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Abstract. The coupling between surface ozone (O3) and vegetation significantly 12 

influences regional to global climate. O3 uptake by plant stomata inhibits 13 

photosynthetic rate and stomatal conductance, impacting evapotranspiration through 14 

land surface ecosystems. Using thea climate-vegetation-chemistry coupled model (the 15 

NASA GISS ModelE2 coupled with Yale Interactive terrestrial Biosphere, or ModelE2-16 

YIBs model,), we assess the global climatic responses to O3-vegetation interactions 17 

during boreal summer of 2010sthe present day (2005-2014). High O3 pollution reduces 18 

stomatal conductance, resulting in the warmer and drier conditions worldwide. The 19 

most significant responses are found in the eastern U.S. and eastern China, where local 20 

latent heat flux decreases by -8.17% and -9.48%, respectively. Consequently, surface 21 

air temperature risesincreases by +0.33±0.87 °C and +0.56±0.38 °C, andrespectively. 22 

These temperature rises are accompanied by decreased latent heat and increased 23 

sensible heat flux rises by +16.54% and +25.46% in the two hotspotboth regions. The 24 

O3-vegetation interaction also affects atmospheric pollutants. Surface maximum daily 25 

8-hour average O3 concentrations increase by +1.2646±3.02 ppbv in eastern China and 26 

+0.981.15±1.77 ppbv in eastern U.S. due to the O3-induced inhibition of stomatal 27 

uptake. With reduced atmospheric stability following the warmer climate, increased 28 

cloudiness but decreased relative humidity jointly reduce aerosol optical depth 29 

(AOD)by -0.06±0.01 (-14.67±12.15%) over eastern China. This study suggests that 30 

vegetation feedback should be considered for a more accurate assessment of climatic 31 

perturbations caused by tropospheric O3.  32 
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1 Introduction 33 

Tropospheric ozone (O3), one of the most detrimental air pollutants (Myhre et al., 34 

2013), not only poses threats to human health (Norval et al., 2011; Nuvolone et al., 2018) 35 

but also induces phytotoxic effects to vegetation (Mills et al., 2007; Pleijel et al., 2007). 36 

When exposed to certain levels of O3, plant photosynthesis and stomatal conductance 37 

is inhibited due to the O3 oxidation of cellular, enzyme, and chlorophyll (Dizengremel, 38 

2001; Fiscus et al., 2005; Jolivet et al., 2016). Consequently, the carbon assimilation of 39 

terrestrial ecosystems is limited (Yue and Unger, 2014; Oliver et al., 2018) and the land-40 

air exchange rates of water and heat fluxes are altered (Lombardozzi et al., 2015).  41 

Experimental studies have shown that the excessive O3 exposure reduced both 42 

plant photosynthesis and stomatal conductance (Ainsworth et al., 2012; Lombardozzi 43 

et al., 2013). The reduction rates are dependent on the O3 stomatal fluxes as well as the 44 

damaging sensitivities that vary among different vegetation types (Nussbaum and 45 

Fuhrer, 2000; Karlsson et al., 2004; Pleijel et al., 2004). TraditionalSeveral exposure-46 

based indexes likesuch as accumulated hourly O3 concentrations over a threshold of 40 47 

ppb (AOT40) are widely and sum of all hourly average concentrations (SUM00) are 48 

used to assess O3-induced vegetation damage (Fuhrer et al., 1997). However, such 49 

statistical schemes fail; Paoletti et al., 2007). In addition, the flux-related PODy method 50 

(phytotoxic O3 dose above a threshold flux of y) is also widely applied to account 51 

forconsider the dynamic adjustment of vegetation physiological processes.stomatal 52 

conductance (Buker et al., 2015; Sicard et al., 2016). Taking into account the variability 53 

of plant sensitivities, different O3 damage schemes were proposed to quantify the O3 54 

impacts on land carbon assimilation from regional to global scales (Anav et al., 2011; 55 

Lam et al., 2023; Lei et al., 2020). For example, Sitch et al. (2007) calculated the 56 

simultaneous damages to both photosynthesis and stomatal conductance based on the 57 

instantaneous O3 stomatal uptake. In contrast, Lombardozzi et al. (2012) estimated the 58 

inconsistentdecoupled reductions in plant photosynthesis and stomatal conductance 59 

using different response relationships to the cumulative O3 stomatal uptake. 60 

Applications of different schemes resulted in a wide range of reductions in gross 61 

primary productivity (GPP) by 2-12% globally with regional hotspots up to 20-30% 62 



 

 4 

(Lombardozzi et al., 2015; Unger et al., 2020; Zhou et al., 2024).  63 

The O3-induced inhibition in stomatal conductance decreases dry deposition and 64 

consequently enhances surface O3 concentrations (Clifton et al., 2020; Wesely and 65 

Hicks, 2000; Zhang et al., 2006). Using the Sitch et al. (2007) scheme with high O3 66 

damaging sensitivities in the climate model ModelE2-YIBs,ModelE2-YIBs (NASA 67 

GISS ModelE2 coupled with Yale Interactive terrestrial Biosphere model), Gong et al. 68 

(2020) revealed that O3-vegetation interactions increased regional O3 concentrations by 69 

