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Abstract. Sea ice and snow volume are essential variables for polar predictions, but operational systems still struggle to 12 

accurately capture their evolution. Satellite measurements now provide estimates of sea ice freeboard and snow depth. The 13 

combined assimilation of sea ice concentration (SIC), along-track altimetry radar freeboard data from Cryosat-2 and 14 

observations of snow depth from Cryosat-2 and SARAL is implemented in a multivariate approach in a global ¼° ocean/sea 15 

ice coupled NEMO4.2/SI3 model. A multivariate experiment, performed on two full seasonal cycles 2017–2018, is compared 16 

to a free (no assimilation) and a SIC-only assimilation simulations. The multivariate technique increases the sea ice volume, 17 

even in the absence of freeboard and snow measurements during summer, and rapidly changes the spatial patterns of ice and 18 

snow thicknesses in both hemispheres, in accordance with the assimilated observations. The sea ice volume from the 19 

multivariate approach compares better with independent (not assimilated) estimates from ICEceSat-2 and CS2SMOS or SMOS 20 

in both hemispheres. The multivariate system performs better in the Arctic than in Antarctica where the ice and ocean separate 21 

analyses areseem not designed to handle properlyconsider the strong interactions between upper oceanic layers and sea ice 22 

cover in the Southern Ocean. , and therefore cannot  and to prevent localised degradations. These results also confirm the 23 

importance of using variable snow and ice densities in a freeboard assimilation context. This study shows promising results 24 

for enhancing the capacity of assimilation systems to monitor the volume of sea ice and snow and paves the way for future 25 

satellite missions. 26 
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1 Introduction 27 

In response to climate change, Arctic sea ice is continuing to decline and is regularly breaking historically low records, 28 

and, more recently, the entire year of 2023 showed the lowest sea ice extent in Antarctica ever seen in the satellite record 29 

(Gilbert and Holmes, 2024). October 2020 was the lowest end-of-summer sea ice volume since 2010 in the Arctic (Perovich 30 

et al., 2020). Given the rapid transformations affecting sea ice due to climate change, sea ice monitoring is of the utmost 31 

importance. Assimilation techniques allow us to combine models and observations to improve our ability to monitor the ocean 32 

and sea ice state. Sea ice concentration (SIC) is currently assimilated in most sea ice data assimilation systems using different 33 

methods: nudging, Kalman filter variants, or 3DVAR variants (Uotila et al., 2019). However, one of the challenges in 34 

assimilating SIC is to extend the SIC information to other prognostic model variables such as sea ice thickness (SIT). Tietsche 35 

et al. (2013) concluded that in their Arctic model configuration, a proportional relationship between SIT and the SIC update 36 

was most effective for adjusting the modelled SIT. Massonnet et al. (2015) and Kimmritz et al. (2018) used the model 37 

covariances with a multivariate Ensemble Kalman Filter (EnKF) to update different sea ice variables, propagating the 38 

information from the observed SIC to the unobserved variables. Experiments have used the EnKF or variations of this 39 

multivariate scheme with multidata frameworks: both SIC and SIT products have been assimilated in the Arctic (e.g. Cheng 40 

et al., 2023; Williams et al., 2023; Chen et al., 2024). The assimilation methods can vary, but the assimilated SIT products are 41 

usually thin SIT from the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, thick SIT 42 

measured by the ESA satellite mission CryoSat-2 (CS2), with two processing techniques available (Ricker et al., 2014 or Kurtz 43 

and Harbeck, 2017), or an observational product that statistically combines information from the two (CS2SMOS, Ricker et 44 

al., 2017). 45 

 Xie et al. (2016) found that assimilating SMOS thin SIT data had significant benefits for SIC and SIT modelling in 46 

some regions near the ice edge. Mu et al. (2018) combined the use of both SMOS thin SIT and CS2 SIT product in their 47 

assimilation system and obtained better results than the observation-only CS2SMOS product, demonstrating the added value 48 

of the model dynamics. The assimilation of CS2SMOS merged product (Xie et al., 2018) reduced model biases compared to 49 

the assimilated data, and results were in better agreement with independent datasets, with no degradation of other sea ice 50 

variables. Fritzner et al. (2019) compared the assimilation of SIC combined separately with either CS2 SIT, SMOS SIT, or a 51 

snow thickness (SNT) dataset in a short simulation and concluded that CS2 SIT provides the best long-term model 52 

improvements compared to SMOS SIT. They also found that SNT assimilation had a weaker effect on the model than SIT 53 

assimilation. Other teams methods updated SIT in the Arctic with nudging (Fritzner et al., 2018; Blockley and Peterson, 2018; 54 

Balan-Sarojini et al., 2021), with ensemble optimal interpolation (Lee and Ham, 2022, 2023), and with an enthalpy-adjusting 55 

scheme to ensure a consistent update of all sea ice variables (Liu et al., 2024). These numerous studies highlight that sea ice 56 

assimilation remains an active and evolving research area. The absence of a clear consensus on the optimal method reflects 57 

the complexity of balancing model uncertainties, data availability, and computational efficiency to achieve the best possible 58 

agreement with observations. 59 
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Mu et al., (2020) and Cipollone et al., (2023) implemented multidata and multivariate sea ice assimilation in global 60 

configurations, but with Arctic-only CS2, SMOS, and CS2SMOS SIT products. They both found their experiments to agree 61 

with in-situ data.  Luo et al., (2021) implemented a multivariate assimilation system in Antarctica and successfully assimilated 62 

SIC and SMOS SIT. They had to inflate their atmospheric ensemble forcing, even though it was unnecessary in a similar Arctic 63 

assimilation scheme, suggesting that differences in the impact of sea-ice data assimilation between the two poles. They stated 64 

that the implementation of Arctic sea-ice data assimilation cannot be simply extended to the Antarctic. 65 

SIT can be retrieved from altimeter radar freeboard (RFB) measurements by using hydrostatic equilibrium and taking 66 

into account the height of the snow penetrated by the radar wave, a medium where the radar velocity is modified (Garnier et 67 

al., 2022). The sea water, ice and snow densities and the snow depth above the ice are required for the RFB-SIT conversion, 68 

and the assumptions made on these variables result in a significant uncertainty in the sea ice volume products (Kern et al., 69 

2015; Kwok and Cunningham, 2015). The snow layer accounts for most of the uncertainty in the calculation of SIT from RFB 70 

(Garnier et al., 2021). The CS2 SIT products mentioned above use the Warren 99 (W99) snow climatology (Warren et al., 71 

1999) or a modified version of it which is now known to be outdated and unreliable in moston most regions of the Arctic (Kern 72 

et al., 2015). Fiedler et al. (2022) is the first study to use the along-track CS2 RFB data in the Arctic, and to convert it into SIT 73 

using the modelled snow cover prior to the assimilation step. Their study results in a general improvement of the modelled 74 

SIT, with, in particular, a bias reduction in the Canadian Basin. This improvement extends into the summerinto summer period, 75 

when no data is assimilated. However, they noted no substantial improvement in the Beaufort region due to a degradation of 76 

ice thicknesses below 1 m. Mignac et al. (2022) performed the same experiment, adding the SMOS SIT data to the along-77 

tracks SIT computed from CS2 RFB and modelled snow, arguing that the SMOS SIT product performs better in thin ice areas 78 

of the Arctic. The thin SMOS ice assimilation was able to counteract the SIT overestimation that happens in the Arctic marginal 79 

seas when assimilating only CS2 products. 80 

Other sources of uncertainty in the RFB-SIT conversion stems from the choice of ice and snow densities. The NEMO 81 

model uses constant snow and ice densities, whereas the observation products usually parametrize the ice density depending 82 

on the ice type (multi-year ice MYI, or first-year ice FYI, see Alexandrov et al., 2010) in the Arctic and on the season (see 83 

Kurtz and Markus, 2012) in the Antarctic. The choice of snow density varies in different SIT retrievals from RFB 84 

measurements, including options such as constant density, seasonally varying density, climatology-based density, or modelled 85 

density. Kern et al. (2015) stated the importance of having well calibrated density for the ice and they recommended using 86 

seasonally varying snow density instead of a constant. Positive model biases in sea ice volume compared to satellite altimetry 87 

estimates have been attributed mainly to ice density differences (Bocquet et al., 2024). New efforts are currently being made 88 

to get fresh measurements of sea ice densities: Jutila et al. (2022) measured ice densities on average higher than the values 89 

from Alexandrov et al. (2010) for both the FYI and MYI, resulting in 12.4 % and 16.7 % larger sea ice thickness values for 90 

FYI and MYI. 91 

Knowing the large uncertainty associated with the sea ice volume products derived from RFB measurements, Sievers 92 

et al. (2023) directly assimilated the radar freeboard in the Arctic. In their assimilation scheme, they used a varying density for 93 
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the ice, set as a function of the modelled salinity of the ice, and a linearly varying snow density depending on the season, 94 

following Mallett et al. (2020). The densities were not modified in the sea-ice model physics. They used the modelled snow to 95 

convert the freeboard to ice thickness and they updated sea ice concentration and sea ice thickness through data assimilation . 96 

They compared the resulting sea ice thickness with in-situ data, showing improvements in some regions of the Arctic and 97 

degradation in others, using a simulation without assimilation and another with assimilation of sea ice concentration only as 98 

references. 99 

In this study, we use the operational Kalman filter scheme deployed in the production of global reanalysis and forecast 100 

at Mercator Ocean to implement a multivariate sea ice assimilation scheme with sea ice concentration (SIC), sea ice volume 101 

(SIV) and snow volume (SNV). In contrast to the usual ice assimilation where the SIC model variable (univariate) is updated 102 

using SIC observations (monodata), this approach aims to assimilate along-track radar freeboard and altimetric snow depth 103 

observations in addition to the SIC observations (multidata) and to update SIC, SIV and SNV model variables (multivariate). 104 

We use the same assimilation method for the Arctic and Antarctic. We aim to provide first answers to the following scientific 105 

questions: 106 

- Does the multivariate/multidata approach provide added value over the widespread univariate/monodata method? What 107 

are the impacts of using altimetric radar freeboard and altimetric snow observations in addition to the SSMIS SIC data? 108 

- Are the current parametrizations in sea ice models sufficient for accurate assimilation of radar freeboard and snow 109 

measurements? 110 

- What challenges arise when applying the same sea ice assimilation scheme to both the Arctic and Antarctic, given their 111 

differing physical environments and ice dynamics? 112 

Our work is in line with that of Sievers et al. (2023). However, we decided to assimilate RFB together with snow 113 

thickness observations to update the snow in addition to the sea ice variables at a global scale, i.e. including the Arctic and 114 

Antarctica. Moreover, we kept a coherent parametrization between the assimilation scheme and the sea ice model, so we used 115 

the model fixed snow and ice densities. Data using varying sea ice and snow densities are only shown in the figures indicatively 116 

for users of the original product. 117 

In this study, we use the operational Kalman filter scheme deployed in the production of global reanalysis and forecast 118 

at Mercator Ocean to implement a multivariate sea ice assimilation scheme with sea ice concentration (SIC), sea ice volume 119 

(SIV) and snow volume (SNV). In contrast to the usual ice assimilation where the SIC model variable (univariate) is updated 120 

using SIC observations (monodata), this approach aims to assimilate along-track radar freeboard and altimetric snow depth 121 

observations in addition to the SIC observations (multidata) and to update SIC, SIV and SNV model variables (multivariate). 122 

We use the same assimilation method for the Arctic and Antarctic. Prior studies have shown that assimilating SIC alone 123 

significantly reduces concentration errors but yields limited improvement in ice thickness, despite strong correlations between 124 

both variables (Lisæter et al., 2003, Duliere and Fichefet, 2007). Moreover, there is no a priori link between SIC and the depth 125 

of the snow over sea ice. We therefore anticipate the following outcomes for each experiment: monodata/univariate SIC 126 

assimilation should improve modeled SIC but may degrade SIT and SNT due to the necessary adjustment for SIV and SNV 127 

a mis en forme : Hiérarchisation + Niveau : 1 + Style de
numérotation : Puce + Alignement :  0.03" + Retrait :  0.28"

a mis en forme : Police :(Par défaut) Arial, 11 pt, Couleur
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implemented in the analysis scheme (Table 2). Conversely, the multidata/multivariate assimilation is expected to better fit a ll 128 

assimilated variables (SIC, RFB, SNT), but may impact SIC accuracy due to uncertain SIC-SIT/SNT covariances. The different 129 

spatio-temporal resolutions of SIC, RFB, and SNT (e.g. daily gridded SIC vs. sparse altimeter tracks with seasonal gaps) may 130 

also introduce uncertainty into the impact of assimilation.  Finally, few studies have focused on the constraints of the ice/snow 131 

system by assimilation in Antarctica, a region where the interaction between the ice and the upper ocean is much more dynamic 132 

than in the Arctic. In regions of open water surrounded by sea ice — known as polynyas — the ice-ocean interactions are 133 

particularly strong (e.g. Kjellsson et al., 2015, Cheon and Gordon, 2019) and difficult to reproduce by models (Mohrmann et 134 

al., 2021). The outcomes of the assimilation experiments could reveal whether improvements in SIC are offset by errors in 135 

SIT/SNT, how additional data sources interact, and how the scheme affects coupled ice–ocean behaviour. 136 

 We aim to provide first answers to the following scientific questions: 137 

- Does the multivariate/multidata approach provide added value over the widespread univariate/monodata method? What 138 

are the impacts of using altimetric radar freeboard and altimetric snow observations in addition to the SSMIS SIC data? 139 

- Are the current parametrizations in sea ice models sufficient for accurate assimilation of radar freeboard and snow 140 

measurements? 141 

- What challenges arise when applying the same sea ice assimilation scheme to both the Arctic and Antarctic, 142 

given their differing physical environments and ice dynamics? 143 

We describe the modelling and assimilation components, the data assimilated in the analysis system, and the experimental 144 

design in Section 2. Section 3 focuses on the performances of the assimilation setup while section 4 presents a comparison 145 

with independent satellite observations.  Section 5 discusses the main results and conclusions are given in section 6. 146 

2 Analysis system and experimental design 147 

2.1 Modelling and assimilation system 148 

2.1.1 Global ice-ocean coupled model configuration 149 

We use the ocean/sea ice coupled model Nucleus for European Modelling of the Ocean (NEMO) version 4.2 (Madec et al., 150 

2022), coupled to the Sea Ice modelling Integrated Initiative (SI3, Vancoppenolle et al., 2023). Simulations are run on a ¼ 151 

degree tripolar horizontal grid (Madec and Imbard, 1996) with 75 oceanic vertical levels. The atmospheric forcing is the 152 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (Hersbach et al., 2020) with 153 

a 1h frequency 154 

The sea ice model SI3 describes the ice and snow behaviour with assumptions that for dynamics, ice is a non-newtonian 2D 155 

continuum, whereas for thermodynamics, it is a mushy layer covered by snow. Subgrid variability is represented through 11 156 

sea ice thickness categories, with fixed boundaries. Global prognostic variables in SI3 are the sea ice velocity 𝑢 and its stress 157 

tensor 𝜎, and quantities computed in each thickness category: sea ice concentration, sea ice and snow volume per unit area, 158 

a mis en forme : Retrait : Première ligne : 0.5",  Sans
numérotation ni puces, Bordure : Haut: (Pas de bordure),
Bas: (Pas de bordure), Gauche: (Pas de bordure), Droite:
(Pas de bordure), Entre : (Pas de bordure)

a mis en forme : Police :(Par défaut) Arial, 11 pt, Couleur
de police : Noir
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sea ice and snow enthalpy per unit area, and sea ice salt content. The model uses constant densities for the sea water, sea ice 159 

and snow with respective values of 1026, 917 and 330 kg/m3. Snow exclusively comes from the solid precipitations of the 160 

atmospheric forcing and disappears either by melting processes or by snow-ice conversion when the snow base gets below the 161 

sea level. The model accounts for snow-ice formation when snow is deep enough to depress the snow-ice interface below the 162 

sea level. Then seawater infiltrates and refreezes into the snow, creating a new ice layer whose thickness depends on the ice 163 

and snow densities (Fichefet and Maqueda, 1997; Vancoppenolle et al., 2023). 164 

In this study, we use the adaptative elastic-viscous plastic rheology and a parametrization to represent landfast sea ice. The ice 165 

model component is called every 3 ocean timesteps, that is, every 30 minutes. 166 

