vegetation interaction can also alter the 80 

water and energy exchange between land and atmosphere through the modulation of 81 

stomatal conductance. For example, Lombardozzi et al. (2015) used the Community 82 

Land Model (CLM) and estimated that the cumulative uptake of O3 by the leaves 83 

resulted in reduction of 2.2% in transpiration but increase of 5.4% in runoff globally. 84 

Arnold et al. (2018) used CESM and found that plant exposure to O3 could decrease the 85 

land-air moisture fluxes and atmospheric humidity, which further reduced shortwave 86 

cloud forcing in polluted regions and induced widespread surface warming up to +1.5 87 

K. Two recent studies utilized the WRF-chem model and revealed considerable 88 

warming and the associated meteorological perturbations due to the O3-vegetation 89 

interactions in China (Zhu et al., 2022; Jin et al., 2023). However, all these modeling 90 
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studies applied the same O3 vegetation damage scheme proposed by Lombardozzi et al. 91 

(2012). It’s necessary to assess the climatic responses to O3-vegetation interactions 92 

using different schemes so as to explore the robust responses and the associated 93 

uncertainties.  94 

In this study, we quantified the global impacts of O3-vegetation interaction on 95 

climatic conditions and surface air pollutants during 2010s using the ModelE2-YIBs 96 

(Yue and Unger, 2015). This fully coupled framework was implemented with the semi-97 

mechanistic O3 damage scheme proposed by Sitch et al. (2007), which calculated 98 

aggregated O3 damage to photosynthesis based on varied sensitivities to instantaneous 99 

stomatal O3 uptake across eight plant functional types (PFTs). We performed sensitivity 100 

experiments to quantify the responses of surface air temperature and precipitation to 101 

O3-vegetation interaction. The feedbacks to aerosols and O3 concentrations were also 102 

examined.  103 

 104 

2 Method 105 

2.1 Model descriptions 106 

The ModelE2-YIBs is a fully coupled climate-carbon-chemistry model combining 107 

the NASA GISS ModelE2 with the YIBs vegetation model. ModelE2 is a general 108 

circulation model with the horizontal resolution of 2°×2.5° in latitude and longitude 109 

and 40 vertical layers up to 0.1 hPa. It dynamically simulates gas-phase chemistry (NOx 110 

- HOx - Ox - CO - CH4 - NMVOCs), aerosols (sulfate, nitrate, black and organic carbon, 111 

dust, and sea salt), and their interactions (Menon and Rotstayn, 2006). Both the physical 112 

and chemical processes are calculated every 0.5 h and the radiation module is called 113 

every 2.5 h. The radiation module includes direct and indirect aerosol radiative effects 114 

and accounts for absorption of multiple greenhouse gases (GHGs). For cloud optical 115 

parameters, it uses Mie scattering, ray tracing, and matrix theory (Schmidt et al., 2006). 116 

The model outperforms 20 other IPCC-class climate models in simulating surface solar 117 

radiation (Wild et al., 2013) and has been extensively validated for meteorological and 118 

hydrological variables against observations and reanalysis data (Schmidt et al., 2014).  119 

The YIBs model employs the well-established Farquhar model for leaf 120 
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photosynthesis and Ball-Berry model for stomatal conductance (Farquhar et al., 1980; 121 

Ball et al., 1987) as follows: 122 

𝐴!"! = 	min	(𝐽# , 𝐽$ , 𝐽%) (1) 

Here, the total leaf photosynthesis, denoted as 𝐴!"! (µmol m−2 [leaf] s−1), is calculated 123 

considering both C3 (Collatz et al., 1991) and C4 plants (Collatz et al., 1992). The 𝐴!"! 124 

is derived from the minimum value of the constraints. The ribulose-1,5-bisphosphate 125 

carboxylase (Rubisco) limited rate of carboxylation is 𝐽#:  126 

𝐽# = ,𝑉#&'( 	.
𝑐) −	𝛤∗

𝑐) +	𝐾#(1 + 𝑂)/𝐾")
7 																				for	C+	plant	

𝑉#&'(																																																																for	C,	plant
	 (2) 

The carboxylation rate restricted by the availability of light is 𝐽$: 127 

𝐽$ = ,
𝑎-$'. 	× 	𝑃𝐴𝑅	 × 	𝛼	 ×	.