1.8 ppbv in the eastern U.S., 1.3 ppbv in Europe, and 2.1ppbv in eastern China for the 70 

year 2010. As a comparison, Sadiq et al. (2017) found a consistent butconsistently 71 

stronger positive feedback on O3 concentrations in these polluted regions using the 72 

scheme of Lombardozzi et al (2012) embedded in a different climate model. 73 

Inclusionthe Community Earth System Model (CESM). Moreover, the inclusion of 74 

online O3-vegetation interactions in numerical models will cause stronger damages 75 

toalso result in a greater loss of simulated land carbon assimilation due to the feedbacks 76 

of both ecosystemecosystems and surface O3. This is attributable to several factors. On 77 

one hand, theO3 damages to leaf photosynthesis inhibit plant growth and decrease leaf 78 

area index (LAI), leading to higher reduction percentage in GPP compared to 79 

simulations without LAI changes (Yue et al., 2020). On the other hand, the O3 80 

enhancement due to vegetation feedback may cause additional vegetation damage and 81 

result in further GPP losses (Lei et al., 2021). As a result, the O3-vegetation interactions 82 

should be considered in the global estimate of O3 damages to ecosystem functions. 83 

In addition to affecting surface O3, the O3-vegetation interaction can also alter the 84 

water and energy exchange between land and atmosphere. through the modulation of 85 

stomatal conductance. For example, Lombardozzi et al. (2015) used the Community 86 

Land Model (CLM) and estimated that the cumulative uptake of O3 by the leaves 87 

resulted in reduction of 2.2% in transpiration but increase of 5.4% in runoff globally. 88 

Arnold et al. (2018) used the Community Earth System Model (CESM)CESM and 89 

found that plant exposure to O3 could decrease the land-air moisture fluxes and 90 

atmospheric humidity, which further reduced shortwave cloud forcing in polluted 91 

regions and induced widespread surface warming up to +1.5 K. Two recent studies 92 
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utilized the WRF-chem model and revealed considerable warming and the associated 93 

meteorological perturbations due to the O3-vegetation interactions in China (Zhu et al., 94 

2022; Jin et al., 2023). However, all these modeling studies applied the same O3 95 

vegetation damage scheme proposed by Lombardozzi et al. (2012). It’s necessary to 96 

assess the climatic responses to O3-vegetation interactions using different schemes so 97 

as to explore the robust responses and the associated uncertainties.  98 

In this study, we quantified the global impacts of O3-vegetation interaction on 99 

climatic conditions and surface air pollutants during 2010s using the Earth system 100 

model NASA GISS ModelE2 coupled with Yale Interactive terrestrial Biosphere 101 

(ModelE2-YIBs) model (Yue and Unger, 2015). This fully coupled framework was 102 

implemented with the semi-mechanistic O3 damage scheme proposed by Sitch et al. 103 

(2007), which calculated aggregateaggregated O3 damage to photosynthesis based on 104 

varied sensitivities to instantinstantaneous stomatal O3 uptake foracross eight plant 105 

functional types (PFTs). We performed sensitivity experiments to quantify the 106 

responses of surface air temperature and precipitation to O3-vegetation interaction. The 107 

feedbacks to aerosols and O3 concentrations were also examined.  108 

 109 

2 Method 110 

2.1 Model descriptions 111 

The ModelE2-YIBs is a fully coupled climate-carbon-chemistry model combining 112 

the NASA GISS ModelE2 with the YIBs vegetation model. ModelE2 is a general 113 

circulation model with the horizontal resolution of 2°×2.5° in latitude and longitude 114 

and 40 vertical layers up to 0.1 hPa. It dynamically simulates gas-phase chemistry (NOx 115 

- HOx - Ox - CO - CH4 - NMVOCs), aerosols (sulfate, nitrate, black and organic carbon, 116 

dust, and sea salt), and their interactions (Menon and Rotstayn, 2006). Both the physical 117 

and chemical processes are calculated every 0.5 h and the radiation module is called 118 

every 2.5 h. The radiation module includes direct and indirect aerosol radiative effects 119 

and accounts for absorption of multiple greenhouse gases (GHGs). For cloud optical 120 

parameters, it uses Mie scattering, ray tracing, and matrix theory (Schmidt et al., 2006). 121 

The model outperforms 20 other IPCC-class climate models in simulating surface solar 122 
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radiation (Wild et al., 2013) and has been extensively validated for meteorological and 123 

hydrological variables against observations and reanalysis data (Schmidt et al., 2014).  124 

The YIBs model employs the well-established Farquhar model for leaf 125 

photosynthesis and Ball-Berry model for stomatal conductance (Farquhar et al., 1980; 126 

Ball et al., 1987) as follows: 127 

𝐴!"! = 	min	(𝐽# , 𝐽$ , 𝐽%) (1) 

Here, the total leaf photosynthesis, denoted as 𝐴!"! (µmol m−2 [leaf] s−1), is calculated 128 

considering both C3 (Collatz et al., 1991) and C4 plants (Collatz et al., 1992). The 𝐴!"! 129 

is derived from the minimum value of the constraints. The ribulose-1,5-bisphosphate 130 

carboxylase (Rubisco) limited rate of carboxylation is 𝐽#:  131 

𝑔% = 	𝑚	 ('!"!	)	*#)	×	*-
#$

 + 𝑏𝐽# =

/
𝑉#./0 	1

#%)	1∗
#%2	3'(425%/3")

