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Abstract. Surface mass balance (SMB) of the Antarctic Ice Sheet (AIS) is an important contributor to global sea level change.

Past climates provide an opportunity to evaluate model performance outside the range of recent observed climate variability.

We look to the Last Millennium (850-1850 CE) as a period of relative climate stability to understand what processes control

natural variability in SMB, distinct from anthropogenic warming. With evidence for large regional differences in climate trends

from ice core proxy records, paleo-simulations need to be validated over long timescales to assess if they capture those regional5

variations. The drivers for such regional variations during the Last Millennium and present day remain uncertain, demonstrating

the need for a regionally focused study. Here, we evaluate model performance by comparing available Paleoclimate Modelling

Intercomparison Project (PMIP) past1000 models and the CESM Last Millennium Ensemble (CESM-LME) to four sets of

Last Millennium Antarctic proxy-based reconstructions that are most relevant to the SMB: snow accumulation, surface air

temperature (SAT), sea surface temperature (SST) and Niño 3.4 index, using a multi-parameter scoring method. Our results10

show that, overall, PMIP past1000 models reasonably capture SATs estimated in the proxy record, but show poor skill with

respect to reconstructed regional snow accumulation means, trends and variability and the Niño 3.4 index. Models show some

skill but a slight cold bias in simulating Southern Ocean SST. The overall best-scoring PMIP past1000 models for regional

climate features of Antarctica and the Southern Ocean are the CESM-LME mean and CSIRO-Mk3L-1-2. CESM-LME predicts

higher SMB by 2100.15

1 Introduction

The surface mass balance (SMB) of the Antarctic Ice Sheet (AIS), defined as the balance at the surface of the ice sheet between

accumulation, in the form of precipitation, and ablation, in the form of surface runoff, sublimation and blowing snow erosion

(Lenaerts et al., 2019), is important for its influence on sea level (Ligtenberg et al., 2013). An increase in snowfall accumulation

over the AIS is believed to have mitigated twentieth-century sea-level rise (Medley and Thomas, 2019). However, the large20

range of natural climate variability makes it difficult to know if this is due to short-term fluctuations in precipitation or a

longer-term trend driven by anthropogenic change (Lenaerts et al., 2019).

Projections of 21st-century SMB span a large range and contain deep uncertainties (Li et al., 2023). In most parts of the

Antarctic continent, SMB is expected to increase as a result of enhanced snowfall in response to atmospheric warming (Frieler
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et al., 2015; Lenaerts et al., 2019), while the runoff and surface melt remain small (Winkelmann et al., 2012; Ligtenberg25

et al., 2013; Lenaerts et al., 2016). The uncertainties are mainly due to differences between climate models and an overall

poor understanding of what drives trends in SMB in Antarctica (Li et al., 2023). Influences on SMB include large-scale

atmospheric circulation and ocean conditions, as well as small-scale topographic features, making it challenging to model.

General circulation models (GCMs) are run at insufficient resolution (over 100 km) to provide accurate ice sheet SMB estimates

(Lenaerts et al., 2019), while regional climate models (RCMs) with higher resolution (below 50 km) capture SMB better (Frieler30

et al., 2015) but must be forced by GCMs, thus inheriting their biases (Liu et al., 2024). One way to identify drivers of natural

variability is by looking at past climate during periods in which there was not as large of an anthropogenic signal. It is expected

that a better understanding of the processes controlling past variability in AIS SMB will improve our ability to predict future

SMB.

The Last Millennium (LM, 850-1850 CE) is a climate state of relative stability (Bradley et al., 2003; Jones et al., 2001),35

making it an important period for past climate research by providing the opportunity to study the variability and response of

Earth’s climate to small shifts in climate forcings and by separating anthropogenic impacts from natural climate variability

(Jungclaus et al., 2017). The LM is therefore a useful candidate to understand natural variability without having to disentangle

the signal from anthropogenic warming. The LM is primarily divided into two periods, the Medieval Climate Anomaly (MCA,

850-1350) associated with warmer global temperatures, and the Little Ice Age (LIA, 1350-1850) a period of relatively colder40

global temperatures (Hughes and Diaz, 1994; Bertler et al., 2011; Rhodes et al., 2012).

Recent LM temperature reconstructions find no evidence of a globally coherent warmer MCA over Antarctica (Neukom

et al., 2019; Perkins and Hakim, 2021), but rather a long cooling across both MCA and LIA (Stenni et al., 2017). There is

growing evidence from Antarctic ice core records for large regional differences in SMB trends over the LM (Thomas et al.,

2017), with notably long-term negative trends over the West Antarctic Ice Sheet and Victoria Land coast, and long-term positive45

trends over the Antarctic Peninsula and Weddell Sea and Dronning Maud Land coastal regions. The actual drivers for such

regional variations remain uncertain, demonstrating the need for a regionally focused study. Assessing GCM skills in simulating

LM climate features can guide model development in capturing drivers of regional SMB variability on a finer scale. The LM

is among the periods selected by the Paleoclimate Modelling Intercomparison Project Phase 3 and 4 (PMIP3 and PMIP4) for

experiments contributing to the Coupled Modelling Intercomparison Project Phase 5 and 6 (CMIP5 and CMIP6) (Jungclaus50

et al., 2017). The goals of the pre-industrial millennium PMIP experiments (past1000, 850-1850 A.D.) are to study the response

to natural forcing under stable climate and conditions not too different from present day. The LM is also a useful time period

in which to evaluate model skill, as there is a relative abundance of proxy data available (Cook et al., 2008; PAGES2k, 2013;

Thomas et al., 2017; Stenni et al., 2017). PMIP past1000 models can be validated over long timescales to assess if they capture

those regional variations.55

Many studies have scored and evaluated models on one or multiple variables for past climate, present-day and future projec-

tion, (e.g., (Hargreaves et al., 2013; Harrison et al., 2015; Agosta et al., 2015; Gorte et al., 2020)), but none focus on Antarctic

climate during the LM. To this end, we examine the model skill of the PMIP model ensemble with a specific focus on variables

that influence and are important to simulate SMB accurately. We build on the scoring method in Gorte et al. (2020) to evalu-

2

https://doi.org/10.5194/egusphere-2024-3638
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



ate the PMIP3/4 models that participated in the past1000 experiments for which data is publicly available, using quantitative60

Antarctic paleoclimate reconstructions as observations. For this, two objectives were identified, including (1) evaluation of

model ability to simulate regional climate changes; (2) multi-parameter evaluation of overall model skill. We discuss model

biases, strengths and weaknesses and compare results obtained with historical simulations in Gorte et al. (2020). We also use

this scoring method to guide the selection of models for RCM forcing.