𝑐) −	𝛤∗
𝑐) + 	2𝛤∗

7 										for	C+	plant

𝑎-$'. 	× 	𝑃𝐴𝑅	 × 	𝛼																																							for	C,	plant
	 (3) 

The export-limited rate for C3 plants and the phosphoenolpyruvate carboxylase (PEPC) 128 

limited rate of carboxylation for C4 plants are represented by 𝐽%: 129 

𝐽% = E
0.5	𝑉#&'(																																																											for	C+	plant

𝐾% 	× 	𝑉#&'( 	× 	
𝑐)
𝑃'!&

																																					for	C,	plant
	 (4) 

In these functions, 𝑉#&'( (µmol m−2 s−1) is the maximum carboxylation capacity. 𝑐) 130 

and 𝑂)  (Pa) represent the internal leaf CO2 and oxygen partial pressure. 𝛤∗  (Pa) 131 

denotes the CO2 compensation point, while 𝐾# and 𝐾" (Pa) are Michaelis–Menten 132 

constants for the carboxylation and oxygenation of Rubisco, respectively. The 133 

parameters 𝛤∗ , 𝐾# , and 𝐾"  vary with temperature based on the sensitivity of the 134 

vegetation to temperature (Q10 coefficient). 𝑃𝐴𝑅  (µmol m−2 s−1) is the absorbed 135 

photosynthetically active radiation, 𝑎-$'.  is leaf-specific light absorbance that 136 

considers sunlit and shaded leaves, and 𝛼 is quantum efficiency. 𝑃'!& (Pa) represents 137 

the ambient pressure. 𝐾% is set to 4000 as a constant following Oleson et al. (2010), to 138 

limit photosynthesis of C4 plants get saturated at lower CO2 concentrations. 139 

𝑔% = 	𝑚	 (0!"!	2	3#)	×	36
#$

 + 𝑏 (5) 

The stomatal conductance (𝑔%, mol [H2O] m−2 s−1) is linked to the variations of 𝐴!"! 140 

with parameters such as dark respiration rate (𝑅7, µmol m−2 s−1), relative humidity (𝑅𝐻), 141 
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and CO2 concentration at the leaf surface (𝑐%). The model simulates the biophysical 142 

processes of eight PFTs including tundra, C3/C4 grass, shrubland, deciduous broadleaf 143 

forest, evergreen broadleaf forest, evergreen needleleaf forest, and cropland. Different 144 

values are assigned to parameters m and b for each PFT (Table S1). The carbon uptake 145 

by the leaf is then accumulated and allocated to different organs to support the plant 146 

development with dynamical changes in LAI and tree growth.  147 

 148 

2.2 The O3-vegetation damage scheme 149 

The YIBs model employs a semi-mechanistic parameterization proposed by Sitch 150 

et al. (2007) to estimate the impact of O3 on photosynthesis through stomatal uptake. 151 

The scheme applies an undamaged factor (𝐹) (nmol m-2 s-1) to both 𝐴!"! and 𝑔% as 152 

follows:  153 

𝐴!"!7 =	𝐴!"! ∙ 𝐹 (6) 

𝑔%7 =	𝑔% ∙ 𝐹 (7) 

where 𝐴!"!7  and 𝑔%7  are the unaffected photosynthesis and stomatal conductance 154 

separately. The factor F is defined as: 155 

𝐹 = 	1 − 𝑎8 ∙ max	[𝐹9+ − 𝐹9+,#;)! , 0.0] (8) 

𝑎8 (mmol m-2 s-1) is the high O3 sensitivity coefficient, calibrated by Sitch et al. (2007) 156 

on data from field observations by Karlsson et al. (2004) and Pleijel et al. (2004) to 157 

represent ‘high’ sensitivity of relative species of each PFT.	𝐹9+,#;)! (nmol m-2 s-1) is the 158 

specific threshold for O3 damages, both of which varies with vegetation types (Table 159 