2 																				for	C7	plant	

𝑉#./0																																																																for	C8	plant
	 

(2) 

  

The Here, the total leaf photosynthesis, denoted as 𝐴!"!, is calculated as the minimum 132 

value among the ribulose-1,5-bisphosphate carboxylase-limited rate of carboxylation 133 

(𝐽#), rate restricted by the availability of light-limited rate (𝐽$), and  is 𝐽$: 134 

𝐽$ = ;
𝑎9$/: 	× 	𝑃𝐴𝑅	 × 	𝛼	 ×	@

𝑐; −	𝛤∗
𝑐; + 	2𝛤∗

F 										for	C7	plant

𝑎9$/: 	× 	𝑃𝐴𝑅	 × 	𝛼																																							for	C8	plant
	 (3) 

The export-limited rate (𝐽%). for C3 plants and the phosphoenolpyruvate carboxylase 135 

(PEPC) limited rate of carboxylation for C4 plants are represented by 𝐽%: 136 

𝐽% = /
0.5	𝑉#./0																																																											for	C7	plant

𝐾% 	× 	𝑉#./0 	× 	
𝑐;
𝑃/!.

																																					for	C8	plant
	 (4) 

In these functions, 𝑉#./0 (µmol m−2 s−1) is the maximum carboxylation capacity. 𝑐; 137 

and 𝑂;  (Pa) represent the internal leaf CO2 and oxygen partial pressure. 𝛤∗  (Pa) 138 

denotes the CO2 compensation point, while 𝐾# and 𝐾" (Pa) are Michaelis–Menten 139 

constants for the carboxylation and oxygenation of Rubisco, respectively. The 140 

parameters 𝛤∗ , 𝐾# , and 𝐾"  vary with temperature based on the sensitivity of the 141 

vegetation to temperature (Q10 coefficient). 𝑃𝐴𝑅  (µmol m−2 s−1) is the absorbed 142 
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photosynthetically active radiation, 𝑎9$/:  is leaf-specific light absorbance that 143 

considers sunlit and shaded leaves, and 𝛼 is quantum efficiency. 𝑃/!. (Pa) represents 144 

the ambient pressure. 𝐾% is set to 4000 as a constant following Oleson et al. (2010), to 145 

limit photosynthesis of C4 plants get saturated at lower CO2 concentrations. 146 

𝑔% = 	𝑚	 ('!"!	)	*#)	×	*-
#$

 + 𝑏 (5) 

The stomatal conductance (𝑔%), mol [H2O] m−2 s−1) is linked to the variations of 𝐴!"! 147 

with parameters such as dark respiration rate (𝑅=),, µmol m−2 s−1), relative humidity 148 

(𝑅𝐻 ), and CO2 concentration at the leaf surface ( 𝑐% ). The model simulates the 149 

biophysical processes of eight PFTs including tundra, C3/C4 grass, shrubland, deciduous 150 

broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, and cropland. 151 

Different values are assigned to parameters m and b for each PFT (Table S1). The 152 

carbon uptake by the leaf is then accumulated and allocated to different organs to 153 

support the plant development with dynamical changes in LAI and tree growth.  154 

 155 

2.2 The O3-vegetation damage scheme 156 

The YIBs model employs a semi-mechanistic parameterization proposed by Sitch 157 

et al. (2007) to estimate the impact of O3 on photosynthesis through stomatal uptake. 158 

The scheme applies an undamaged factor (𝐹) (nmol m-2 s-1) to both 𝐴!"! and 𝑔% as 159 

follows:  160 

𝐴!"!= =	𝐴!"! ∙ 𝐹 (36) 

𝑔%= =	𝑔% ∙ 𝐹 (47) 

where 𝐴!"!=  and 𝑔%=  are the unaffected photosynthesis and stomatal conductance 161 

separately. The factor F is defined as: 162 

𝐹 = 	1 − 𝑎> ∙ max	[𝐹57 − 𝐹57,#@;! , 0.0] (58) 

𝑎> (mmol m-2 s-1) is the high O3 sensitivity coefficient, calibrated by Sitch et al. (2007) 163 

on data from field observations by Karlsson et al. (2004) and Pleijel et al. (2004) to 164 

represent ‘high’ sensitivity of relative species of each PFT.	𝐹57,#@;! (nmol m-2 s-1) is the 165 

specific threshold for O3 damages, both of which varies with vegetation types (Table 166 

S1).  167 
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𝐹57 =	
[5(]

*)2	[
*+(
,$#

]
, (69) 

where [𝑂7]  represents surface O3 concentrations, 𝑅/  (s m-1) stands for the 168 

aerodynamic and boundary layer resistance., which expresses turbulent transport 169 

efficiency in transferring sensible heat and water vapor between the land surface and a 170 

reference height. The constant 𝑘57=1.67 is the ratio of stomatal resistance for O3, 171 

estimated based on the theoretical stomatal resistance to that for water. water (Laisk et 172 

al., 1989). When plants are exposed to [O3] (Eq. 9), 𝐴!"! and 𝑔% will decrease (Eq. 6 173 

and Eq. 7) if the excess O3 enters leaves (Eq. 8). The increased stomatal resistance acts 174 

to protect plants by reducing the O3 uptake of stomata. Consequently, the damage 175 

scheme describes both changes in photosynthetic rate and stomatal conductance. 176 