2 Data65

2.1 PMIP models

We assess all PMIP past1000 models for which SAT, SST and snow accumulation (precipitation - evaporation) are available,

as well as the Community Earth System Model (CESM) Last Millennium Ensemble, for a total of twelve models, including

eight PMIP3 models (MRI-CGCM3, MIROC-ESM, MPI-ESM-P, CSIRO-Mk3L-1-2, GISS-E2-R, BCC-CSM1-1, HadCM3

and the Community Climate System Model version4 (CCSM4)) (Watanabe et al., 2011; Gent et al., 2011; Yukimoto et al.,70

2012; Phipps et al., 2012; Giorgetta et al., 2013; Wu et al., 2013; Schmidt et al., 2014; Valdes et al., 2017; Gutjahr et al., 2019),

three PMIP4 models (MRI-ESM2-0, MIROC-ES2L and ACCESS-ESM1-5) (Yukimoto et al., 2019; Hajima et al., 2020; Ziehn

et al., 2020), and the CESM-LME model (Otto-Bliesner et al., 2016). Additional PMIP past1000 models are excluded from

this analysis due to our initial selection criteria (see Section 2.2). The resolutions and numbers of vertical layers for both the

atmosphere and ocean are shown in Table 1.75

The past1000 simulations serve to investigate the response to mainly natural forcing under background conditions not too

different from the present, i.e. the pre-industrial millennium. These simulations are based on a common protocol (Schmidt et al.,

2011; Jungclaus et al., 2017), describing a variety of suitable forcing boundary conditions, such as orbital parameters, solar

irradiance, stratospheric aerosols of volcanic origins, and atmospheric greenhouse gas concentrations. The changes between

the common protocol for PMIP3 and PMIP4 past1000 simulations are mostly derived from the use of newly available records,80

permitting a more comprehensive reconstruction of external forcing.

The CESM-LME employs version 1.1 of CESM with the Community Atmosphere Model version 5 (CESM1-CAM5) (Otto-

Bliesner et al., 2016). The CESM-LME provides the largest ensemble of LM simulations with a single model to date, including

a total of 13 members for the full forcing experiment. The only difference between ensemble members is a small (order 10e-

14) random roundoff difference in the air temperature field at the start of each simulation. The forcing over the LM includes85

orbital, solar, volcanic, changes in land use/land cover and greenhouse gas levels, and their implementation follows those used

in PMIP3 (Otto-Bliesner et al., 2016).
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Table 1. Atmospheric and oceanic model resolutions of the PMIP models analysed in this study, along with their respective numbers of

vertical layers.

Atmosphere Ocean

Models Horizontal (°) Vertical (nb layers) Horizontal (°) Vertical (nb layers) PMIP phase

MRI-ESM2-0 1.125 x 1.125 80 0.5 x 1 60 PMIP4

MIROC-ES2L 2.8125 x 2.8125 40 1.4 x 1.4 62 PMIP4

ACCESS-ESM1-5 1.25 x 1.875 38 1 x 1 50 PMIP4

MRI-CGCM3 1.125 x 1.125 48 0.5 x 1 50 PMIP3

MPI-ESM-P 1.875 x 1.875 47 1.5 x 1.5 40 PMIP3

MIROC-ESM 2.8125 x 2.8125 80 1.4 x 1.4 44 PMIP3

CSIRO-Mk3L-1-2 3.18 x 5.625 18 3.18 x 5.625 21 PMIP3

GISS-E2-R 2 x 2.5 40 1 x 1.25 32 PMIP3

BCC-CSM1.1 2.8125 × 2.8125 26 1 x 1 40 PMIP3

HadCM3 3.75 x 2.5 19 1.25 x 1.25 20 PMIP3

CCSM4 1.25 x 0.9 26 1 x 1 60 PMIP3

CESM-LME 2.5 x 2.5 70 1 x 1 60 -

2.2 Paleoclimate proxy records

Our knowledge of past Antarctic climate trends comes predominantly from a combination of proxy records from natural

archives and paleoclimate models. To assess climate model performance, we rely on proxy records of Antarctica’s climate and90

Southern Ocean conditions. We assess model skill by comparing the model outputs with four proxy-based reconstructions that

are most relevant to the SMB: snow accumulation, SAT, SST and Niño 3.4 index. Other variables are also important for these

processes but we are constrained by what reconstructions are available.

The past snow accumulation dataset is compiled by the PAGES Antarctica2K working group (Thomas et al., 2017), which

presents annual Antarctic snow accumulation variability at the regional scale over the past 1000 years. The dataset is comprised95

of 79 Antarctic ice core records, 44 of which cover the LM period (Figure 1). The estimates of snow accumulation are based

on the physical distance between suitable age markers (bulk changes in isotopic composition reflecting glacial cycles, volcanic

eruptions for decadal to millennial timescales, seasonal variations in stable water isotopes, and chemical species including sea

salts, hydrogen peroxide, radio isotopes, and biologically controlled compounds within the ice core (Dansgaard and Johnsen,

1969). These snow accumulation reconstructions provide valuable information on changes in certain regions; however, poor100

spatial coverage in some regions may result in misleading regionally-averaged trends. Thomas et al. (2017) suggest that a

greater spatial representation with a higher number of ice core records, especially in the East Antarctic Plateau and Weddell

4

https://doi.org/10.5194/egusphere-2024-3638
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Sea coastal regions, will improve the understanding of the true nature of Antarctic SMB in the past. We thus compare the

reconstructed snow accumulation to GCMs output for each ice core record individually.

Figure 1. (a) Locations of ice core sites with reconstructed SAT (black crosses) and snow accumulation (blue dots) (Thomas et al., 2017;

Stenni et al., 2017) and the SAT regional boundaries from Stenni et al. (2017) used in this study. Colours denote: East Antarctic plateau

(EAP; blue), Dronning Maud Land coast (DML; yellow), Wilkes Land coast (WL; pink), Victoria Land coast (VL; red), West Antarctic Ice

sheet (WAIS; orange), Antarctic Peninsula (AP; purple) and Weddell Sea coast (WS; green). (b) Sediment core locations for the Southern

Ocean sea surface temperature reconstructions for annual (blue) and seasonally averaged over the austral spring (orange) (PAGES2k, 2013).

