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Abstract. Water scarcity is often triggered by shifting climate patterns as well as rising water usage
:::::::::
exacerbated

:::
by

:::::
rising

:::::
water

:::
use

:::
and

:::::::
climate

::::::
change, yet state-of-the-art Earth system models typically do not represent human water demand. Here we

present an enhancement to the Community Earth System Model (CESM) and its land (CLM) and river (MOSART) compo-

nents by introducing sectoral water abstractions. The new module enables a better understanding of water demand and supply

dynamics across various sectors, including domestic, livestock, thermoelectric, manufacturing, mining, and irrigation. The5

module conserves water by integrating abstractions from the land component with river component flows, and dynamically

calculates daily water scarcity based on local demand and supply. Through land-only simulations spanning 1971–2010, we

verify our model against known water scarcity hotspots, historical global water withdrawal trends, and regional variations in

water use. Our findings reaffirm the role of irrigation in modulating local surface energy fluxes
::::
show

::::
that

:::::::::::
non-irrigative

:::::::
sectoral

::::::::::
consumption

:::::
have

::
an

:::::::::::
insignificant

:::::
effect

:::
on

:::::::
regional

::::::
climate, while emphasizing the importance of including all sectors for10

water scarcity assessment capabilities. While the model captures global patterns, it also discerns regional nuances, expanding

on the conventional focus on irrigation withdrawals in Earth system models (ESMs). Despite its advancements, the model’s

limitations, such as its exclusive focus on river water abstractions, highlight areas for potential future refinement. This research

paves the way for a more holistic representation of human-water interactions in ESMs, aiming to inform sustainable water

management decisions in an evolving global landscape.15

1 Introduction

Human-induced land-use modifications together with water resources management have substantially impacted the Earth’s

surface and modified the terrestrial water cycle (Foley et al., 2005; Oki and Kanae, 2006; Wada et al., 2010; Rodell et al., 2018).
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Water serves multi-functional purposes for humans, including agriculture, industrial processes, domestic consumption
:::
use, and

ecological services. Over the past century, there has been a significant shift in total human water use, driven primarily by factors20

such as population growth, industrialization, and urbanization (Shiklomanov, 2000; Vörösmarty et al., 2000; UNESCO, 2021).

Towards the future, these drivers are projected to further evolve, influenced by technological advancements, socio-economic

transitions, and changing consumption
:::::
water

:::
use

:
patterns, thereby likely leading to heightened water demand (Wada et al.,

2016). Already, regions globally grapple with issues of drought and water insecurity, challenges that underscore the criticality

of sustainable water management (Hoekstra et al., 2012; Wada et al., 2013; Trenberth et al., 2014; Famiglietti, 2014; Mekonnen25

and Hoekstra, 2016; Kummu et al., 2016). Adding complexity to this scenario, anticipated climatic changes, characterized

by variable precipitation patterns and altered hydrodynamics, will further strain water supply systems (Milly et al., 2008;

Trenberth, 2011; Döll and Schmied, 2012; Arnell and Lloyd-Hughes, 2014).

Deforestation and urbanization not only perturb carbon dynamics but also profoundly alter the hydrological cycle, compro-

mising water availability and quality (Coe et al., 2009; Pan et al., 2011; Seto et al., 2012; Baccini et al., 2017). The expansion30

of agriculture, driven by human food demands, modifies natural catchments and exacerbates water withdrawals, placing im-

mense stress on both surface and groundwater resources (Wada et al., 2012; Famiglietti, 2014; de Graaf et al., 2019). Such

over-extraction has led to phenomena such as land subsidence and saltwater intrusion, directly threatening the sustainability

of freshwater sources (Bierkens and Wada, 2019). The construction of dams and reservoirs, while providing water storage and

energy benefits, disrupts riverine ecology, impacts sediment and nutrient transport, modifies natural flow regimes, and can im-35

pact local climates (Grill et al., 2015; Best, 2019; Vanderkelen et al., 2021). Pollution, another byproduct
:::::::::
by-product of human

activity, notably from untreated wastewater, poses dire health risks and compromises the integrity of freshwater ecosystems

(Vörösmarty et al., 2010). Concurrently, wetland drainage and land reclamation, often undertaken to meet human settlement

or agricultural demands, diminish the natural buffering and filtration capacities inherent to these systems (Davidson, 2014).

Collectively, these human-driven changes to the land and water nexus not only perturb biogeochemical cycles but also have40

significant implications for water security, human health, and the socio-economic stability of communities (Bakker, 2012; Link

et al., 2016).

The study of the water cycle and broader Earth system changes relies critically on advanced modelling frameworks. Among

them, the most integrated are the Land Surface Models (LSMs), which represent the land surface within Earth System Mod-

els (ESMs) (Blyth et al., 2021). LSMs primarily simulate the interaction between the terrestrial biosphere, atmosphere, and45

hydrosphere, capturing processes like evapotranspiration, soil moisture dynamics, and snow accumulation and melt. Comple-

menting this, ESMs encapsulate a more comprehensive set of processes and interactions, including atmospheric, oceanic, and

cryospheric components, which allow for a holistic examination of the Earth’s climatic and environmental dynamics. These

models operate over various temporal and spatial scales. At the finer end, some models have
:::::
spatial

:
resolutions as detailed as

a few kilometers
::::::::
kilometres, making short-term weather predictions and analyzing

::::::::
analysing

:
specific hydrological processes50

possible (Prein et al., 2015). Conversely, coarser resolutions spanning up to hundreds of kilometers
::::::::
kilometres

:
are suitable for

long-term climate projections over centuries or millennia (Eyring et al., 2016). Leveraging these scales, researchers can explore

a spectrum of phenomena, from short-term flood events to long-term climate change impacts, and from localized water table
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shifts to global sea-level rise (Drijfhout et al., 2015; Jevrejeva et al., 2016; Liu et al., 2018; Mankin et al., 2019; Wu et al.,

2020). The adaptability and robustness of these frameworks provide invaluable tools for scientists aiming to understand and55

predict changes in the Earth’s water cycle and broader environmental systems.

The field of Earth system modelling has seen important progress between different iterations of the Coupled Model In-

tercomparison Project phases, demonstrating higher skill in matching observations across relevant climate change indicators

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(IPCC AR6 Technical Summary: The Physical Science Basis, 2021, see Fig. TS.2). This can be attributed to running the mod-

els at higher resolutions, increasing model complexity, and improving the representation of physical, chemical, and biological60

processes IPCC AR6 Technical Summary: The Physical Science Basis (see e.g. Fig.TS.2 in 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(IPCC AR6 Technical Summary: The Physical Science Basis, 2021)

. Despite the progress made, there are still processes not well captured in ESMs. For example, describing human-water inter-

actions was previously recognized as one of the important challenges in Earth system modelling (Nazemi and Wheater, 2015).

Recent years, however, have witnessed targeted efforts to bridge this deficiency. This includes implementation of land-use and

land-cover change (LULCC) (Lawrence et al., 2016), urban surfaces and associated hydrological disturbances (Lipson et al.,65

2023), irrigation water use (Blyth et al., 2021; McDermid et al., 2023), large dams and flow regulation (Yassin et al., 2019;

Vanderkelen et al., 2021, 2022), and groundwater use (Pokhrel et al., 2016; Nie et al., 2018; Felfelani et al., 2021). A more

complete representation of human-water interactions, including abstractions for all sectors from both surface and groundwater

sources, as well as reservoir operations, to our knowledge is currently operationally available for only one ESM system (i.e.

MIROC6; Yokohata et al., 2020).70

To further contribute to the effort of improving human-water interactions in LSMs/ESMs, we here present a new sec-

toral water use module for the Community Earth System Model version 2 (CESM2). Our data-driven module advances the

representation of human water use by incorporating a comprehensive account of water abstractions for domestic, livestock,

thermoelectric, manufacturing, and mining sectors, thereby complementing the existing irrigation module (Lawrence et al.,

2019).75

The next section first describes the CESM2 modelling framework with its existing capabilities in representing human-water

interactions (Sect. 2.1). Subsequently, a detailed description of the functioning of the new sectoral water use module is given

(Sect. 2.2). Next, the information about the prescribed non-irrigative input data is provided (Sect. 2.3). A hypothetical case

study is then proposed to better understand the sectoral competition algorithm under limited water availability situations (Sect.

2.4). Since the newly added sectors are data driven and based on previously-evaluated inputs (Huang et al., 2018), the validation80

section is focused on the robustness of the implementation itself (Sect. 3.1). To assess the capability of the newly developed

module, the global and regional trends in sectoral water withdrawal are analyzed
:::::::
analysed for the historical period 1973–2010,

with distinction being made between expected and actual fluxes (Sect. 3.2-3.3). The ability of irrigation and other sectors’

consumption to impact local climates through changes in surface water-energy exchanges is then investigated (Sect. 3.4).

Next, model results are used for a global qualitative water scarcity assessment, showing the model’s ability to predict known85

hotspots of water scarcity (Sect. 3.5). Lastly, before concluding (Sect. 5), a discussion of existing limitations and possible

future refinements is provided (Sect. 4).
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2 Methods

2.1 Existing human-water representation in CESM2

The CESM2 is an open-source, community-developed Earth system model that encompasses ocean, atmosphere, land, sea-ice,90

land-ice, river, and wave models. These individual models,
:::::
which

::::
may

:::::::
operate

::
at

:::::::
different

::::::
spatial

::::::::
resolution

::::
and

::::
time

::::
step,

:
in-

teract and exchange states and fluxes via a coupler (Danabasoglu et al., 2020). Since human water abstractions occur over land,

we have focused our model development on the land and river components of the CESM2 model, which are the Community

Land Model version 5 (CLM5; Lawrence et al. (2019)) and the Model for Scale Adaptive River Transport (MOSART; Li et al.

(2013)).95

CLM5 already models irrigation, with irrigation water abstractions being computed on a daily basis based on soil moisture

deficits and irrigated crop water requirements (Sacks et al., 2009; Lawrence et al., 2019). The default source for water supply

for irrigation is the river network, with a user-defined possibility to supply from groundwater. At the moment, however, the

simulated groundwater abstractions for irrigation are not constrained by observations and this new CLM5 module has not been

thoroughly tested. Therefore, in this study, we exclusively use the default configuration where water is abstracted from the river100

network.

River water availability within CLM5 is provided by the MOSART routing model. It utilizes a kinematic wave approach,

providing information on varying channel velocities, water depth in channels, and channel surface water variations (Li et

al., 2013). In its functionality, surface runoff from CLM5 first traverses hillslopes before merging with subsurface runoff

and moving to a tributary network, finally ending up in the main channel (Fig. 1 from Li et al. (2013)).
::::
Each

:::::::::
MOSART105

:::
grid

::::
cell

:::
has

::
a
::::::
single

::::
main

:::::::
channel

::::
that

::::::::
connects

:::
the

:::::
local

::::::
spatial

::::
unit

::::
with

::::::::::::::::::
upstream/downstream

:::::
units

:::::::
through

:::
the

:::::
river

:::::::
network.

:
It is this main channel’s water storage, aggregated at CLM5 grid-cell level, that are used to estimate current river

water availability.
:
It
::::::
should

::
be

:::::
noted

::::
that

:::
the

::::::
CLM5

:::
and

:::::::::
MOSART

::::::
models

::::
can

:::
run

:::::
using

:::::::
different

:::::
grids,

::::::
which

::
is

:::
the

::::
case

::
in

:::
this

:::::
study,

::::
with

:::::::::
MOSART

:::::::
running

::
on

:
a
:::::::
0.5x0.5

::::
grid,

::::
and

:::::
CLM5

:::
on

:::::::
0.9x1.25

:::::
grid.