 177 

2.3 Experiments 178 

To explore the coupled O3-vegetation effect, we performed two sets of simulations 179 

using the ModelE2-YIBs model. The control experiment “10NO3O3_offline” was 180 

conducted without the O3 damages to vegetation. As a comparison, the sensitivity 181 

experiment “10HO3O3_online” contained online O3-vegetation interaction with high 182 

O3 sensitivity. For both experiments, the 2010s anthropogenic emissions of 2010 (the 183 

average of 2005-2014) for 8 species (BC, OC, CO, NH3, NOx, SO2, Alkenes, and 184 

Paraffin) from 8 economic sources (agriculture, energy, industry, transportation, 185 

resident, solvent, waste, and international shipping) and biomass burning source were 186 

collected from the Coupled Model Intercomparison Project phase 6 (CMIP6) (van 187 

Marle et al., 2017; Hoesly et al., 2018). The ensemble mean of monthly sea surface 188 

temperature (SST) and sea ice fraction (SIC) simulated by 21 CMIP6 models during 189 

the time period 2005-2014 was employed as the boundary conditions. The cover 190 

fraction of 8 PFTs (Fig. S1) fixed at 2010 were adopted from the land use harmonization 191 

(LUH2) dataset (Hurtt et al., 2020). For each time-slice simulation, the model was run 192 

for 30 years with all the input data fixed and the first 10 years are used as the spin up. 193 

We calculated the average of the last 20 years and focused on the boreal summer season 194 

(June-July-August, JJA) when the interaction of vegetation and surface O3 reaches the 195 
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maximum in one year. (fig. S3). In order to show the uncertainty introduced by the 196 

internal variability of the model, all the related global/regional values are denoted as 197 

“mean/sum ± standard deviation of the last 20 model years”. We explored the climatic 198 

responses to O3-vegetation interactions as the differences between “10HO3O3_online” 199 

and “10NO3O3_offline” on the global scale with the special focus over the hotspot 200 

regions such as eastern U.S. (30–40º N, 80–90 º W) and eastern China (22.5–38º N, 201 

106–122º E). 202 

 203 

2.4 Data for evaluationsmodel evaluation 204 

We evaluated the simulated air pollutants, carbon fluxes, and meteorological 205 

variables from ‘O3_offline’ run using observational and reanalysis datasets. The 206 

worldwide observations of O3the maximum daily 8-hour average O3 (MDA8 O3) 207 

concentrations were mainly collected from three regional networks: Air Quality 208 

Monitoring Network operated by Ministry of Ecology and Environment (AQMN-MEE) 209 

in China, the Clean Air Status and Trends Network (CASTNET) in the U.S., and the 210 

European Monitoring and Evaluation Programme (EMEP) in Europe. For the latter two 211 

networks, we chose the average over 2009-2011, while forObservations used for 212 

validation beyond China, sourced from Sofen et al. (2016), are averaged over the period 213 

2005-2014. This dataset encompasses 7288 station records worldwide and excludes the 214 

uncertainty associated with high mountain-top sites. For AQMN-MEE, the mean value 215 

of 2014-2018 was used due to its establishment in 2013. The simulated aerosol optical 216 

depth (AOD) wasand LAI were validated using satellite-based data from the Moderate 217 

Resolution Imaging Spectroradiometer (MODIS) retrievals collection 5 (Remer et al., 218 

2005) (http://modis.gsfc.nasa.gov/) averaged for the years 2009-20112005-2014. The 219 

simulated GPP was evaluated against the data product upscaled from the FLUXNET 220 

eddy covariance measurements for 2009-2011 (Jung et al., 20092011). The daily 221 

temperature at 2m (T2m) in 2009-20112005-2014 was obtained from the National 222 

Centers for Environmental Prediction/National Center for Atmospheric Research 223 

(NCEP/NCAR) reanalysis 1 (NCEP1) (Kalnay et al., 1996). For precipitation, we used 224 

the monthly data averaged in 2005-2014 from Global Precipitation Climatology Project 225 
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(GPCP) (Huffman et al., 1997; Adler et al., 2018). All these datasets were interpolated 226 

to the same resolution as ModelE2-YIBs model. NormalizedRoot-mean-square-error 227 

(RMSE) and normalized mean biases (NMBs) were applied to quantify the deviations 228 

of simulations from observations as follows: 229 

𝑅𝑀𝑆𝐸 = 	W4
C
∑ (𝑆; −	𝑂;)DC
;E4                        (10) 230 

 𝑁𝑀𝐵 =	∑ (𝑆; −	𝑂;)/∑ 𝑂; 	×C
;

C
;

	100%𝑁𝑀𝐵 =	∑ (𝑆; −	𝑂;)/∑ 𝑂; 	×C
;E4

C
;E4

	100%  

(711) 