S1).  160 

𝐹9+ =	
[9%]

3&>	[
'(%
)$#

]
, (9) 

where [𝑂+] represents surface O3 concentrations, 𝑅' (s m-1) stands for aerodynamic 161 

resistance, which expresses turbulent transport efficiency in transferring sensible heat 162 

and water vapor between the land surface and a reference height. The constant 163 

𝑘9+=1.67 is the ratio of stomatal resistance for O3, estimated based on the theoretical 164 

stomatal resistance to water (Laisk et al., 1989). When plants are exposed to [O3] (Eq. 165 

9), 𝐴!"! and 𝑔% will decrease (Eq. 6 and Eq. 7) if the excess O3 enters leaves (Eq. 8). 166 
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The increased stomatal resistance acts to protect plants by reducing the O3 uptake of 167 

stomata. Consequently, the damage scheme describes both changes in photosynthetic 168 

rate and stomatal conductance. 169 

 170 

2.3 Experiments 171 

To explore the coupled O3-vegetation effect, we performed two simulations using 172 

the ModelE2-YIBs model. The control experiment “O3_offline” was conducted 173 

without the O3 damages to vegetation. As a comparison, the sensitivity experiment 174 

“O3_online” contained online O3-vegetation interaction with high O3 sensitivity. For 175 

both experiments, the anthropogenic emissions of 2010 (the average of 2005-2014) for 176 

8 species (BC, OC, CO, NH3, NOx, SO2, Alkenes, and Paraffin) from 8 economic 177 

sources (agriculture, energy, industry, transportation, resident, solvent, waste, and 178 

international shipping) and biomass burning source were collected from the Coupled 179 

Model Intercomparison Project phase 6 (CMIP6) (van Marle et al., 2017; Hoesly et al., 180 

2018). The ensemble mean of monthly sea surface temperature (SST) and sea ice 181 

fraction (SIC) simulated by 21 CMIP6 models during the time period 2005-2014 was 182 

employed as the boundary conditions. The cover fraction of 8 PFTs (Fig. S1) fixed at 183 

2010 were adopted from the land use harmonization (LUH2) dataset (Hurtt et al., 2020). 184 

For each time-slice simulation, the model was run for 30 years with all the input data 185 

fixed and the first 10 years are used as the spin up. We calculated the average of the last 186 

20 years and focused on the boreal summer season (June-July-August, JJA) when the 187 

interaction of vegetation and surface O3 reaches the maximum in one year (fig. S3). In 188 

order to show the uncertainty introduced by the internal variability of the model, all the 189 

related global/regional values are denoted as “mean/sum ± standard deviation of the 190 

last 20 model years”. We explored the climatic responses to O3-vegetation interactions 191 

as the differences between “O3_online” and “O3_offline” on the global scale with the 192 

focus over the hotspot regions such as eastern U.S. (30–40º N, 80–90 º W) and eastern 193 

China (22.5–38º N, 106–122º E). 194 

 195 

2.4 Data for model evaluation 196 



 9 

We evaluated the simulated air pollutants, carbon fluxes, and meteorological 197 

variables from ‘O3_offline’ run using observational and reanalysis datasets. The 198 

worldwide observations of the maximum daily 8-hour average O3 (MDA8 O3) 199 

concentrations were mainly collected from three regional networks: Air Quality 200 

Monitoring Network operated by Ministry of Ecology and Environment (AQMN-MEE) 201 

in China, the Clean Air Status and Trends Network (CASTNET) in the U.S., and the 202 

European Monitoring and Evaluation Programme (EMEP) in Europe. Observations 203 

used for validation beyond China, sourced from Sofen et al. (2016), are averaged over 204 

the period 2005-2014. This dataset encompasses 7288 station records worldwide and 205 

excludes the uncertainty associated with high mountain-top sites. For AQMN-MEE, the 206 

mean value of 2014-2018 was used due to its establishment in 2013. The simulated 207 

aerosol optical depth (AOD) and LAI were validated using satellite-based data from the 208 

Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals collection 5 209 

(Remer et al., 2005) (http://modis.gsfc.nasa.gov/) averaged for the years 2005-2014. 210 