::::
This

:::::
means

::::
that

:::
for

:
a
:::::
given

::::::
CLM5

:::::::
gridcell,

::::::
several

::::::::
MOSART

:::::
main

:::::::
channels

::::
will

::
be

:::::::
sourced

:::
for

:::::
water

::::::
supply.

::::
The

:::::::
handling

::
of

:::::
these

::::::
spatial

:::::::::::
discrepancies

::
is

::::
done

:::::::
through110

:::::::::
remapping

:::::::::
procedures

::
in

:::
the

:::::::
coupler.

Once the irrigation water demand is met by abstraction from the river network, it is applied over the surface soil across

irrigated crop columns (Fig. A1). This arrangement allows the water to contribute to crop growth and become a part of the

surface water-energy balance through processes like evapotranspiration, runoff, and infiltration (Fig. A2).
::
In

::::
case

:::::
there

::
is

:::
not

::::::
enough

:::::
water

::
to

::::
fully

::::::
satisfy

::::::::
irrigation

::::::::::::
requirements,

::
the

::::::
model

::::
have

::
2
:::::::
options.

::::
First,

:::
to

::::
limit

::::::::
irrigation

:::::::::
abstraction

::
to

:::::
90%

::
of115

::::::
current

::::
river

:::::::
storage,

:::::
which

:::::
helps

:::::::
maintain

::
at

::::
least

::::
10%

:::
for

::::::::::::
environmental

::::
flow

:::::::::::
requirements.

:::
Or

::::::::
secondly,

:::::::
abstract

::
as

:::::
much

::
as

::::::
needed,

::::
with

:::
the

:::::::
missing

::::
part

:::::
being

:::::::::::
compensated

::
by

:::::
ocean

::::::
water.

:::::
While

:::
less

::::::::
realistic,

:::
the

::::::
second

:::::
setup

:::
was

:::::::::::
successfully

::::
used

::
in

::::::
studies

:::::
where

::::::
having

::::
total

::::::::
irrigation

:::::::::::
requirements

:::::::
satisfied

::
is

::::::::
important

::::::::::::::::::::::::::::::
(Thiery et al., 2017; Yao et al., 2022)

:
.

Recently, additional developments have been completed to advance human water representation in CESM2, notably the

dynamically changing open water surfaces to represent historical reservoir construction (Vanderkelen et al., 2021), the im-120

plementation of the Hanasaki et al. (2006) reservoir operation scheme in the vector-based global routing model mizuRoute
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(Mizukami et al., 2016; Vanderkelen et al., 2022) and implementation of different irrigation techniques including drip, sprin-

kler, paddy, and flood (Yao et al., 2022). At the time of this paper, the latter two developments are not yet available for usage

in the release version of the CESM2, but are in the process of being integrated.

2.2 New sectoral water use module125

The primary focus of our module development is to accurately depict the withdrawal and consumption of water across a variety

of sectors.
:::
We

:::::
define

::::::::::
withdrawal

::
as

:::
the

:::::
gross

:::::::
amount

::
of

:::::
water

::::::::
removed

:::::
from

:
a
:::::
water

::::::
source

:::
for

::::
use

::
in

::
a

::::::::
particular

::::::
sector.

:::::::
Sectoral

::::
water

::::::::::::
consumption,

::
on

:::
the

:::::
other

:::::
hand,

:
is
:::
the

:::::::
portion

::
of

:::::
water

:::::::::
withdrawn

:::
that

::
is

:::::::
actually

::::::::
consumed

::::
and

:::
not

:::::::
returned

::
to

::
the

:::::
water

:::::::
source.

:
It
:::::::
includes

:::::
water

::::
that

::
is

:::
lost

:::::::
through

:::::::::::::::
evapotranspiration,

:::::::::::
incorporated

::::
into

:::::::
products

::
or

:::::
crops,

::
or

:::::::::
otherwise

:::
not

:::::::
returned

::
to

:::
the

:::::::::
immediate

:::::
water

:::::::::::
environment. This is achieved using a data-driven approach. The new module is designed to130

accept monthly expected water withdrawal and consumption data from non-prognostic sectors (all sectors excluding irrigation;

Fig. 1). Expected daily water abstractions are then calculated within the land component of the model, CLM5, at grid-cell level

(Fig. A1), by assuming a uniform distribution for all days within one month. To satisfy the water demand of each sector, water

is provided from the river network, facilitated by a two-way coupling with the MOSART routing model. An existing coupling

module between the land and routing components existed already for irrigation purposes. Its functionality was therefore adapted135

and extended to support the newly added sectors for both withdrawal and return flow fluxes.

During the coupling process, each CLM5 grid cell sends through the coupler to MOSART the information about how much

water should be withdrawn and how much should be recycled back for each sector. The difference between the withdrawal and

recycled part is the sectoral consumption, which is the net water amount which is transported from the river system to the land

component. The CLM5 and MOSART spatial organization is different , something which
:
in

::::
this

:::::
study,

::::
with

::::::
CLM5

::::::
running

:::
on140

:
a
:::::::
0.9x1.25

:::::
grid,

:::::
while

::::::::
MOSART

:::
on

:
a
:::::::
0.5x0.5

::::
grid.

::::
This

:
needs to be taken into account when passing sectoral fluxes or water

storage information from one model to the other
:::::
during

:::
the

::::::::
coupling

::::::
process.

The CLM5 land surface is spatially organized in
::
In

:::::
CLM,

::::::
spatial

::::
land

::::::
surface

:::::::::::
heterogeneity

::
is
::::::::::
represented

:::::::
through a nested

subgrid hierarchy in which grid cells are composed of
::::
(Fig.

:::
A1)

:::::::::::::::::::
(Lawrence et al., 2019)

:
.
::::
Each

::::
grid

:::
cell

::::::::
contains multiple land

units, snow/soil columns, and
:::::::
columns,

:
plant functional types (PFTs; Fig. A1)(Lawrence et al., 2019). MOSART further

:
),
::::
and145

::::
crop

::::::::
functional

:::::
types

:::::::
(CFTS,

::
if

::::
crop

::::::
option

::
is

:::
on).

:::::
Land

:::::
units,

::::::::
capturing

::::
the

:::::::
broadest

:::::::
patterns,

:::::::
include

:::::::
glacier,

::::
lake,

::::::
urban,

::::::::
vegetated,

:::
and

:::::
crop.

:::::
Urban

:::::
units

:::
are

::::::
further

::::::
divided

::::
into

::::::
density

::::::
classes.

::::::::
Columns

::::::::
represent

:::::::::
variability

:::::
within

::
a

:::
land

:::::
unit,

::::
such

::
as

:::::::
different

:::
soil

::::
and

:::::
snow

:::::
states.

::::::::
Vegetated

:::::
units

::::
may

::::
have

:::::::
multiple

::::::::
columns

::
for

::::
soil

:::::::
profiles,

:::::
while

::::::::
managed

::::::::
vegetation

:::::
units

::::
have

:::::::
irrigated

::::
and

:::::::::::
non-irrigated

::::::::
columns.

::::::::
Columns

::::
have

:::
up

::
to

:::
25

:::::
layers

:::
for

::::::
ground

::::
and

:::
10

:::
for

:::::
snow,

:::::
which

::::::
allows

:::::::
solving

::
for

:::::
water

:::::::
storage

:::
and

:::::
snow

:::::::::
dynamics.

::::
The

:::::
PFTs

:::
and

:::::
CFTs

:::::::::::::
corresponding

::
to

:::
the

::::
third

:::::::
subgrid

:::::
level,

:::::::
referred

::
to

:::
as

:::::::
patches,150

:::::::
represent

:::::::
various

::::
trees,

:::::::
shrubs,

::::
grass

::::
and

::::
crops

::::::
covers

:::
that

::::::::
populate

:::
the

:::::
given

::::::
region.

:::
The

:::::
patch

::::
level

::
is

:::::::
intended

::
to
:::::::
capture

:::
the

::::::::::::
biogeophysical

::::
and

:::::::::::::
biogeochemical

:::::::::
differences

:::::::
between

:::::
broad

:::::::::
categories

::
of

::::::
plants

::
in

:::::
terms

::
of

::::
their

:::::::::
functional

::::::::::::
characteristics

:::::::::::::::::::
(Lawrence et al., 2019).

:::::
While

:::
the

:::::::
subgrid

:::::::::::
heterogeneity

::
is

:::::::
captured

:::
by

:::
the

:::::
model

::
in

:::
the

:::::
sense

::
of

:::::::
realistic

:::::::
fractions

::
of

::::::::
different

:::
land

:::::
units,

:::::
PFTs

::::
and

:::::
CFTs,

:::::
their

::::
exact

:::::::
relative

:::::::
location

::
is

:::
not

:::::::::::
represented.

:::
The

::::::::::
calculations

::::
are

::::
done

::::::::::
individually

::::
over

:::::
each

::::::
column

::::
and

:::
the

:::::::
outputs

:::
are

::::
then

:::::::::
aggregated

::
at

::::
grid

:::
cell

::::
level

::::::
before

::::::::::
exchanging

:::::::::
information

:::::
with

::
the

:::::::
coupler.

:
155
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:::::::::
MOSART,

:::::
which

:::::::
operates

:::
on

:::
its

::::
own

::::
grid,

:
divides each spatial unit, such as a lat/lon grid cell or a watershed, into three

hydrological categories (Fig. 1 from Li et al. (2013)): hillslopes that convert both surface and subsurface runoff into tribu-

taries, tributaries that discharge into a single main channel, and the main channel that connects the local spatial unit with

upstream/downstream units through the river network (Li et al., 2013). To check

:::
The

::::::::::
information

::::::
about

:
how much water is currently

::::::::
potentially

:
available for sectoral use in a given CLM5 grid cell,160

MOSART identifies the main channels which are within
:
is
::::::::

provided
:::
by

:::
the

::::::
coupler

::
to
:

the CLM5 grid cell, and subsequently

sends through the coupler the total routed storage contained within these channels
:::::
model

::
at

::::
grid

:::
cell

:::::
level

::
by

::::::::::
calculating

:::
the

:::::::::::
corresponding

:::::
total

::::
river

:::::::
network

::::::
storage

::
in

:::
the

:::::::::
MOSART

:::::
model. Conversely, to send the information concerning each sector

withdrawal and return flow to the MOSART model, we divide the
:
a
::::
new

:::::::
module

:::
was

:::::::::::
implemented

:::
in

:::
the

::::::
coupler

:::::::::
codebase,

:::
that

::::::
divides

:::
the

:
sectoral fluxes across all main channels within the corresponding CLM5 grid cell in accordance to their relative165

weight in current water storage capacity. In this way, the main channels with larger current water storage will experience higher

sectoral use than smaller capacity channels. For example, if MOSART has two active main channels within a CLM5 grid cell

with a total water storage , VOLR
:::::
VOLR

::::::::
(variable

:::::
name

::
in

:::
the

::::::
model), with the larger channel containing 80% of VOLR,

and the smaller channel the remaining 20%, then the sectoral fluxes from the CLM5 grid cell will be distributed across the

two available channels in the same proportion (i.e., 80%/20%).
:::::
Same

::::::::
approach

:::
was

:::::::::
originally

:::::::::::
implemented

:::
for

:::
the

::::::::
irrigation170

::::::
without

:::
the

:::::
return

::::
flow

::::
part.