Here, Si and Oi represent the simulated and observed values, respectively. n denotes the 231 

total grid number used in the comparisons. 232 

 233 

3. Results 234 

3.1 Model The control simulation and model evaluations 235 

We first evaluated the air pollutants simulated by the control simulation O3_offline 236 

of ModelE2-YIBs model (Fig. 1). Over a total of 491503 grids with site-level O3 237 

measurements (Fig. 1b), the model adequately replicated both the magnitude and spatial 238 

distribution of the maximum daily 8-hour average (MDA8) O3 concentrations ([ O3]),, 239 

with correlation coefficient (r) of 0.5859 and NMB of -1.272.54% (Fig. 1c). Simulated 240 

summertime surface [MDA8 O3] was high in regions with large anthropogenic 241 

emissions, such as western Europe and eastern China (Ohara et al., 2007), as well as in 242 

central Africa with frequent fire emissions (van der Werf et al., 2017). On the global 243 

scale, the model yielded an average [MDA8 O3] of 44.3643.93 ppbv and observations 244 

showed an average of 44.5772 ppbv over the same grids. However, the modeled result 245 

is overestimated over the North China Plain and slightly underestimated over the U.S.., 246 

likely due to the biases in the emission inventories and predicted climate that drive the 247 

O3 production. Simulated AOD at 550 nm by O3_offline (Fig. 1d) showed similar 248 

spatial pattern as the satellite retrievals (Fig. 1e) with a high R=0.7775 and low NMB 249 

of -6.277.35% globally (Fig. 1f). Both the simulations and observations showed AOD 250 

hotspots over North Africa and the Middle East where dust emissions dominate, and in 251 
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northern India and eastern China where anthropogenic emissions are large. (Feng et al., 252 

2020).  253 

We then evaluated the simulated GPP and LAI by the control experiment for the 254 

boreal summer period (Fig. 2). Observations showed GPP hotspots over boreal forests 255 

such as eastern U.S., Eurasia, and East Asia and the tropical forests such as Amazon, 256 

central Africa, and Indonesia (Fig. 2b). The seasonal total GPP was estimated to be 257 

41.63Pg[C], which accounted for 35% of the annual amount. Simulations well captured 258 

the observed GPP pattern on the global scale, with r = 0.6364 and NMB = -12.447.81% 259 

over 2581 grids (Fig. 2c), with underestimation in the tundra area and slight 260 

overestimation in the tropical rain forest and evergreen forest regions. The model 261 

simulated a seasonal total GPP of 36.4538.69 Pg[C], equivalent to 34% of the annual 262 

amount. Simulated LAI showed similar patterns as GPP (Fig. 2d) and resembled 263 

observed LAI (Fig. 2e) with a high spatial correlation r = 0.79 and a low NMB = -264 

5.1943% over 4435 grids globally (Fig. 2f).  265 

We further validated the simulated meteorology from O3_offline (Fig. S2). For 266 

surface air temperature, the model (Fig. S2a) reproduced observed (Fig. S2b) pattern 267 

with low NMBRMSE of 8.49%3.21 °C and high r of 0.99 against observations (Fig. 268 

S2c). For precipitation, both simulationsthe simulation (Fig. S2d) and 269 

observationscaptures the observed spatial pattern (Fig. S2e) showed high values in the 270 

tropical oceans with NMB = 16.9117.26% and r = 0.74 between them75 (Fig. S2f). 271 

Overall, the model showed good performance in the simulationscaptures the spatial 272 

characteristics and magnitudes of air pollutants, biospheric parameters, and 273 

meteorological fields, and providedmaking it a usefulvaluable tool for studying the O3-274 

vegetation interactions.  275 

 276 

3.2 O3 damage to terrestrial ecosystems 277 

We assessed the damaging effects of surface O3 to ecosystems (Fig.due to online 278 

O3-vegetation interactions (Fig. 3). The impacts of O3 on biospheric variables were 279 

mainly located in regions characterized by abundant vegetation cover and elevated O3 280 

concentrations. On the global scale, O3 induced the GPP reduction of -1.80±0.8761 PgC 281 
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yr-1 (-3.094.69±1.56%, Fig. 3a). This deleterious effect was more pronounced in 282 

specific regions, notably eastern China and eastern U.S., with significant GPP declines 283 

of -18.4325.40±1.90% and -16.1220.14±5.02%, respectively, under high O3 sensitivity 284 

conditions (Fig. 3a and Table S2). Meanwhile, stomatal conductance significantly 285 

decreased in the middle latitudes of Northern Hemisphere (Fig. 3b). The most 286 

substantial relative change of -30.62±4.30% was observed in eastern China, followed 287 

by -25.65±9.32% in the eastern U.S. (Fig. 3b and Table S2). Though there are positive 288 

responses in some regions, they are not dominant and hardly significant. These values 289 

were stronger than that for GPP (Fig. 3a), likely due to the climatic feedback to O3-290 

vegetation interactions. The opening of plant stoma plays a crucial role in regulating 291 

the energy and water exchange between land surface and the atmosphere. The inhibition 292 

of stomatal conductance by surface O3 leads to the warmer (Fig. 4a) and drier (Fig. 4b) 293 

climate in those hotspot regions, resulting in even stronger inhibition effects on stomatal 294 

conductance. Following the changes in GPP, global LAI on average decreased by 295 

