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The authors discussed the background error covariance estimation using (weighted) multi-level
Monte Carlo (wMLMC) method in variational data assimilation (DA). The authors discussed sev-
eral practical considerations when MLMC is sued to estimate a covariance matriz: 1) the mean
squared error and variance of a covariance MLMC' estimator; 2) computational budget allocation; 3)
localisation and positive definiteness of the estimated covariance matrixz. The MLMC' estimator and
the performance of corresponding 3DEnVar is investigated by a two-dimensional two-layer quasi-
geostrophic channel model after 12 hour forecast from an initial ensemble without data assimilation
cycles. The paper is well-written and is worth publication.

We thank the referee for their comments and suggestions. In the following, we discuss the major
and minor comments, and explain how we have updated or will update the manuscript to address
them.

Other modifications, that were not directly asked by the referee, have also been applied to the
manuscript. The reason for this is detailed at the end of this document.

Magor comments:

1. The Experimental setting section may be benefit from a figure to illustrate the model setup.
Thank you for this comment, we have added such a figure.

2. Current results are all built on a single dynamical snapshot of the model. Optionally, is it
possible to build a stronger case by running a long deterministic trajectory of the model, and a few
select different time step with very different features of dynamics as initial condition to generate
ensemble with 12 hour forecast such that the computational cost does not drastically increase?

The dynamics of the quasi-geostrophic model are not very complex, and the dynamical features
observed are very similar across time. As such, we do not expect the conclusions of the paper would
be altered by selecting another date to run the experiments.

On another, more practical level, it would indeed be costly to perform the full experiment again
on several other situations. There are three type of results in our manuscript: a) the theoretical
estimation of the MSE of a B estimator that can be reached with a multilevel approach (section 5.1),
b) the empirical estimation of the MSE reduction that is reached on a column of the B matrix when
actually building these estimators (section 5.2), and ¢) the impact on a single analysis (section 5.4).



The results of sections 5.2 and 5.4 would be especially cumbersome to reproduce, as they require to
run more than 100, 000 forecasts for each date (200 realizations of multilevel estimators using about
600 different forecasts each). However, we can easily reproduce on other dates the experiment of
section 5.1 (theoretical MSE reduction on B), as it only requires to run 400 forecasts per dates.

We reproduced the results of section 5.1 for 4 other dates, selected 10, 20, 30 and 40 days later
than the date studied in our manuscript. The seed of the random number generator was different for
each date. The 4 background states are shown in Fig. 1 in this document. The key figures of section
5.1 are reproduced in Fig. 2 and Fig. 3. As summarized in Tablel, the variance reductions are of
similar order of magnitude than for the case studied in our paper. We do not plan to reproduce
all these figures in the paper, but we will mention that the results of this section do not change
significantly with the dynamical situation.
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Figure 1: Background state at different times, 10 to 40 days later than the background state used
in the paper.

simulation day MLMLC wMLMC

0 63% 66%
10 69% 2%
20 65% 69%
30 66% 69%
40 68% 1%

Table 1: Variance reduction achieved by MLMC and weigted MLMC with the same cost as a
reference 20-sample MC estimator. First line (day 0) is the result shown in the paper.

3. When the ensemble member allocation is tuned based on Eq. (14) and (16), do we expect that
the a® and b*), or C¥) change significantly due to the flow-dependency of ensemble forecasting?



Sample allocation Sample allocation

20.01
17.51
15.01
I levels 2 levels
g 12.51 . 4 (fine) S . 4 (fine)
i w1 (coarse) 7 1 (coarse)
© 10.01 .12 I - 1-2
o . 2-3 Q - 2-3
2 754 . 34 L e 34
5.0+
2.51
0.0-
20.01
17.51
15.01
2 levels 2 levels
S 12.54 4 (fine) S 4 (fine)
i 1 (coarse) b 1 (coarse)
© 10.01 .12 S - 1-2
g . 2-3 Q . 2-3
L 7.5 s 3-4 L mm 3-4
5.0+
2.51
0.0-

MC MLMC wMLMC

Figure 2: Optimal sample allocations associated to the background states in Fig. 1. Corresponds to
manuscript Fig. 2.
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Figure 3: Theoretical variance of covariance matrix estimators associated to the background states
in Fig. 1. Corresponds to manuscript Fig. 3.



The authors suggest to change the ensemble allocation less frequently (L573 - L575). Do we expect
that MSE of estimated B matriz at least as accurate as high-resolution B matriz, i.e. the MC method?