::::
The

::::
new

::::::
module

:::::
being

::::::::
therefore

:
a
::::::::::::
generalization

:::
for

:::
the

:::::::::
remaining

::::::
sectors.

:

To simulate real-world scenarios and track
:::::::
idealized

::::::::
scenarios

:::
to

::::::::
diagnose instances of water scarcity, the new module

implements a basic sectoral priority algorithm for situations when water availability is inadequate to meet the full sectoral

demand. Under this system, when water is scarce, it is allocated to sectors in the following priority order: (i) domestic, (ii)

livestock, (iii) thermoelectric, (iv) manufacturing, (v)
:::::::
domestic,

:::::::::
livestock,

:::::::::::::
thermoelectric,

::::::::::::
manufacturing,

:
mining, and (vi)175

irrigation. Similar sectoral priority orders have been implemented in some Global Hydrological Models (GHMs; e.g., H08,

Hanasaki et al. (2018) and VIC-5, Droppers et al. (2020)).
:::
This

:::::
order

::::::
reflects

::
a

::::::
general

:::::::
premise

:::
that

:::::::
priority

:::::
should

:::
be

:::::
given

::
to

::::
high

::::::::::
value-added

:::::::
products

::
in

::::::::
resource

:::::::::
allocation.

:::::::::
Municipal,

::::::::
industrial,

::::
and

::::::::::
agricultural

:::::
water

:::
use

::::::::
intensities

::::
per

::::
value

::::::
added

::
are

:::::::::
estimated

::
at

:::::
0.012,

::::::
0.063,

:::
and

:::
2.2

:
×
::::
106

:::
m3

:::
per

:::
106

:::::
USD,

:::::::::::
respectively

::::::::::::::::::
(Hanasaki et al., 2018)

:
.
::::
This

::::::::
highlights

::::
that

::::::
sectors

::::
such

::
as

:::::::::
municipal

:::
and

:::::::::
industrial

:::::::
services

:::::::
provide

::::::
higher

::::::::
economic

::::::
returns

::::
per

:::
unit

:::
of

:::::
water

::::
used

:::::::::
compared

::
to

::::::::::
agriculture180

::::::::::::::::::
(Hanasaki et al., 2018)

:
.

It is at this stage that a distinction is made between expected and actual fluxes. Expected withdrawal or consumption is based

on the input data estimates, while actual withdrawal or consumption represent the fluxes which are computed within the new

module after water availability and sectoral competition are accounted for. Here we should mention that the irrigation and the

new sectoral water use modules are kept separated within CLM, and the abstraction procedures are activated at different stages185

within the model driving loop. To achieve the connection of the two modules within the sectoral competition algorithm, we

activate the abstractions for sectoral use before irrigation is treated, and then update the amount of available water perceived

by the irrigation module by subtracting the withdrawal which was already done for the other sectors.

After water is allocated to each sector, the new module accounts for the return flow and consumptive use of the water (Fig.

1). A portion of the utilized water is recycled, indicating it is returned directly to the river network via the MOSART routing190
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Figure 1. Schematic depiction of the new sectoral water use module implementation in the Community Land Model (CLM5) and the Model

for Scale Adaptive River Transport (MOSART).

model following the coupling mechanism described previously. The return flow is computed for each sector by subtracting the

actual consumption from the actual withdrawal. How much is returned in comparison to the withdrawal will depend on the

sector and country (Huang et al., 2018). For example, thermoelectric water use has the highest recycling rates, as there are

little associated evaporative losses during the power plant’s cooling process, while livestock has the lowest (Fig. C2). From

a water availability perspective, consumed water is considered "lost"
::::
“lost”, and in this module it is applied to the surface of195

soil columns covered with natural vegetation in the CLM5 land model. It is important to mention here that while the sectoral

demand for non-irrigative sectors is generated at the grid-cell level, the consumption (the net transport of water from the river to

the land model) is distributed at subgrid level, on the natural vegetation land unit (Fig. A1). This is done to not interfere with the

cropland and urban land units, which have their own soil columns. Thus, sectoral consumption contributes to the surface water-

energy balance primarily through evaporation, but also transpiration, infiltration, and runoff processes (Fig. A2). Assigning the200

sectoral consumption flux directly to the evaporation flux, as done in GHMs, is not a suitable option for CLM5. Owing to the

strict requirements on water and energy conservation in CLM5 for coupled applications, transforming the consumed water into

evaporation would require updating the surface energy partitioning accordingly. However, by applying the consumption flux

on surface soil in naturally vegetated areas, this water can evaporate or not depending on energy availability, contributing to

the surface water-energy exchange. It should be mentioned here that the
::::
total

:
consumed flux is not applied

::
on

::::::
surface

:::
soil

:
all at205

once, but dribbled out evenly during the modelled day.
:::
This

::
is

::
in

:::::::
contrast

::
to

::::::::
irrigation,

::::::
where

:::
the

::::
total

:::::::::
withdrawal

::
is

:::::::::
distributed

::::::::
uniformly

:::::
over

:
a
::::::
period

::
of

::
4

:::::
hours

::::::
starting

::::
with

:::::
6AM

::::
local

:::::
time.
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2.3 Input data

The new module for sectoral abstractions relies on input data for all sectors, except irrigation. Data on sectoral withdrawal

and consumption is sourced from Huang et al. (2018). This dataset represents a historical reconstruction, which is generated210

by combining the US Geological Survey (USGS) and the Liu et al. (2016) improved Food and Agriculture Organization of

the United Nations (FAO) AQUASTAT dataset on sectoral water use. It covers the period 1971–2010, and it is available on a

regular 0.5x0.5◦ grid and monthly frequency. The represented sectors are domestic, livestock, thermoelectric, manufacturing,

and mining. Irrigation is also represented, but we ignore it here, as we use the CLM’s built-in irrigation module.

::::::::
Domestic

:::::
water

:::::::::
withdrawal

:::::::::::
encompasses

:::
the

:::
use

:::
of

:::::
water

::
for

:::::::
various

::::::
indoor

::::::::
household

:::::::::
activities,

::::::::
including

::::::::
drinking,

::::
food215

::::::::::
preparation,

:::::::
bathing,

:::::::
laundry,

:::::::::::
dishwashing,

:::
and

:::::
toilet

:::::::
flushing.

::
It
::::
also

:::::::
includes

:::::::
outdoor

::::
uses

:::
like

::::::::
watering

:::::
lawns

:::
and

::::::::
gardens,

::
as

::::
well

::
as

:::::
water

:::
use

:::
by

::::::
public

:::::
sector

::::
and

::::::
service

::::::::
industry.

:::::::::
Electricity

:::::
water

:::::::::
withdrawal

:::::
refers

:::
to

:::
the

:::::
water

::::
used

:::
for

:::::::
cooling

::::::::::::
thermoelectric

:::
and

:::::::
nuclear

:::::
power

::::::
plants.

::::::
Water

::::::::::
withdrawal

:::
for

::::::
mining

::
is
:::::::
utilized

::
in

:::
the

:::::::::
extraction

::
of
:::::::::

minerals,
:::::
which

::::
can

::
be

:::::
solids

:::::
(like

:::::
coal),

:::::::
liquids,

::
or

:::::
gases

:::::
(such

:::
as

::::::
natural

:::::
gas).

::
In

:::::::::::::
manufacturing,

:::::
water

::::::::::
withdrawal

:::::
serves

::::::::
multiple

::::::::
purposes

::::::::
including

:::::::::
fabricating,

::::::::::
processing,

::::::::
washing,

:::::::
cooling,

::
or

::::::::::
transporting

::::::::
products,

::::::::::::
incorporating

:::::
water

:::
into

::::::::
products,

::::
and

:::::::
meeting220

::
the

:::::::::
sanitation

:::::
needs

::::::
within

:::
the

::::::::::::
manufacturing

:::::::::
facilities.

:::::
These

:::::::
sectoral

:::::
water

::::::::::
withdrawal

::::::::
categories

::::
are

::::::::
consistent

:::::
with

:::
the

::::
work

::
of

::::::::::::::
Liu et al. (2016),

::::
and

::::::::
described

::
in

::::::::::::::::
Huang et al. (2018).

:

To get the final monthly gridded dataset, Huang et al. (2018) used a three-step approach, involving spatially downscaling

the original country (or state) level data to the 0.5x0.5◦ grid level, followed by linear interpolation on the individual grid cells’

time-series to get annual sectoral withdrawal from the 5-year interval from the reports, and ultimately, using a sector dependent225

temporal downscaling procedure to go from annual to monthly frequency.

For spatial downscaling Huang et al. (2018) used global population density maps from History Database of the Global

Environment (HYDE; 1970-1980) and Gridded Population of the World (GPW; 1990-2010) for the domestic, thermoelectric,

manufacturing and mining sectors, while using 2005 FAO global livestock density maps for the livestock sector, following

the approach of Hejazi et al. (2014). A uniform distribution is adopted by Huang et al. (2018) for the temporal downscaling230

of water withdrawal of livestock, mining and manufacturing. For the domestic sector, a temporal downscaling based on the

approach of Wada et al. (2011b) is used, where a modulating function is applied based on each grid cell’s historical temperature

ranges and a region-dependent amplitude parameter R (Huang et al., 2018). Finally, the thermoelectric water withdrawal is

temporally downscaled using the assumption that thermoelectric water use is proportional to the generated electricity, which is

then estimated using heating degree-days (HDD) and cooling degree-days (CDD) as proxies (Voisin et al., 2013; Hejazi et al.,235

2015). The temporal downscaling algorithms, for both domestic and thermoelectric sectors, were validated and calibrated by

Huang et al. (2018) based on existing observations.

The main idea of the Huang et al. (2018) dataset is to represent a reference for historical water use by being derived as

much as possible from existing observation/reported data. While the usage of such reconstruction is of interest for historical

applications, the new module for sectoral abstractions can accommodate alternative datasets for both historical and future240
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periods, which may be interesting for exploring the uncertainties related to the modelling of human water use and projecting

its impact on water scarcity (Wada et al., 2016).

2.4 Understanding the algorithm through a hypothetical case study

To gain a comprehensive understanding of the sectoral water use module, we explore a hypothetical single-grid cell case

study (Fig. 2). In this scenario, we track the dynamics between expected and actual withdrawal during a northern hemisphere245

:::::::
Northern

::::::::::
Hemisphere

:
summer season (JJA) for a hypothetical grid cell.

As detailed in Sect. 2.2, the model ingests gridded expected withdrawal and consumption data on a monthly basis (Fig. 1).

From this monthly expected withdrawal, assuming uniform distribution, we compute the daily expected sectoral abstraction,

which remains constant throughout a given month (Fig. 2a).

Certain sectors may exhibit a sudden increase or decrease in the
:::::::
expected

:
withdrawal amount at the onset of a new month.250

This factor is influenced by the sector and the assumptions which went into the input data. For instance, for the domestic and

thermoelectric sectors, the seasonality of the withdrawal in Huang et al. (2018) is modeled
:::::::
modelled

:
by executing temporal

downscaling on the annual amounts using monthly surface temperature, as well as heating and cooling days as proxies. Con-

versely, other sectors may show no seasonality (Fig. 2c) due to the absence of strong dependencies (e.g., manufacturing), or

because known dependencies such as livestock increased water requirements during heatwaves (Steinfeld et al., 2006) are not255

represented in the input data (Huang et al., 2018).