0.01±0.01 m2 m-2 (-0.62±0.84%) with regional maximums of -4.53±1.14% in eastern 296 

China and -5.87±3.11% in eastern U.S. (Table S2).  297 

 298 

3.3 Global climatic responses to O3-vegetation interactions 299 

In response to the O3-induced inhibition of stomatal conductance, surface air 300 

temperature increased by 0.05ºC05±0.20ºC (Fig. 4a) while precipitation decreased by 301 

-0.01±0.03 mm day-1 (Fig. 4b) on the global scale. The most significant change was the 302 

warming of 0.56±0.38°C and precipitation reduction of -0.79±1.05 mm day-1 (-303 

16.18±20.38%) in eastern China (Table S3), following the largest inhibition to stomatal 304 

conductance (Fig. 3b). Such warming and rainfall deficit also appeared in eastern U.S. 305 

and western Europe, where the O3-vegetation interactions were notable. The O3-306 

induced inhibition to stomatal conductance decreased latent heat flux (Fig. 4e) and the 307 

consequent precipitation (Fig. 4b) in those hotspot regions. Meanwhile, the reduction 308 

of latent heat flux promotes surface air temperature (Fig. 4a), resulting in the increase 309 

of sensible heat flux (Fig. 4f). Such warming was also reported in field experiments, 310 



 

 13 

where relatively high O3 exposure resulted in noticeable increases of canopy 311 

temperature along with reductions of transpiration (Bernacchi et al., 2011; VanLoocke 312 

et al., 2012). Globally, temperature and precipitation showed patchy responses with 313 

both positive and negative anomalies, suggesting that the regional hotspots of O3-314 

induced meteorological changes propagate to surrounding areas through atmospheric 315 

perturbations.  316 

We further examined the changes in air humidity and cloudiness. Surface relative 317 

humidity decreased by -0.18±0.53% globally with a similar pattern as that of 318 

precipitation (Fig. 4c). The most significant reductions were over eastern China and 319 

eastern U.S., where both the warming (Fig. 4a) and rainfall deficit (Fig. 4b) contributed 320 

to the drought. However, in the adjacent regions such as northern China and central 321 

U.S., both rainfall and surface relative humidity showed certain enhancement. These 322 

changes were associated with the regional increase of cloud cover (Fig. 4d). The 323 

sensible heat flux increased by 6.3±5.4 W m-2 (16.54±15.59%) and 7.12±3.86 W m-2 324 

(25.46±14.71%) in eastern U.S. and eastern China, respectively, suggesting a transfer 325 

of thermal energy from land to the atmosphere by O3-vegetation interactions (Fig. 4f 326 

and Table S3). The warming effect further triggered anomalous updrafts in the lower 327 

troposphere, represented by the changes in vertical velocity (Fig. 5), leading to 328 

enhanced convection, reduced atmospheric stability, and consequently an increase in 329 

low-level cloudiness (Fig. 4d). However, despite the usual cooling effect associated 330 

with increased cloud cover due to reductions in radiation, in regions predominantly 331 

influenced by O3-vegetation interactions, this cooling effect was outweighed by the O3-332 

induced warming through inhibition of stomatal conductance. Therefore, temperatures 333 

exhibited an overall increase of 0.56 ±0.38°C in eastern China and 0.33±0.87 °C in the 334 

eastern U.S. (Table S3). 335 

 336 

3.4 Changes of air pollution by O3-vegetation interactions  337 

Changes in surface water and heat fluxes induced by O3-vegetation interactions 338 

could feed back to affect air pollutants such as O3 and aerosols. As Fig. 6a and Table 339 

S4 show, surface MDA8 O3 concentrations enhanced 1.2646±3.02 ppbv in eastern 340 
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China and 0.981.15±1.77 ppbv in eastern U.S. due to the decreased dry deposition 341 

following O3 inhibition on stomatal conductance. It indicates that the high 342 

contemporary O3 pollution may worsen air quality through O3-vegetation interactions. 343 

However, negative O3 changes were predicted in central U.S. and western China, where 344 

the increased rainfall dampened O3 through chemical reactions and wet deposition. On 345 

a global scale, surface MDA8 O3 showed a limited increase of 0.0203±0.4 ppbv due to 346 

the offset between positive and negative feedbacks. The enhancement of O3 347 

concentrations in polluted regions may exacerbate the warming effect of O3 as a 348 

greenhouse gas and cause additional damages to vegetation. For instance, offline O3 349 

damages on GPP in eastern China and the eastern US are -0.52±0.03 Pg[C] (-350 

24.98±0.91%) and -0.17±0.02 Pg[C] (-16.71±1.16%), respectively, smaller than those 351 

induced by O3-vegetation interactions (Table S2). 352 

Aerosols also exhibited evident changes by the O3-vegetation interactions. The 353 

AOD showed significant reductions over the hotspot regions such as eastern China and 354 

eastern U.S. (Fig. 6b). In the ModelE2-YIBs model, sulfate was especially sensitive to 355 

cloud which could enhance the aerosol scavenging through cloud water precipitation 356 