This is an interesting question. The a®), b®) and C*) coefficients are related to the spatially-
averaged variance of the differences between estimators on different fidelity levels. How much they
would change with time is not assessed in this manuscript, especially as it would strongly depend
on the application. For instance, for a large domain where many small and independent dynamical
features are represented, one snapshot of the model may already be representative of a full simulation
run. In this context, the space average in these coefficients would imply that they should not vary
much with time. Conversely, if the full system can switch from a global attractor to another one, and
if the low-fidelity simulators fail to represent correctly one of these attractors, then the inter-level
coefficients could change significantly with time. For numerical weather prediction applications for
instance, we expect the time-variability of the coefficients to be larger in a limited-area model than
in a global model.

If the ensemble member allocation is not updated at every cycle, the allocation becomes sub-
optimal, and the MSE of the resulting multilevel estimator becomes larger than the MSE of the
optimal multilevel estimator. There would be no guarantee in this context that the MSE of the
multilevel B estimator would be smaller than the MSE of the high-resolution Monte Carlo B. More
generally, we would like to stress that there is generally no such guarantee even with an optimal
allocation. The variance of an optimal multilevel estimator with several fidelity levels can be larger
than the variance of the same-cost MC estimator. This could be the case for instance if the coarse-
fidelity levels were only weakly correlated to the high-fidelity level, and if their computational costs
were only slightly cheaper. This is underlined in the paper as well, in Sect. 3.1.

4. Using the B matriz from MLMC and MC shows, the results show that the analysis has limited
improvements. Could this be related to the smooth streamfunction in the QG model? Would we
expect significant differences for other fields, e.g., PV?

We have not studied this, as the standard way to solve the data assimilation problem for this model
is to use streamfunction as the control variable, due to its simpler background error structures and
statistics. Performing data assimilation in the potential vorticity space would also be a challenge
for positioning errors.

If we performed the experiments using potential vorticity as a control variable, we would expect
the performance to be degraded, even on the MSE of the B matrix estimator. This can be understood
with a scale-separation approach. The large length-scales of the fine-simulation can usually be
described accurately by the low-fidelity models, which have a large inter-level correlation in this range
of the spectrum. Conversely the coarsest fidelity models are not able to represent fine length-scales,
with very small or zero correlations in the high-frequency end of the spectrum. For streamfunction,
most of the signal is on the large scales, which ensures a satisfying representations on coarser models.
Potential vorticity spectra are much less steep, with much more energy on the fine length-scales.
This variable is not suited to a multilevel approach, at least not if the low-fidelity levels are based
on coarser space discretizations.

More grounded reasoning around the spectral analysis of multilevel Monte Carlo can be found
in the recent preprint by Briant et al. (2023).

Minor comments:
L5: 7...affordable We investigate...” — 7...affordable. We investigate...”

L57: 7...the Ensemble Kalman Filter(...” — “the ensemble Kalman filters (7



Thanks for spotting these typos. We have corrected them.

L87: "the composition operator” — “a composition operator”

We rather modified the sentence into ”the function composition operator”.
L159: Perhaps a set should be represented with curly brackets?

Yes, indeed. This has been modified.

”

L160: 7...stochastic inputs are all independent...” — number of stochastic inputs are all

independent...”

We think the suggested modification would change the meaning of the sentence. We have rephrased
this sentence to make it clearer:

The total Zﬁzl N®) stochastic inputs are all independent and identically distributed.
has become:

There are thus Zle N®) stochastic inputs in total, all independent and identically
distributed.

L221: The author states that ”...related to small fourth-order moments of the correction terms,
and so to strong correlations between stochastically-coupled simulations...”. Does this mean that
adjacent level of model must yield similar outcome? How close should be these levels? Does this also

Justify the 0 value for level 07

Yes, models from adjacent fidelity levels should yield similar outcomes for the multilevel approach
to be effective. In practice, in our experiments, the inter-level correlations derived from the space
average of inter-level covariances ranged from 0.77 (between the two levels of highest fidelity) to 0.94
(between the two levels of lowest fidelity).