The spatial patterns of water use should also be considered, as they emerge from the utilization of various proxies for spatial

downscaling. Some examples include population densities for domestic (Wada et al., 2011a; Hanasaki et al., 2018), nighttime

light intensity for industrial (Droppers et al., 2020), density maps for livestock (Khan et al., 2023), power plant locations for

thermoelectric (Flörke et al., 2013), and irrigation areas (Burek et al., 2020; Müller Schmied et al., 2021). The selection of260

proxies used for downscaling, the sectors modeled
::::::::
modelled, and spatial resolution all influence the mix of sectors that may be

represented in a given grid cell. In our hypothetical case study, mining and irrigation are not represented because we assume

that no abstraction happens for these sectors in our hypothetical grid cell (Fig. 2f).

As explained in Sect. 2.2, CLM5 and MOSART can exchange information on local water availability at the beginning of each

day, and adjust the actual sectoral abstractions while considering sectoral priority. In our example, we assume that a small local265

water deficit occurs in June, satisfying high-priority sectors like domestic and livestock fully, while the thermoelectric sector

experiences a supply gap (Fig. 2d). While the sector higher in priority (thermoelectric) is not satisfied fully, no abstraction is

happening for the sectors lower in priority (manufacturing; Fig. 2e).

Similarly, we suppose a larger water deficit in July–August, affecting the domestic demand directly (Fig. 2b). As a con-

sequence, the other sectors only recover when the sector higher in priority is fully satisfied. While the scarcity and recovery270

processes are represented in this example with linear trends, these patterns are noisier in the model, following the day-to-day

water balance dominated by precipitation, evapotranspiration, and runoff processes.
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Figure 2. Illustration of potential outputs from the sectoral water use module for a hypothetical single-grid cell case study. The sectors

are arranged by order of priority from top to bottom. The figure elucidates the interplay between expected (input based) and actual (taking

into account limited availability) sectoral water withdrawals under both normal and water stress conditions. Factors such as river water

availability and inter-sector competition, as previously outlined (Fig. 1), are integral to this model’s function and results. Each labeled

::::::
labelled box represents a feature of the algorithm/model, which is discussed in Sect. 2.4. In addition, the interrupted vertical lines help

identify the moments when water scarcity begins for a given sector and how the supply gradually recovers by order of priority.

2.5 Experiment set-up

CLM5 simulations are conducted for the period between 1971 and 2010, with the first 2 years excluded for spin-up (the analysis

period thus being from 1973–2010). Two simulations were conducted: a control simulation without sectoral abstractions and275

no irrigation, referred to as CTRL, and another simulation with complete sectoral water abstractions, including irrigation and

the five new sectors, referred to as SectorWater.

Both simulations used a scientifically validated configuration designed for land-only simulations (IHISTCLM50BgcCrop

compset). This configuration captures the historical changes in climate, CO2-levels, transient land use and land cover change
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including cropland expansion, uses the Global Soil Wetness Project atmospheric forcing data set (GSWP3v1), models terres-280

trial biogeochemical cycles, and includes a prognostic crop model (Lawrence et al., 2019). The simulations were run with a

horizontal resolution of 0.9x1.25◦ and a default 30-minute time step.

3 Results

3.1 Testing and validation

Since we rely on a data driven approach, and the input data we are using is an evaluated reconstruction of historical water use285

(Huang et al., 2018), our validation focuses on the reliability and robustness of the implementation itself.

Initial tests focus on ensuring data consistency . This involves confirming
::
by

::::::::
verifying

:
the robustness of the remapping of

the original sectoral water use dataset from 0.5x0.5◦ to 0.9x1.25◦ on the CLM5 land mask. To achieve this, we checked the

congruence between the original input data and the post-processed surface data at annual scale and global aggregation level.

In general, the remapping procedure is found to be conservative (Fig. ??
:::
B1), with relative errors of about 1-2%

::::::::
explained

:::
by290

::::::::
upscaling

:::::
effects

:::::
when

:::::::
passing

::
to

:
a
:::::
lower

:::::::::
resolution

::::
land

::::
mask

:
(Fig. B2).

Comparison between global annual sectoral water withdrawal and consumption computed from the original dataset at

0.5x0.5◦ resolution (black lines) and the preprocessed dataset at 0.9x1.25◦ on the CLM5 land mask (colored circles). The

remapping process was done using existing CLM5 tools modules, by extending support for sectoral water use datasets (Taranu, 2024b)

.295

To evaluate the correctness of expected and actual fluxes, we verify whether the expectedand actual
::
To

:::::
verify

:::::::
correct

::::::::
behaviour,

::::
we

::::::::
compared

:::::::::
expected,

:::
and

::::::
actual

::::::
model

:::::
based

:
sectoral abstraction fluxes outputted by the model, which are

computed daily, are in agreement with the input data. We find that , re-aggregated at monthly frequency, the expected fluxes

produced by the model at
::::::
confirm

:::
that

::::::::
expected

::::::
fluxes

::
at

:::
the grid cell level match the corresponding input datavalues (Fig.

B3–B4). At the same time, we find that the
::::
input

::::
data,

:::::
while

:
actual fluxes are always lower or equal to the corresponding300

expected fluxes , corresponding to situations when the
:::::::
expected

::::::
fluxes

:::::
when

:
grid cell river network does not have enough

water to supply the sector
:::::::
networks

::::
lack

::::::::
sufficient

:::::
water (Fig. B3–B4).

We also checked that the
:::
The

:
sector priority algorithm is working correctly, and no abstractions happen for the sectors lower

in priority when the one higher in priority is not fully satisfied
:::
was

:::::::::
confirmed

::
to
::::::::

function
::::::::
correctly,

::::
with

:::
no

::::::::::::
lower-priority

::::::::::
abstractions

::::::::
occurring

:::::
when

::::::::::::
higher-priority

::::::
sectors

:::
are

:::::::::
unsatisfied (Fig. ??

::
B5).305

Evaluation of the sectoral competition algorithm, with each point representing a daily value at grid cell level. The plot was

made by sampling the first 30 days of the year 2000 from the SectorWater experiment. The intersection between the unsatisfied

sectoral withdrawal of the sector higher in priority and the actual withdrawal of the sector lower in priority represents the 0

value.

Next, the coupling between our module of sectoral water use and the MOSART routing model is verified .
::::::::
successful310

:::::::
coupling

:::::::
between

:::
the

::::
land

::::
and

:::
the

::::::
routing

::::::
models

::
is

:::::::
verified

:::::
(Sect.

::::
2.2).

:
It was confirmed that the fluxes from the land model

match the fluxes from the routing model at both global and continental level (relative errors <1%; Taranu (2024a)), demon-
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strating that differences in resolution and spatial organization were taken well into account during both the coupling process

and the two-way remapping of the sectoral abstraction fluxes from land to the river network. The spatial patternsof domestic

withdrawal are well-preserved at the transition between CLM5 to MOSART (Fig. 3). The
:::::
While

::::::::::
maintaining

:::
the

:::::
same

::::::
spatial315

:::::::
patterns,

:::
the map corresponding to MOSART output (Fig. 3b) has more details and sometimes more pronounced local values.

This is because MOSART operates at a higher resolution in this case (0.5x0.5◦ versus 0.9×1.25◦ for CLM5) and has a different

spatial organization with main channels of different storage. As a consequence, the sectoral fluxes from the CLM5 grid cell

may be remapped unequally between MOSART intersecting grid cells (see Sect. 2.2 for a detailed description of the coupling

process).320

Figure 3. Actual domestic withdrawal for the year 2000 as outputted by the CLM5 (a) and MOSART (b) components. Sectoral withdrawal

is a positive term for the land component, which gains water from consumption, and a negative term for the routing component, which loses

water (Fig. 1).

Finally, we ensure that the application of sectoral consumption fluxes to natural vegetation areas does not violate the

water conservation at both column and grid cell level. This is done by adding the new sectoral consumption fluxes to the

existing water balance checker module. For the energy conservation , no additional coding was required, since the energy

perturbation from the new sectoral consumption fluxes added to the surface happens naturally through existing mechanisms,

such as evaporation
:::::
CLM5

:::::::
ensures

::::
mass

:::
and

::::::
energy

:::::::::::
conservation

::
by

::::::::
aborting

:::
the

:::::::::
simulation

::::
when

::::
this

::
is

:::::::
violated.325
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Figure 4. Annual global expected (a) and actual (b) sectoral withdrawal throughout the years 1973—2010. The actual withdrawal volumes

can be lower than the expected ones because of limited river water availability and sectoral competition for limited resources (Fig. 1 and 2 for

details). This figure was produced using the SectorWater experiment results. The trends and fluctuations in the expected irrigation withdrawal

time-series are due to the changes in climate and historical cropland expansion, both captured in the SectorWater experiment (see Sect. 2.5

for experimental setup description)

.

3.2 Historical trends in global sectoral withdrawal

Over the period 1973–2010 (Fig. 4),
::::::
sectoral

:::::
water

::::::::::
withdrawals

::::::
shows

::::::
mostly

:
a
::::::
steady

::::::::
increase,

:::::::
followed

:::
by

:
a
:::::
slight

:::::::
decline

::::::
towards

:::::
2010.

::::::
While

::::::::
irrigation

::
is

::::::::::
consistently

:::
the

::::::
largest

::::::::::
contributor,

::::
other

::::::
sectors

:::::::
account

:::
for

::
a
:::::::::
substantial

:::::
share,

:::::::::
especially

::::::
looking

::
at

:::
the

:::::
actual

::::::::::
withdrawal.

::
By

:::::
2010,

:::
the

:::::::::
cumulated

:::::::::::
non-irrigative

::::::::
expected

::::::
sectoral

::::::::::
withdrawal

:::
and

:::::::::::
consumption

:::::::
reached,

::::
1157

:::
and

::::
171

::::::::
km3/year

::::::::::
respectively,

::::::
which

:::::::
represent

:::
an

:::::::
increase

::
of

:::
315

:::::::::
km3/year

::
or

::::
36%

:::
for

:::
the

:::::
period

::::::::::
1971–2010.

::::
The total330

global expected (actual )
:::
and

:::::
actual

:
water withdrawal increased by 110% (

:::
and

:
43% )

:::::::::
respectively. Over the same period, in

the SectorWater simulation, the expected (actual) irrigation withdrawal accounts for 79% (36%) of total water withdrawal,

followed by domestic with 6% (19%), thermoelectric with 8% (23%), manufacturing with 5% (14%) and finally livestock and

mining together at about 2% (8%).

Comparing the results on the relative importance of each sector with the results from Huang et al. (2018), reveals that the335

mean relative importance of irrigation is substantially higher in our case (79% versus 68%). To comprehend the findings of

the SectorWater simulation, it is essential to consider two key factors. First, CLM5 computes irrigation water requirements

prognostically, by taking into account for each day the soil moisture deficit which needs to be covered to satisfy crop water

requirements. At the same time, in some regions, CLM5 struggles to supply enough water for irrigation using river water alone

(Fig. E6). When analyzed
:::::::
analysed

:
globally based on the SectorWater experiment results, CLM5 supplies only 10-20% of340

what is globally requested (Fig.4b)
:::::
C1.d),

:::::::::
compared

::
to

:::::
>96%

:::
for

:::
all

:::
the

::::
other

::::::
sectors. But this difference in supply should be

interpreted cautiously. Due to the lack in water supply in certain areas, soil moisture levels are frequently below optimal levels.
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This results in a consistent water deficit for crops, leading to a greater reliance on irrigation. Consequently, this increases the

overall annual expected irrigation withdrawals globally, which are likely exaggerated in our experiment.