The surface air temperature (SAT) is obtained from a database compiled by the PAGES Antarctica2k working group (Stenni105

et al., 2017). Paleotemperatures are reconstructed based on the statistical relationship between δ18O of water/precipitation and

SAT. The database consists of 112 ice core records, shown in Figure 1, which are temporally resolved at a 10-year average and

reconstruct the last 2000 years. The reconstruction only provides regionally averaged LM SAT anomalies (referenced to the

1900–1990CE period) time series over seven Antarctic regions: the East Antarctic Plateau (EAP), Wilkes Land coast (WL),

Weddell Sea coast (WS), Antarctic Peninsula (AP), West AIS (WAIS), Victoria Land coast (VL), and Dronning Maud Land110

coast (DML) (Figure 1). In addition to these seven regions, there are also reconstructions for a continent-wide Antarctic region,

broad-scale West and East Antarctic. The uneven representation of ice core spatial coverage (EAP and WS) and the relative

weak covariance on average between δ18O and SAT limit the skill of the reconstruction (Klein et al., 2019). The paleoclimate

records still provide valuable information on past climate on both regional and continental scales, but we suggest caution with

respect to their direct comparison to the climate model output.115
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In addition to Antarctic climate records, we use reconstructions of Southern Ocean surface conditions. The PAGES Ocean2k

(PAGES2k, 2013) group provides 57 SST reconstructions across the global ocean. Cores of sediment accumulated on the

seafloor create excellent past archives and are used to reconstruct past ocean changes (Moffa-Sánchez et al., 2019). Here, we

focus on the four reconstructions located in the Southern Ocean (Figures 1). Of these, two reconstructions are annual, and

the other two are seasonally averaged over the austral spring (SON). There are two types of proxies with their respective120

calibration; Alkenones with the PRA1988 calibration (Prahl et al., 1988) and TEX86 with the KIM2008 calibration (Kim

et al., 2008). Those reconstructions have relatively low temporal resolution with decades-scale gaps, which somewhat limit the

usefulness of the reconstruction.

The ENSO index reconstruction is based on tree-ring data from Mexico and Texas, USA (Cook et al., 2008). The tree-ring

is a natural archive of past climate and has been widely used notably for its high temporal resolution and accuracy of dating125

(Hughes, 2002). The dataset provides a reconstruction of Niño 1+2 (0-10S, 90W-80W), 3 (5N-5S, 150W-90W), 3.4 (5N-5S,

170W-120W), and 4 (5N-5S, 160E-150W) indices over the past 700 years, extending back to 1300 CE, with the best verified

portion beginning in 1400 CE. In this study, we focus on the Niño 3.4 reconstruction as it is the most commonly used index to

define El Niño and La Niña events.

3 Methods130

To evaluate model outputs against the SAT, snow accumulation (defined here as precipitation minus surface evaporation-

sublimation (P-E)) and SST LM time series, we use the method developed by Gorte et al. (2020), which outlines three criteria

on which to score the time series variables — mean, trends, and variability. The mean value is evaluated by giving a score

x, based on how many x times the reconstructed uncertainty (defined here as ±1σ) is required for the entire time series to be

within the reconstructed uncertainty. Models with a closer time series mean to the reconstructed mean will then be attributed a135

better score, with a score of 1 being the best. Similarly, the time series trend score y is the multiple of the reconstructed trend

uncertainty required to capture the model trend. Lastly, the temporal variability is calculated on normalised time series to avoid

double-counting the impact of SMB mean value (because this is already covered by the first scoring criteria). A score z is given

for how many z times the normalised reconstruction standard deviation was required to capture the normalised model standard

deviation. For the SAT, the three criteria are assessed on regionally averaged time series, and for the snow accumulation and140

SST, we apply the criteria on a pixel-to-ice core comparison, by extracting the model pixel corresponding to the location of the

ice core (Table S1 and S2). For CESM-LME, the use of the ensemble mean time series will form temporal variability biases.

Therefore, the CESM-LME score will be the average of all 13 ensemble members’ scores.

For the Niño 3.4 index, the focus is not on whether a particular model reproduces a particular El Niño or La Niña event, but

rather to determine if the model simulates a similar number of events over a given time period of X years, here 1400-1850 CE.145

We identify an El Niño and La Niña event with a threshold of +/- 0.4°C. Hence, we calculate the absolute difference of the

number of El Niño and La Niña occurrences in the model output with occurrences from the reconstruction over the period of

6

https://doi.org/10.5194/egusphere-2024-3638
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



X years. The score is the addition of both El Niño and La Niña differences, with the smallest score indicating that the model

that simulates the Niño 3.4 index the best.

We normalised each set of scores to be on a scale from 1 to 10 to ensure that each criterion was equally weighted. The150

total score is the average of all sets of normalised scores. The score is an indication of the model’s performance in comparison

to all the other models. Smaller total scores indicate stronger model performance and higher scores indicate poorer model

performance.

4 Results

4.1 Snow accumulation155

Figure 2 shows the mean, trends and temporal variability values of reconstructed and modelled time series for each ice core

location allocated over their respective seven Antarctic regions. Details of the ice core records are shown in Table S1. Overall,

the models show poor skill in simulating the snow accumulation over the AIS. They tend to overestimate the snow accumulation

mean, while not capturing the trends and magnitudes of temporal variability. The greatest accumulation rates occur in the AP,

WL and WAIS, while in the interior, VL and WS show modest accumulation rates.160

Ten ice core records are located in the WAIS region, with mean values ranging from 140 to 375 mm yr−1. Only one of these

records displays a negative trend of -1.3 mm yr−2, three records display positive trends with maxima of 1.8 mm yr−2, and

the other six records display relatively modest trends (as in between -0.5 and 0.5 mm yr−2). CESM-LME, MPI-ESM-P and

ACCESS-ESM1-5 are models with mean accumulation within the reconstructed uncertainty for most proxies, while MIROC-

ES2L, MIROC-ESM and MRI-CGCM3 consistently exhibit greater accumulation. No models succeed in capturing the signs165

and magnitudes of trends for locations with trends larger than 1.0 mm yr−2. For locations with modest trends, models generally

agree. CESM-LME performs best in terms of capturing temporal variability, while other models underestimate it.