In general, there is no easy rule on how close these fidelity levels should be. One has to go
through the process of defining the inter-level correlation coefficients, defining the cost model and
finding the optimal member allocation to know what variance reduction can be expected. In the
very simple case of the weighted 2-level MLMC estimator of a scalar mean, it can be shown from
the MLBLUE formalism (Schaden and Ullmann, 2020) that the variance of the multilevel estimator
5 N(low)(l _ p2) + J\ (high)
N (high) (N(low) + N(high)) ’

Var|] = (1)
where [i is the multilevel estimator with optimal weights, N1°") is the number of samples on the
low-fidelity level, N(Migh) i the number of samples from the high-fidelity level, p is the inter-level
correlation, and the variance of the random variable is assumed to be 1 without loss of generality. In
the limit of infinitely large cost ratio between high and low simulations, i.e., in the limit of infinitely
large N1°%) e find a variance of (1 — p?)/N™eh)  Compared to the variance 1/N®8h) of the
same-cost MC estimator, this gives a relative variance reduction of p?. So a 0.5 correlation for
instance would give 25% variance reduction. Such simple considerations are of little use in practice,
given that the cost-ratio is never infinite, more than 2-levels can be used, smaller reduction should
be expected for the estimation of larger-order moments that the mean, and uniform scalar weights
are suboptimal for a non-scalar problem.

L270: 7corrections term” — “correction term”



Done.
L318: 71:3 ratio...” — 71:3 ratio between the width and length of the domain...”
Done.

L443: "apply them to a Dirac impulse” reads as if the estimator is used to estimate the covariance
of a Dirac impulse, which is not the case, I think. This also means that Fig. 4 and 5 are covariance
of one grid point with the entire domain.

This is what happens, unless I am missing something in the question. Fig. 4 and Fig. 5 are indeed
covariances of the entire domain with respect to a single grid point. The general variance reduction
estimated in section 5.1 applies to the full covariance matrix estimator, but we can only show the
impact on three-dimensional columns of this estimator. Computing the actual impact on a full
covariance matrix would have required about 4 x 10* more memory usage (the number of columns
in the covariance matrix), which is prohibitive.

L477: Here, can the authors briefly explain why the cost is proportial to the ensemble member
instead of grid size?

The cost scales with both the number of ensemble members and the number of grid point in each
ensemble member. We will add a citation to a paper explaining why the localization cost scales with
the ensemble size (appendix B of Buehner, 2005).

L534: 7...is to remain...” — 7...remains...”

Here, “is to remain” was supposed to convey the idea of a constraint provided by the user and
that must be met. The text has been rephrased to make it clearer:

We are thus led to conclude that while randomization approaches may be of interest for
offline diagnostics, they are not a viable solution if the cost of applying B is to remain
comparable to the cost of applying a standard localized ensemble B.

has been rephrased into:

We are thus led to conclude that while randomization approaches may be of interest for
offline diagnostics, they are not a viable solution to the negative eigenvalue problem,
unless we allow the cost of applying B to increase significantly compared to the cost of
applying a standard localized ensemble B.

L553: What is the B norm?

For an SPD matrix B, the B-norm of a vector u is the norm defined by [[ul|? = uTBu. The
definition is missing in our manuscript, thank you for spotting this. We will correct it.

L641: alpha should be bold?

Yes, indeed. This is now corrected.



Other modifications

In addition to the changes suggested by the referee, a few modifications have been applied to the
manuscript (visible in the latest version of the manuscript when it will be submitted). When replying
to the referee’s comments, we realized that Figure 9 had not been obtained with the early-stopping
method described in the article. It was a remnant of another solution that we had explored, where
we relied on backtracking on the residual norm rather than early-stopping criteria. We had moved
away from this backtracking approach as there was little ground for this, but we accidentally kept
all figures and data in the paper. Although this has no impact on the conclusions, it did alter some
data and figures. This will be corrected in the next submission of the manuscript. We reproduced
all the results to be consistent with the early-stopping approach presented in the text:

e There is no clearly visible difference in Figures 1 to 6.
e The conclusions of the paper are not affected.

e The weights of the multilevel estimator given in the paper were not the correct ones, which
has been corrected (this is unrelated to the choice of backtracking or early-stopping approach)

e The wMLMC localization parameters tuned for the early-stopping approach are different than
those tuned for the backtracking approach.

e As a result, the spectrum of the localized wMLMC covariance matrix estimate in Fig. 7 is
different, with less negative eigenvalues than in the previous backtracking approach.

e As the experiments have been fully reproduced in a different computing environment compared
to the first submission, the random samples used to build the MLMLC estimator are different.
This explains minor differences in the spectra of the unlocalized wMLMC covariance matrix
estimate (first negative eigenvalue at index 8 rather than 11, with amplitude 11% rather than
9%, but with no change in the global proportion of negative eigenvalues).

e In Fig. 9, the relative error reduction compared to the best achievable reduction is increased
from 2% on average (and 10% on median) to 11% on average (and 13% on median). The
message of the figure is not affected.
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