In fact, when only irrigation is considered and no limit on water supply is imposed, CLM5 underestimates the total irrigation345

withdrawal in comparison to other models or AQUASTAT estimates. For example, in CLM5 it is possible to overcome the

limitation of river water availability for irrigation supply through a negative subsurface runoff term in the MOSART model,

which is then compensated with ocean water. This is an unrealistic configuration, but at the moment it is required to close the

water balance when supplying the full irrigation requirements. It is also interesting to use when studying the land-atmosphere

interactions and feedbacks of irrigation when the total withdrawal rather than the impact on discharge and runoff is important350

(Thiery et al., 2017; Chen and Dirmeyer, 2019; De Hertog et al., 2023). In this configuration, and using a similar version of

the model as in our study, Yao et al. (2022) found that the mean expected global irrigation water withdrawal for the period

1981-2015 is about 910 km3/year. This is largely below the range given by the other models, of about 2000-4000 km3/year for

the same period (McDermid et al., 2023), and significantly lower than the expected irrigation withdrawal in our SectorWater

experiment. Using the Yao et al. (2022) estimates for expected withdrawal, it seems that using river water alone could satisfy355

up to 50% (vs. the 10-20% estimated based on our results) of the current CLM5 irrigation requirements (Fig. 4b). In this

context, an analysis by sector of the fractions of unmet demands during the 1981–2010 period reveals that the global shortfall

in irrigation supply is not due to competition with recently introduced sectors. This conclusion is supported by numerous grid

cells where only the irrigation sector exhibits undersupply (Fig. E1-E6).

This low estimate of global irrigation water withdrawal (910 km3/year vs. 2000-4000 km3/year) could be a consequence of360

the fact that the default irrigation technique used for all crops in CLM5 is very efficient, akin to drip irrigation. By introducing

different irrigation techniques, including drip, sprinkler and flood, as well as a special parameterization for rice paddies, Yao et

al. (2022) were able to reduce the bias in irrigation withdrawal compared to observations, increasing the total global irrigation

withdrawal to about 3600 km3/year. Vanderkelen et al. (2022) also suggested that CLM5 is likely underestimating irrigation

totals as well as irrigation seasonality, based on independent comparisons of reservoir inflows with observed values. Taking365

these results into account, and anticipating larger expected irrigation withdrawals in future versions of the CLM model in line

with observations, and improved irrigation representation, it becomes critical that the water supply parameterization within

CLM gets improved. This includes the implementation of abstractions from renewable and fossil groundwater, as well as from

lakes and reservoirs.

3.3 Regional patterns in sectoral water use370

Spatial patterns in sectoral water use vary significantly by region, influenced by climate, economic activities, and population

distribution (Fig. 5). In areas experiencing precipitation deficits or with intensive agricultural activities, like the western U.S.,

eastern China, and the Indo-Gangetic Plain, irrigation demands are the highest ((Jägermeyr et al., 2015; Huang et al., 2018)

)
::::::::::::::::::::::::::::::::::
(Jägermeyr et al., 2015; Huang et al., 2018). High sectoral water use aligns in general with the local density of the population,

but there are also exceptions based on regional characteristics such as economic activities, climate, or water availability (e.g.,375

dominance of eastern U.S. in thermoelectric water usage of the country).
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Figure 5. Spatial distribution of actual sectoral withdrawal for the year 2010 as outputted by the CLM5 land model in the SectorWater

simulation. Note that the color
:::::
colour bar is non-linear.

Different socio-economic and climatic conditions lead to diverse water use profiles (see the map in Fig. 6). Agriculture-

dominated water use is prevalent in many African, Asian, and South American countries, whereas industrialized nations in

Europe and North America show a greater emphasis on industrial water use. Arid regions like the Middle East prioritize
::::
have

:::::
higher

:
domestic and agricultural water due to limited water availability

:::
use

:::
due

::
to

:::::::::
increasing

:::::::::
population

:::
and

:::::::::::
urbanization,

:::::
while380

::
the

:::::
high

::::::::::::::::
evapotranspiration

::::
rates

:::
and

:::::::
limited

:::
soil

::::::::
moisture

:::::
makes

::::::::
irrigation

:::::::
essential

:::
for

::::
crop

::::::
growth

:::::::::::::::::
(World Bank, 2017).

From 1973 to 2010, water withdrawal trends shifted
:::::::
changed, reflecting socio-economic progression, population dynamics,

and changes in regional climate (see time-series subplots in Fig. 6).

In East and South Asia, there has been a notable rise in irrigation water use. This increase is likely attributed to warmer

temperatures and expanding agricultural land for a growing population (Lombardozzi et al., 2020), both of which are captured385

by the SectorWater simulation (Sect. 2.5 for more details).

Most of the Global South regions experience a significant increase in their domestic and industrial water usage, likely a con-

sequence of the increasing population, rapid urbanization and economic development (Wada et al., 2011a). At the same time,

industrial water withdrawal in North America and Western Europe has stabilized or declined, potentially due to technological

advances and economic shifts leading to higher water use efficiency (Flörke et al., 2013). Eastern Europe and Central Asia390

exhibit similar patterns, but likely influenced by post-Soviet transitions (Kummu et al., 2016).

Livestock water demand trends vary, with significant increases in North America, South America, and South Asia, following

dietary changes and increasing global protein requirements (Rust, 2019). Some regions, however, have stabilized or decreased

livestock water use, suggesting advancements in livestock production systems (Rust, 2019).
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Figure 6. Countries’ classification based on their dominant sectoral water use, as sourced from mean actual withdrawals for six sectors

(irrigation, domestic, livestock, thermoelectric, manufacturing, and mining) between 1973 and 2010. For clarity, irrigation, and livestock

data were combined under “Agriculture” (AG), while thermoelectric, manufacturing, and mining were aggregated as “Industry” (IND), and

domestic is considered separately (DOM). A sector is dominant when it accounts for over 50% of total mean withdrawal throughout the

observed period 1973—2010 (e.g., AG). A mixed usage is when no sector accounts for more than 40% or less than 30% of the mean total

withdrawal, indicating an even distribution across sectors (MIX). Dual dominance is when leading sectors together represent more than

65% of total mean withdrawal, with neither falling below 25% (e.g., IND-DOM). The dominance map format is inspired by a similar map

presented in the World Resources People and Ecosystems (2000). Accompanying the map are time series plots detailing actual withdrawals

for the 12 major geographical regions.

3.4 Impact on the climate395

Confirming previous findings (e.g., ?Sacks et al., 2009; ?; Thiery et al., 2020), we identify significant regional ground and 2-m

air temperature cooling in the SectorWater experiment as a consequence of the enhanced evapotranspiration and increased latent

heat flux (Fig. 7). Irrigation withdrawal shows the strongest correlation with the regional climate differences when compared

to other sectors’ cumulative consumption (Fig. 8). A linear regression analysis, gives R2 ≈ 0.9 for irrigation withdrawal vs.

R2 ≈ 0.08 for other sectors consumption in explaining the climatic variable differences between the CTRL and SectorWater400

experiments (Fig. 7 a, c, e).

This study specifically focuses on land-only experiments, which do not capture the land-atmosphere feedback mechanisms

triggered by irrigation and consumption in various sectors
:::::
There

:::
are

:
a
::::

few
:::::::
reasons

::::
why

:::
we

::::
don’t

::::
find

::
a

:::::::::
significant

:::::
effect

:::
for

::
the

::::::::::::
non-irrigative

:::::::
sectoral

:::::::::::
consumption

:::
on

:::
the

:::::::
selected

::::::
surface

::::::::
variables

::
in

::::
our

::::::::::
experiment.

:::
For

::::::::
example,

:::
for

::::::::::::
non-irrigative

::::::
sectors:

:::
the

:::::::::
cumulative

:::::::::::
consumption

::
is
:::::
quite

:::::
small;

::
it
::
is

:::::::::
distributed

::::
over

:::
the

::::
year

:::
and

:::
the

::::::
entire

:::
day

:::::
(24h),

::::
and

::::::::::::
independently405

::
of

:::
soil

::::::::
moisture

:::::::::
conditions;

:::::::::
distributed

::::
over

::
a
:::::
larger

::::
area

:::::::
(natural

:::::::::
vegetation

:::::::
column). As a result, to more accurately assess

the potential climate impacts of human water use, it is advisable to conduct experiments using interactive land-atmosphere or

fully-coupled Earth system models.
:::::::::::
consequence,

:::
the

::::::
impact

::
of

::::::::::::
non-irrigative

::::::
sectors

::
on

:::
the

:::::::
climate

::
is

::::::::::
insignificant

::
at
::::::
scales
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::
of

:
a
::::
100

:::
km

:::
and

::::::
above.

:::
For

:::::::::
irrigation:

:::
the

::::
water

::
is
:::::::
applied

:::
for

::::
parts

::
of

:::
the

::::
year

:::::
when

:::
the

:::::
crops

:::::
grow,

:::
and

::::
only

:::::
when

::::
there

::
is
::
a

:::::::
moisture

::::::
deficit;

:::
the

::::::::
irrigation

:::::::
window

::
is

:::::
short,

::::::
applied

::::
over

::
4
:::::
hours

::
at

::::
6am

::::
local

:::::
time;

::::::
locally

::::::
applied

::::
over

:::
the

::::::::
columns

::::
with410

:::::::
irrigated

:::::
crops;

:::
the

::::
total

::::::::
irrigation

:::::::
amounts

:::::
being

::::
very

::::
large

::::
(e.g.

:::::::::
maximum

:::::::::
cumulative

::::
grid

:::
cell

:::::::::::
consumption

::
for

::::::::::::
non-irrigative

::::::
sectors

:
is
:::::
only

:
at
:::

the
::::
low

:::
end

:::
of

::::::::
irrigation

:::
grid

::::
cell

:::::::::::
consumption

::
in

:::
Fig.

:::
7).

:::::
These

:::::::::
conditions

::::::
ensure

:::
that

::::::::
irrigation

::::
will

::::
have

::
a

::::::::
significant

::::::
impact

:::
on

:::
the

::::
local

:::::::
climate,

:::::
since

:
a
:::::::::
significant

:::::::
amount

::
of

:::::
water

::
is

:::::::
provided

::::::
locally

::::
over

::
a
::::
short

::::::
period

::
of

::::
time

::
in

::
a

:::::::
moment

::::
when

::::::::::
evaporation

::::
and

::::
plant

:::::::::::
transpiration

::
is

::::::
limited

::
by

:::::
water

::::::::::
availability.

Ultimately, these
:::::
These

:
findings underscore irrigation’s principal role as a climate forcing in relation to human water use415

(McDermid et al., 2023). Simultaneously
:
,
::::
with

:::::
other

::::::
sectors

::::::::::
contribution

:::::
being

:::::::::
negligible

::
at

:::::
large

:::::
scale.

:::::
While

:::
not

:::
for

:::::
their

::::::
climate

::::::
impact, incorporating other sectors’ abstractions into Earth System Models (ESMs) as suggested by Nazemi and

Wheater (2015), remains important for evaluating water scarcity in present and future climates, as well as the changes of surface

and groundwater storage resulting from sectoral withdrawal and consumption.
:::
For

::::::::
example,

:::::::::
comparing

:::
the

::::::::::
SectorWater

::::
and

:::::
CTRL

:::::::::::
experiments,

::::::
shows

:
a
:::::::::
significant

::::::::
decrease

::
in

:::::
mean

::::::
annual

::::::::::
streamflows

:::
for

:::::
most

:::::
major

::::::
rivers

::::
(Fig.