2.1.2 Assimilation scheme 167 

The assimilation system is the one used in the current near real time operational system (Lellouche et al., 2021). The 168 

7-day assimilation cycle proceeds as follows: firstly, the model runs for the full cycle length for a ‘forecast’ trajectory, resulting 169 

in a forecast state. Observations available during the cycle time are loaded and processed as needed, with special care taken to 170 

define the observation errors. Using the forecast output and an observation operator, model variables are transformed into 171 

observation-equivalent variables that are consistent in space and time with the assimilated observations. Then, the analysis 172 

step produces 4D increments or model updates of the forecast trajectory. The increment depends on the innovation (observation  173 

minus model equivalent), weighted by the Kalman gain. We use a reduced-order Kalman filter derived from a singular 174 

evolutive extended Kalman (SEEK) filter (Brasseur and Verron, 2006; Lellouche et al., 2021). The Kalman gain is meant to 175 

balance the information from the model and the observations to get closer the real ocean and sea ice state: as such, it is based 176 

on the error covariance of the forecast and the observation errors. The model forecast error covariance is computed from a 177 

fixed ensemble of 4D ocean and ice state anomalies that vary seasonally. 178 

The anomalies are computed from a long simulation without assimilation, using the same model configuration and 179 

parameters with respect to a running mean. Anomalies are computed on a reduced grid for the ocean (1 out of 2 points) and on 180 

a full grid for the sea ice. The increments at each model grid point are calculated independently in a local scheme, where a 181 

localization algorithm controls the spatial influence of observations. This approach helps to limit the impact of sampling no ise 182 

on the increments. The last step of the assimilation cycle is the Incremental Analysis Update (IAU) that allows us to gradually 183 

introduce the analysis increments into the model (Benkiran and Greiner, 2008). The model runs a second time over the 7 -day 184 

cycle for a ‘best’ trajectory; and at each timestep a tendency term is added to the model variables in the prognostic equations. 185 

The tendency term comes from the increment, modulated by a distribution function (Lellouche et al., 2013). 186 

The ice and ocean analysis are separate, which means that ocean covariances are used for the ocean variables only, 187 

and the same applies for sea ice variables. The ocean analysis is multivariate and multidata, using sea level anomaly dataset s 188 

from satellite altimetry (SEALEVEL_GLO_PHY_L3_NRT_008_044, 2023), sea surface temperature (SST) from OSTIA 189 

(Operational Sea Surface Temperature and Sea Ice Analysis, SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001, 2023), 190 

and temperature and salinity vertical profiles from in situ ARMOR and CORA-REP measurements 191 

Commenté [1]: Je fais la modif, en suivant les conseils de 
Laurent RC2, de décrire les observations avant de décrire les 
système d'assimilation. Donc ça donne : 2.1 description du 
modèle, 2.2 description des obs assimilées, et 2.3 description 
du syst d'assimilation. 



7 

 

(INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030, 2024). The ocean observations are not assimilated under 192 

the sea ice; except for the SST OSTIA because the product is calibrated with our assimilated SIC product and sets the under -193 

ice ocean surface temperature to the freezing point, which is consistent with the ice assimilation. Additionally, given the 194 

scarcity of in-situ data in the Southern polar ocean, no in-situ vertical profiles are assimilated below 60°S. 195 

Assimilation systems can be described by the terms monodata or multidata, depending on the number of observations 196 

assimilated. Two different methods exist for the assimilation system: univariate and multivariate. They refer to the number of 197 

variables in the Kalman filter state vector, determining for which variables increments are created. In a univariate 198 

configuration, the Kalman filter runs for each observation to create only one increment. In a multivariate configuration, 199 

multiple analysis increments are created at once, using the model covariances to simultaneously correct a number of many 200 

variables in a coherent manner. Hence, different assimilation systems could be defined: monodata/univariate, 201 

monodata/multivariate and multidata/multivariate.  202 

Two different methods are used for the ice assimilation: univariate and multivariate. They refer to the number of 203 

variables in the Kalman filter state vector, determining for which variables increments are calculated. In the univariate 204 

configuration, only a SIC increment is created, which means that only SIC observations can be assimilated. In the multivariate 205 

configuration, the state vector is made of sea ice concentration SIC, sea ice volume SIV, snow volume SNV, radar freeboard 206 

volume RFBV, and snow thickness SNT. This multivariate configuration allows us to assimilate a larger variety of data and 207 

to update the modelled ice accordingly. It is not required to use observational data on each of the state vector variables: when 208 

no data are given, the Kalman filter uses the model covariances to propagate the information from the observed variables to 209 

the unobserved ones. RFBV and SNT variables are included in the state vector due to the availability of observation datasets 210 

for these quantities. SIV and SNV are included because they are global prognostic variables of the ice model, essential for 211 

accurately describing the model state. SIC is included for both reasons. 212 

The different variables updated in the sea ice assimilation cycle are listed in Table 1. The increments do not distinguish 213 

ice categories, they present total values aggregated over each grid cell. All increments are tempered by the IAU factor. The 214 

first updated model variable is the SIC. The analysis is created by adding the increment to the forecast: 𝑆𝐼𝐶𝑎 = 𝑆𝐼𝐶𝑓 + 𝑆𝐼𝐶𝑖𝑛𝑐. 215 

Then, the total ice concentration is redistributed into each existing thickness category using a Gamma-type  distribution 216 

commonly found in observed measurements (Toppaladoddi et al., 2023; Petty et al., 2020). This chosen distribution (with 217 

parameters k=2.0 and theta=0.4), which adds most of the increment to the middle and smallest thickness categories and less to 218 

the extreme categories. 219 

In the univariate system, all other updates are computed from this SIC increment: following Tietsche et al. (2013), 220 

the SIV is proportional to the sea ice concentration, with a constant varying depending on the hemisphere: ℎ𝑆𝐻
∗ = 1𝑚 and 221 

ℎ𝑁𝐻
∗ = 2𝑚. The SNV increment is set to zero in the univariate method. In the multivariate method, SIV and SNV increments 222 

come directly from the Kalman filter algorithm. The algorithm updates the total ice and snow volumes for each grid cell, and 223 

then redistributes the updates to the individual ice categories. For the SIV, the algorithm adjusts the SIT in each category,  224 

starting with the thinnest ice. This prioritizes melting thinner ice first when the ice volume increment is negative. Changes are 225 

applied proportionally to the analysis SIC in each category, ensuring larger changes in categories with greater ice surface 226 

a mis en forme : Espace Après : 8 pt, Interligne : simple
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area.change of  of The SNV update accounts for the forecast SNT, analysis SIC, and SNV increment. When the SNV increment 227 

is zero, corrections are still applied, aiming at maintaining a constant SNV even under varying SIC conditions. Redistribution 228 

preserves the snow distribution across ice categories by adjusting the forecast SNT by the same ratio in each category. If the 229 

updated SNT exceeds a threshold defined as half the analysis SIT, it is capped to avoid unrealistic values. In such cases, the 230 

total snow volume may decrease compared to the forecast. 231 

Then, the volumetric ice salinity and enthalpy are corrected in both methods by adjusting the previous ice salinity and 232 

enthalpy to the new ice volume 𝑆𝐼𝑉𝑎 = 𝑆𝐼𝑉𝑓 + 𝑆𝐼𝑉𝑖𝑛𝑐. The volumetric snow enthalpy is also corrected following the same 233 

procedure. The updated volumetric ice salinity and enthalpy and the volumetric snow enthalpy are used to compute the ice 234 

salinity vertical profile, the salt mass content, and the snow and ice vertical temperature profile. 235 

 236 

Updated variable Univariate method Multivariate method 

SIC Increment Increment 

SIV 𝑆𝐼𝑉𝑖𝑛𝑐 = ℎ∗ × 𝑆𝐼𝐶𝑖𝑛𝑐 Increment 

SNV 𝑆𝑁𝑉𝑖𝑛𝑐 = 0 Increment 

Volumetric ice salinity Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric ice enthalpy Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric snow enthalpy No update Computed from 𝑆𝑁𝑉𝑖𝑛𝑐 and forecast value. 

Table 1: Variables updated during the assimilation cycle and their origin in both the univariate and multivariate systems. 237 

The different experiments presented in this paper show the evolution of the sea ice assimilation methods from a 238 

univariate and mono-data system, updating only SIC, to a multivariate and multidata setup. 239 

2.2 Assimilated observing network 240 

Observations SIC SSMIS RFB-LEGOS SNOW-KaKu 

Producer EUMETSAT OSI-SAF LEGOS LEGOS 

Temporal 

resolution 

Daily 20 Hz Monthly → weekly (linear 

interpolation) 

Temporal 

coverage 

All-time Winter: November to April in the Arctic; May to October in the 

Antarctic. 

Spatial 

resolution 

40 km (effective resolution); 

25 km (grid resolution). 

Along-tracks 12.5 km (grid resolution). 
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Spatial gaps None (reprocessed). Central Arctic (latitude > 88°N); 

in-between satellite tracks. 

Central Arctic (latitude > 

81.5°N); coastal areas. 

nsel 400 4000 400 

Table 2: Assimilated observation products and their specificities. 241 

2.2.1 Sea ice concentration SSMIS 242 

The observation data used for sea ice concentration (SIC) assimilation is the global daily reprocessed passive microwave 243 

dataset, measured with Special Sensor Microwave Imager / Sounder (SSMIS) satellites instruments, from the European 244 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application 245 

Facility (OSISAF) OSI-450 (OSI SAF, 2022) (Table 2). Considering the large errors in satellite measurement in low SIC 246 

regions (Ivanova et al., 2015), we arbitrarily set to 0 the data values below 7.5%. Moreover, we only consider nominal data 247 

from the OSISAF algorithm, excluding data with coastal correction, interpolation, or climatology corrections. We use the 248 

daily- and spatially- varying spatial pattern of the “standard_error” provided with the dataset to construct the observation error 249 

for the assimilation but we inflate linearly the error to obtain a maximum of 25% in the Arctic (same value as Lellouche et al., 250 

2021) and 40% in Antarctica, and we set a minimum value of the error to 1%. 251 

2.2.2 Radar freeboard RFB-LEGOS 252 

The “laboratoire d'etudes en géophysique et océanographie spatiales” (LEGOS) scientists have used along tracks measurement 253 

from the CS2 satellite to create a freeboard dataset (Guerreiro et al., 2017; Laforge et al., 2021). Thanks to hydrostatic 254 

equilibrium, freeboard can provide sea ice thickness values using information of snow depth, and water, ice and snow densities. 255 

Altimetry measurements measuredetect radar freeboard (RFB) due to the slower velocity of the radar wave when travelling 256 

through the snow (see equations in Bocquet et al., 2023). Radar freeboard values can be negative because of the term 257 

accounting for the radar speed reduction in the snow layer: it is not a real physical distance contrarily to ice freeboard.  Radar 258 

freeboard measurements depend on the radar speed reduction in the snow layer and are consequently not physical 259 

measurements. The ice/snow interface is therefore not necessarily underwater when the RFB is negative. 260 

We multiply the RFB values by the SSMIS data to assimilate radar freeboard volume per unit area (RFBV) in consistency 261 

with volumetric prognostic model quantities. We use the uncertainty provided for each trackwith the dataset as the observation 262 

error, constraining it to a range of 0.01 m to 5 m. The RFBV model equivalent is calculated from Bocquet et al. (2023) with 263 

constant sea water, sea ice and snow densities (Eq. 1). 264 

𝑅𝐹𝐵 =  
𝜌𝑤−𝜌𝑖𝑐𝑒

𝜌𝑤
∙ 𝑆𝐼𝑇 − (

𝜌𝑠𝑛𝑜𝑤

𝜌𝑤
+ (1 + 0.00051𝜌𝑠𝑛𝑜𝑤)1.5 − 1) ∙ 𝑆𝑁𝑇 = 0.106 ∙ 𝑆𝐼𝑇 − 0.584 ∙ 𝑆𝑁𝑇  (1) 265 

We use the LEGOS data because it provides concomitant RFB and snow data in both hemispheres. We assimilate two modes 266 

of CS2 instruments: the Synthetic Aperture Radar (SAR) for offshore regions and SAR Interferometric (SARin) for coastal 267 

areas. Due to potential truncation problems with the filtering of RFB measurements, and to be able to use the same method 268 
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across different spatial resolutions of the configuration, we kept the full scales of SAR and SARin measurements. The data are 269 

only available during winter in both hemispheres, November to April in the Arctic and May to October in the Antarctic (Table 270 

2). Apart from north of 88°N, CS2 satellite tracks cover the entire ice domain of each hemisphere in about a month: during 271 

each assimilation cycle, important areas remain unobserved, especially at lower latitudes (Antarctica).The data are only 272 

available during winter in both hemispheres. CS2 satellite tracks cover the entire ice domain of each hemisphere in about a 273 

month: during each assimilation cycle, important areas remain unobserved, especially at lower latitudes (Antarctica). 274 

2.2.3 Snow thickness SNOW-KaKu 275 

Snow thickness (SNT) data come from the KaKu LEGOS data (Garnier et al., 2021) and consist in the difference between CS2 276 

Ku-band altimetric measurements, reflected by the ice, and SARAL Ka-band altimetric measurements, reflected by the snow. 277 

The data are provided in monthly gridded files, available in winter in each hemisphere. The data are provided in monthly 278 

gridded files, available during the same winter periods as RFB, in each hemisphere (Table 2). A temporal linear interpolation 279 

is applied to get SNT data at each weekly analysis. Due to SARAL orbital characteristics, no data are available for latitudes 280 

below 81.5°N. Due to SARAL orbital characteristics, no data are available for latitudes higher than 81.5°N.The observation 281 

error used in the analysis comes from the monthly varying uncertainty supplied with the data, constrained to an arbitrary range 282 

of 0.01 m to 5 m. The snow data are assimilated as a thickness quantity, with the snow volume increment subsequently 283 

computed using the Kalman filter. It is important to note that the snow volume increment depends on all the assimilated data 284 

and reflects how well the volume correlates with them. Multiple processing are applied to the Ku-band CryoSat-2 285 

measurements to create the SNOW-KaKu product: a degraded version of the SAR measurements (pseudo-LRM mode) is used 286 

to get a similar footprint as the SARAL-AltiKa measurements, a 25 km radius median smoothing is applied, and the data is 287 

gridded at a monthly frequency, as described by Garnier et al. (2021). However, the SNOW-KaKu product remains not fully 288 

independent from RFB-LEGOS measurements. 289 

 290 

2.3 Assimilation scheme 291 

The assimilation system is the one used in the current near real time operational system (Lellouche et al., 2021). The 292 