Three ice core records are located in the AP region, with mean values ranging from 330 to 530 mm yr−1. One proxy exhibits

a strong negative trend of -4.5 mm yr−2 while the other two show very modest positive trends of 0.3 mm yr−2. CSIRO-Mk3l-

1-2, MIROC-ES2l and BCC-CSM1-1 are always within the mean reconstructed uncertainty, and CSIRO-Mk3l-1-2 is the only170

model that captures the correct signs and magnitudes of trends for all three sites. MPI-ESM-P underperforms in this region and

displays large differences in the trends and temporal variability.

Two ice core records are located in the WL region, one with a mean value of 680 mm yr−1, no trend and modest temporal

variability, while the second with a mean value of 410 mm yr−1, a negative trend of -0.5 mm yr−2 and large temporal

variability. Models underestimate the accumulation and fail to capture the significant trend of the second proxy, a recurrent175

issue in this study. The model that manages the best is MRI-ESM2-0, for both the mean and trends.

Only one proxy record exists for the WS, and it exhibits an accumulation mean of 122 mm yr−1 with no noticeable trend and

large temporal variability. MIROC-ESM, MPI-ESM-P and BCC-CSM1-1 are the only models within the mean reconstructed

uncertainty. Models agree with the modest trend but fail to be within the trend uncertainty and only CSIRO-Mk3L-1-2 captures
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the temporal variability. GISS-E2-R and MRI-CGCM3 show the largest accumulation discrepancy with the reconstruction with180

an accumulation mean of 434 mm yr−1 and 300 mm yr−1, respectively.

Four ice core records are located in the VL region, with mean values ranging from 75 to 260 mm yr−1. Three proxy records

show small trends relatively close to zero, while one shows a negative trend of -0.58 mm yr−2. CESM-LME scores the best

for all three criteria. MIROC-ES2L shows potential regional bias as it displays the largest differences for mean, trends and

temporal variability.185

Figure 2. Comparison of simulated and reconstructed mean, trends and temporal variability snow accumulation over the LM for each ice

core record (Table S1). Each ice core record is regrouped in seven Antarctic regions — WAIS, AP, WL, WS, VL, EAP and DML.
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The EAP has the largest number of records with 21 ice core records, but most are located near the coast in close proximity

to DML, making EAP poorly represented spatially. The interior is drier and the reconstructions show mean values ranging

from 15 to 115 mm yr−1. The trends are also more modest with maxima of -0.65 mm yr−2 and 0.34 mm yr−2, and when

averaged all together the reconstruction suggests that the EAP shows a modest negative trend of -0.1 mm yr−2 over the last

600 years. Proxies exhibit large annual temporal variations, suggesting that the annual accumulation rates vary substantially.190

This is not surprising considering that accumulation in this region is so low that even a small absolute increase in accumulation

means a large relative increase (Frieler et al., 2015). CESM-LME, GISS-E2-R, ACCESS-ESM1-5 and HadCM3 are the four

models that best capture the mean. Models in general struggle to capture the trends, but ACCESS-ESM1-5 and MPI-ESM-P

perform the best. Similarly, no models consistently reproduce the large temporal variabilities, but CESM-LME is consistently

the closest. MIROC-ES2L exhibits a strong regional bias in the EAP as it shows the largest differences for all three criteria.195

The three ice core records in the DML show accumulation rates ranging from 280 to 385 mm yr−1. Because the time series

only covers the last 100 years of the LM, the reconstructed uncertainties, especially for the trends uncertainties, are much

larger, meaning that most models are within the reconstructed uncertainties even though the sign and magnitude are at first

sight very different.

200

We average the score of all ice cores within one region to display the spatial snow accumulation variability and to better

assess potential regional biases. Figure 3 shows the regional snow accumulation normalised score. The most consistent model

across all regions is CSIRO-Mk3L-1-2 and is the best scoring model in the AP and WS while maintaining a score of 3 or

below everywhere else. CESM-LME mean is the best scoring model in the EAP, VL and WAIS but scores in the bottom half205

of models in the WL. CCSM4 shows the same strengths and weaknesses as CESM-LME mean but performs slightly worse

for all of them. MRI-ESM2-0 shows strength in the East Antarctic coastal region, as it is the best scoring model in both the

WL and DML and maintains a score of 5 or below everywhere else. ACCESS-ESM1-5 performs well in the WAIS and the

EAP, but scores in the bottom half of models in the WL. MPI-ESM-P performs relatively well for most regions but shows

snow accumulation regional biases in the AP. MIROC-ES2L shows regional biases in the EAP, WAIS and VL as it consistently210

overestimates accumulation.
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Figure 3. Regional normalised snow accumulation score of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM. All ice

core scores within one region are averaged together following Thomas et al. (2017) regional boundaries, which are slightly different than

those in Stenni et al. (2017) (used in Figure 1). The best score is 1 (dark green), and the worst score is 10 (dark blue). The score is an

indication of the model’s performance in comparison with other models.

4.2 Surface air temperature

Figure 4 shows time series of the regionally averaged SAT anomalies for both the reconstruction and model simulations. Ice

core reconstructions suggest a slight broad-scale cooling trend over most of continental Antarctica, with modest statistically

significant temperature decreases over four regions: the EAP with -0.0008 °C yr−1, WAIS with -0.0005 °C yr−1, VL with215

-0.0008 °C yr−1, and WL with -0.0007 °C yr−1. The WS and AP do not display any statistically significant trends, while the

DML shows the greatest temperature change with an increase of 0.0073 °C yr−1. In contrast to these records, MIROC-ESM

and MRI-ESM2-0 show positive trends for all regions, with the former starting to show temperature increases at the 1000

CE mark and can range from 0.002 to 0.005 °C yr−1 increases, suggesting that MIROC-ESM has a warm bias. For MRI-

ESM2-0, the warm bias is more modest, with temperature increases ranging from 0.0002 to 0.0009 °C yr−1, which is the220

same magnitude as the reconstruction but with the incorrect sign. All other models are consistent with the general broad-scale

cooling trend and generally show similar trend magnitudes.

In terms of the models consistent with the sign of change indicated by the reconstructions, only ACCESS-ESM1-5 and

MRI-CGCM3 show a positive trend in the DML. Models show a slight cold bias in the WAIS and WL as the SAT anomalies

are slightly lower in the models compared to the reconstructions. In each region, the main discrepancy between the models and225

the regionally averaged temperature reconstructions is the temporal variability, with modelled SAT exhibiting lower variability.