The simulated GPP was evaluated against the data product upscaled from the 211 

FLUXNET eddy covariance measurements for 2009-2011 (Jung et al., 2011). The daily 212 

temperature at 2m (T2m) in 2005-2014 was obtained from the National Centers for 213 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 214 

reanalysis 1 (NCEP1) (Kalnay et al., 1996). For precipitation, we used the monthly data 215 

averaged in 2005-2014 from Global Precipitation Climatology Project (GPCP) 216 

(Huffman et al., 1997; Adler et al., 2018). All these datasets were interpolated to the 217 

same resolution as ModelE2-YIBs model. Root-mean-square-error (RMSE) and 218 

normalized mean biases (NMBs) were applied to quantify the deviations of simulations 219 

from observations: 220 

𝑅𝑀𝑆𝐸 = 	V?
@
∑ (𝑆) −	𝑂))A@
)B?                        (10) 221 

 𝑁𝑀𝐵 =	∑ (𝑆) −	𝑂))/∑ 𝑂) 	× 	100%@
)B?

@
)B?   (11) 

Here, Si and Oi represent the simulated and observed values, respectively. n denotes the 222 

total grid number used in the comparisons. 223 

 224 
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3. Results 225 

3.1 The control simulation and model evaluations 226 

We first evaluated the air pollutants simulated by the control simulation O3_offline 227 

of ModelE2-YIBs model (Fig. 1). Over a total of 503 grids with site-level O3 228 

measurements (Fig. 1b), the model replicated both the magnitude and spatial 229 

distribution of MDA8 O3, with correlation coefficient (r) of 0.59 and NMB of -2.54% 230 

(Fig. 1c). Simulated summertime surface MDA8 O3 was high in regions with large 231 

anthropogenic emissions, such as western Europe and eastern China (Ohara et al., 2007), 232 

as well as in central Africa with frequent fire emissions (van der Werf et al., 2017). On 233 

the global scale, the model yielded an average MDA8 O3 of 43.93 ppbv and 234 

observations showed an average of 44.72 ppbv over the same grids. However, the 235 

modeled result is overestimated over the North China Plain and slightly underestimated 236 

over the U.S., likely due to the biases in the emission inventories and predicted climate 237 

that drive the O3 production. Simulated AOD at 550 nm by O3_offline (Fig. 1d) showed 238 

similar spatial pattern as the satellite retrievals (Fig. 1e) with R=0.75 and NMB of -239 

7.35% globally (Fig. 1f). Both the simulations and observations showed AOD hotspots 240 

over North Africa and the Middle East where dust emissions dominate, and in northern 241 

India and eastern China where anthropogenic emissions are large (Feng et al., 2020).  242 

We then evaluated the simulated GPP and LAI by the control experiment for the 243 

boreal summer period (Fig. 2). Observations showed GPP hotspots over boreal forests 244 

such as eastern U.S., Eurasia, and East Asia and the tropical forests such as Amazon, 245 

central Africa, and Indonesia (Fig. 2b). The seasonal total GPP was estimated to be 246 

41.63Pg[C], which accounted for 35% of the annual amount. Simulations captured the 247 

observed GPP pattern on the global scale, with r = 0.64 and NMB = -7.81% over 2581 248 

grids (Fig. 2c), with underestimation in the tundra area and slight overestimation in the 249 

tropical rain forest and evergreen forest regions. The model simulated a seasonal total 250 

GPP of 38.69 Pg[C], equivalent to 34% of the annual amount. Simulated LAI showed 251 

similar patterns as GPP (Fig. 2d) and resembled observed LAI (Fig. 2e) with a spatial 252 

correlation r = 0.79 and a low NMB = -5.43% over 4435 grids globally (Fig. 2f).  253 

We further validated the simulated meteorology from O3_offline (Fig. S2). For 254 
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surface air temperature, the model (Fig. S2a) reproduced observed (Fig. S2b) pattern 255 

with RMSE of 3.21 °C and r of 0.99 against observations (Fig. S2c). For precipitation, 256 

the simulation (Fig. S2d) captures the observed spatial pattern (Fig. S2e) with NMB = 257 