7-day assimilation cycle proceeds as follows: firstly, the model runs for the full cycle length for a ‘forecast’ trajectory, resulting 293 

in a forecast state. Observations available during the cycle time are loaded and processed as needed, with special care taken to 294 

define the observation errors. Using the forecast output and an observation operator, model variables are transformed into 295 

observation-equivalent variables that are consistent in space and time with the assimilated observations. Then, the analysis 296 

step produces 4D increments or model updates of the forecast trajectory. The increment depends on the innovation (observation  297 

minus model equivalent), weighted by the Kalman gain. We use a reduced-order Kalman filter derived from a singular 298 

evolutive extended Kalman (SEEK) filter (Brasseur and Verron, 2006; Lellouche et al., 2021). The Kalman gain is meant to 299 

balance the information from the model and the observations to get closer to the real ocean and sea ice state: as such, it is based 300 
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on the error covariance of the forecast and the observation errors. The model forecast error covariance is computed from a 301 

fixed ensemble of 4D ocean and ice state anomalies that vary seasonally. 302 

The static anomalies are computed from a long simulation (2010-2020) without assimilation, using the same model 303 

configuration and parameters with respect to a 7-day running mean.  This approach is based on statistical ensembles in which 304 

the ensemble of these anomalies is representative of the error covariances (Lellouche et al., 2013). 305 

The increments at each model grid point are calculated independently in a local scheme, where a localization 306 

algorithm controls the spatial influence of observations. This approach helps to limit the impact of sampling noise on the 307 

increments. The radius of the localization scheme is set as the minimum between an arbitrary fixed distance of 176 km and a 308 

radius defined by the inclusion of a number of observation nsel (see the chosen nsel values in Table 2). The last step of the 309 

assimilation cycle is the Incremental Analysis Update (IAU) that allows us to gradually introduce the analysis increments into 310 

the model (Benkiran and Greiner, 2008). The model runs a second time over the 7-day cycle for a ‘best’ trajectory; and at each 311 

timestep a tendency term is added to the model variables in the prognostic equations. The tendency term comes from the 312 

increment, modulated by a distribution function (Lellouche et al., 2013). 313 

The ice and ocean analysis are separate, which means that ocean covariances are used for the ocean variables only, 314 

and the same applies for sea ice variables. The ocean analysis is multivariate and multidata, using sea level anomaly dataset s 315 

from satellite altimetry (SEALEVEL_GLO_PHY_L3_NRT_008_044, 2023), sea surface temperature (SST) from OSTIA 316 

(Operational Sea Surface Temperature and Sea Ice Analysis, SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001, 2023), 317 

and temperature and salinity vertical profiles from in situ ARMOR and CORA-REP measurements 318 

(INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030, 2024). The ocean observations are not assimilated under 319 

the sea ice in the original operational system. Following experiments to set up the new ice assimilation system, instabilities in 320 

the water column appeared in the Southern Ocean. To reduce these static instabilities, we activated the OSTIA SST assimilation 321 

under the ice to maintain the ocean temperature at the freezing point. We also stopped assimilating in situ data to the south of 322 

60°S, regardless of the season, because the surface thermohaline properties were being durably modified on large spatial scales, 323 

despite the few profiles present. Assimilating these in situ data modified ocean stratification, causing upwellings of warm 324 

water at the surface and creating unrealistic open water areas within the sea ice cover. 325 

 326 

Assimilation systems can be described by the terms monodata or multidata, depending on the number of observations 327 

assimilated. Two different methods exist for the assimilation system: univariate and multivariate. They refer to the number of 328 

variables in the Kalman filter state vector, determining for which variables the increments are created. In a univariate 329 

configuration, the Kalman filter runs for each observation to create only one increment. In a multivariate configuration, 330 

multiple analysis increments are created at once, using the model covariances to simultaneously correct a number of variables 331 

in a coherent manner. Hence, different assimilation systems could be defined: monodata/univariate, monodata/multivariate 332 

and multidata/multivariate.  333 

In the univariate configuration, only a SIC increment is created, and only SIC observations are assimilated. In 334 

themultivariate configuration, the state vector is made of sea ice concentration SIC, sea ice volume SIV, snow volume SNV, 335 

radar freeboard volume RFBV, and snow thickness SNT. This multivariate configuration allows us to assimilate a larger 336 
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variety of data and to update the modelled ice accordingly. It is not required to use observational data on each of the state 337 

vector variables: when no data are given, the Kalman filter uses the model covariances to propagate the information from the 338 

observed variables to the unobserved ones. Similarly, the model covariances are used to create increments where and when 339 

there are data gaps in the assimilated observations. RFBV and SNT variables are included in the state vector due to the 340 

availability of observation datasets for these quantities. SIV and SNV are included because they are global prognostic variables 341 

of the ice model, essential for accurately describing the model state. SIC is included for both reasons. 342 

The different variables updated in the sea ice assimilation cycle are listed in Table 1. The increments do not distinguish 343 

ice categories, they present total values aggregated over each grid cell. All increments are tempered by the IAU factor. The 344 

first updated model variable is the SIC. The analysis is created by adding the increment to the forecast: 𝑆𝐼𝐶𝑎 = 𝑆𝐼𝐶𝑓 + 𝑆𝐼𝐶𝑖𝑛𝑐. 345 

Then, the total ice concentration is redistributed into each existing thickness category using a Gamma-type  distribution 346 

commonly found in observed measurements (Toppaladoddi et al., 2023; Petty et al., 2020). This chosen distribution (with 347 

parameters k=2.0 and theta=0.4) adds most of the increment to the middle and smallest thickness categories and less to the 348 

extreme categories. 349 

In the univariate system, all other updates are computed from this SIC increment: following Tietsche et al. (2013), 350 

the SIV is proportional to the sea ice concentration, with a constant varying depending on the hemisphere: ℎ𝑆𝐻
∗ = 1𝑚 and 351 

ℎ𝑁𝐻
∗ = 2𝑚. The SNV increment is set to zero in the univariate method. In the multivariate method, SIV and SNV increments 352 

come directly from the Kalman filter algorithm. The algorithm updates the total ice and snow volumes for each grid cell, and 353 

then redistributes the updates to the individual ice categories. For the SIV, the algorithm adjusts the SIT in each category,  354 

starting with the thinnest ice. This prioritizes melting thinner ice first when the ice volume increment is negative. Changes are 355 

applied proportionally to the analysis SIC in each category, ensuring larger changes in categories with greater ice surface area. 356 

If the change of thickness  of a category exceeds its bounds, any excess or deficit in volume is transferred to the next thicker 357 

category, and this redistribution continues until the entire SIV increment is applied. The SNV update accounts for the forecast 358 

SNT, analysis SIC, and SNV increment. When the SNV increment is zero, corrections are still applied, aiming at maintaining 359 

a constant SNV even under varying SIC conditions. Redistribution preserves the snow distribution across ice categories by 360 

adjusting the forecast SNT by the same ratio in each category. 361 

Then, the volumetric ice salinity and enthalpy are corrected in both methods by adjusting the previous ice salinity and 362 

enthalpy to the new ice volume 𝑆𝐼𝑉𝑎 = 𝑆𝐼𝑉𝑓 + 𝑆𝐼𝑉𝑖𝑛𝑐. The volumetric snow enthalpy is also corrected following the same 363 

procedure. The updated volumetric ice salinity and enthalpy and the volumetric snow enthalpy are used to compute the ice 364 

salinity vertical profile, the salt mass content, and the snow and ice vertical temperature profile. 365 

 366 

Updated variable Univariate method Multivariate method 

SIC Increment Increment 

SIV 𝑆𝐼𝑉𝑖𝑛𝑐 = ℎ∗ × 𝑆𝐼𝐶𝑖𝑛𝑐 Increment 
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SNV 𝑆𝑁𝑉𝑖𝑛𝑐 = 0 Increment 

Volumetric ice salinity Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric ice enthalpy Computed from 𝑆𝐼𝑉𝑖𝑛𝑐 and forecast value. 

Volumetric snow enthalpy No update Computed from 𝑆𝑁𝑉𝑖𝑛𝑐 and forecast value. 

Table 1: Variables updated during the assimilation cycle and their origin in both the univariate and multivariate systems. 367 

2.3 Experiments setup 368 

To assess the impact of the multivariate and/or the multidata approach versus the more widespread SIC monodata/multivariate 369 

assimilation approach, we have not considered the most relevant approaches that can be combined with a single-variety or 370 

multi-variety approach and the use of data in multi-data or single-data mode. We performed a monodata/multivariate 371 

experiment assimilating the SIC OSISAF SSMIS product only with the multivariate assimilation system described previously. 372 

The results of this experiment are presented in supplementary material (Section 2) to let the article focus on the major 373 

differences brought by the innovative multidata/multivariate configuration. We then restricted the study to the comparison of 374 

the results using the monodata/univariate and the multidata/multivariate configurations. Three experiments have been 375 

performed to assess the performance of the assimilation and the impact of the multivariate approach: 376 

● FREE: experiment without any assimilation, used as a baseline of the model capacities; which has consistent biases in all 377 

sea ice variables due to model and forcing limitations, providing a baseline for evaluating the impact of assimilation. 378 

● UNIVAR: experiment similar to the current operational system, using the previously described univariate SIC assimilation 379 

method. Assimilating SIC alone is expected to significantly reduce sea ice concentration errors but may induce unrealistic 380 

adjustments in sea ice thickness (SIT) and snow depth (SNT).; 381 

●  MULTIVAR: experiment with the multivariate assimilation scheme described previously, assimilating SIC, RFB and 382 

SNT observations, and updating the SIC, SIV and SNV model variables. Assimilating multiple variables is anticipated to 383 

improve agreement with all assimilated observations (SIC, RFB, SNT), though possibly at the cost of reduced SIC 384 

accuracy and increased risk of numerical or dynamical imbalances, especially in a coupled ice–ocean model. 385 

Characteristics of the three experiments are summarized in Table 2. All three experiments were conducted over two full annual 386 

cycles, 2017 and 2018, covering the period from 14/12/2016 to 26/03/2019. Initial conditions are based on the reanalysis 387 

GLORYS12V1 (Lellouche et al. (2021). 388 

 389 

Experiment name Assimilated data Analysis increments Updated model variables 

FREE None None None 

UNIVAR SSMIS SIC SIC, SIV 

MULTIVAR SSMIS, RFB-LEGOS, SNOW-KaKu SIC, SIV, SNV, RFBV, 

SNT 

SIC, SIV, SNV 
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Table 32: Experiments setup in terms of assimilated data, analysis increments and updated model quantities. 390 

 391 

3 Performances of the assimilation system 392 

3.1 Sea ice concentration and sea ice leads 393 

 As expected, the two assimilation experiments outperform the FREE experiment during summertime in terms of sea 394 

ice concentration coverage. In both hemispheres, FREE is not able to prevent excessive melting and shows a significant lack 395 

of sea ice, mainly in marginal areas, during July-October in the Arctic (i.e. Fig. 2(a) for July 2017) and in January-April in 396 

Antarctica (See Figures S1 and S2 in Supplementary Materials not shown). 397 

 398 

Figure 1: July 2018 in the Arctic (a) and September 2017 in the Antarctic (b) maps of the sea ice concentration, 399 

representing the observation SSMIS on the first column, and the difference between the experimentsences and the 400 

reference SSMIS observation on the following columns. The simulations are, in that order: FREE, UNIVAR and 401 

MULTIVAR. Root mean squared errors (RMS) are provided under each map. 402 

Maps of the sea ice concentration in the assimilated observations and their difference to the experiments are shown 403 

on Figure 1 for both hemispheres. The well-known Weddell Sea “Maud-rise polynya” that appeared in winter 2017 (Jena et 404 
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al., 2019) is not reproduced by the FREE experiment (Figure 2(b)). The UNIVAR and MULTIVAR experiments are able to 405 

reproduce this polynya. However, in the assimilated simulations, the Maud-rise polynya begins to take shape from June 2017, 406 

earlier than in the observations, and the system struggles to keep an ocean uniformly covered in ice in the Weddell Sea. Other 407 

polynyas are present in few locations around the Antarctic: in the Amundsen Sea offshore of Pine Island Bay at 120°W in the 408 

UNIVAR and MULTIVAR simulations (Figure 2(b)), and near Iselin Bank at 180°E in the Ross Sea in the MULTIVAR 409 

simulation. These events appear repeatedly during the ice freezing period in 2017 and 2018. 410 

On the maps on Figure 2, sea ice concentration modelled by the UNIVAR simulation stands out and compares very 411 

well with the assimilated SSMIS dataset in the Arctic (RMSE of 0.04 in July 2018) and remains below the observation error 412 

in Antarctica (RMSE of 0.06 in September 2017). Multivariate assimilation of RFB and SNT data reduces the Arctic SIC 413 

compared to SSMIS, mainly in the central Arctic. This lower SIC in the central Arctic results in a RMSE of 0.18 for July 2018, 414 

the highest among the experiments. In that summer period, there are no RFB and SNT observations and the multivariate 415 

assimilation system creates the SIV and SNV increments from SIC observations and model covariances only. During the other 416 

months, the RMSE of 0.08 for the MULTIVAR simulation is lower, falling between the mean RMSEs of the UNIVAR and 417 

FREE simulations, which are 0.04 and 0.13, respectively. The Arctic mean RMSE of the UNIVAR and MULTIVAR 418 

simulations are similar in winter, but they differ in summer with the MULTIVAR simulation RMSE being 0.07 higher. In 419 

Antarctica, the FREE simulation presents mainly positive SIC biases in winter, particularly in the marginal ice zone (MIZ, 420 

defined by SIC values between 15% and 80%), and places the ice edge too far north compared to SSMIS observations (Figures 421 

2 and S2not shown) with mean RMSEs of 0.16 in September 2017 and 0.23 over the whole 2017-2018 months. The ice edge 422 

overestimation in the FREE experiment is corrected by the SIC assimilation in both UNIVAR and MULTIVAR simulations 423 

with comparable RMSEs of respectively 0.06 and 0.08 in September 2017 and the same values for the mean RMSEs over the 424 

whole 2017-2018 months. 425 

 426 

 We also assess the experiments on their ability to correctly reproduce the amount of open waters within the sea ice 427 

extent, referred to as “leads” hereafter. The area of sea ice leads offers valuable insights for predicting the Arctic sea ice extent 428 

(Zhang et al., 2018). The daily sea ice leads area timeseries are represented on Figure 1(a) in the Arctic and Figure 1(b) in the 429 

Antarctic. The sea ice leads area content is computed by subtracting the sea ice area from the sea ice extent defined by cells 430 

where SIC>15%. We use two others different SIC datasets in order to quantify the spread among observations (Ivanova et al., 431 

2015):  the OSI-408 product (OSI SAF, 2017), derived from AMSR-2 satellite measurements and processed by the 432 

EUMETSAT OSISAF; and the Climate Data Record (CDR) dataset (Meier et al., 2017; Peng et al., 2013) from the National 433 

Snow and Ice Data Center (NSIDC). All SIC data are interpolated on the polar stereographic SSMIS grid and use a consistent 434 

continental mask, ensuring the same area coverage. 435 

As expected, the two assimilation experiments outperform the FREE experiment during summertime in terms of sea 436 

ice concentration coverage. In both hemispheres, FREE is not able to prevent excessive melting and shows a significant lack 437 
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of sea ice, mainly in marginal areas, during July-October in Arctic and in January-April in Antarctica (See Figures S1 and S2 438 

in Supplementary Materialsnot shown). 439 

In the Arctic, the maximum lead surface area occurs in summer, more precisely at the beginning of the melting season. 440 