Only in the WAIS region did the reconstruction also exhibit a similar low magnitude of variability.
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Figure 4. Time series of 10-year average SAT anomalies (°C) of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM

relative to the pre-industrial era (1900-1990 CE) of all model outputs and regionally averaged ice core temperature reconstructions. The grey

shading indicates the reconstructed uncertainty (defined as ±1σ).
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MRI-CGCM3 is the best-scoring model over five regions but is ranked last in the DML (Figure 5). While ACCESS-ESM1-5,

GISS-E2-R and MIROC-ES2L are the top three scoring models for the DML, they score relatively poorly for the rest of the

continent. It is important to note, however, that because the ice core records do not cover the full LM in the DML, this lack of230

temporal representation makes it difficult to rigorously assess the performance of the models in this region. Other noteworthy

models are the CESM-LME mean, which is among the best-scoring models over six regions, and MPI-ESM-P, which scores

in the bottom half of models only in the AP and DML. The warm bias of MIROC-ESM is reflected in its regional normalised

score, as it is the worst-performing model in six regions out of seven and the second-worst in the seventh region. Despite its

overall warm bias, MRI-ESM2-0 shows a better score than the overall model average over five regions (AP, WS, EAP, DML235

and WL), due to scoring better for the temporal variability criteria compared to the other models.

Figure 5. Regional normalised SAT score of seven regions (EAP, WL, WS, AP, WAIS, VL and DML) over the LM. The best score is 1 (dark

green), and the worst score is 10 (dark blue). The score is an indication of the model’s performance in comparison with other models.

Figure 6 is the same as Figure 4 but for time series averaged for the continent-wide Antarctica, West Antarctica (incorporating

the AP and WAIS), and East Antarctica (incorporating the EAP, WL, WS, VL and DML). Averaging over all of Antarctica, the

reconstruction shows a cooling trend of -0.0007 °C yr−1, with no statistically significant trend in the West and a cooling trend

of -0.0007 °C yr−1 in the East. Overall, the models show reasonable agreement with the reconstructions over these broader240

spatial scales. MIROC-ESM and MRI-ESM2-0 continue to show warm biases. Similar to the regional analysis of the seven

individual Antarctic regions, models continue to show slightly colder SAT anomalies compared to the reconstructions.
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Figure 6. Time series of 10-year average SAT anomalies (°C) of three regions (continent-wide Antarctica, West Antarctica, and East Antarc-

tica) over the LM relative to the pre-industrial era (1900-1990 CE) of all model outputs and ice core temperature reconstructions. The grey

shading indicates the reconstructed uncertainty (defined as±1σ). For the continent-wide Antarctica, the ice core reconstruction is an average

of the regionally averaged EAP, WL, WS, AP, WAIS, VL and DML reconstructions. Here, West Antarctica is an average of the AP and WAIS

reconstructions, and East Antarctica is an average of the EAP, WL, WS, VL and DML reconstructions.

The best scoring model for the continent-wide Antarctica, West Antarctica and East Antarctica is MRI-CGCM3 (Figure 7).

The second best scoring model is CESM-LME mean. MPI-ESM-P performs slightly worse than when factoring in all the seven

regions (Figure 5) but still remains better than the average. MIROC-ESM is the worst scoring model in terms of continent-245

wide Antarctica, West Antarctica and East Antarctica, followed by MRI-ESM2-0 with a normalised score of 6, a 4-point score

difference.
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Figure 7. Regional normalised SAT score of three regions (Continent-wide Antarctica, West Antarctica and East Antarctica) over the LM.

The best score is 1 (dark green), and the worst score is 10 (dark red). The score is an indication of the model’s performance in comparison

with other models. The continent-wide Antarctic score is displayed in the "All Antarctica" box on the bottom left of each Antarctic map.

4.3 Sea surface temperature

SST reconstructions show a modest temperature cooling at all four marine sediment record sites (Figure 8), with temperatures

ranging from 10 to 15 °C in higher latitudes and -1 to 5 °C in lower latitudes. Overall, the models show a cool SST bias in all250

four locations. Only MRI-CGCM3 and ACCESS-ESM1-5 consistently show similar temperature means at site 1 (lat=-44.33°,

lon=-72.97°), 3 (lat=-44.15°, lon=-75.16°) and 4 (lat=-41°, lon=-74.45°). CESM-LME mean, MPI-ESM-P and BCC-CSM1-1

display similar signs of change and magnitude of cooling, while MRI-ESM2 and MIROC-ESM are the only models that display

warming trends at all sites. At site 1, the best scoring model is MIROC-ES2L, followed by MRI-CGCM3 and GISS-E2-R. At

site 3, the best scoring models are ACCESS-ESM1-5, CSIRO-Mk3L-1-2 and GISS-E2-R. At site 4, the best scoring model is255

MRI-CGCM3, followed by ACCESS-ESM1-5. MIROC-ESM is the worst scoring model for all sites.

For the second site (lat=-64.87°, lon=-64.20°), off the western coast of the AP with SST seasonally averaged over the austral

spring, all models disagree with the reconstruction and simulate SST at the freezing temperature. The models consistently

simulate sea ice over that time of the year for this location, whereas the reconstruction implies the presence of sea ice only

towards the end of the LM. Considering this model-proxy disagreement, we gave a score of 10 for all models.260
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Figure 8. SST time series (°C) of four Southern Ocean sites over the LM of all GCM outputs and ice core temperature reconstructions. The

grey shading indicates the reconstructed uncertainty (defined as ±1σ).

Figure 9. Normalised SST score of the four Southern Ocean sites over the LM. The best score is 1 (dark green), and the worst score is 10

(dark blue). The score is an indication of each models performance in comparison with the other models.

4.4 ENSO index

MIROC-ES2L is the closest to the reconstruction at representing ENSO (Table 2). It simulates a similar number of La Niña

events and slightly fewer El Niño events than the reconstruction. CESM-LME mean and HadCM3 likewise capture well the

15

https://doi.org/10.5194/egusphere-2024-3638
Preprint. Discussion started: 2 December 2024
c© Author(s) 2024. CC BY 4.0 License.



number of La Niña events and slightly underestimates the number of El Niño events, followed closely by MRI-ESM2-0, which

underestimates the number of La Niña events, but shows a similar number of El Niño events as the reconstruction. The other265

models are scored more poorly with respect to ENSO. MPI-ESM-P, MRI-CGCM3, CCSM4 and CSIRO-Mk3L-1-2 produce a

similar number of La Niña events to the reconstruction, but differ considerably in terms of El Niño. BCC-CSM1-1, GISS-E2-R,

MIROC-ESM and ACCESS-ESM1-5 differ from the reconstruction for both number of La Niña and El Niño events.