(Koch et al., 2006). The large enhancement of cloudiness removed sulfate more 357 

efficiently than other aerosol species, leading to an average decline of -1.94±1.67 μg 358 

m−3 (-8.52±6.88%) in PM2.5 loading over eastern China (Fig. S3S4 and Table S4). 359 

Meanwhile, the reduction of surface relative humidity (Fig. 4c) in the regions with 360 

strong O3-vegetation interactions limited the hygroscopic growth of aerosols, leading 361 

to a more noticeable decrease in AOD (Petters and Kreidenweis, 2007; Revised 362 

algorithm for estimating light extinction from IMPROVE particle speciation data, 363 

2023Pitchford et al., 2007) by -0.06±0.05 (-14.67±16.75%) in eastern China (Table S4). 364 

The similar aerosol changes were found in eastern U.S. but with smaller reductions of 365 

PM2.5 by -0.27±0.36 μg m−3 (-6.01±7.9%) and AOD by -0.01±0.01 (-8.2515±9.38%) 366 

(Table S4). Beyond the key O3-vegetation coupling regions, positive but insignificant 367 

changes in AOD were predicted, leading to the moderate AOD changes on the global 368 

scale (Fig. 6b).  369 

 370 
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4. ConclusionsDiscussion and discussionconclusions 371 

We examined the O3-vegetation feedback to climate and air pollution in the 2010s 372 

using the fully coupled climate-carbon-chemistry model ModelE2-YIBs. During boreal 373 

summer, surface O3 resulted in strong damages to GPP and inhibitions to stomatal 374 

conductance with regional hotspots over eastern China and eastern U.S. Consequently, 375 

surface transpiration was weakened, leading to decreased latent heat fluxes and relative 376 

humidity but increased surface air temperature. Meanwhile, the surface warming 377 

increased cloud cover by reducing atmospheric stability. TheHowever, the 378 

enhancement of cloudiness further decreased surface temperature and promoted 379 

precipitation nearbyoutside the key regions with intense O3-vegetation interactions. The 380 

O3-induced inhibition to stomatal conductance resulted in a localized increase in O3 381 

concentrations. In contrast, the increased cloud cover and decreased relative humidity 382 

jointly reduced AOD in hotspot regions. On the global scale, the mean changes of both 383 

climate and air pollution were moderate due to the offset between the changes with 384 

opposite signs.  385 

Our predicted changes in water/heat fluxes by O3-vegetation interactions were 386 

consistent with previous studies (Lombardozzi et al., 2015; Arnold et al., 2018; Gong 387 

et al., 2020). For example, the simulations by Lombardozzi et al. (2015) revealed that 388 

surface O3 reduces global GPP by 8%-12% and transpiration by 2-2.4% with regional 389 

reductions up to 20% for GPP and 15% for transpiration in eastern China and U.S. 390 

These changes were in general consistent with our results though we predicted larger 391 

reductions in transpiration than GPP due to O3-vegetation interactions. Using the same 392 

scheme as Lombardozzi et al. (2015), Sadiq et al. (2017) showed that O3-vegetation 393 

coupling induced the surface warming of 0.5-1ºC and O3 enhancement of 4-6 ppbv in 394 

eastern China and eastern U.S. The magnitude of these responses was much stronger 395 

than our predictions, likely because they considered the accumulation effect of O3. In 396 

contrast, the regional simulations by Jin et al. (2023) revealed that O3-vegetation 397 

coupling led to the increases of temperature up to 0.16°C and surface O3 up to 0.6 ppbv 398 

in eastern China, both of which were smaller than our predictions. The damage scheme 399 
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they use, which depends on cumulative O3 uptake, omits the difference in impact on 400 

sunlit or shaded leaves and will overestimate the O3 damage on GPP compared to the 401 

scheme we use, which considers transient O3 flux (Cao et al., 20232024). The 402 

discrepancies of O3-vegetation feedback using the same O3 damage schemes revealed 403 

the uncertainties from climate and chemistry models. Our predictions were within the 404 

range of previous estimates for both climatic and O3 changes.   405 

There were some limitations in our simulated O3-vegetation interactions. First, the 406 

semi-mechanistic O3 damage scheme we used in the study linked the damages to 407 

photosynthesis with those to stomatal conductance (Sitch et al., 2007), leading to 408 

stronger inhibition percentage in stomatal conductance than that in photosynthesis 409 

considering the O3-vegetation feedback. However, some observations showed that the 410 

damage to stomatal conductance occurred more slowly and might not be proportional 411 

to the decline of photosynthetic rates (Gregg et al., 2006; Lombardozzi et al., 2012). 412 

Second, observations have shown large variability of plant sensitivities to O3 damages. 413 

The Sitch et al. (2007) scheme employed the low to high ranges of sensitivity to indicate 414 

the inter-specific variabilities. In this study, we employed only the high O3 sensitivity 415 

to explore the maximum responses. The possible uncertainties due to varied O3 damage 416 

sensitivities deserved further investigations. Third, large-scale observations were not 417 

available to validate the simulated regional to global responses of climate and air 418 

pollutants. The O3 vegetation damage scheme was extensively validated against site-419 

level measurements of both photosynthesis (Yue and Unger, 2018) and stomatal 420 

conductance (Yue et al., 2016). However, we were conservative about the derived 421 

global responses given that previous studies showed large discrepancies using the same 422 