::::
D1),

:::
as

::::
well

::
as

::
a420

:::::::
decrease

::
in

::::
total

::::::
annual

::::
river

::::::::
discharge

::
to

:::::
ocean

:::
of

::::
about

::::
300

::::::::
km3/year

:::
by

::
the

::::
year

:::::
2010

::::
(Fig.

::::
D2).

:

3.5 Water scarcity

By visualizing the average number of days when the local supply of surface water was not sufficient to fully satisfy all sectoral

demand (Fig. 9and E7), we find that the results produced by the updated CLM model closely match known hotspots of water

scarcity (Mekonnen and Hoekstra, 2016; Kummu et al., 2016; Liu et al., 2017).425

The
::::::::
Analysing

:::::
model

:::::::
results,

:::
we

:::
find

::::
that

:::
the largest regional water scarcity is found in the Middle East. For example, the

city
::
by

::::::::::
aggregating

:::::
results

::
at
:::::::::::
sub-national

::::
level

:::::
(Fig.

::::
E7),

::
we

::::
find

::::
that

:::
the

::::::::::
municipality

:
of Al Khor, Qatar, experiences water

scarce conditions for about 320 days per year on average, where local river water is not enough to fully satisfy its residents

demands. Other
:::::
known

:
hotspots of water scarcity in the Middle East

:::::::::::::::::
(World Bank, 2017) are well captured (World Bank, 2017)

::
by

:::
the

::::::
model, including Haifa in Israel (195 days), West Bank in Palestine (140 days), Dar‘a in Syria (125 days), Jizan in430

Saudia Arabia, Sharjah, and Dubai in the United Arab Emirates (about 90 days), Amran and Raymah in Yemen (about 150

days). The reasons are multifaceted: from climatic challenges, with prolonged droughts and erratic rainfall, but also increasing

populations and standards of living accompanied by higher
::::::::
increasing

:
domestic and agricultural demands .

::::
(Fig.

:::
6). To manage

these challenges, the region heavily depends on fossil groundwater exploitation, leading to rapid groundwater depletion (World

Bank, 2017; Bierkens and Wada, 2019). As a result, the region makes substantial efforts to find alternative sources of water,435

such as desalination (Eke et al., 2020; Curto et al., 2021).

The Mediterranean, another region historically vulnerable to water stress, presents a similar narrative. Spain’s Región de

Murcia and Andalucia or Greece’s Crete, all with over 100 days of unmet water demand
::
in

:::
our

::::::::::
simulations, are typical for

the region, grappling with both climatic adversities and high agricultural demands. Tourists, often unaware of the local water

constraints, contribute significantly to the increased demand, especially during peak seasons (Becken, 2014). Meanwhile, local440

communities, which rely on consistent water supplies for their daily needs and agricultural practices, find themselves competing

for dwindling resources. Climate change further intensifies
:::::::
Climate

::::::
change

::
is

:::::::
expected

::
to

::::::
further

::::::::
intensify this issue, with pro-
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Figure 7. (b, d, f) Mean difference maps for 2-m air temperature, ground temperature and latent heat flux between the CTRL and SectorWater

experiments. The maps are generated by calculating the difference between each month for the given variable between the years 1973—2010,

and then computing the average over all the differences. (a, c, e) Linear regressions between the difference maps for the given variable, and

one of the predictors, the mean irrigation withdrawal or the mean sectoral consumption (see predictors maps in Fig. 8). Each point in the

regression plots represents individual grid cells from the corresponding right-side difference map.

jections indicating reduced rainfall and soil moisture in the region (See e.g. Figure TS.5 in IPCC AR6 Technical Summary: The Physical Science Basis, 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fig. TS.5 in IPCC AR6 Technical Summary: The Physical Science Basis, 2021).

Turning to Asia, the model results resonate with well-documented concerns. Regions in India, such as Karnataka and Maha-445

rashtra (about 120 days), and areas in China like Tianjin and Hebei (about 60 days), are well known for water scarcity(Manju and Sagar, 2017; Cai et al., 2021)

, and underscore the dual challenge of meteorological unpredictability and the pressures of supporting dense populations.

:
.
:::
For

::::::::
example,

::::::::
previous

::::::
studies

:::::::
showed

::::::
water

:::::
stress

::::
that

::::::
ranges

:::::::
between

::::::::
40-80%

::
in

:::::::::
Karnataka

::::
and

:::::::::::
Maharashtra

::::::
region

::::::::::::::::::::
(Manju and Sagar, 2017),

:::::
while

:::::
water

::::::
supply

:::
for

::
the

::::::::::::::::::
Beijing-Tianjin-Hebei

:::::
urban

::::::::::::
agglomeration

:::::::::
represents

:
a
:::::::::
significant

::::::::
challenge

:::::::
requiring

::::::::
trade-offs

::::::
among

::::::::
economic

::::::::::::
development,

:::::::::::
environmental

:::::::::
protection,

::::
and

:::::
nexus

::::
risks

::
in

:::
the

:::::::
adjacent

::::::
regions

::::::::::::::
(Cai et al., 2021)450
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Figure 8. Spatial distribution of mean annual consumption for all sectors (excluding irrigation) alongside annual irrigation withdrawal, both

used as predictors in the regression depicted in Fig. 7.
:
It
:::
can

::
be

:::::
noted

:::
that

:::::::
irrigation

::::::::
withdrawal

::::::::
correlates

::::
much

::::
better

::::
with

:::
the

:::::
surface

::::::
climate

::::::
variables

::
in
::::
Fig.

::
7.

::::
While

:::
the

:::::::
irrigation

:::::::::
withdrawal

::
is

:
in
::::::
general

:::::
much

::::
larger

::::
than

::::::::::
non-irrigative

::::::
sectoral

:::::::::::
consumption,

:::
this

:
is
::::::::
especially

:::
the

:::
case

:::
for

::
the

::::
grid

:::
cells

:::::
where

:
a
::::::

climate
:::::::::
modulating

::::
effect

::
is
:::::::
observed

::::
(Fig.

::
7).

:
.
::
In Central Asia, with places like Tajikistan’s Sughd (

:::
the

:::::
Sughd

:::::::
province

::
in

:::::::::
Tajikistan

:::::
stands

:::
out

::::
with 100 days ) (Mukhamedova and Wegerich, 2018)

, further accentuates the narrative of water scarcity driven by a combination of climatic conditions and high demand
:
of

::::::
unmet

::::::::
demands.

::::
This

::::::
region

::
is

::::::
known

:::
for

::::
high

::::::
overall

:::::
water

::::::::
scarcity,

::::::::
especially

::::::
during

:::::
peak

::::::::
irrigation

:::::::
seasons,

:::::::
leading

::
to

::::::
strong

::::::::::
competition

::::
over

::::
water

:::::::::
resources

:::
and

:
a
:::::
local

:::::::
practice

::
of

:::::
water

::::::
rotation

::
to
::::::
ensure

::::::
supply

::::::::::::::::::::::::::::::
(Mukhamedova and Wegerich, 2018).

When it comes to North America, the region which stands out the most
:
in
::::

our
::::::::::
simulations is the state of California (60455

days), reflecting the challenges posed by a combination of high agricultural demand, urbanization, and prolonged periods of

drought (Mount and Hanak, 2019). .
:::::
With

::::
over

:::
8.5

::::::
million

:::::
acres

::
of

:::::::
irrigated

::::::::
cropland,

:::
the

:::::
state

::
of

:::::::::
California

::
is

:::::::::
vulnerable

::
to

::
the

::::::::
frequent

:::
and

::::::::::
intensifying

::::::::
droughts,

:::
and

:::::
tends

::
to

::::
rely

::
on

::::::::::::
unsustainable

::::::::::
groundwater

::::::::::
exploitation

::::::::::::::::::::::
(Mount and Hanak, 2019)

:
.
::::
This

:::
led

::
to

:::
the

::::::::
adoption

::
of

:::
the

:::::
2014

::::::::::
Sustainable

:::::::::::
Groundwater

:::::::::::
Management

::::
Act

::::::::
requiring

:::::::
pumpers

::
to
:::::

reach
::::::::::::

sustainability

::
by

:::
the

:::::
early

::::::
2040s.

:
At the same time, the model seems to capture the continuing difficulties in Colorado (25 days)in line460

with long-term observations in the region .
::::::::
Between

:::
the

::::::
period

::::::::::
1916–2014,

:::
the

::::::
Upper

::::::::
Colorado

:::::
River

:::::
Basin

::::::::::
experienced

::
a

:::::
16.5%

::::::
decline

::
in
::::::::::
naturalized

:::::::::
streamflow,

::::::
which

::
is

:::
met

:::
by

::::::::
increasing

:::::::::
population

::::
and

::::::
sectoral

:::::::
demand

:::::
often

::::
equal

:::
to

::
the

:::::::
inflows

:::::::::::::::
(Xiao et al., 2018).

:::
For

:::::
these

:::::::
reasons,

::::
and

::::::
general

::::
low

::::::::::
groundwater

::::::::::
availability,

:::
the

::::::::
Colorado

:::::
Basin

::
is
::::
one

::
of

:::
the

::::::
basins

::::
with

::
the

:::::::
highest

::::::::
projected

::::::::
economic

::::::
impact

:::::::::
uncertainty

::
in
:::
the

::::::
world

::
in

:::::
future

::::::
climate

::::::::
scenarios

:
(Dolan et al., 2021).

Other water scarcity hotspots which seem to be captured by the model are Western South America, Southern Africa, north-465

western Africa, and Southeast Australia in line with previous research (Mancosu et al., 2015; Liu et al., 2017).

::
To

:::::::::
understand

::::::
better

::::::::
individual

::::::::::::
contributions,

:::
we

:::::::
analyse

:::
the

::::
same

::::::
metric

:::
for

:::::::::
individual

::::::
sectors

:::::
(Fig.

:::
10).

::::
We

:::::
notice

::::
that

:::::::
irrigation

:::
is

::
by

:::
far

:::
the

::::::
largest

::::::::::
contributor

::
to

:::::
water

::::::::
scarcity,

::::
both

:::
by

::::::
spatial

:::::
extent

::::
and

::::::::
intensity.

:::
At

:::
the

:::::
same

::::
time,

::::
we

:::
are

::::::::
observing

:::::::::
significant

::::::
number

:::
of

::::
days

::::
with

:::::
unmet

::::::::
demands

:::
for

:::
the

:::::
other

::::::
sectors

:::
too

::
in

::::::
regions

::::::
known

::
to

:::::
have

:::::::::
difficulties

::::
with

::::
water

:::::::
supply.

::::
The

::::::
regions

::::::
which

::::
stand

::::
out

:::
for

:::::::::::
non-irrigative

:::::
water

:::::::
scarcity

::::
are:

:::
Al

::::
Khor

::::
and

::
Al

:::::::
Wakrah

:::
in

:::::
Qatar,

::::
Toa

::::
Alta470

19



Figure 9. Average number of days per year, from 1973—2010, when modeled
::::::
modelled

:
water supply was insufficient to meet the demand

for all sectors. Note
::
the non-linear color

:::::
colour bar.