Table 2. The number of El Niño and La Niña events simulated over 1400-1850 CE for each model and their respective normalised score.

Models number of El Niño number of La Niña score

Reconstruction 92 100 -

MRI-ESM2-0 85 76 1.7

MIROC-ES2L 73 97 1

ACCESS-ESM1-5 26 128 6.4

MRI-CGCM3 40 80 4.8

MPI-ESM-P 44 107 3.5

MIROC-ESM 65 26 7

CSIRO-Mk3L-1-2 22 93 5.2

GISS-E2-R 16 123 6.8

BCC-CSM1.1 11 160 10

CCSM4 56 118 3.4

HadCM3 70 92 1.6

CESM-LME 69 96 1.4

4.5 Total score

Figure 10 shows the total score for each model along with their respective normalised snow accumulation, SAT, SST and Niño270

3.4 index scores. As described in the method section, the best score is 1. The overall skill of the paleo-simulations for the

LM is uneven depending on the variable considered, as no model performs equally well for all four climate variables. The

mean score across the eleven models is 4.3. Gorte et al. (2020) stated that models that score above the 90th percentile make up

the subset of best scoring models. Only one model comprises this top 90th percentile — the CESM-LME mean with a score

of 2.2. However, this is the mean score for CESM-LME as we averaged all 13 ensemble member scores together. The best275

PMIP past1000 model is CSIRO-Mk3L-1-2 with a score of 2.9. The poorest performing models include MIROC-ESM and

BCC-CSM1-1, two PMIP3 models, with respective scores of 8.2 and 6.3. The mean model score is 3.83 for PMIP4 models

and 4.87 for PMIP3 models. No PMIP4 models are part of the best scoring models, but none are part of the poorest performing
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models (i.e. with an total score in the bottom half of models). All three PMIP4 models perform better or equal than the mean

of all models, whereas PMIP3 models cover a more diverse range in scoring.280

Figure 10. Heatmap of the normalised scores for all PMIP past1000 models and the CESM-LME mean.
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4.6 Modelled SMB future projections

After evaluating models based on variables important for SMB over the LM, we now consider projections of AIS SMB.

Similarly to Gorte et al. (2020), we defined the spatially integrated AIS SMB as precipitation minus sublimation. Here we

compare the modelled AIS SMB projections between two scenarios, SSP2/RCP4.5 and SSP5/RCP8.5 (Figure 11). Of all the

models we evaluated, future scenarios were not available for three models, CSIRO-Mk3L-1-2, MPI-ESM-P and HadCM3,285

and hence, we cannot examine their projected AIS SMB. The spatially integrated AIS SMB is projected to increase for the

following 75 years (2025-2100) in both scenarios by all models. The spatially integrated AIS SMB from the best-scoring model

CESM-LME (CESM1-CAM5 with LM forcing protocol) is projected to be 3107 ± 92 Gt yr−1 (the associated uncertainties

are ±1σ) for SSP2/RCP4.5, and 3521 ± 145 Gt yr−1 for SSP5/RCP8.5 from 2070-2100. For the same time period, AIS SMB

from models scoring worse than the models mean (BCC-CSM1-1, GISS-E2-R, MIROC-ESM, and MIROC-ES2L) is projected290

to be 2992 ± 120 Gt yr−1 for SSP2/RCP4.5, and 3216 ± 148 Gt yr−1 for SSP5/RCP8.5, which is slightly lower than the

best-scoring model.

In terms of trends, all models project positive SMB trends in all scenarios. For CESM1-CAM5, SMB is projected to have

a mean trend of 5.2 ± 0.4 Gt yr−2 for SSP2/RCP4.5, and 13 ± 0.5 Gt yr−2 for SSP5/RCP8.5, while, in the worst-scoring

models, the AIS SMB mean trend is projected to be at 2.5 ± 0.6 Gt yr−2 for SSP2/RCP4.5, and 6.8 ± 0.7 Gt yr−2 for295

SSP5/RCP8.5. SMB for the best-scoring model does not differ significantly from worst-scoring models but shows slightly

stronger SMB means and trends with lower uncertainties for both scenarios.

Figure 11. Time series of modelled spatially integrated AIS SMB projections for two scenarios: (a) SSP2/RCP4.5 and (b) SSP5/RCP8.5.

(c) Box plots of the linear trend in spatially integrated AIS SMB from 2025-2100. The black cross denote the best overall scoring model

(CESM1-CAM5).
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5 Discussion

5.1 Regional climate features

Both Antarctic ice core records and model simulations demonstrate clear regional differences during the LM. Some models300

are better at representing those regional features and some models show clear regional biases. However, several elements

are remarkably consistent. To start, models tend to overestimate annual snow accumulation values everywhere except in the

DML and WL regions. A recent evaluation of current and projected Antarctic precipitation in CMIP5 models has shown that

compared with satellite data almost all the models overestimate current Antarctic precipitation, some by more than 100%

(Palerme et al., 2017). This is a recurrent issue in current models that is likely due to poor representation of coastal topography305

which is a significant factor in how precipitation is represented for the AIS (Genthon et al., 2009; Gorte et al., 2020).

The snow accumulation trends provide a second example of mismatch between models and reconstructions. Models simulate

the incorrect magnitudes of trends and for some, they also simulate the wrong sign. Furthermore, snow accumulation can be

modulated by large-scale atmospheric circulation and ocean conditions. Regional and global modes of climate variability are

suggested to be the dominant controls on regional climate in Antarctica during the LM (Lüning et al., 2019). The mismatch310

in trends can be related to the model bias in simulating realistic patterns of decadal climate variability. Current generations

of models struggle to simulate those features, especially in terms of their magnitude, spatial patterns and their sequential time

development (Kravtsov et al., 2018; Mann et al., 2020).