17.26% and r = 0.75 (Fig. S2f). Overall, the model captures the spatial characteristics 258 

and magnitudes of air pollutants, biospheric parameters, and meteorological fields, 259 

making it a valuable tool for studying O3-vegetation interactions.  260 

 261 

3.2 O3 damage to terrestrial ecosystems 262 

We assessed the damaging effects of surface O3 to ecosystems due to online O3-263 

vegetation interactions (Fig. 3). The impacts of O3 on biospheric variables were mainly 264 

located in regions characterized by abundant vegetation cover and elevated O3 265 

concentrations. On the global scale, O3 induced the GPP reduction of -1.80±0.61 PgC 266 

yr-1 (-4.69±1.56%, Fig. 3a). This deleterious effect was more pronounced in specific 267 

regions, notably eastern China and eastern U.S., with significant GPP declines of -268 

25.40±1.90% and -20.14±5.02%, respectively, under high O3 sensitivity conditions (Fig. 269 

3a and Table S2). Meanwhile, stomatal conductance significantly decreased in the 270 

middle latitudes of Northern Hemisphere (Fig. 3b). The most substantial relative change 271 

of -30.62±4.30% was observed in eastern China, followed by -25.65±9.32% in the 272 

eastern U.S. (Fig. 3b and Table S2). Though there are positive responses in some 273 

regions, they are not dominant and hardly significant. These values were stronger than 274 

that for GPP (Fig. 3a), likely due to the climatic feedback to O3-vegetation interactions. 275 

The opening of plant stoma plays a crucial role in regulating the energy and water 276 

exchange between land surface and the atmosphere. The inhibition of stomatal 277 

conductance by surface O3 leads to the warmer (Fig. 4a) and drier (Fig. 4b) climate in 278 

those hotspot regions, resulting in even stronger inhibition effects on stomatal 279 

conductance. Following the changes in GPP, global LAI on average decreased by 280 

0.01±0.01 m2 m-2 (-0.62±0.84%) with regional maximums of -4.53±1.14% in eastern 281 

China and -5.87±3.11% in eastern U.S. (Table S2).  282 

 283 

3.3 Global climatic responses to O3-vegetation interactions 284 
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In response to the O3-induced inhibition of stomatal conductance, surface air 285 

temperature increased by 0.05±0.20ºC (Fig. 4a) while precipitation decreased by -286 

0.01±0.03 mm day-1 (Fig. 4b) on the global scale. The most significant change was the 287 

warming of 0.56±0.38°C and precipitation reduction of -0.79±1.05 mm day-1 (-288 

16.18±20.38%) in eastern China (Table S3), following the largest inhibition to stomatal 289 

conductance (Fig. 3b). Such warming and rainfall deficit also appeared in eastern U.S. 290 

and western Europe, where the O3-vegetation interactions were notable. The O3-291 

induced inhibition to stomatal conductance decreased latent heat flux (Fig. 4e) and the 292 

consequent precipitation (Fig. 4b) in those hotspot regions. Meanwhile, the reduction 293 

of latent heat flux promotes surface air temperature (Fig. 4a), resulting in the increase 294 

of sensible heat flux (Fig. 4f). Such warming was also reported in field experiments, 295 

where relatively high O3 exposure resulted in noticeable increases of canopy 296 

temperature along with reductions of transpiration (Bernacchi et al., 2011; VanLoocke 297 

et al., 2012). Globally, temperature and precipitation showed patchy responses with 298 

both positive and negative anomalies, suggesting that the regional hotspots of O3-299 

induced meteorological changes propagate to surrounding areas through atmospheric 300 

perturbations.  301 

We further examined the changes in air humidity and cloudiness. Surface relative 302 

humidity decreased by -0.18±0.53% globally with a similar pattern as that of 303 

precipitation (Fig. 4c). The most significant reductions were over eastern China and 304 

eastern U.S., where both the warming (Fig. 4a) and rainfall deficit (Fig. 4b) contributed 305 

to the drought. However, in the adjacent regions such as northern China and central 306 