::
in

::::::
Puerto

:::::
Rico,

:::::
Haifa

::
in

::::::
Israel,

::
Al

:::::::
Marqab

:::
in

:::::
Libya,

::::::::
Istanbul

::
in

:::::::
Turkey,

::::
West

:::::
Bank

::
in
:::::::::

Palestine,
:::
Al

:::::::::
Isma‘iliyah

:::
in

::::::
Egypt,

:::::::
Makkah

::
in

:::::
Saudi

::::::
Arabia,

::::::
Tehran

::::
and

:::::::
Esfahan

::
in

::::
Iran.

:::
As

:::
can

:::
be

::::
seen,

:::
the

:::::::
regions

:::::::
affected

::
by

::::::::::::
non-irrigative

::::
water

::::::::
scarcity,

::
in

:::
our

:::::::
analysis,

:::
are

::::::
mostly

::::::
located

:::
in

::
the

:::::::
densely

:::::::::
populated

::::::
regions

::
of

:::
the

::::::
Middle

:::::
East,

:::::::::::::
Mediterranean,

:::::
India,

:::::::
Western

::::::::
America,

:::
and

::::::::
Northern

::::::
Africa

:::::::
regions.

::::
Due

::
to

:::
the

:::::::::::
implemented

:::::::::::
prioritization

:::::
order

::::
(see

::::::
details

::
in

:::::
Sect.

::::
2.4),

:::
we

:::
can

::::
see

:
a
:::::::::
cascading

:::::
effect,

::::
with

::::::::::::
intensification

::
of

:::::::
existing

::::::
unmet

::::::::
demands

:::
and

::::
new

::::::
regions

::::::
being

:::::::
affected

::
for

:::::
each

::::
new

:::::
sector

:::::
down

:::
the

:::::::
priority475

:::::
order.

:::::
These

::::::
results

:::
are

:::::
likely

::
to

::::::
change

::::::::::
significantly

:::::::::
depending

:::
on

:::
the

::::::::
allocation

:::::
order,

:::::::::::
representing

::
an

::::::::
important

::::::::::
uncertainty

::
for

:::::::::
individual

::::::
sector’s

:::::
water

:::::::
scarcity

::::::::::
assessments

:::::::::::::::::
(Rathore et al., 2024)

:
.
:::
The

::::::::
complete

:::::::
analysis

:::
for

::::
each

:::::::
country

:
at
:::::::::::
sub-national

::::
level

:::
can

::
be

::::::
found

::
in

:::
the

::::::::
associated

:::::
Data

:::::::::
repository.

:::
We

:::
find

::::
that

::
for

:::
the

::::::
period

::::::::::
1973–2010,

:
a
::::::
general

:::::
trend

::
of

::::::::::::
intensification

::
of

:::::
water

::::::
scarcity

::
is
::::::::
observed

:::
for

::::
most

::
of

:::
the

:::::::
affected

::::::::
countries.

::::
This

::
is

::::::::
expressed

:::
in

::
an

:::::::::
increasing

:::::::
fraction

::
of

:::
the

:::::::
country

::::::::
struggling

:::::
with

::::::
sectoral

:::::
water

::::::
supply

:::::
(e.g.,

:::::
India,

::::::
Qatar,480

::
or

:::::
Saudi

::::::
Arabia

::
in

::::
Fig.

:::
11)

:::
or

::::::::
increasing

:::::::
number

::
of

:::::
days

:::
per

::::
year

:::
the

:::::::
affected

:::::::
regions

:::
are

:::::::
exposed

::
to

::::
such

:::::::::
conditions

:::::
(Fig.

:::
12).

::::
For

:::::
some

::::::::
countries

:::
we

:::
see

:::
the

::::
first

:::::::::
emergence

:::
of

::::::
unmet

:::::::
sectoral

:::::::
demands

::::::::::
(especially

:::
for

:::::::::::
non-irrigative

:::::::
sectors)

:::::
only

:::::::
relatively

::::::::
recently

::::
(e.g.

:::::
years

:::::
2000s

:::
for

:::::::
Brazil,

::::::
China,

:::::::
Pakistan,

::::::::::::
Turkmenistan

:::
in

:::
Fig.

::::
11).

::::::
There

:::
are

::::
also

:::::::::
situations,

:::::
when

:::::
unmet

:::::::
sectoral

::::::::
demands

:::::::
become

:::
less

::::::::
common

::::
(e.g.

::::::
Russia

::
in

::::
Fig.

::::
11).

::
In

:::::
most

:::::
cases,

:::
the

::::::::
observed

:::::::::
long-term

:::::
trends

:::
in

:::
the

:::::::
historical

:::::
water

:::::::
scarcity

::::
can

::
be

::::::::
explained

:::
by

:::::::
changes

::
in

::::::::
countries

:::::::
sectoral

:::::::
demands

:::::
(Fig.

::::
13).

::::
With

:::::::::
increasing

:::::::
sectoral

:::::
water485

:::::
needs,

:::::
many

:::::::
regions

::::::
reached

:::
or

:::
are

::::
over

::::
their

::::::
surface

:::::
water

::::::::::
availability

::::
limit

::::::::::::
(Wada, 2016).

:::
At

:::
the

:::::
same

::::
time,

:::::
there

:::
are

::::
also
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Figure 10.
::::::
Average

::::::
number

::
of

::::
days

:::
per

::::
year,

:::::
from

:::::::::
1973–2010,

::::
when

::::::::
modelled

::::
water

::::::
supply

::::
was

::::::::
insufficient

::
to
:::::

meet
:::
the

::::::
demand

:::
for

:::::::
individual

::::::
sectors.

::::
Note

:::
the

::::::::
non-linear

:::::
colour

:::
bar.

::::
some

:::::::::
exceptions

::::::
which

::::::
cannot

::
be

::::::::
explained

::::::
simply

:::
by

:::::::
changes

::
in

::::::
sectoral

::::::::
demands

::::
(e.g.

:::
the

::::
drop

::
in

::::::::::::::::
domestic/livestock

:::::
water

:::::
supply

::
in
::::

US
:::::::
between

:::::::::::
1980s-1990s,

::
or

:::
the

:::::
drop

:::::::
between

:::::::::::
1990s-2000s

::
in

:::::
Saudi

::::::
Arabia

:::
all

::::::
sectors

:::::::
supply).

::::
This

::::::::
indicates

:::
the

:::::::
existence

:::
of

::::
some

:::::
other

:::::::
sources

::
of

:::::
water

:::::::
scarcity,

::::
such

::
as

:::::::::
long-term

::::::
natural

:::::::::
variability

::::::::::::::::
(Rodell et al., 2018)

:
.
:::::
While

::
a

:::::::
possible

:::::::::
application

::
of

:::
our

:::::::
module,

::
in

:::
this

:::::
study

:::
we

:::
do

:::
not

:::
aim

::
at

:::::::::::
disentangling

::::::
exactly

:::
the

:::::::
reasons

:::
for

:::::
unmet

::::::::
demands

:::::::
between

::::::
natural490

:::::::::
variability,

::::::
climate

::::::
change

:::
and

:::::::
changes

::
in
:::::::
sectoral

::::::::
demands.

:
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Figure 11.
::::::
Fraction

::
of

:::
the

::::::
country

::::
with

:
at
::::

least
::::

one
:::
day

:::
per

::::
year

::::
when

:::::::
modelled

:::::
water

::::::
supply

:::
was

:::::::::
insufficient

::
to

::::
meet

:::
the

::::::
demand

:::
for

:::::::
individual

::::::
sectors.

:::
The

::::::
results

::
are

:::::::
provided

::
as

:
a
::
10

:::::
years

:::::
rolling

::::::
average

:::
for

::::
better

:::::::::::
representation

::
of

:::::::
long-term

:::::
trends.
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Figure 12.
:::
The

::::::
average

::::::
number

::
of

::::
days

::
per

::::
year,

:::::::
countries

:::
are

::::::
exposed

::
to
::::::::
unsatisfied

::::::
sectoral

:::::::
demand.

:::
The

::::::
average

::
is

::::::::
calculated

:::
only

:::::
using

::
the

:::::::
gridcells

:::::
which

::::::::
experience

:::::
water

::::::
scarcity

::::::::
conditions.

::::
The

:::::
results

::
are

:::::::
provided

::
as
::

a
::
10

::::
years

::::::
rolling

::::::
average

::
for

:::::
better

:::::::::::
representation

::
of

:::::::
long-term

:::::
trends.

23



Figure 13.
:::::::
Countries

::::::
sectoral

:::::::::
withdrawal

:::
for

:::
the

:::::
years

:::::::::
1973–2010.

:::
The

::::::
results

:::
are

:::::::
provided

::
as
::

a
::
10

:::::
years

::::::
rolling

::::::
average

:::
for

:::::
better

::::::::::
representation

::
of

::::::::
long-term

:::::
trends.
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4 Limitations and a way forward

While our additions to CLM5 represent a notable advancement in the representation of human water use in the Community

Earth System Model (CESM), there are still some limitations and assumptions that should be acknowledged.

In the latest iteration of the CLM model, an alternative mechanism allows for the extraction of unmet water demand for495

irrigation from unconfined groundwater in addition to the supply from the rivers (confined aquifers are currently not supported

by the model). This approach provides a more realistic depiction; however, a potential limitation is its exclusive reliance on

model-calculated renewable groundwater availability. Given the present model’s omission of water abstractions from reservoirs

and lakes, there’s a likelihood of overestimating groundwater dependence in certain areas. Conversely, there is a potential for

significant underestimation of groundwater abstractions in arid and semi-arid regions. These regions often experience minimal500

groundwater recharge (Bierkens and Wada, 2019), and the model currently does not account for fossil groundwater reserves.

Nevertheless, comprehensively accounting for every source of sectoral water withdrawal is crucial for the valid application of

CLM5 in water scarcity assessments. Therefore, evaluating the efficacy of this new groundwater abstraction approach, along

with its expansion to recently incorporated sectors, emerges as an imperative future effort.

In the context of groundwater abstractions, it is also important to consider how the partitioning between surface vs. ground-505

water dependence is implemented. The method currently available in CLM for irrigation is what can be called an implicit

method, where the amount supplied from groundwater is based on what remains unsatisfied from surface water (rivers). The

advantage of following this approach is that it gives better estimates, especially in regions where significant groundwater pump-

ing remain unreported (Wada, 2016). However, the implicit method may neglect physical, technological and socioeconomic

limitations in groundwater use that exist in various countries (Wada, 2016). Alternative methods exist, which rely on national510

and subnational statistics to calculate for each sector the fraction of withdrawal satisfied by source (Döll et al., 2012). Such

methods are more likely to capture regional/national patterns of groundwater use, but may be too conservative due to the prob-

lem of unreported usage and lack of reliable data for many countries (Döll et al., 2012; Wada, 2016). We think that a mixed

approach, where the fractions of surface vs. groundwater usage per sector are given but not fixed, may be of interest. With

increased quality and availability of remote sensing data, such as GRACE (Gravity Recovery and Climate Experiment), we can515

imagine using the fractions of surface vs. groundwater usage as a model calibration parameter to better constrain groundwater

abstractions using the observed terrestrial water storage changes (TWS) (Wada, 2016)
:::::::::::::::::::::::::::::
(Anderson et al., 2015; Wada, 2016).