Model-simulated SAT agrees with the reconstructed SAT and shows generalised cooling over continental Antarctica, but

fails to reproduce the modest warming in the AP, and most models fail to reproduce the warming in the DML. Models that do315

for both regions are models that show a warm bias in all regions, which may suggest that they reproduce these regional trends

for the wrong reason. Klein et al. (2019) has found the overall skill in reconstructed surface temperature based on δ18O on

the seven regions to be limited, but the reconstruction skill is higher and more uniform among reconstruction methods when

the reconstruction targets are the bigger aggregated regions (West Antarctica, East Antarctica and Antarctica as a whole). Over

those bigger regions, models show relatively strong agreement.320

A final example of mismatch between models and reconstructions is the underestimation of Southern Ocean temperatures

in models. Using SST reconstructions to constrain the model results is challenging, notably due to the large spatial gaps and

temporal gaps in the records from the fact that few marine sedimentary archives have the resolution and age control necessary

to reconstruct LM decadal-scale SST variability (Jones et al., 2009), and the potential for proxy-related biases (Lowry et al.,

2019). We only compare four site records with three of them located relatively close to one another. Hence, there are too few325

Southern Ocean records that cover LM to properly evaluate models on their ability to capture SST trends. This study would be

more robust with an overall greater spatial coverage of proxy records.

5.2 Overall model skill

Evaluations of PMIP and CESM LM simulations based on four different climate variables show that no model performs equally

well for all variables. In general, models are better at simulating the SAT. Models are substantially poorer at simulating snow330
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accumulation. Notably, they have no skill in reproducing trends and temporal variabilities. LM has modest trends compared to

other time periods (Thomas et al., 2017); our analysis suggests that capturing regional trends of such small magnitudes that we

observe in LM is still beyond current models’ ability. Models show colder SST mean values but have skill in simulating trends

and variabilities. Additionally, only a handful of models show skill in simulating ENSO (Bellenger et al., 2014). Nevertheless,

some models are clearly better than others at capturing LM climate.335

Atmospheric and oceanic horizontal resolution and the number of vertical layers vary widely among the models. Both models

with relatively high-resolution for the atmosphere and ocean and their coarse-resolution counterparts can perform equally as

well. There does not appear to be a clear relationship between horizontal resolution and model performance. For simulated

snow accumulation, models participating in PMIP (but also CESM-LME) are run at insufficient resolution to provide accurate

SMB estimates (Lenaerts et al., 2019). To resolve the SMB component characteristics in some of the narrowest coastal regions340

of Antarctica, a grid spacing of about 50 km or finer is needed (McGregor and Dix, 2008). Similarly, there is a lack of a clear

relationship between vertical layers and model performance.

In this study, we compare two generations of paleo-simulations. The mean overall skill of PMIP4 models is greater than the

mean overall skill of PMIP3 models, but there are more than twice as many PMIP3 models to analyse. For Antarctic climate

during the historical period (1850-2000 CE), the latest generation of CMIP6 models has been shown to present no significant345

improvement at simulating some aspects of the modern climate with respect to CMIP5 models (Gorte et al., 2020). Similarly,

for past climates, within the few specific features we looked at, there seems to be little improvement between the different

generations of models. It is possible that there are potential improvements in processes that we did not examine.

Gorte et al. (2020) have evaluated CMIP5 and CMIP6 models over the historical period to look at which models capture

the influence of anthropogenic warming on SMB. Our score is for multiple parameters important for SMB but both studies350

are attempting the same objective, albeit for different timescales. Hence, it is interesting to compare the results for models that

both studies looked at. The two time periods have different forcing, which allows for a contrast between model responses to

either anthropogenic or natural variability. GISS-E2-R and MPI-ESM-P are their best-scoring models, while MIROC-ES2L and

CCSM4 are their worst. CESM1-CAM5 performed worse than their model average. For both studies, MPI-ESM-P, ACCESS-

ESM1-5 and MRI-CGCM3 perform better than the model mean. Our best-scoring model suggests a higher AIS SMB increase355

under emissions scenarios, while their subset of best-scoring models has lower projections and smaller spreads. Our results

highlight that model evaluation studies should consider covering longer time periods for the full context of natural variability.

5.3 Process understanding gained from the best scoring models

Here, we use the four best-scoring models overall (CESM-LME, CSIRO-Mk3L-1-2, MPI-ESM-P and MRI-ESM2-0) to inves-

tigate the relationship between climate variables during the LM. Figure 12 (a) shows the precipitation anomalies relative to the360

historical period (1850-1900 CE). All four best-scoring models generally agree and show the most precipitation change in the

coastal regions. The largest discrepancy lies in the AP region, where both MRI-ESM2-0 and MPI-ESM-P simulate positive

precipitation anomalies, while both CSIRO-Mk3L-1-2 and CESM-LME simulate negative precipitation anomalies.
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Figure 12. (a) Precipitation anomalies during the LM period (850-1850 CE) relative to the historical period (1850-1900 CE), (b) Spatial

distribution of relative changes in precipitation rates in terms of local warming during the LM period, (c) Spatial correlation plots between

precipitation in the AP region and SIC during the LM period, (d) Spatial correlation plots between precipitation in the AP region and SST

during the LM period, for the best four scoring models.
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For the relationship between temperature and precipitation (Figure 12 (b)), local precipitation sensitivities for all four best-

scoring models are not uniformly distributed. All four models agree and show a consistent local-scale positive linear relation-365

ship, and by and large display similar regional sensitivity patterns. In general, models show lower sensitivities in the EAP and

AP regions, ranging from 0 to 12 %/C° and higher sensitivities in the WS and VL regions with values that can reach up to 20

%/C°. CSIRO-Mk3L-1-2 is the only model that shows a stronger positive relationship in the interior.

Southern Ocean conditions exert a strong influence on Antarctic accumulation (Delaygue et al., 2000; Stenni et al., 2010;

Lowry et al., 2019). To examine the relationship between ocean conditions and continental precipitation in the AP region,370

we look at the Pearson linear cross-correlation coefficients of modelled decadal SIC and precipitation (Figure 12 (c)) and

of modelled decadal SST and precipitation (Figure 12 (d)). All four models agree and display similar correlation patterns,

with SIC and SST showing strong local spatial correlations with continental AP precipitation. The SIC-AP precipitation and

the SST-AP precipitation correlations are slightly higher for MRI-ESM2-0 and CESM-LME than MPI-ESM-P and CSIRO-

Mk3L-1-2. The models all exhibit high negative correlations between local SIC (in the Bellingshausen and Weddell Seas) and375

AP precipitation. MRI-ESM2-0 and CESM-LME exhibit a high positive correlation between SIC in the Amundsen Sea and

precipitation in the AP region, while MPI-ESM-P and CSIRO-Mk3L-1-2 exhibit a weaker one. For SSTs, here we show that

models exhibit opposite correlations with high positive correlations between local SST (in the Bellingshausen and Weddell

Seas) and AP precipitation.