U.S., both rainfall and surface relative humidity showed certain enhancement. These 307 

changes were associated with the regional increase of cloud cover (Fig. 4d). The 308 

sensible heat flux increased by 6.3±5.4 W m-2 (16.54±15.59%) and 7.12±3.86 W m-2 309 

(25.46±14.71%) in eastern U.S. and eastern China, respectively, suggesting a transfer 310 

of thermal energy from land to the atmosphere by O3-vegetation interactions (Fig. 4f 311 

and Table S3). The warming effect further triggered anomalous updrafts in the lower 312 

troposphere, represented by the changes in vertical velocity (Fig. 5), leading to 313 
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enhanced convection, reduced atmospheric stability, and consequently an increase in 314 

low-level cloudiness (Fig. 4d). However, despite the usual cooling effect associated 315 

with increased cloud cover due to reductions in radiation, in regions predominantly 316 

influenced by O3-vegetation interactions, this cooling effect was outweighed by the O3-317 

induced warming through inhibition of stomatal conductance. Therefore, temperatures 318 

exhibited an overall increase of 0.56±0.38°C in eastern China and 0.33±0.87 °C in the 319 

eastern U.S. (Table S3). 320 

 321 

3.4 Changes of air pollution by O3-vegetation interactions  322 

Changes in surface water and heat fluxes induced by O3-vegetation interactions 323 

could feed back to affect air pollutants such as O3 and aerosols. As Fig. 6a and Table 324 

S4 show, surface MDA8 O3 concentrations enhanced 1.46±3.02 ppbv in eastern China 325 

and 1.15±1.77 ppbv in eastern U.S. due to the decreased dry deposition following O3 326 

inhibition on stomatal conductance. It indicates that the high contemporary O3 pollution 327 

may worsen air quality through O3-vegetation interactions. However, negative O3 328 

changes were predicted in central U.S. and western China, where the increased rainfall 329 

dampened O3 through chemical reactions and wet deposition. On a global scale, surface 330 

MDA8 O3 showed a limited increase of 0.03±0.4 ppbv due to the offset between 331 

positive and negative feedbacks. The enhancement of O3 concentrations in polluted 332 

regions may exacerbate the warming effect of O3 as a greenhouse gas and cause 333 

additional damages to vegetation. For instance, offline O3 damages on GPP in eastern 334 

China and the eastern US are -0.52±0.03 Pg[C] (-24.98±0.91%) and -0.17±0.02 Pg[C] 335 

(-16.71±1.16%), respectively, smaller than those induced by O3-vegetation interactions 336 

(Table S2). 337 

Aerosols also exhibited evident changes by the O3-vegetation interactions. The 338 

AOD showed significant reductions over the hotspot regions such as eastern China and 339 

eastern U.S. (Fig. 6b). In the ModelE2-YIBs model, sulfate was especially sensitive to 340 

cloud which could enhance the aerosol scavenging through cloud water precipitation 341 

(Koch et al., 2006). The large enhancement of cloudiness removed sulfate more 342 

efficiently than other aerosol species, leading to an average decline of -1.94±1.67 μg 343 
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m−3 (-8.52±6.88%) in PM2.5 loading over eastern China (Fig. S4 and Table S4). 344 

Meanwhile, the reduction of surface relative humidity (Fig. 4c) in the regions with 345 

strong O3-vegetation interactions limited the hygroscopic growth of aerosols, leading 346 

to a more noticeable decrease in AOD (Petters and Kreidenweis, 2007; Pitchford et al., 347 

2007) by -0.06±0.05 (-14.67±16.75%) in eastern China (Table S4). The similar aerosol 348 

changes were found in eastern U.S. but with smaller reductions of PM2.5 by -0.27±0.36 349 

μg m−3 (-6.01±7.9%) and AOD by -0.01±0.01 (-8.15±9.38%) (Table S4). Beyond the 350 

key O3-vegetation coupling regions, positive but insignificant changes in AOD were 351 

predicted, leading to the moderate AOD changes on the global scale (Fig. 6b).  352 