The daily surface area of leads peaks in July and then decreases with the retreat of the sea ice extent. The amount of leads 441 

remains constant from October to May in all the observations. In Antarctica, the lowest lead surface area is synchronous with 442 

the sea ice extent minimum in February-March. The observations then show an increase in leads area until its peak in 443 

November–December, corresponding to the first third of the melting season. The southern observational datasets show strong 444 

agreement regarding the minimum lead surface; but diverge as the lead area increases. In both hemispheres, NSIDC and SSMIS 445 

observations respectively display the smallest and the largest amount of leads. The FREE experiment shows the smallest 446 

amount of leads remaining outside the range of the observations for most of the year in both hemispheres, and has a weaker 447 

seasonal amplitude in the Arctic than the assimilated experiments and SSMIS and AMSR2 estimates, but comparable to 448 

NSIDC’s amplitude. Despite leads metrics that moderately resemble the observations on average in the FREE experiment, its 449 

Arctic RMSE of 0.15 on Figure 2(a)  highlights inconsistencies in the modeled spatial patterns of sea ice concentration. The 450 

assimilation process rapidly and realistically increases the amount of leads in both the Arctic and Antarctic sea ice cover. The 451 

two assimilated experiments remain very close to the NSIDC leads area estimates during the northern hemisphere constant sea 452 

ice leads period, and they reproduce very well the rapid increase in lead surface area during spring. The UNIVAR experiment 453 

remains within the range of observational estimates throughout the year. The MULTIVAR simulation exhibits the highest 454 

amount of leads during the peak period in July, even higher than the SSMIS observations. 455 
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 456 

Figure 21: Daily time evolution of Arctic (a) and Antarctic (b) surface covered by sea ice leads in millions of km² for SSMIS (black), 457 
AMSR2 (dashed black), NSIDC (dotted black) satellite data with the surface range covered by them (shaded grey) and for FREE 458 
(blue), UNIVAR (green) and MULTIVAR (pink) experiments. 459 

In Antarctica, both the UNIVAR and MULTIVAR experiments have a consistently higher sea ice leads area than the FREE 460 

experiment and are thus in better agreement with the observations. They correctly reproduce the minimum leads area and its 461 

maximum, with the MULTIVAR experiment showing the highest amount of leads during the peak period in early December, 462 

still coherent with the SSMIS observations.  However, during the second half of the increase in lead surface, the assimilated 463 

experiments show significant fluctuations that exceed the range of the observations. The fluctuations are linked to the 464 

occurrence of localized low-SIC and thin ice areas in the ice cover, called polynyas when they become open-water areas. Maps 465 

of the sea ice concentration in the assimilated observations and their difference to the experiments are shown on Figure 2 fo r 466 

both hemispheres. The well-known Weddell Sea “Maud-rise polynya” that appeared in winter 2017 (Jena et al., 2019) is not 467 

reproduced by the FREE experiment (Figure 2(b)). The UNIVAR and MULTIVAR experiments are able to reproduce this 468 
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polynya. However, in the assimilated simulations, the Maud-rise polynya begins to take shape from June 2017, earlier than in 469 

the observations, and the system struggle to keep an ocean uniformly covered in ice in the Weddell Sea. Other polynyas are 470 

present in few locations around the Antarctic: in the Amundsen Sea offshore of Pine Island Bay at 120°W in the UNIVAR and 471 

MULTIVAR simulations (Figure 2(b)), and near Iselin Bank at 180°E in the Ross Sea in the MULTIVAR simulation. These 472 

events appear repeatedly during the ice freezing period in 2017 and 2018.  473 

 474 

Figure 2: July 2018 in the Arctic (a) and September 2017 in the Antarctic (b) maps of the sea ice concentration, representing the 475 
observation SSMIS on the first column, and the difference between the experimentsences and the reference SSMIS observation on 476 
the following columns. The simulations are, in that order: FREE, UNIVAR and MULTIVAR. Root mean squared errors (RMS) are 477 
provided under each map. 478 

On the maps on Figure 2, sea ice concentration modelled by the UNIVAR simulation stands out and compares very 479 

well with the assimilated SSMIS dataset in the Arctic (RMSE of 0.04 in July 2018) and remains below the observation error 480 

in Antarctica (RMSE of 0.06 in September 2017). Despite leads metrics that moderately resemble SSMIS on average in the 481 

FREE experiment, its Arctic RMSE of 0.15 highlights inconsistencies in the modeled spatial patterns of sea ice concentration. 482 

Multivariate assimilation of RFB and SNT data reduces the Arctic SIC compared to SSMIS, mainly in the central Arctic. This 483 

lower SIC in central Arctic results in a RMSE of 0.18 for July 2018, the highest among the experiments. In that summer period, 484 

there are no RFB and SNT observations and the multivariate assimilation system creates the SIV and SNV increments from 485 

SIC observations and model covariances only. During the other months, the RMSE for the MULTIVAR simulation is lower, 486 

falling between the mean RMSEs of the UNIVAR and FREE simulations, which are 0.04 and 0.13, respectively. The Arctic 487 
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mean RMSE of the UNIVAR and MULTIVAR simulations are similar in winter, but they differ in summer with the 488 

MULTIVAR simulation RMSE being 0.07 higher. In Antarctica, the FREE simulation presents mainly positive SIC biases in 489 

winter, particularly in the marginal ice zone (MIZ, defined by SIC values between 15% and 80%), and places the ice edge too 490 

far north compared to SSMIS observations (Figures 2 and S2not shown) with mean RMSEs of 0.16 in September 2017 and 491 

0.23 over the whole 2017-2018 months. The ice edge overestimation in the FREE experiment is corrected by the SIC 492 

assimilation in both UNIVAR and MULTIVAR simulations with comparable RMSEs of respectively 0.06 and 0.08 in 493 

September 2017 and the same values for the mean RMSEs over the whole 2017-2018 months. 494 

In both hemispheres, the assimilation of SIC creates a larger lead area higher presence of leads in the sea ice cover, 495 

in accordance with the SSMIS assimilated observations. The multivariate experiment alone even overestimates the quantity of 496 

leads during the seasonal maximum in the Arctic summertime. In the Antarctic, the two assimilated experiments reproduce the 497 

same variability and the occurrence of unobserved polynyas.In the Antarctic, the two assimilated experiments generate 498 

variability and occurrence of unobserved polynyas, but MULTIVAR creates them more frequently all around Antarctica 499 

(Figure S2). In the Antarctic, the two assimilated experiments generate a large number of  polynyas which are not detected by 500 

the satellite observations, with the MULTIVAR experiment showing them more frequently and broadly across the region 501 

(Figure S2). While some smaller polynyas may go undetected in the observational data, the modelled polynyas are likely 502 

overestimated. 503 

3.2 Snow volume 504 

Figure 3(a) shows the probability density functions for snow thickness, radar freeboard using SAR mode, and radar 505 

freeboard using SARin mode, along with their model equivalents for the three experiments in the Arctic in April 2017. The 506 

SNOW-KaKu data in the Arctic present a zero-inflated bimodal, asymmetrical and positively skewed snow distribution with 507 

the first mode representing a snow thickness of 0 cm (no snow observed on the grid cell), and the second mode increasing in 508 

thickness as winter progresses and peaking at 13.6 cm in April 2017. The MULTIVAR snow distribution is very close to the 509 

Arctic SNOW-KaKu during winter (Figures S3 and S5  not shown) and matches perfectly in April. The UNIVAR and 510 

especially the FREE simulations accumulate excessive snow as winter progresses, leading to a positive bias by the end of the 511 

winter assimilation period as shown on Figure 3(a). The linear correlation (r-value) computed against the SNOW-KaKu 512 

observations in the Arctic results is consistently above 0.5 for MULTIVAR, peaking at 0.7 in December 2018 (Figure S6not 513 

shown). The FREE and UNIVAR experiments exhibit systematic lower r-values, with the UNIVAR experiment having the 514 

lowest average correlation of 0.37. Compared to SNOW-KaKu estimates, the FREE and UNIVAR simulations present a 515 

spatially homogeneous overestimated snow thickness in Central Arctic and an underestimation in few areas such as north of 516 

the Canadian Archipelago, the east coast of Greenland, and in the Barents and Greenland seas (Figure 3(b)). This results in an 517 

excessive total snow volume of 1.24 Mkm3 in the FREE experiment compared to that of 0.94 Mkm3 estimated by SNOW-518 

KaKu observations. In April 2017 (Fig. 3 (b)), the MULTIVAR simulation represents closely both the SNOW-KaKu spatial 519 
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pattern and the total snow volume amount with 0.91 Mkm3. This result is robust and remains valid for the other months of the 520 

year. 521 

 522 

 523 

Figure 3: Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard 524 
SARin observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) 525 
experiments in the Arctic for April 2017. Middle (b), resp. bottom (c), row panels: snow volume per unit area [m³/m2] , resp.  radar 526 
freeboard volume per unit area, from SNOW-KaKu, resp. RFB LEGOS, (first column) and differences with FREE, UNIVAR and 527 
MULTIVAR experiments. Total snow and RFB volumes values and root mean squared difference (RMS) are provided under each 528 
map. 529 
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 530 

Figure 4: Top panels (a): Probability density functions (%) of the snow thickness, the radar freeboard SAR and radar freeboard 531 
SARin observations (dotted black) and their model equivalent for the FREE (blue), UNIVAR (green) and MULTIVAR (pink) 532 
experiments in the Antarctic for May and October 2017. Middle (b), resp. bottom (c), row panels: snow volume per unit area, resp. 533 
radar freeboard volume per unit area, from SNOW-KaKu, resp. RFB LEGOS, (first column) and differences with FREE, UNIVAR 534 
and MULTIVAR experiments in October 2017. Total snow and RFB volumes values and root mean squared difference (RMS) are 535 
provided under each map. 536 

 537 



22 

 

In the Antarctic, the SNOW-KaKu data again exhibit a bimodal and positively skewed distribution, with a mode at 538 

0.6 cm another at 11.6 cm in the first month of assimilation in May 2017 on Figure 4(a). As winter progresses, the second 539 

mode gets thicker and more frequent, peaking at 17.6 cm in October 2017. Among the simulations, the FREE experiment 540 

matches better the observations in May 2017 but then diverges the most from the observations, showing an increasing 541 

accumulation of snow as winter progresses, with a main mode 11.2 cm higher than the observed mode in October 2017. The 542 

UNIVAR and MULTIVAR experiments present lower snow thickness values compared to the observations during the whole 543 

2017 and 2018 seasons, with main modes respectively 8.2 cm and 7.5 cm lower than the observed mode. The most significant 544 

snow positive biases in the FREE experiment are associated with thinner snow measurements in the SNOW-KaKu data, 545 

suggesting a thicker and more uniform snow cover, with a snow accumulation in the interior of the Weddell Sea, resulting in 546 

an excess of 1.06 million km3 of snow compared to the SNOW-KaKu estimate (see Figure 4(b)). In comparison, the UNIVAR 547 

simulation presents a general thinner snow depth, maintaining however the accumulation in the Southwestern part of Weddell 548 

Sea. The MULTIVAR simulation has the weakest biases and is even able to reduce the high snow accumulation in the Weddell 549 

Sea present in the FREE simulation and to represent the thicker snow pattern measured in the SNOW-KaKu product 550 

downstream the Antarctica Peninsula. The biggest incoherence between the MULTIVAR simulation and the SNOW-KaKu 551 

observations is on the Pacific Ocean/Eastern Antarctic coastal sector, where the assimilated experiment does not reproduce the 552 

high snow thicknesses. The UNIVAR and MULTIVAR simulations have respectively 1.02 and 0.85 million km3 less snow 553 

than SNOW-KaKu estimations in October 2017. The two simulations underestimate the SNOW-KaKu snow volume estimate 554 

for all the winter months of 2017 and 2018. 555 

In both hemispheres, the MULTIVAR experiment consistently simulates snow depths closest to those used in the 556 

multivariate assimilation scheme. The assimilation of SNT is also able to rapidly modify the snow spatial distribution in 557 

accordance with the SNOW KaKu observations distribution. While a localized assimilation scheme is expected to modify the 558 

spatial distribution of the variable to match the observations, it is noteworthy that the assimilation of SNT leads to rapid 559 

corrections, with most spatial biases already reduced within the first month (Figure S3). The agreement between the 560 

MULTIVAR experiment’s snow thickness and the observations is higher in the Arctic than in the Antarctic. 561 

3.3 Radar freeboard volume 562 

The FREE simulation exhibits lower RFB values than the other experiments especially at the end of summer (not 563 

shown). FREE and UNIVAR have biases of respectively -6.6 cm and -7.9 cm in RFBV compared to the LEGOS observations 564 

in April 2017 (Figure 3(c)). The MULTIVAR simulation logically exhibits a very small biase of -0.5 cm in the assimilated 565 

region and a RMSE of 2.2 cm, below the observation error of both the SAR and SARin data. The largest differences compared 566 

to the LEGOS RFB estimates are located along the coasts around the Canadian Archipelago and to the east of Greenland, i.e. 567 

in SARin areas. The SARin data are provided assimilated with higher observation errors compared to SAR data, with mean 568 

values of 19.2 cm and 9.2 cm, respectively. The highest difference (> 40 cm) between MULTIVAR RFB values and LEGOS 569 

RFB estimates arises at the end of both 2017 and 2018 winters in the north of Greenland, an area where snow observations are 570 
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not available. In summer, when no RFB observations are assimilated, the probability density function of the MULTIVAR RFB 571 

values remains more positively skewed than in other simulations. In November, when the observed data return after the summer 572 

break, the MULTIVAR experiment shows the lowest RMSE (2.6 cm) compared to the FREE (7.6 cm) and UNIVAR (8.3 cm) 573 

experiment based on the 2017 and 2018 averages. However, the MULTIVAR simulation presents larger RFB biases in 574 

November, still below the mean observation error, than during the rest of the winter months when the errors relative to the 575 

RFB LEGOS dataset stay consistent.  576 

LEGOS RFB measurements in the Antarctic present a similar gamma-type distribution as in the Arctic, with a 577 

decreasing SAR mode (from 3.3 cm to 0.5 cm) and increasing SARin mode (from 3.9 cm to 4.9 cm) between May and October 578 

2017 (Figure 4(a)). The simulations exhibit more uniform RFB values than in the Arctic with up to 20% of the RFB having 579 

the same value in the UNIVAR experiment in May 2017. The FREE, UNIVAR and MULTIVAR experiments have similar 580 

RFB SAR modes of respectively -0.4 cm, -1.0 cm and 0.3 cm in May 2017, lower than the observed SAR mode of 3.3 cm. As 581 

the season progresses, the FREE and UNIVAR simulations present an even more negative bias, with RFB modes respectively 582 

8 cm and 3 cm lower than the LEGOS RFB SAR mode in October 2017. A similar behaviour is shown for RFB SARin model 583 

equivalents, with the FREE and to a lesser extent the UNIVAR simulations frequently modelling negative RFB values that 584 

decrease as winter progresses. The MULTIVAR experiment is the only experiment to show a positively skewed distribution 585 

with positive modes in both SAR and SARin model equivalents throughout the duration of the simulation, aligning more 586 

closely to the LEGOS observations variability for the positive RFB values. The FREE and UNIVAR simulations display a 587 

general low bias in RFB all around the Antarctic (respectively -13.1 cm and -9.6 cm in average), with the most significant 588 

negative biases located in the two thicker RFB areas, indicating a more uniform RFB spatial distribution (Figure 4(c)). The 589 