O3 damage scheme but implemented in different climate and/or chemistry models 423 

( Lombardozzi et al., 2015; Sadiq et al., 2017; Jin et al., 2023). Furthermore, the 2°×2.5° 424 

resolution of current ModelE2-YIBs has limitation due to the high computational 425 

demands. Ito et al. (2020) shows that the ModelE2.1 with fixed vegetation traits 426 

reproduces carbon fluxes well, and that the model results are involved in the CMIP6 427 

Coupled Climate-Carbon Cycle MIP (C4MIP). However, analysis of the climate model 428 

shows that high-resolution exhibitsmodels exhibit improved simulations of extreme 429 
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events (Chang et al., 2020; Ban et al., 2021), and the application ofwhich have certain 430 

effect on O3-vegetation interactions (Mills et al., 2016; Lin et al., 2020). While chemical 431 

transport model shows thatmodels with relatively coarse resolution can raise biases in 432 

simulated air pollutants, though it captures thethey still capture large-scale general 433 

pattern almost the same aspatterns similar to fine-resolution results and is reasonable as 434 

compared to observational data (Wang et al., 2013; Li et al., 2016; Lei et al., 2020). 435 

Moreover, we omit the slow climatic feedback caused by air-sea interaction in the 436 

simulations. Studies have revealed that these interactions may result in different 437 

climatic perturbations from those simulations with fast responses of land surface alone 438 

(Yue et al., 2011). A dynamic ocean model is considered to enrich the future research. 439 

Meanwhile, this study does not isolate the different impacts of aerosols, even though 440 

the radiation module includes both direct and indirect radiative effects. We will 441 

investigate this further in the future by identifying the main processes. 442 

Despite these uncertainties, our simulations revealed considerable changes of both 443 

climate and air pollutants in response to O3-vegetation interactions. The most intense 444 

warming, dryness, and O3 enhancement were predicted in eastern China and eastern 445 

U.S., affecting the regional climate and threatening public health for these top two 446 

economic centers. In contrast, we for the first time revealed the reduction of aerosol 447 

loading in those hotspot regions, suggesting both positive and negative effects to air 448 

pollutants by O3-vegetation feedback. Such interactions should be considered in the 449 

Earth system models so as to better project future changes in climate and air pollutants 450 

following the anthropogenic interventions to both O3 precursor emissions and 451 

ecosystem functions.  452 

  453 
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 471 

 472 

Figure 1. Evaluation of the boreal summertime (June-August) air pollutants in 2010sat 473 
the present day simulated by the ModelE2-YIBs model. Surface daily maximum 8-hour 474 
ozone (MDA8 O3, upper; a-c) and aerosol optical depth (AOD, bottom; d-f) from the 475 
simulation 10NO3 (leftO3_offline (a & d) and observations (middleb & e) are 476 
compared. The correlation coefficients (r), root mean square error (RMSE), normalized 477 
mean bias (NMB), and number of grid cells (n) for the comparisons are listed on the 478 
scatter plots (e & f). The dashed line denotes the 1 : 1 ratio. The red line is the linear 479 
regression between the simulation and observation.mean bias maps (c & f).   480 
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 481 

 482 
 483 

 484 

Figure 2. The same as Fig.1 but for gross primary productivity (GPP, upper panels; a-485 
c) and leaf area index (LAI, bottom panels; d-f).  486 
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  488 

Figure 3. Changes of boreal summertime biospheric variables induced by O3 damages 489 
in 2010s.-vegetation interactions at the present day. Results shown are changes of (a) 490 
GPP, (b) canopy conductance, and (c) LAI between simulations 10HO3O3_online and 491 
10NO3O3_offline. Black dots denote areas with significant changes (p < 0.1). Please 492 
notice the differences in the color scales.  493 
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  495 

Figure 4. Changes of boreal summertime meteorological fields by ozoneO3-vegetation 496 
interactions in 2010sat the present day. Results shown are changes of (a) surface air 497 
temperature, (b) precipitation, (c) surface relative humidity, (d) low level cloudiness, 498 
(e) latent heat flux, and (f) sensible heat flux between simulations 10HO3O3_online 499 
and 10NO3O3_offline. For heat fluxes, positive values (shaded in red color) indicate 500 
the upward fluxes change. Black dots denote areas with significant changes (p < 0.1). 501 
Please notice the differences in the color scales.  502 
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 503 

 504 
Figure 5. Vertical profile of vertical velocity. Results shown are changes of the vertical 505 
velocity in (a) Eastern China and (b) Eastern US between simulations 10HO3O3_online 506 
and 10NO3O3_offline. Solid red line denotes the value 0. Please notice the differences 507 
in the scales. 508 

509 
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 511 
Fig. 6. Changes of summertime atmospheric pollution caused by ozoneO3-vegetation 512 
interactions in 2010s.at present day. Results shown are changes of (a) ozoneO3, (b) 513 
AOD, and (c) PM2.5 between 10HO3O3_online and 10NO3O3_offline. Black dots 514 
denote areas with significant changes (p < 0.1). Please notice the differences in the color 515 
scales. 516 
  517 
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