 353 

4. Discussion and conclusions 354 

We examined the O3-vegetation feedback to climate and air pollution in the 2010s 355 

using the fully coupled climate-carbon-chemistry model ModelE2-YIBs. During boreal 356 

summer, surface O3 resulted in strong damages to GPP and inhibitions to stomatal 357 

conductance with regional hotspots over eastern China and eastern U.S. Consequently, 358 

surface transpiration was weakened, leading to decreased latent heat fluxes and relative 359 

humidity but increased surface air temperature. Meanwhile, the surface warming 360 

increased cloud cover by reducing atmospheric stability. However, the enhancement of 361 

cloudiness decreased surface temperature and promoted precipitation outside the key 362 

regions with intense O3-vegetation interactions. The O3-induced inhibition to stomatal 363 

conductance resulted in a localized increase in O3 concentrations. In contrast, the 364 

increased cloud cover and decreased relative humidity jointly reduced AOD in hotspot 365 

regions. On the global scale, the mean changes of both climate and air pollution were 366 

moderate due to the offset between the changes with opposite signs.  367 

Our predicted changes in water/heat fluxes by O3-vegetation interactions were 368 

consistent with previous studies (Lombardozzi et al., 2015; Arnold et al., 2018; Gong 369 

et al., 2020). For example, the simulations by Lombardozzi et al. (2015) revealed that 370 

surface O3 reduces global GPP by 8%-12% and transpiration by 2-2.4% with regional 371 

reductions up to 20% for GPP and 15% for transpiration in eastern China and U.S. 372 

These changes were in general consistent with our results though we predicted larger 373 
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reductions in transpiration than GPP due to O3-vegetation interactions. Using the same 374 

scheme as Lombardozzi et al. (2015), Sadiq et al. (2017) showed that O3-vegetation 375 

coupling induced the surface warming of 0.5-1ºC and O3 enhancement of 4-6 ppbv in 376 

eastern China and eastern U.S. The magnitude of these responses was much stronger 377 

than our predictions, likely because they considered the accumulation effect of O3. In 378 

contrast, the regional simulations by Jin et al. (2023) revealed that O3-vegetation 379 

coupling led to the increases of temperature up to 0.16°C and surface O3 up to 0.6 ppbv 380 

in eastern China, both of which were smaller than our predictions. The damage scheme 381 

they use, which depends on cumulative O3 uptake, omits the difference in impact on 382 

sunlit or shaded leaves and will overestimate the O3 damage on GPP compared to the 383 

scheme we use, which considers transient O3 flux (Cao et al., 2024). The discrepancies 384 

of O3-vegetation feedback using the same O3 damage schemes revealed the 385 

uncertainties from climate and chemistry models. Our predictions were within the range 386 

of previous estimates for both climatic and O3 changes.   387 

There were some limitations in our simulated O3-vegetation interactions. First, the 388 

semi-mechanistic O3 damage scheme we used in the study linked the damages to 389 

photosynthesis with those to stomatal conductance (Sitch et al., 2007), leading to 390 

stronger inhibition percentage in stomatal conductance than that in photosynthesis 391 

considering the O3-vegetation feedback. However, some observations showed that the 392 

damage to stomatal conductance occurred more slowly and might not be proportional 393 

to the decline of photosynthetic rates (Gregg et al., 2006; Lombardozzi et al., 2012). 394 

Second, observations have shown large variability of plant sensitivities to O3 damages. 395 

The Sitch et al. (2007) scheme employed the low to high ranges of sensitivity to indicate 396 

the inter-specific variabilities. In this study, we employed only the high O3 sensitivity 397 

to explore the maximum responses. The possible uncertainties due to varied O3 damage 398 

sensitivities deserved further investigations. Third, large-scale observations were not 399 

available to validate the simulated regional to global responses of climate and air 400 

pollutants. The O3 vegetation damage scheme was extensively validated against site-401 

level measurements of both photosynthesis (Yue and Unger, 2018) and stomatal 402 
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conductance (Yue et al., 2016). However, we were conservative about the derived 403 

global responses given that previous studies showed large discrepancies using the same 404 

O3 damage scheme but implemented in different climate and/or chemistry models 405 