MULTIVAR experiment has the lowest biases, -3.5 cm in average, and a RMSE of 4.47 cm. The FREE, UNIVAR and 590 

MULTIVAR simulations represent respectively 1.80, 1.33 and 0.48 million km3 less RFBV than the LEGOS dataset. The 591 

underestimation of the southern RFB in the FREE simulation is likely due to the overestimation of the snow thickness in the 592 

Antarctic. 593 

For all simulations and in both hemispheres, SAR measurements are in better agreement with the RFB model 594 

equivalent values compared to the SARin measurements. The MULTIVAR experiment shows the closest agreement with the 595 

observations among the simulations. The agreement between the RFB and SNV model equivalents from the MULTIVAR 596 

experiment and the observations is not as high in the Antarctic as in the Arctic. 597 

4 Validation with independent datasets 598 

4.1 Total freeboard: ICESat-2 data 599 

Both ICESat-2 (Ice, Cloud and Land Elevation Satellite) ATLAS and SARAL/AltiKa satellites measure total 600 

freeboard but the first one using a laser altimeter (Markus et al., 2017), and the second one with a radar altimeter. However, 601 

the ICESat-2 product presents a smaller orbital hole (88° latitudinal limit) and a full-year availability, starting from the 14th 602 



24 

 

of October 2018. The monthly ICESat-2 NSIDC ATL-20 gridded along-tracks product (Petty et al., 2023) is used on Figure 5, 603 

as a scatterplot between its total freeboard values and the total freeboard collocated in time and space for the LEGOS data and 604 

the FREE, UNIVAR and MULTIVAR experiments in the Arctic. Figure 5 presents the scatterplots between the monthly 605 

NSIDC ATL-20 gridded along-tracks total freeboard product measured by the ICESat-2 (Ice, Cloud and Land Elevation 606 

Satellite) ATLAS laser altimeter (Petty et al., 2023), and the total freeboard collocated in time and space for the LEGOS data 607 

and the FREE, UNIVAR and MULTIVAR experiments in the Arctic. The LEGOS total freeboard is made using LEGOS RFB 608 

and SNOW-KaKu data, and the model constant water, ice and snow densities of the model. The MULTIVAR simulation and 609 

LEGOS data present anticipated similar linear correlation statistics (slopes and r-values), and MULTIVAR has then logically 610 

better statistics than the FREE and UNIVAR experiments,. The MULTIVAR simulation and the LEGOS data have similar 611 

mean RMSE compared to ICESat-2 data (6.7 cm and 7.2 cm respectively). and tThe MULTIVAR simulation and LEGOS data 612 

also display comparable mean total freeboard in January-February 2019, with values of 22.2 cm and 22.0 cm respectively, 613 

slightly thinner than the ICESat-2 estimate of 23.7 cm. The mean total freeboard for the FREE and UNIVAR experiments was 614 

found to be 19.4 cm and 15.0 cm, respectively, for the same period, due to thinner sea ice and snow cover in the UNIVAR 615 

experiment. The change in the total freeboard modelled by  the MULTIVAR experiment is mainly due to a larger SIV, thanks 616 

to the assimilation update, compared to the UNIVAR experiment. The FREE and UNIVAR simulations consistently 617 

underestimate ICESat-2 total freeboard, especially in October 2018 with mean values of 9.2 cm and 6.6 cm respectively while 618 

the MULTIVAR experiment shows a mean value of 15.8 cm, aligning better with the mean total freeboard ICESat-2 estimate 619 

of 23.9 cm. In late summer, total freeboard has decreased during the melting season; however, the thinning is more pronounced 620 

in our simulations than in the ICESat-2 observations which does not seem to show a reduction in the mean freeboard compared 621 

with winter. The FREE experiment is not able to prevent excessive summer melting and exhibits unrealistic ice-free zones in 622 

October 2018. Higher statistical agreement in October 2018 for the MULTIVAR experiment shows that the data assimilation 623 

from the last winter positively impacts the simulation during the entire summer. However, compared to ICESat-2, MULTIVAR 624 

still underestimates the thickness of the total freeboard at the end of Arctic summer. All the experiments exhibit correlations 625 

higher than 0.6 reflecting a general consistency with ICESat-2 total freeboard in terms of spatial distributions. 626 

In Antarctica, simulated total freeboards show less agreement with ICESat-2 measurements compared to those in the 627 

Arctic (Figure 6). All the experiments and the LEGOS estimations present a general more scattered plot in the south than in 628 

the north. In October 2018, the last month of the assimilation season in the southern hemisphere, the MULTIVAR total 629 

freeboard shows a greater variability than the FREE and UNIVAR total freeboard, in accordance however with the dispersion 630 

of the assimilated CS2 LEGOS RFB and SNOW-KaKu datasets. Both the MULTIVAR experiment and LEGOS data have a 631 

positive mean bias compared to the ICESat-2 data, of respectively +10.7 cm and +8.6 cm. The FREE simulation has a positive 632 

bias cluster for thin total freeboard but underestimates the thicker freeboard values, resulting in a mean bias of +2.4 cm. The 633 

UNIVAR experiment is mostly underestimating ICESat-2 total freeboard values the most, with a mean bias of -11.9 cm. The 634 

melting season (January-February 2019) highlights the excessive thinning of the total freeboard in the simulations compared 635 

to the ICESat-2 data. The FREE experiment again has large unrealisticunobserved ice-free zones with total freeboard values 636 
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at 0 cm. The MULTIVAR experiment presents the highest total freeboard summer values among the experiments, with mean 637 

value of 19.6 cm (resp. 7.3 cm and 4.4 cm and for the FREE and UNIVAR experiments), still underestimating to a lesser extent 638 

the ICESat-2 mean values of 34.2 cm. The MULTIVAR simulation improves the concordance with ICESat-2 measurements 639 

with a systematic increase of the slopes in winter as in summer. 640 

Assimilating radar freeboard and snow depth observations in the multivariate framework significantly reduces biases 641 

found with IceCESat-2 total freeboard in both hemispheres. The MULTIVAR shows a favourable systematic increase of the 642 

slopes in winter as in summer. The agreement between modelled variables and IceCESat-2 estimates is stronger in the north 643 

than in the south. 644 

 645 

 646 

Figure 5: Scatterplots of the monthly Arctic ICESat-2 total freeboard against FREE, UNIVAR, MULTIVAR experiments and 647 
LEGOS RFB/SND-KaKu data computed with model densities (black) for October 2018, beginning on the 14/10/2018 (experiements 648 
respectively in blue, green and pink; no LEGOS data), and for January-February 2019 (experiments respectively in orange, red and 649 
cyan).  The x=y line (grey) and linear regressions for Oct 2018 (dashotted black) and Jan-Feb 2019 (dottashed black) are shown. 650 
Values of the linear slopes (s) and the r-values (r) are provided and all statistics are significant. 651 

 652 
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 653 

Figure 6: Idem Figure 5 but for Antarctica.  654 

 655 

4.2 Comparison with in-situ measurements 656 

The in-situ data include Upward-Looking Sonar (ULS) moorings measurements in the Beaufort Sea, from the 657 

Beaufort Gyre Exploration Project (BGEP) with moorings A, B and D; and in the Fram Strait, from the Norwegian Polar 658 

Institute (NPI) (Sumata et al., 2021) with moorings F11, F12, F13 and F14. We also use airborne laser and radar altimeter 659 

measurements in the western Arctic from the Operation Ice Bridge Quick Look product (OiB-QL, Kurtz et al., 2016). 660 

 661 

Figure 7: Map of the Arctic and the different in-situ measurements used for validation of the simulations. 662 
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The ULS moorings are located in regions where the LEGOS data are fully available (both RFB and SNOW-KaKu). 663 

A distinction is made for OiB-QL measurements based on the availability of LEGOS data, highlighting the orbital hole that 664 

results from using SARAL-AltiKa measurements. 665 

BGEP ULS measurements, available all year long, are available for the whole duration of the simulations, and the 666 

NPI ULS data are available until August 2018. Airborne OiB-QL observations are collected only in spring, but they sample a 667 

variety of ice (MYI and FYI) and cover a significant area in the Arctic. OiB-QL measurements campaigns took place during 668 

7 days in March 2017, 3 days in April 2017, 1 day in March 2018 and 6 days in April 2018. The comparison for all 669 

measurements is made at monthly frequency. The LEGOS values presented in this section are made from the LEGOS RFB 670 

data, the SNOW-KaKu data, and the model fixed densities (LEGOS_mD). 671 

 672 

4.2.1 Beaufort Sea: BGEP ULS 673 

 674 

Figure 8: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 675 
km of the Beaufort Gyre Experiment Program ULS Moorings for the summer (empty circles) and winter (solid circles). The linear 676 
regression (dashed b lack line for winter, dotted black line for summer), slope (s) and r-value (r) are shown for each dataset. 677 
Methodology from (Laxon et al., 2013). 678 

The Figure 8 shows a remarkable agreement of ice drafts between BGEP data and all experiments. The LEGOS 679 

observations have less coherence with the BGEP ULS measurements than the experiments but still with very high statistics. 680 

The values that underestimate the BGEP measurements in all 3 experiments are mostly during summertime (Table 4). The 681 

MULTIVAR experiment exhibits less accuracy than the FREE and UNIVAR simulations, with more scattered values and 682 

higher RMSE (Table 4), inheriting the behaviour of assimilated LEGOS data. However, MULTIVAR ice drafts have higher 683 

correlation than those from LEGOS estimates and, further, the MULTIVAR experiment is able to keep the strong correlation 684 

obtained with the FREE ice draft values during summertime (Figure 8). 685 

BGEP ULS DATA RMSE total MD total RMSE winter MD winter RMSE summer MD summer 

LEGOS 
  

0.194 0.113 
  

FREE 0.134 0.011 0.121 0.095 0.150 -0.087 
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UNIVAR 0.139 -0.038 0.141 -0.020 0.137 -0.058 

MULTIVAR 0.191 0.068 0.182 0.160 0.202 -0.039 

Table 4: Root mean square error (RMSE) and mean differences (MD) between the BGEP ULS measurements and LEGOS data 686 
(only winter months: November to April), FREE, UNIVAR and MULTIVAR experiments, by season (summer: May to October and 687 
winter) and over the two seasons as a total. 688 

 689 

4.2.2 Fram Strait: NPI ULS 690 

 691 

 692 

Figure 9: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 693 
km of the Norwegian Polar Institut (NPI) Fram Strait ULS Moorings for the summer (empty circles) and winter (solid circles). The 694 
linear regression (dashed black line for winter, dotted black line for summer), slope (s) and r-value (r) are given for each dataset. 695 

The ULS ice draft measurements are thicker in the Fram Strait than in the Beaufort Sea. The LEGOS data is in general 696 

agreement with the NPI data but presents mostly thicker ice drafts than the ULS measurements. The FREE and UNIVAR ice 697 

drafts consistently underestimate the ULS measurements, with very low slopes and r-values (Figure 9). These two experiments 698 

have most of the ice drafts at 0 m and show a deficit of up to 1.4 m compared with in-situ measurements (Table 5). Assimilating 699 

LEGOS RFB and SNOW-KaKu results in higher ice drafts, especially in winter when the assimilation is effective, and 700 

drastically reduces errors. Large errors in the MULTIVAR experiment’s summer ice drafts values still remain in this region 701 

of the Fram Strait where the ice front is highly variable. 702 

NPI ULS DATA RMSE total MD total RMSE winter MD winter RMSE summer MD summer 

LEGOS 
  

0.427 0.366 
  

FREE 1.040 -1.040 0.696 -0.696 1.402 -1.402 

UNIVAR 1.238 -1.238 1.029 -1.029 1.458 -1.458 

MULTIVAR 0.645 -0.571 0.316 -0.189 0.991 -0.972 

Table 5: Same as Table 4 with the NPI ULS measurements. 703 

 704 
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4.2.3 Operation IceBridge QuickLook sea ice thickness 705 

 706 

 707 

Figure 10: Comparison of monthly average ice thickness from LEGOS data, FREE, UNIVAR and MULTIVAR experiments 708 
collocated with OiB-QL airborne measurements in the Arctic. Areas where LEGOS SNOW-KaKu and RFB measurements are 709 
available are respectively in black, blue (FREE), green (UNIVAR) and pink (MULTIVAR) with linear regression in dashed black 710 
line; otherwise, orange (FREE), red (UNIVAR) and cyan (MULTIVAR) with linear regression in dotted black line refer to regions 711 
where SNOW-KaKu data are not available. All ice thickness values are gridded onto a 0.4° latitude by 4° longitude Arctic grid, 712 
following the methodology of (Tilling et al., 2018). The slope (s) and r-value (r) are given for each dataset. 713 

The LEGOS data and the OiB-QL ice thickness measurements are in general good agreement (Figure 10). The OiB-714 

QL data presents a cluster of measurements between 1 and 2 m that is well reproduced by all experiments and by the LEGOS 715 

data. Thicker measurements from the OiB-QL 2017 and 2018 campaigns are underestimated by the FREE and UNIVAR 716 

experiments (Table 6). These two experiments do not show ice thickness values higher than 4 m, whereas the OiB-QL 717 

measurements signal ice up to 6.6 m thick. The MULTIVAR simulation is able to reproduce thicker ice, resulting in a general 718 

reduction of errors, especially bias, with the OiB-SL measurements, in regions where all the assimilated data is available, and 719 

also where some or all of the assimilated data are missing (Table 6). However, the MULTIVAR experiment’s ice thickness 720 

values are very scattered, especially in the region where the LEGOS data is not entirely available (no SNOW-KaKu poleward 721 

of 81.5°N; and no RFB LEGOS poleward of 88°N). 722 

 OiB AIRBORNE 

DATA 
RMSE total MD total 

RMSE 

lat<81.5°N 
MD lat<81.5°N 

RMSE 

lat>81.5°N 
MD lat>81.5°N 

LEGOS 
  

0.449 0.068 
  

FREE 0.639 -0.503 0.459 -0.200 0.744 -0.681 

UNIVAR 0.869 -0.794 0.574 -0.416 1.042 -1.016 

MULTIVAR 0.652 0.182 0.486 0.135 0.750 0.209 

Table 6: Same as Table 4 with the OiB Airborne data and, according to the areas where SNOW-KaKu data is present (<81,5°N) or 723 
not (> 81,5°N) and for all OiB Airborne data. 724 



30 

 

 725 

4.32 Sea ice volume 726 

4.32.1 Total sea ice volume 727 

The daily total ice volume values for each experiment are shown on Figure 7 (dotted lines). Figure 7 also presents the 728 

experiments collocated within the spatial coverage of the assimilated observations, which excludes includes the central Arctic 729 

orbital gap and limited coverage of marginal seas (solid lines). This area, where both the RFB and KaKu data are available, is 730 

hereafter referred to as the “LEGOS zone” or the “LEGOS observations domain”. Three different products are shown: (1) 731 

LEGOS_og, the original SIV LEGOS (Guerreiro et al., 2017), based on CS2 RFB and SNOW-KaKu measurements with 732 

varying snow and ice densities; (2) LEGOS_mD, which uses the same measurements but applies constant snow and ice 733 

densities from the SI3 model; and only in the Arctic (3) CS2SMOS AWI, which combines SIV estimates from CS2 altimetric 734 

freeboard measurements of thicker ice and SMOS brightness temperature measurements of thinner ice (Ricker et al., 2017), 735 

using a modified W99 snow climatology and variable ice and snow densities. 736 
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 737 