According to the four best-scoring models (CESM-LME, CSIRO-Mk3L-1-2, MPI-ESM-P and MRI-ESM2-0), regional pre-380

cipitation patterns are highly sensitive to temperature and Southern Ocean conditions (SIC and SST) changes. While generally

simulating similar precipitation anomalies, models are inconsistent with respect to precipitation changes in the AP region,

where two models simulate positive changes (MPI-ESM-P and MRI-ESM2-0) and the other two negative changes (CESM-

LME and CSIRO-Mk3L-1-2). However, even though the models disagree on the detail, there is a consistent relationship be-

tween variables as all four models do agree in the AP region in simulating a slightly positive linear relationship with local385

average warming, a strong negative correlation with local SIC and a strong positive correlation with local SST. MRI-ESM2-0

is the only model that simulates consistent warming in the AP during the LM period (Figure 4). The strong AP precipitation

increase is in part attributed to the local atmospheric warming. Sea ice trends have an important influence on regional precip-

itation variations as sea ice-free and/or warmer SSTs promote evaporation, increasing the moisture content of the atmosphere

and enhancing local precipitation (Bertler et al., 2018; Lenaerts et al., 2019; Kromer and Trusel, 2023). Hence, the potential390

warmer SSTs and/or SIC decline in the the Bellingshausen and Weddell seas might have led to the increase in precipitation in

the AP region in MRI-ESM2-0 and MPI-ESM-P models, while colder SSTs and/or greater SIC extent in the Bellingshausen

and Weddell seas might have led to the decrease in precipitation in the AP region in the CSIRO-Mk3L-1-2 and CESM-LME

models.

Sea ice trends can be driven by factors other than large-scale atmospheric circulation modes, but a recent study suggests that395

natural variability has played a crucial role, with the Southern Annular Mode (SAM) and ENSO believed to be driving regional

climate heterogeneity for sea ice and sea surface temperature (SST) in the Southern Ocean (Crosta et al., 2021). Those two

modes wield their influence on West Antarctica by directly influencing the Amundsen Sea Low (ASL). Figure 12 (c) and (d)
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can be interpreted as the ASL affecting the sea ice and precipitation rate for the AP. The model with the best score for AP snow

accumulation (MIROC-ES2L) also has the best score for ENSO. However, this is not a clear cut as CESM-LME has a good400

ENSO score and a relatively good AP score for snow accumulation and SAT, while CSIRO-Mk3L-1-2 scores really well for

AP snow accumulation with a poor score for ENSO. Other processes outside of ENSO, maybe how the model simulates SAM

and ASL, tie the discrepancy in the precipitation change in the AP among the best-scoring models.

6 Conclusions

The goal of this study is to provide a fair evaluation of the strengths and weaknesses of GCMs in simulating LM regional405

climate changes in Antarctica. We assess model performance with regard to the output most relevant to AIS SMB, including

snow accumulation, SAT, SST and Niño 3.4 index. The multi-parameter score used in this study is an indication of the model’s

performance in comparison with other models and is designed as a guide for choosing which GCMs best represent LM AIS

SMB. We apply a similar scoring method to Gorte et al. (2020) for our time series variables, as having several criteria for each

variable limits the possibility that models are recreating one aspect well for the wrong reasons. Those criteria were originally410

suited to gauge model performance for capturing AIS SMB only, but they are also applicable to the wider range of climate

variables that we consider in this study (snow accumulation, SAT and SST). For scoring the Niño 3.4 index, we evaluate

whether models simulate a similar number of El Niño and La Niña events over a given time period.

CESM-LME mean is the best overall scoring model. CESM-LME is an ensemble mean composed of 13 individual members

but presents very little internal variability, meaning if we were to look at only a single member, CESM-LME would still rank as415

the best overall scoring model. It shows strength in simulating SAT, snow accumulation and Niño 3.4 index while performing

better than the average mean in simulated SST. Out of all the models studied here, CESM-LME mean is the recommended

choice for forcing RCMs over Antarctica.

In general, the models show poor skill in simulating regional snow accumulation. They tend to overestimate accumulation in

the WAIS, AP, WS, VL and EAP, while showing strong discrepancies with reconstructions of accumulation trends and temporal420

variability. The best performing model in terms of snow accumulation, CSIRO-Mk3l-1-2, shows the greatest skill in simulating

accumulation mean value over West Antarctica (AP and WAIS) and the EAP, but does not capture the accumulation trends and

temporal variability in every Antarctic region. MIROC-ES2L shows regional biases in the WAIS, VL and EAP regions.

Regional SATs reconstructed from the proxy record are reasonably captured by the GCMs in this study. The models are

relatively consistent in displaying the modest broad-scale cooling trend over most of continental Antarctica, but fail at capturing425

the modest warming in the AP and DML. The exceptions are MIROC-ESM and MRI-ESM2-0, which both show an overall

warm bias.

The models display a cool bias in simulating Southern Ocean SST. ACCESS-ESM1-5 and MRI-CGCM3 are able to capture

consistent mean, trends and temporal variability values in all but one proxy record site. For the site on the west coast of the AP,

representing SST over the austral spring, all models simulate SST at freezing temperature, suggesting that there is persistent430

spring sea ice cover at that location, in contrast to the proxy record, which indicates sea ice only towards the end of the LM.
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The greatest model-proxy mismatch occurs in simulating the Niño 3.4 index, where only three models, MRI-ESM2-0,

MIROC-ES2L and the CESM-LME mean simulate a relatively similar number of El Niño and La Niña events to the recon-

struction. All of the remaining models fail to simulate realistic ENSO behaviour. These results are not surprising considering

some GCMs have been demonstrated to struggle with representing ENSO (Bellenger et al., 2014).435

Given the limited number of models and proxy records, it remains challenging to assess model skill and identify regional

biases. The community would be well served by additional models participating in the past1000 experiments. We believe that

we have given an objective view of how GCMs performed for AIS SMB during the LM. To gain the potential for a greater

understanding of SMB, high-resolution regional simulations forced by GCMs are required (Lenaerts et al., 2019), and our

study serves as a guide for the selection of GCM forcings for RCM experiments.440
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