( Lombardozzi et al., 2015; Sadiq et al., 2017; Jin et al., 2023). Furthermore, the 2°×2.5° 406 

resolution of current ModelE2-YIBs has limitation due to the high computational 407 

demands. However, high-resolution models exhibit improved simulations of extreme 408 

events (Chang et al., 2020; Ban et al., 2021), which have certain effect on O3-vegetation 409 

interactions (Mills et al., 2016; Lin et al., 2020). While chemical transport models with 410 

relatively coarse resolution can raise biases in simulated air pollutants, they still capture 411 

large-scale patterns similar to fine-resolution results and is reasonable compared to 412 

observational data (Wang et al., 2013; Li et al., 2016; Lei et al., 2020). Moreover, we 413 

omit the slow climatic feedback caused by air-sea interaction in the simulations. Studies 414 

have revealed that these interactions may result in different climatic perturbations from 415 

those simulations with fast responses of land surface alone (Yue et al., 2011). A dynamic 416 

ocean model is considered to enrich the future research. Meanwhile, this study does not 417 

isolate the different impacts of aerosols, even though the radiation module includes both 418 

direct and indirect radiative effects. We will investigate this further in the future by 419 

identifying the main processes. 420 

Despite these uncertainties, our simulations revealed considerable changes of both 421 

climate and air pollutants in response to O3-vegetation interactions. The most intense 422 

warming, dryness, and O3 enhancement were predicted in eastern China and eastern 423 

U.S., affecting the regional climate and threatening public health for these top two 424 

economic centers. In contrast, we for the first time revealed the reduction of aerosol 425 

loading in those hotspot regions, suggesting both positive and negative effects to air 426 

pollutants by O3-vegetation feedback. Such interactions should be considered in the 427 

Earth system models so as to better project future changes in climate and air pollutants 428 

following the anthropogenic interventions to both O3 precursor emissions and 429 

ecosystem functions.  430 

  431 
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 448 

Figure 1. Evaluation of the boreal summertime (June-August) air pollutants at the 449 
present day simulated by the ModelE2-YIBs model. Surface daily maximum 8-hour 450 
ozone (MDA8 O3; a-c) and aerosol optical depth (AOD; d-f) from the simulation 451 
O3_offline (a & d) and observations (b & e) are compared. The correlation coefficients 452 
(r), root mean square error (RMSE), normalized mean bias (NMB), and number of grid 453 
cells (n) for the comparisons are listed on the mean bias maps (c & f).   454 
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 455 

 456 

Figure 2. The same as Fig.1 but for gross primary productivity (GPP; a-c) and leaf area 457 
index (LAI; d-f).  458 
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  459 
Figure 3. Changes of boreal summertime biospheric variables induced by O3-460 
vegetation interactions at the present day. Results shown are changes of (a) GPP, (b) 461 
canopy conductance, and (c) LAI between simulations O3_online and O3_offline. 462 
Black dots denote areas with significant changes (p < 0.1).  463 
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  464 
Figure 4. Changes of boreal summertime meteorological fields by O3-vegetation 465 
interactions at the present day. Results shown are changes of (a) surface air temperature, 466 
(b) precipitation, (c) surface relative humidity, (d) low level cloudiness, (e) latent heat 467 
flux, and (f) sensible heat flux between simulations O3_online and O3_offline. For heat 468 
fluxes, positive values (shaded in red color) indicate the upward fluxes change. Black 469 
dots denote areas with significant changes (p < 0.1).  470 
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 471 

 472 
Figure 5. Vertical profile of vertical velocity. Results shown are changes of the vertical 473 
velocity in (a) Eastern China and (b) Eastern US between simulations O3_online and 474 
O3_offline. Solid red line denotes the value 0. Please notice the differences in the scales. 475 

476 
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  477 
Fig. 6. Changes of summertime atmospheric pollution caused by O3-vegetation 478 
interactions at present day. Results shown are changes of (a) O3, (b) AOD, and (c) PM2.5 479 
between O3_online and O3_offline. Black dots denote areas with significant changes 480 
(p < 0.1).  481 
  482 
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