Figure 7: Time evolution of Arctic (a) and Antarctic (b) sea ice volume. The daily values are presented for the simulations FREE 738 
(blue), UNIVAR (green) and MULTIVAR (pink), integrated over the whole hemisphere (dotted) and over the observation domain 739 
(plain lines). SIV observations used for comparison are computed over the LEGOS observation domain: LEGOS original SIT 740 
(LEGOS_og, grey L in circles), SIT constructed from LEGOS observations of RFB and snow and the model constant ice and snow 741 
densities (LEGOS_mD, black stars), and CS2SMOS AWI data in the Arctic (black dashes). The SIVOLU is computed using either 742 
SIC data provided by the supplier (CS2SMOS SIV) or the SIC OSISAF SSMIS data (LEGOS SIV). 743 

 744 

In the Arctic, the amount of sea ice remains consistently high throughout the entire simulation in the MULTIVAR 745 

experiment, resulting in sea ice maximums on averagein average 13% and 48% higher than respectively the FREE and 746 

UNIVAR experiments. The FREE and UNIVAR simulations start each winter with a low sea ice volume compared to the 747 

observations. The MULTIVAR experiment presents systematically higher volume estimates and alignsalign better with 748 
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CS2SMOS product in the beginning of November 2017 and 2018. The MULTIVAR SIV values increase rapidly during the 749 

first month of assimilation and follow closely the LEGOS_mD observations. Even in summer, the MULTIVAR simulation 750 

maintains more ice volume in the Arctic than the other simulations. The UNIVAR simulation shows a particularly drastic 751 

decrease in its ice volume estimate relative to the FREE experiment and is consistently lower than all the observation products. 752 

On average over the entire simulation period, the UNIVAR experiment shows a decrease in sea ice volume of 23% while the 753 

MULTIVAR experiment shows a 21% increase compared to the FREE experiment. The assimilation of CS2 LEGOS RFB and 754 

SNOW-KaKu in the MULTIVAR experiment modifies the seasonal cycle of the sea ice volume estimates, with a maximum 755 

earlier than in the other simulations, and is more consistent with the observations. 756 

 757 

As in the Arctic, MULTIVAR has the highest freezing rate and exhibits the highest total sea ice volume in Antarctica 758 

for the most part of the simulation (dotted lines, Figure 7(b), with maximum sea ice volume in average over 2017-2018 759 

respectively 25% and 141% higher than the FREE and UNIVAR estimates. UNIVAR consistently presents the least amount 760 

of sea ice throughout the simulation. The assimilated experiments seem to have ragged timeseries, the MULTIVAR simulation 761 

especially seems to be collapsing many times before reaching its peak, resulting in a somehow truncated curve. The instances 762 

where the SIV of the assimilated experiments collapse occur by the second half of the freezing season, they are coincident 763 

between the two assimilated experiments and can also be seen when collocated in the space of the assimilated observations 764 

(solid lines, Figure 7(b)). The ice volume losses causing the collapse of the timeseries are due to the occurrence of polynyas. 765 

As previously mentioned when studying the sea ice concentration in the different experiments, the UNIVAR and MULTIVAR 766 

simulations present polynyas in the Antarctic sea ice, some of them also appearing in the observation products such as the 767 

well-known Maud-rise polynya in the Weddell Sea in 2017. The SIV declines in the UNIVAR and MULTIVAR simulations 768 

correspond to increased sea ice leads from July to September 2017 and in August and September 2018 (Figure 1(b)). 769 

The LEGOS_og product uses seasonally varying ice and snow densities to convert RFB into ice thickness in the 770 

Antarctic. The use of the model constant densities in LEGOS_mD results in higher SIV estimates than the LEGOS_og product. 771 

The deviation between the two datasets is maximum in October because of the significant difference in ice and snow densities 772 

that month. Both LEGOS_og and LEGOS_mD observations present systemically higher SIV values than the FREE, UNIVAR 773 

and MULTIVAR simulations, except for the MULTIVAR experiment values in October 2018 (solid lines, Figure7(b)). 774 

MULTIVAR experiment is the experiment the closest to the LEGOS observations but still displays up to 10 million km3 lower 775 

sea ice volume than the observations-based fixed densities values. Over both 2017 and 2018 winters, the datasets present mean 776 

SIV of respectively 4.6, 8.0, 10.8, 15.2 and 18.5 million km3 for the UNIVAR, FREE and MULTIVAR simulations, and the 777 

LEGOS_og and LEGOS_mD products. The LEGOS_og product displays a sea ice maximum in September, a month earlier 778 

than the three simulations estimate. LEGOS_mD also has a SIV maximum in September for the 2018 winter, but no clear sea 779 

ice maximum is shown in LEGOS_mD data in 2017 due to the difference in ice and snow densities in the RFB-SIT conversion. 780 

As in the Arctic, MULTIVAR has the highest freezing rate and the highest total sea ice volume in Antarctica among the 781 

experiments for the most part of the simulation periods (Figure 7(b)), with, on average, 25% and 141% higher ice volume than 782 
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FREE and UNIVAR estimates respectively. UNIVAR consistently presents the lowest ice volume. The assimilated 783 

experiments have irregular time series during the second half of the growing season, the MULTIVAR simulation especially 784 

collapses many times before reaching its peak. These collapses coincide between the two assimilated experiments and are also 785 

present in the observation space (solid lines, Figure 7(b)). These sudden ice volume losses are due to the occurrence of large 786 

open waters or polynias within the sea ice cover which first and foremost causes an increase of sea ice leads from July to 787 

September 2017 and in August and September 2018 (Figure 1(b)). Some of them also appear in the observation products such 788 

as the well-known Maud-rise polynya in the Weddell Sea in 2017. 789 

The use of the model constant densities (LEGOS_mD) results in higher SIV estimates than the LEGOS_og product using 790 

seasonally varying ice and snow densities to convert RFB into ice thickness (Figure 7 (b)). The deviation between these two 791 

datasets is maximum in October because of the significant drop in ice density from 900 kg.m-3 to 875 kg.m-3 between 792 

September and October. With one exception (October 2018), both LEGOS_og and LEGOS_mD observations present 793 

systemically higher SIV values than MULTIVAR simulation. And even if the MULTIVAR experiment remains the closest 794 

experiment to the LEGOS observations, it  is still up to 10 million km3 below the LEGOS_mD estimates. Over both 2017 and 795 

2018 winters, the datasets present mean SIV of respectively 4.6, 8.0, 10.8, 15.2 and 18.5 million km3 for the UNIVAR, FREE 796 

and MULTIVAR simulations, and the LEGOS_og and LEGOS_mD products. The LEGOS_og product displays a sea ice 797 

maximum in September, a month earlier than the FREE simulation. LEGOS_mD also has a SIV maximum in September for 798 

2018 winter only, but the differences in densities make it unclear to identify the exact peak period in 2017. Similarly, the 799 

occurrence of polynias in assimilated experiments makes it impossible to accurately determine the maximum period. 800 

In both hemispheres, the MULTIVAR experiment shows the largest sea ice volume, while UNIVAR has the smallest. 801 

Among the different products, LEGOS_mD has the highest volume, followed by LEGOS_og and ─only in the Arctic─ 802 

CS2SMOS. Notably, the products are highly sensitive to variations in snow and ice densities, with LEGOS_mD showing in 803 

average respectively 1.48 million km³, resp. 5.6 million km³, more sea ice volume than the original LEGOS_og in the Arctic, 804 

resp. the Antarctic. 805 

4.32.2 Comparison with SMOS satellite measurements 806 

The CS2SMOS AWI product uses measurements from the SMOS satellite in addition to CS2 measurements. SMOS 807 

is known to have less uncertainties than CS2 on thin ice measurements (less than 1 m, Ricker et al., 2017). Based on CS2 808 

measurements, tThe LEGOS_og logically displays a consistentherent sea ice thickness spatial distribution compared to the 809 

CS2SMOS product with the smallest RMSD (resp. mean difference) of 30 cm (resp. 5 cm, Figure 8). LEGOS_mD presents a 810 

higher RMSD (resp. mean difference) of 39 cm (resp. 34 cm). The FREE simulation shows thinner ice than the CS2SMOS 811 

data in the central Arctic and on the east coast of Greenland, and thicker ice elsewhere. The UNIVAR simulation has a globally 812 

much thinner ice coverage with approximately half of its ice area covered by ice below 1 m thickness and the other half with 813 

ice between 1 m and 2 m height. The MULTIVAR experiment shows a higher ice volume compared to the other experiments, 814 

with a significant ice accumulation thicker than in the CS2SMOS product on the north of the Canadian Archipelago and 815 
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Greenland. In that area of important deviation between CS2SMOS and MULTIVAR values, the assimilated SNOW-KaKu 816 

measurements are not available. In the LEGOS SIV observation domain, the simulations present a similar RMSD against the 817 

CS2SMOS product of 33 cm (FREE, MULTIVAR) and 31 cm (UNIVAR). The MULTIVAR modelled ice thickness has the 818 

same positive biases as the LEGOS_mD product but keeps a thinner ice than the CS2SMOS data on the east coast of Greenland, 819 

similarly to the two other simulations. Outside of the LEGOS observations domain, the UNIVAR simulation shows the highest 820 

RMSD (65 cm) for the CS2SMOS SIT values thicker than 1 m, while the FREE simulation has the highest RMSD (48 cm) for 821 

CS2SMOS SIT values thinner than 1 m among the three experiments. The RFB and snow assimilation in the MULTIVAR 822 

simulation corrects the FREE and UNIVAR underestimation of the ice thickness in the central Arctic region (RMSD of 38 823 

cm) and presents lowerfewer positive biases than the FREE simulation for the thin ice around the ice edge (RMSD of 27 cm).  824 

 825 

Figure 8: April 2017 sea ice volume maps in the Arctic for CS2SMOS dataset (reference) and its difference with the FREE, UNIVAR, 826 
and MULTIVAR experiments (first line) and the observations LEGOS_og (original) and LEGOS_mD (with model constant 827 
densities). Table: root mean square error (RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, LEGOS_og, 828 
LEGOS_md and CS2SMOS data, calculated on the LEGOS zone and outside the LEGOS zone and for CS2SMOS sea ice thickness 829 
of less than or greater than 1m. The table colours highlight the values close to 0 (white) and the extremes (green for the RMS, and 830 
blue/red for the negative/positive MD). The LEGOS zone corresponds to areas where the KaKu snow depth is available. 831 

In Antarctica, the SMOS product (Tian-Kunze and Kaleschke, 2021) detects ice thinner than 1m using brightness 832 

temperature measurements, hence the data is completely independent from the LEGOS altimetric data assimilated in the 833 

MULTIVAR experiment. The LEGOS observations, considering both fixed and varying densities, present a very thick ice 834 

volume in the southern hemisphere (Figure 9). Similarly to the Arctic, the LEGOS_mD shows thicker ice volumes than the 835 

LEGOS_og data. Compared to SMOS data, both LEGOS estimates show a different ice field: the CS2 Antarctic ice thickness 836 

processed by the LEGOS is thicker with RMSE values of 78 cm (resp. 97 cm) for LEGOS_og (resp. LEGOS_mD) and the ice 837 
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accumulations are measured on the northernmost part of the Weddell Sea with CS2 measurements, whereas SMOS satellite 838 

detects thick ice on the southernmost part of the Weddell Sea. The FREE and UNIVAR simulations have spatially 839 

homogeneous SIV distributions and similar RMSD compared to the SMOS data on the LEGOS domain (respectively 24 and 840 

26 cm). The FREE experiment has a consistent positive SIV bias compared to the SMOS dataset. Although most of the 841 

UNIVAR experiment’s ice thickness is below 1 m, it underestimates SMOS ice thickness, except on areas close to the ice 842 

edge, where UNIVAR values align well with the SMOS measurements (mean difference of -2 cm). Compared to FREE and 843 

UNIVAR, the MULTIVAR simulation shows more important ice accumulations, in consistency with both LEGOS SIV data, 844 

and therefore has the highest RMSE relative to the SMOS data on the LEGOS domain (38 cm). The MULTIVAR simulation 845 

does not reproduce the largest LEGOS SIV values and is therefore closer to the SMOS data than the LEGOS estimates. Outside 846 

the LEGOS domain, MULTIVAR corrects the positive bias noticed along the ice edge in the FREE simulation but degrades 847 

the performances of the UNIVAR simulation with a higher error (mean difference of 7 cm). The FREE simulation is the only 848 

experiment that does not reproduce correctly the Maud Rise polynya, which is seen in all observation products and in the two 849 

assimilated experiments. 850 

 851 

 852 

Figure 9: September 2017 sea ice volume maps in the Antarctic for the SMOS data (reference) and its difference to the FREE, 853 
UNIVAR, and MULTIVAR experiments (first line) and to the observations LEGOS_og (original) and LEGOS_mD (with model 854 
constant densities). The colorbar shows only which only measures the ice that is thinner than 1 m (thicker ice is represented in 855 
yellow). Table: root mean square error (RMS) and mean difference (MD) between FREE, UNIVAR, MULTIVAR, LEGOS_og, 856 
LEGOS_mD and SMOS data, calculated on the LEGOS zone and outside the LEGOS zone. The table colours highlight the values 857 
close to 0 (white) and the extremes (green for the RMS, and blue/red for the negative/positive MD).  The LEGOS zone corresponds 858 
to areas where the KaKu snow depth is available. 859 
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 In both hemispheres, for SIT < 1 m, using the multivariate assimilation scheme better aligns the modelled sea ice 860 

volume with the SMOS data, presenting a lower RMSE for the MULTIVAR experiment than the FREE experiment and the 861 

LEGOS_mD data. However, the UNIVAR experiment shows more accurate sea ice volume estimates for thin ice than the 862 

MULTIVAR experiment when using SMOS measurements as a reference. 863 

5 Discussion 864 

5.1 Performances of the multivariate assimilation 865 

The radar freeboard and snow thickness assimilation allows the multivariate assimilation experiment to correct the 866 

model biases against the assimilated datasets: the MULTIVAR simulation has the closest results to the RFB LEGOS and 867 

SNOW-KaKu products in both hemispheres. However, the comparison of the Antarctic snow and RFB equivalents shows less 868 

agreement with the assimilated observations than in the Arctic. 869 

The univariate assimilation system only corrects the SIC variable and aims at keepsing a constant SNV, with a 870 

dynamic threshold on the SNT. In the Antarctic, and to a lesser extent in the Arctic, the UNIVAR experiment displays a lower 871 

SNV compared to the FREE experiment. This result shows that our threshold is not appropriate in most of the Antarctic, and 872 

in some regions in the Arctic. Thanks to the snow assimilation, in the MULTIVAR simulation, the total volume of snow is 873 

adjusted but does not recover the total amount of observed snow in the Antarctic. A modification of the SNT threshold would 874 

improve the snow assimilation algorithm in that sense. Nevertheless, tThe SNOW-KaKu assimilation enables the simulations 875 

to reproduce the snow observations spatial distribution in both hemispheres. The snow cover completely melts in summer in 876 

each hemisphere and shows no long-term effect of the winter snow assimilation.The snow cover completely melts in summer 877 

in both hemispheres, and while the timing of melt should influence the sea ice evolution, our results do not indicate a persistent 878 

or clearly attributable long-term impact of the winter snow assimilation. 879 

The MULTIVAR simulation shows higher RFB values than the FREE and UNIVAR simulations in both hemispheres, 880 

even in the absence of observations during the summer. However, a drift in the RFB equivalent is still observed during this 881 

season, leading to a negative bias in November/May, when the assimilation begins. This small negative bias suggests that the 882 

model's trajectory is below the observed values, a hypothesis supported by the significantly more pronounced bias observed 883 

in the FREE and UNIVAR simulations. In the Antarctic, the RFB underestimation is particularly significant: the FREE and 884 

UNIVAR simulations show mostly negative radar freeboard values due to an imbalance between their snow and ice 885 

thicknesses: their snow cover is too thick compared to their ice thickness. In the Antarctic, the RFB is significantly 886 

underestimated in the FREE and UNIVAR simulations, reflecting an imbalance between snow and ice thicknesses: the snow 887 

cover is too thick and the sea ice too thin, resulting in radar freeboard values that are more negative than observed. The initial 888 

state of ice and snow in the southern hemisphere found in the FREE experiment is much more different from the assimilated 889 

observations compared to the north. The multivariate assimilation process is then less effective in aligning the model with the 890 

observed data in the Antarctic than it is in the Arctic. 891 
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In both hemispheres, the MULTIVAR simulation produces RFB extremums that extend beyond the minimums and 892 

maximums observed in the FREE and UNIVAR simulations, and more closely align with the LEGOS observations. Despite 893 

this improvement, the MULTIVAR simulation does not capture the thickest and thinnest RFB LEGOS measurements. This 894 

discrepancy could be attributed to the spatial resolution mismatch between the observations and the model. Furthermore, it is  895 

important to recognize that the MULTIVAR simulation is not designed to replicate every extreme observation (such as a 896 

notably high SARin RFB of 4.3 m observed in October 2017 in Antarctica) as the assimilation scheme seeks to balance 897 

observational data with the model's physical constraints. Given the use of unfiltered RFB data in the assimilation, we do not 898 

expect the model to reproduce the exact observed values but rather a smoothed representation that respects the model’s inherent 899 

dynamics. 900 

The LEGOS observations are characterized by spatially significant data gaps in the central Arctic and in the Canadian 901 

Archipelago. The MULTIVAR simulation smoothly assimilates the RFB and SNOW-KaKu data in these areas without any 902 

visible demarcations. Furthermore, due to the choice of parameters for the localisation algorithm in the assimilation scheme, 903 

the assimilated satellite tracks do not print on the modelled patterns. However, the largest RFB differences between the 904 

MULTIVAR experiment and the RFB LEGOS assimilated observations are located on the north of the Canadian Archipelago 905 

and Greenland, with an especially thin RFB in our simulation locally north of Greenland. No snow observations are available 906 

in this area, and the MULTIVAR presents thicker snow values than the FREE and UNIVAR simulations. No particular RFB 907 

bias is present in the large snow KaKu observation gap around the North pole, suggesting that in the absence of snow 908 

observations, an inaccurate modelled snow depth does not affect thes the RFB assimilation performance on a large scale, but 909 

can result in higher RFB biases very locally. However, the largest RFB differences between the MULTIVAR experiment and 910 

the RFB LEGOS assimilated observations are located on the north of the Canadian Archipelago and Greenland, with an 911 

especially thin RFB in our simulation locally north of Greenland. No snow observations are available in this area, and the 912 

MULTIVAR presents thicker snow values than the FREE and UNIVAR simulations, suggesting either that in the absence of 913 

snow observations, thean inaccurate modelled snow depth can be affected. This modelled snow depth does not affect thes the 914 

RFB assimilation performance on a large scale:; or that the background error covariances matrix do not assess correctly the 915 

relationships between snow and radar freeboard variables. Nno particular RFB bias is present in the large snow KaKu 916 

observation gap around the North pole , indicating that the snow data gaps do not alter the RFB assimilation performances. 917 

When considering the sea ice volume, the experiments provide similar results in both hemispheres: the assimilation of SIC 918 

with the univariate method decreases the ice volume compared to the FREE simulation. The assimilation of RFB LEGOS and 919 

SNOW-KaKu creates the highest sea ice volume of all the simulations. The MULTIVAR experiment also displays a more 920 

accurate spatial distribution of the ice than the other experiments. The MULTIVAR modelled ice volume in the Arctic is very 921 

coherent with the LEGOS_mD dataset in the Arctic, which is more consistent with our observation operator in terms of sea 922 

water, snow and sea ice densities. In the Antarctic, the modelled sea ice volume is consistently lower than the LEGOS_mD 923 

product, probably due to lower model skills in representing sea ice in the Antarctic than in the Arctic (Massonnet et al., 2011) 924 

and more divergence between the modelled initial state and the assimilated observations, as discussed earlier. 925 
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5.2 Comparison with independent data 926 

The IceCESat-2 satellite measures the total freeboard through laser altimetry instruments, it is therefore completely 927 

independent from the radar altimetry-based LEGOS freeboard estimates. Previous section shows that assimilating LEGOS 928 

data reduces the errors in the simulations total freeboard estimates compared to ICESat-2 measurements. The comparison in 929 

the Antarctic also shows weaker correlations between IceCESat-2 data and the experiments than in the Arctic. It should be 930 

emphasized that most of the comparisons made in the southern hemisphere with ICESat-2 data is done during summertime, 931 

without assimilation of radar freeboard and snow. The summer period of the southern ice is also known to be poorly represented 932 

by the models (e.g. Shu et al., 2020; Roach et al., 2020). In addition, the LEGOS data present less coherence with ICESat-2 933 

compared to the Arctic. Nevertheless, the MULTIVAR simulation exhibits higher performance in terms of total freeboard 934 

compared to the other two simulations, particularly during the summer months. This demonstrates that the multivariate 935 

assimilation process induces changes in total freeboard that persist even when radar freeboard and snow are not assimilated. 936 

Further comparison with in-situ independent observations in the Arctic show similar improvement with the 937 

multivariate assimilation system compared to the FREE and the UNIVAR experiments.  (see more details in Appendix 938 

A)Further comparison with in-situ independent observations in the Arctic only show general improvement with the 939 

multivariate assimilation system compared to the FREE and the UNIVAR experiments. The MULTIVAR experiment is able 940 

to maintain the remarkable agreement found with the FREE experiment with ULS moorings in the Beaufort Sea and favorably 941 

thickens all types of ice in the Fram Strait region. At the same time, the multivariate approach also positively increases the 942 

thickest ice even in the absence of snow data. Comparisons during the summer season show no particular deterioration or 943 

improvement with the multivariate system. 944 

Sea ice thickness products obtained from brightness temperature measured by the SMOS satellite can be considered 945 

complementary to the altimetric ice products because they provide thin ice estimates (Kaleschke et al., 2024). In the Arctic,  946 

the CS2SMOS data shows thinner ice thicknesses than the LEGOS products (same as other CS2 products in Sallila et al., 2019) 947 

but the observational datasets are still coherent (better spatial alignment and RMSD of the same order as the FREE simulation). 948 

In that hemisphere, differences between the simulations and the CS2SMOS data show a generally better agreement for the 949 

MULTIVAR simulation compared to the FREE and UNIVAR simulations. The predominant positive biases observed in the 950 

MULTIVAR simulation are consistent with the biases in the LEGOS_mD product (i.e., north of the Canadian Archipelago 951 

and Greenland). However, Sallila et al., (2019) established that the CS2SMOS product tends to underestimate the thickness of 952 

thick ice in the Arctic when compared to in-situ measurements. Therefore, an overestimation of the CS2SMOS estimates is 953 

not an unexpected outcome for thicker ice. The CS2SMOS product estimates of thin ice, however, are in closer alignment with 954 

the in-situ Arctic measurements (Sallila et al., 2019). The more precise thin ice estimates from the UNIVAR experiment are 955 

compromised by the assimilation of CS2 data in the MULTIVAR experiment, when compared to the CS2SMOS values. It 956 

may be beneficial to increase the observation errors for the thicker RFB or in the marginal ice zone in order to reduce this 957 

degradation in comparison to the UNIVAR simulation. 958 
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 In Antarctica, the SMOS product is restricted to ice with SIT < 1 m, and a similar situation as with the thin Arctic ice 959 

arises: the comparison with the SMOS Antarctic data shows a better agreement with the UNIVAR simulation. The 960 

MULTIVAR simulation predominantly overestimates the SMOS measurements, due to an overestimation of the assimilated 961 

LEGOS data compared to the SMOS estimates. The SMOS data however display a systematic underestimation of sea ice 962 

thickness in areas of ice divergence (Kaleschke et al., 2024); and the Antarctic sea ice shows generally divergent ice drifts (e.g. 963 

Petty et al., 2021). Moreover, the assimilated LEGOS data present little resemblance with the SMOS Antarctic measurements. 964 

However, the Southern Ocean lacks consistent in-situ data measurements of sea ice and snow to better evaluate satellite 965 

observations and models estimates. While the assimilation improves the agreement between assimilated products, the 966 

contrasting patterns seen in LEGOS and SMOS sea ice thickness highlight the current observational uncertainty in Antarctica, 967 

making it difficult to assert which product more accurately represents the true state of the sea ice. In the future, the system 968 

could also assimilate both CryoSat-2 (for thick ice) and SMOS (for thin ice) products in both hemispheres, provided that 969 

Antarctic sea ice thickness estimates have greater consistency and agreement. Here, tThe MULTIVAR simulation provides 970 

better statistics than the two other experiments against the IceCESat-2 data thanks to the multivariate assimilation of LEGOS 971 

observation product, and it shows a better alignment with the SMOS data than the FREE simulation despite the assimilation 972 

of a LEGOS product that does not align with the SMOS data. The validation against these two independent datasets hence 973 

proves that the multivariate ice assimilation scheme in the Antarctic created an intermediate sea ice state between the LEGOS 974 

observations and the model. 975 

5.3 Ice and snow densities 976 

Sea ice thickness products obtained from CS2 radar altimetry measurements have significant uncertainties due to the 977 

assumptions made on values of snow thickness and ice and snow densities during the radar freeboard to ice thickness 978 

conversion (Kern et al., 2015; Kwok and Cunningham, 2015;  Mallett et al., 2020; Garnier et al., 2021). Assimilating directly 979 

the radar freeboard allows us to control the origin of the uncertainties by using the rawest measurement possible and controlling 980 

all the assumptions made during the assimilation process. We decided to assimilate a satellite observed altimetry snow 981 

thickness, which uses the same radar altimetry techniques as the RFB product. Garnier et al. (2022) show that using coherent 982 

measurement techniques between the snow and freeboard datasets gives an accurate total freeboard value even when the snow-983 

ice interface is biased. 984 

The multivariate data assimilation proceeds for the RFB volume observations by constructing a model equivalent 985 

using the model SIV and SNV variables and the model fixed densities for water, ice and snow. The water density is nearly 986 

consistent in all the sea ice volume datasets, with values varying by only a few kg/m3. However, the ice and snow density 987 

values vary a lot. The model’s constant ice density is 917 kg/m3, but the ice density in the Arctic depends on the ice age for 988 

LEGOS_og and CS2SMOS with the values from Alexandrov et al. (2010) as extremums: 882 kg/m3 for the MYI and 917 989 

kg/m3 for the FYI. Hence, assimilating radar freeboard and snow with the model constant ice density primarily affects regions 990 

dominated by MYI does affect mostly the MYI regions in the Arctic, which corresponds to the thicker ice regions that do not 991 
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melt during summer, in the north of the Canadian Archipelago and Greenland. The difference of ice density results in an ice 992 

thickness 32% higher on MYI in the Arctic. The model constant snow density is 330 kg/m3. Garnier et al. (2022) used a 993 

constant snow density of 300 kg/m3 in the Arctic for the LEGOS_og product, with a consequently lower sea ice thickness than 994 

the model for equal RFB, snow thickness and ice density values. Densities in the observation products in the Antarctic are 995 

generally seasonally varying densities. The model's ice density (constant 917 kg/m3) exceeds that of the LEGOS_og 996 

observations (mean: 895 kg/m3)on average), with a particularly pronounced discrepancysignificant difference in October 997 

(LEGOS value: 875 kg/m3). The model snow density is comparable on average to the LEGOS observation’s snow densities 998 

in Antarctica but presents differences up to 40 kg/m3 for some winter months. This discrepancy between ice and snow densities 999 

brings additional variability in sea ice volume even when similar radar freeboard and snow measurements are used, as 1000 

illustrated by the difference between the LEGOS_og and LEGOS_mD datasets. The constant densities parametrization in the 1001 

model enhances the positive bias of the sea ice volume in the Arctic compared to the CS2SMOS product. In the experiments 1002 

presented here, the uncertainties due to the densities are related to the RFB observation operator. Hence, these uncertainties 1003 

increase the representation error in the analysis. Varying ice and/or snow densities are crucial features to be incorporated in 1004 

the next version of the sea ice model: it would ensure a more accurate radar freeboard assimilation by lowering this 1005 

representation error. One could for instance use the method from Zhang et al. (2022) to select the optimal freeboard-to-1006 

thickness conversion ratios values by fitting the resulting ice thickness to in-situ or airborne measurements. Moreover, 1007 

implementing seasonally evolving densities in our model would increase the physical accuracy of the sea ice modelling.  the 1008 

model could improve the realism of key physical processes, such as snow–ice formation, particularly in the Antarctic. For 1009 

instance, Mallett et al. (2020) offers a linear evolution of the snow density to account for the densification of the snow as  1010 

winter passes. Sievers et al. (2023) use this relationship to implement a radar freeboard assimilation scheme with a varying 1011 

snow density, but did not modify the density in the model physics. 1012 

5.4 Sea ice openings in Antarctica 1013 

In both hemispheres, results showed that all assimilated experiments successfully corrected the biases of the FREE 1014 

experiment with respect to the SIC variable. Univariate SIC assimilation provides the best performance for sea ice 1015 

concentration as the covariances are not negatively affected by other quantities. The addition of freeboard radar and snow in a 1016 

multivariate assimilation configuration takes the modelled SIC away from the OSISAF data during summer, i.e. when RFB 1017 

and SNOW-KaKu data are unavailable and the SIV and SNT increments are built from model covariances. The degradation 1018 

of modelled SIC in summer in the MULTIVAR configuration, while UNIVAR uses the same SIC observations, suggests that 1019 

the multivariate assimilation may introduce erroneous corrections through model covariances between SIC, SIV, and SNV. 1020 

These propagated increments, applied in the absence of direct summer observations of SIV or SNV, appear to deteriorate SIC 1021 

consistency, highlighting the need to reassess or seasonally adapt the covariances used in the assimilation. Still, Ssummer 1022 

remains the most difficult season for systems to reproduce in both hemispheres. SIC passive microwave observations also have 1023 

the greatest uncertainties during the melting season (Ivanova et al., 2014). 1024 
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Sea-ice models using Viscous-Plastic VP or Elastic-Viscous-Plastic EVP rheologies have been shown to reproduce 1025 

the observed sea ice deformations only with high resolution horizontal grids (4.5 km grid spacing or lower, Wang et al., 2016; 1026 

Spreen et al., 2017; Hutter et al., 2018). Both assimilated experiments increased the amount of open water compared to the 1027 

FREE experiment and increase the amount of sea ice leads on a coarser grid of ¼°, i.e. grid cells of size between 10 km and 1028 

24 km in the Arctic. The multivariate experiment shows an even higher presence of open waters than the UNIVAR experiment 1029 

during the peakduring peak period in the boreal summer. These features are not supported by the assimilated SIC SSMIS 1030 

observations and are likely artificial, though some may be related to the assimilation of along-tracks RFB data, which is capable 1031 

of detecting finer-scale polynyas that are not visible in the coarser SIC SSMIS product. 1032 

The assimilated experiments timeseries in the Antarctic display oscillations that are due to the occurrence of very 1033 

localized low-SIC or open water areas, e.g. the so-called polynyas (Figure 1(b)). These openings only appear in the assimilated 1034 

experiments. As none of these openings occur in the FREE experiment, the thick snow and+ ice layer likely insulates the ice 1035 

and prevents melting from the ocean beneath. As none of these openings occur in the FREE experiment, the thick snow and 1036 

ice layer likely insulates the ocean from the atmosphere, maintaining the temperature inversion beneath the ice and limiting 1037 

oceanic heat flux toward the ice base. The occurrence of the Maud Rise Polynya in Sept-Oct 2017 (Jena et al., 2019) is 1038 

reproduced by the UNIVAR experiment, but its size is underestimated (Fig 2b)). On the other hand, the size of this polynya is 1039 

greatly overestimated by MULTIVAR and appears about 3 months in advance of the one observed by satellite. Furthermore, 1040 

the MULTIVAR (and UNIVAR to a lesser extent) experiments show the presence of other polynyas this winter 2017 and a 1041 

few more during winter 2018. These events are the combination of a general reduction of snow and increase of ice freeboard 1042 

with respect to the FREE simulation, but in specific areas where SIC or RFB observations show local minima. These reductions 1043 

in the areas covered by ice finally expose the surface to the warm waters of the ocean. Once triggered, assimilation is no longer 1044 

able to counteract the strong vertical instability and oceanic warming that prevent these openings from closing. However, some 1045 

of these activation zones correspond to fracture zones that have already been identified, either for reasons of atmospheric 1046 

divergence (low pressure systems in Kwok et al., 2017) or linked to the local bathymetry (Reiser et al., 2019). These polynyas 1047 

are the consequences of intense interactions between the ocean and the surface in our simulations oin places where the 1048 

equilibrium of the model is very sensitive to any disturbance. Changes have been implemented in the assimilation system to 1049 

mitigate the occurrence of these simulated polynyas (see paragraphs 2.1.2 and 2.2.1). First, Tthe SST assimilation under the 1050 

ice has been activated to keep the surface waters close to the freezing point. Second, Vvery few in situ profiles are available 1051 

in the Southern Ocean, and some of them were radically changing the thermohaline properties of the ocean in a large area and 1052 

over a long period of time, thus we did not activate the in-situ profile assimilation poleward 60°S to keep the modelled ocean 1053 

stratification. We increased the maximum SIC observation error to 40% to moderate the intensity of sea ice assimilation in the 1054 

Southern hemisphere. These modifications in the assimilation scheme of the SST and in-situ profiles described in section 2.1.2 1055 

and 2.2.1 have reduced the likelihood of triggering polynyas in both UNIVAR and MULTIVAR simulations,  but have not 1056 

been able to prevent their occurrence. 1057 
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6 Conclusion 1058 

This study presents the first implementation of a multivariate sea ice assimilation scheme in both the Arctic and 1059 

Antarctica within a global ¼° modelling and analysis system. This system, largely based on the Mercator operational system, 1060 

already includes a multivariate ocean assimilation but currently only assimilates sea ice concentration (SIC). Our study 1061 

enhances this capability by incorporating a multivariate ice assimilation approach, assimilating along tracks radar freeboard  1062 

and snow depth jointly with sea ice concentration. By comparing simulations without assimilation, with univariate SIC 1063 

assimilation, and with this innovative multivariate system, we assess the capabilities of the assimilation scheme. The univariate 1064 

SIC assimilation method systematically decreases the ice volume compared to the FREE experiment and shows a thin ice bias 1065 

compared to observations. The multivariate assimilation increases the sea ice volume in both hemispheres, enabling the 1066 

modelled sea ice to converge on assimilated data sets. The spatial distribution of the sea ice and the snow is modified in 1067 

accordance with the assimilated observations. Even in summer and in the observation’s spatial holes, when no satellite 1068 

altimetry observations are assimilated, the MULTIVAR experiment’s ice variables are favorably modified by the multivariate 1069 

ice assimilation. Moreover, the diagnosed freeboard from the multivariate system compares better with Iceat-2 independent 1070 

observations in the Arctic and, to a lesser extent, in Antarctica. Despite the heterogeneous nature and varying resolutions of 1071 

the assimilated data sets, the multidata/multivariate assimilation system demonstrates robust behavior even in the absence of 1072 

certain observations (summer, spatial hole), indicating a consistent and physically coherent adjustment of the sea ice state. 1073 

The comparison with observations coming from SMOS satellite shows that the UNIVAR experiment agrees better 1074 

with the more reliable SMOS sea ice volume estimates for thin ice (less than 1 m) than the MULTIVAR experiment. In the 1075 

Antarctic, CS2 and SMOS sea ice volume estimates diverge, so assimilating CS2 radar freeboard takes the model results away 1076 

from SMOS measurements. Increasing the error of altimetry measurements over marginal zones and thin ice surfaces or 1077 

merging altimetry with SMOS estimates for ice are potential options in this multi-variate approach. Ultimately, the results of 1078 

the assimilation scheme reflect a balance driven by our selection of assimilated observations: the simulation is restricted to an 1079 

intermediate position between the assimilated data and the model's trajectory. Therefore, a degree of consistency between the 1080 

assimilated and independent validation datasets is essential to effectively detect an improvement of the sea ice fields thanks to 1081 

data assimilation techniques. 1082 

The multivariate assimilation system performs better in the Arctic than in the Antarctic, largely due to differences in 1083 

the model’s initial free state. In the southern hemisphere, the initial biases in the free simulation are larger than those in the 1084 

northern part, making it more challenging for the assimilation to reconcile the model with observations. This highlights the 1085 

critical role of the model’s baseline state in a data assimilation system. Further, the significant differences in ice volume  1086 

estimates due to the use of constant or non-constant densities show and confirm the importance of having a comprehensive 1087 

modelled physics with observations measurements. 1088 

The results for the southern hemisphere also show the strong interactions with the oceanic surface layers in the life 1089 

cycle of the sea ice cover. In the Southern Hemisphere, the results highlight the strong interactions between sea ice and the 1090 
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upper ocean layers. These interactions lead to complex impacts on polynya dynamics, which underlines the need for further 1091 

investigation and the development of assimilation strategies that are better suited to these sensitive coupled environments. The 1092 

choice of the assimilation parameters (analysis snow depth threshold, observation errors, localization radius) is still an ongoing 1093 

work and further study in the assimilation methodology is needed to fully handle the strong coupled ocean/ice interactions at  1094 

work in the Southern Ocean. 1095 

This multivariate assimilation system paves the way for the future integration of CIMR and CRISTAL satellite 1096 

measurements in synergy into operational systems. The CRISTAL satellite, set for launch in 2028, will carry altimetry radar 1097 

instruments equipped with both Ku-band and Ka-band radars, enabling simultaneous altimetry measurement of the air–snow 1098 

and ice–snow interfaces. Moreover, a higher inclination orbit will enable measurements with a smaller hole around the North 1099 

pole with the CRISTAL satellite. The CIMR satellite will measure the sea ice concentration with passive microwave imagers, 1100 

allowing for sub-daily and high resolution (5 km) polar measurements. CIMR will also provide thin ice estimates from L-band 1101 

radiometry, similar to SMOS. 1102 

 1103 

Data availability. All the sea-ice reanalysis experiments are available on request. This study has been conducted using E.U. 1104 

Copernicus Marine Service Product: Global Ocean Sea Ice Concentration Time Series REPROCESSED (OSI-SAF); 1105 

https://doi.org/10.48670/moi-00136, available on Global Ocean Sea Ice Concentration Time Series REPROCESSED (OSI-1106 

SAF) | Copernicus Marine Service. The LEGOS data (FBR, SNOW-KaKu and SIV LEGOS_og) used in this study (doi 1107 

10.6096/CTOH_SEAICE_2019_12) were developed, validated by the CTOH/LEGOS, France and distributed by Aviso+: 1108 

Altimetry Sea Ice products from CTOH. ICESat-2 total freeboard was downloaded from https://nsidc.org/data/atl20/versions/4 1109 

on the 06/06/2024, using the ‘monthly’ group of the netcdf files (Petty et al., 2023). SMOS Antarctic data was downloaded 1110 

from Tian-Kunze, X; Kaleschke, L (2021): SMOS-derived sea ice thickness in the Antarctic from 2010 to 2020 (pangaea.de), 1111 

version 3.2, last accessed on the 14/08/2024. The merging of CryoSat-2 and SMOS data (CS2SMOS) was funded by the ESA 1112 

project SMOS & CryoSat-2 Sea Ice Data Product Processing and Dissemination Service and data from 01/12/2016 to 1113 

27/03/2019 were obtained from https://www.meereisportal.de (grant: REKLIM-2013-04, Ricker et al., 2017). The data 1114 

presented in the Appendix A consists in.the BGEP ULS measurements, collected and made available by the Beaufort Gyre 1115 

Exploration Program based at the Woods Hole Oceanographic Institution (https://www2.whoi.edu/site/beaufortgyre/) in 1116 

collaboration with researchers from Fisheries and Oceans Canada at the Institute of Ocean Sciences; the ULS measurements 1117 

in the Fram Strait are from the website https://data.npolar.no (Sumata et al., 2021); and the Operation IceBridge Quick Look 1118 

measurements, available at https://nsidc.org/data/nsidc-0708/versions/1 (Kurtz et al., 2016). 1119 

Author contribution. AC, GG and CET designed the analysis and the experiments and AC carried them out. AC and GG wrote 1120 
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Appendix A. Comparison with in-situ measurements. 1140 

 1141 

BGEP ULS measurements, available all year long, are available for the whole duration of the simulations, and the NPI ULS 1142 

data are available until August 2018. Airborne OiB-QL observations are collected only in spring, but they sample a variety of 1143 

ice (MYI and FYI) and cover a significant area in the Arctic. OiB-QL measurements campaigns took place during 7 days in 1144 

March 2017, 3 days in April 2017, 1 day in March 2018 and 6 days in April 2018. The comparison for all measurements is 1145 

made at monthly frequency. The LEGOS values presented in this appendix are made from the LEGOS RFB data, the SNOW-1146 

KaKu data, and the model fixed densities (LEGOS_mD). 1147 

 1148 

The in-situ data include Upward-Looking Sonar (ULS) 

moorings measurements in the Beaufort Sea, from the 

Beaufort Gyre Exploration Project (BGEP) with moorings 

A, B and D; and in the Fram Strait, from the Norwegian 

Polar Institute (NPI) (Sumata et al., 2021) with moorings 

F11, F12, F13 and F14. We also use airborne laser and radar 

altimeter measurements in the western Arctic from the 

Operation Ice Bridge Quick Look product (OiB-QL, Kurtz 

et al., 2016). 

The ULS moorings are located in regions where the LEGOS 

data are fully available (both RFB and SNOW-KaKu). A 

distinction is made for OiB-QL measurements based on the 

availability of LEGOS data, highlighting the orbital hole 

that results from using SARAL-AltiKa measurements. 

 
Figure A1: Map of the Arctic and the different in-situ 

measurements used for validation of the simulations. 
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A.1 Beaufort Sea: BGEP ULS 1149 

 1150 

Figure A2: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 1151 
km of the Beaufort Gyre Experiment Program ULS Moorings (Mooring A: triangle, Mooring B: circle, Mooring D: square) for the 1152 
summer (empty symbols) and winter (solid symbols). The linear regression (dashed black line), slope (s) and r-value (r) are shown 1153 
for each dataset. Methodology from Laxon et al. (2013). 1154 

The Figure  shows a remarkable agreement of ice drafts between BGEP data and all experiments. The LEGOS observations 1155 

have less coherence with the BGEP ULS measurements than the experiments but still with very high statistics. The values that 1156 

underestimate the BGEP measurements in all 3 experiments are mostly during summertime (empty markers). The MULTIVAR 1157 

experiment exhibits less accuracy than the FREE and UNIVAR simulations, with more scattered values, inheriting the 1158 

behaviour of assimilated LEGOS data. However, MULTIVAR ice drafts have higher correlation than those from LEGOS 1159 

estimates and, further, the MULTIVAR experiment is able to keep the strong correlation obtained with the FREE ice draft 1160 

values during summertime. 1161 

A.2 Fram Strait: NPI ULS 1162 

 1163 

Figure A3: Comparison of monthly average ice draft from LEGOS data, FREE, UNIVAR and MULTIVAR experiments within 200 1164 
km of the Norwegian Polar Institut (NPI) Fram Strait ULS Moorings for the summer (empty symbols) and winter (solid symbols). 1165 
The slope (s) and r-value (r) are given for each dataset. 1166 

The ULS ice draft measurements are thicker in the Fram Strait than in the Beaufort Sea. The LEGOS data is in general 1167 

agreement with the NPI data but presents mostly thicker ice drafts than the ULS measurements. The FREE and UNIVAR ice 1168 
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drafts consistently underestimate the ULS measurements, with very low slopes and r-values. Most of the summer values (empty 1169 

markers) in these two experiments have ice drafts at 0 m. Assimilating LEGOS RFB and SNOW-KaKu results in higher ice 1170 

drafts, especially in winter when the assimilation is effective.  Large errors in the MULTIVAR experiment’s summer ice drafts 1171 

values compared to the NPI ULS measurements still remain in this region of the Fram Strait, where the ice front is highly 1172 

variable. 1173 

A.3 Operation IceBridge QuickLook sea ice thickness 1174 

 1175 

Figure A4: Comparison of monthly average ice thickness from LEGOS data, FREE, UNIVAR and MULTIVAR experiments 1176 

collocated with OiB-QL airborne measurements in the Arctic. Areas where LEGOS SNOW-KaKu and RFB measurements are 1177 

available are respectively in black, blue (FREE), green (UNIVAR) and pink (MULTIVAR); otherwise orange (FREE), red 1178 

(UNIVAR) and cyan (MULTIVAR) refer to regions where SNOW-KaKu data are not available. All ice thickness values are gridded 1179 

onto a 0.4° latitude by 4° longitude Arctic grid, following the methodology of Tilling et al. (2018). The slope (s) and r-value (r) are 1180 

given for each dataset. 1181 

The LEGOS data and the OiB-QL ice thickness measurements are in general good agreement. The OiB-QL data presents a 1182 

cluster of measurements between 1 and 2 m that is well reproduced by all experiments and by the LEGOS data. Thicker 1183 

measurements from the OiB-QL 2017 and 2018 campaigns are underestimated by the FREE and UNIVAR experiments. These 1184 

2 experiments do not show ice thickness values higher than 4 m, whereas the OiB-QL measurements signal ice up to 6.6 m 1185 

thick. The MULTIVAR simulation is able to reproduce thicker ice, resulting in a general better agreement with the OiB-SL 1186 

measurements, in all regions: where all the assimilated data is available, and also where some or all of the assimilated data are 1187 

missing. However, the MULTIVAR experiment’s ice thickness values are very scattered, especially in the region where the 1188 

LEGOS data is not entirely available (no SNOW-KaKu poleward of 81.5°N; and no RFB LEGOS poleward of 88°N). 1189 

  1190 
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