In addition to the implementation of more conventional sources of water supply including rivers, lakes, reservoirs, and

groundwater, it may be important to also consider alternative sources such as desalination and treated wastewater (Van Vliet et

al., 2021). A recent assessment showed that desalination capacities are increasing globally at an exponential rate, and in 2020520

the annual production was at about 35 km3/year (Jones et al., 2019). In addition, for the year 2015, wastewater was produced

at a rate of about 360 km3/year globally, from which only about 10% was intentionally re-used after treatment (Jones et al.,

2021). While these unconventional water sources are still two orders of magnitude below the global sectoral withdrawal, they

are most often employed in water scarce regions (Jones et al., 2019, 2021), where they can significantly reduce severe water

scarcity and people affected by it (Van Vliet et al., 2021).525
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Van Vliet et al. (2021) also underscore the significance of water quality in exacerbating water scarcity. The research reveals

that 40% of the global population faces severe water scarcity when accounting for both water quantity and quality, compared to

30% when only quantity is considered. In the future, more GHMs/LSMs may incorporate water quality indicators (e.g., surface

water temperature, salinity, organic pollution) in order to provide more precise information on both water quantity and quality.

In comparison to GHMs, the LSMs possess the distinct advantage of having coupling capacity with other components (e.g.,530

ocean, atmosphere) and, often, existing tracing modules (e.g., for tracing isotopes). As such, development of water quality

indicators in LSMs may be easier and have a wider application range (e.g., tracing pollutants in the ocean after discharge). In

this context, when developing the sectoral abstraction modules in other GHMs/LSMs, maintaining the withdrawal and return

fluxes separately for each sector will be important. While more redundant and computationally more expensive, it allows for an

easier implementation of a water quality module in the future by connecting the sector-dependent pollutants (e.g., temperature535

for thermoelectric, or N/P for livestock) to the return flow of each sector (Van Vliet et al., 2021). At the same time, water

quality indicators will help calculate sector-dependent extra withdrawals for dilution to obtain acceptable water quality levels

for each sector, which will improve water scarcity assessment capabilities of the models (Van Vliet et al., 2021).

The over-abstraction of surface water at the expense of environmental flow is another important aspect of water security that

needs to be addressed in the GHMs/LSMs models development. Today, more than a quarter of the surface water consumption540

in South, West, and Central Asia, northeastern China, Spain, and Argentina is considered unsustainable or at the expense of the

environment (Wada, 2016). Because of increasing human water use (Wada et al., 2016) and drier climate conditions (Trenberth,

2011), new hotspots of non-sustainable surface water use are emerging in the USA, Mexico, the Mediterranean, the Middle

East, Northern, and Southern Africa (Wada, 2016).

At the moment, the way environmental flow requirements (EFRs) are treated in the CLM model is by limiting the amount545

which can be subtracted for sectoral use to 90% of the current river water availability. This approach allows avoiding the

complete depletion of rivers, but it is likely severely overestimating the amount of water which can be abstracted for sectoral

use. For example, global assessments have shown that on average, about 37% of annual discharge is required to sustain EFRs

(Pastor et al., 2014). During low-flow periods, the EFRs are even larger and may need 46-71% of the available water (Pastor

et al., 2014). In order to improve the capabilities of CLM to account for both human and environmental water needs, the550

implementation of variable flow based methods to estimate EFRs is recommended. These methods classify the flow regime into

high, intermediate, and low-flow months, and take into account the intra-annual variability of flow conditions, thus providing

better estimates of EFRs under a variety of flow regimes (Pastor et al., 2014).

In our model, sectoral water use priorities are currently fixed and follow the order (in decreasing priority) domestic, livestock,

thermoelectric, manufacturing, mining, and irrigation. While a similar hierarchy was also implemented in some other models555

(Hanasaki et al., 2018; Droppers et al., 2020), in reality the priority may vary based on regional circumstances, weather,

policies, or changing socio-economic conditions. For example, a recent study suggests that in many regions the domestic and

irrigation sectors often receive higher priority than other sectors during periods of droughts, heat waves, and compound hot-

dry extremes (Cárdenas Belleza et al., 2023). At the same time, regional exceptions are possible, highlighting the need for

more flexible approaches in modelling sectoral competition in GHMs and LSMs models (Cárdenas Belleza et al., 2023).
:::
For560
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:::::::
example,

::
a

:::::
recent

:::::
study

:::::::
explored

:::
an

::::::::
alternative

:::::::::::
prioritization

::::::
where

:::::::::
agricultural

::::::::
demands

:::
are

::::::
placed

:::
first

::::::::::::::::::
(Rathore et al., 2024)

:
.
::::
This

:::::::
scenario

:::::::
resulted

::
in

::::::
around

::::
30%

::::::::
increase

::
in

:::::
unmet

::::::::
demands

:::
for

:::::::::
municipal

:::::::::
(domestic)

:::
and

::::::::
industrial

:::::::
sectors

:::
for

:::::
urban

:::::
areas.

::
If

:::
we

::::
were

::
to

::::::::
replicate

:::
this

::::::::::
experiment,

::::::
similar

::::::
results

::::::
would

::
be

::::::::::
anticipated,

:::
as

::::::::
evidenced

:::
by

:::
the

::::::
figures

::
in

:::::::::
Appendix

::::::
D2-D6

:::::
where

:::::
many

::::
grid

::::
cells

:::::::::::
experiencing

:::::
unmet

:::::::
demand

:::
for

::::::::
irrigation,

:::
do

:::
not

:::::::::
experience

::::
such

:::::::
scarcity

:::
for

:::
the

::::
other

:::::::
sectors.

::::
This

::::::
further

:::::::
supports

:::
the

:::::::::::
development

::
of

:::::
more

:::::::
flexible

:::::::::::
prioritization

:::::::
schemes

::
to
:::::
study

::::::
related

::::::::::
uncertainty

::
in

::::::
unmet

:::::::
sectoral565

::::::::
demands.

While more model development may be needed to represent relevant processes related to human-water interactions, another

important aspect to consider is model evaluation and calibration for hydrological variables. The variables which are the most

important for water availability modelling are precipitation, evapotranspiration, snowpack dynamics, glacial melt, soil mois-

ture, surface runoff, river flow, and groundwater levels and recharge. For example, Vanderkelen et al. (2022) showed that while570

globally the runoff biases in CLM5 are very small (+0.077 mm/day), large regional biases exist. Aggregated at the level of

a catchment, such biases can result in significant river discharge biases, limiting the model usability for water management

purposes (Mizukami et al., 2021). Efforts are being made to solve this problem with targeted evaluation studies to understand

hydrological parameter uncertainty in CLM5 (Yan et al., 2023). At the same time, more efficient and transparent objective

calibration protocols to improve model performance for a given set of targets are being developed (Dagon et al., 2020; Cheng575

et al., 2023). Unfortunately, running large parameter perturbation ensembles for sensitivity testing and application of objective

calibration protocols remains very expensive for LSMs/ESMs.

Finally, a key limitation of prescribing human-water use within ESMs, is the potential lack of temporal coherence between

atmospheric conditions and sectoral water use. For instance, Huang et al. (2018) used the WATCH Forcing Data methodology

to ERA-Interim reanalysis data for 1971-2010 (WFDEI, Weedon et al. (2014)) for temporal downscaling in the domestic and580

thermoelectric sectors, using gridded daily air temperature as a proxy. However, a land-atmosphere or fully coupled ESM simu-

lation for the same period, initialized with historical accurate data, may generate atmospheric conditions diverging significantly

from observed data due to the model’s internal variability (Deser et al., 2012). Currently, there is no known method to fully

reconcile these discrepancies.

As an interim measure, one approach is to prescribe sectoral water use data with no monthly temporal variation, effectively585

distributing it uniformly across the year. The main problem with this approach, is that it will greatly limit our ability to

understand the impact of hot and dry extremes on water scarcity and sectoral competition. A more suitable solution would be

the development of new algorithms for sectoral water use modeling
::::::::
modelling that, similarly to irrigation, are prognostic, i.e.,

dependent on simulated environmental conditions, such as model-computed daily air temperature. In this case, the introduction

of our new module offers a useful framework on which such development can be built.590

5 Conclusions

The increasing global challenges surrounding water scarcity highlight the need for advanced modelling tools that can accurately

capture human-water interactions. This study makes a contribution in this direction by implementing a data-driven sectoral
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abstraction module within the Community Earth System Model (CESM) framework. The enhanced model accounts for water

abstractions in domestic, livestock, thermoelectric, manufacturing, mining, and irrigation sectors. It closes the water balance595

by integrating water abstractions from the land component with the supply and return flows from the river component. A basic

sectoral competition algorithm was implemented to account for demand-supply dynamics when water availability is below the

total demand. As a consequence, water scarcity dynamically emerges in our model, calculated daily as the gap between local

demand and supply for each sector.

We validated the robustness of the implementation of the new sectoral abstractions module in CESM and conducted simula-600

tions for the period from 1971 to 2010. These simulations compared a scenario without sectoral water use to one with water use

across all sectors. Results were used to analyze
::::::
analyse simulated historical global water withdrawal trends, regional variations

in water use, the influence of sectoral water consumption on local climate, and the model’s ability in identifying known water

scarcity hotspots.

Beyond global patterns, the model adeptly captures regional water use variations and historical trends. While irrigation is the605

dominant driver of withdrawals globally, regions emerge where
:::::
largest

::::
user

::
of

:::::
water

:::::::
globally,

:::
we

::::::
showed

::::
that

:::
for

::::
many

:::::::
regions

other sectors, like domestic or industrial, dominate. This challenges the usual focus on irrigation in Earth System Models

and points to the increasing importance of non-agricultural water demands in areas experiencing rapid population growth and

socio-economic development.
:::::::
Through

:::
the

:::::::::::::
implementation

::
of

:::
all

:::::
major

:::::
water

::::
use

::::::
sectors,

::
it
::
is
::::
now

:::::::
possible

:::
to

:::::
study

:::::
water

::::::
scarcity

::
in

:::::
more

::::::
details,

:::
by

::::::::
analysing

:::::
sector

:::::::
specific

:::::
unmet

::::::::
demands

:::
and

:::::::
impacts.

:
610

Our findings reaffirm that
::::
show

:::
that

::::
only

:
irrigation has the potential to significantly affect local climates , mainly through its

cooling effect due to increased evapotranspiration. This aligns with previous research (?Sacks et al., 2009; ?; Thiery et al., 2020)

.
:::
(for

:::::
scales

:::::
above

:
a
::::
100

::::
km),

:::::
while

:::
the

:::::
effect

::
of

:::::::::::
non-irrigative

::::::
sectors

::
is

::::::::
negligible.

:
At the same time, while the climatic impacts

of other sectors like domestic and industrial water use are comparatively small, their inclusion in the model remains important

for water scarcity assessment capabilities. While in this study we focused on land-only simulations, to more accurately assess615

the potential climate impacts of human water use, it is advisable to conduct experiments using interactive land-atmosphere or

fully-coupled Earth system models.

The model’s simulations adeptly capture global hotspots of water scarcity identified in previous research on the topic (Man-

cosu et al., 2015; Liu et al., 2017). These results are promising and show the potential of CESM and its land component,

the Community Land Model (CLM5), as a tool for future water scarcity assessments. In this regard,
::::
with the new sectoral620

water capabilityof
:
, the CLM5 model positions it uniquely for modelling water use

::
is

::::
well

:::::::::
positioned

:::
for

:::::::
research

:::
on

:::::
water

:::
use

:::
and

:::::::
scarcity, paralleling the capabilities of Global Hydrological Models (GHMs). This feature enables CLM to act as an

impact model for the water sector, contributing to initiatives such as the Inter-Sectoral Impact Model Intercomparison Project

(ISIMIP; Frieler et al. (2017)). Additionally, it paves the way for the incorporation of this sectoral water use data into Earth

System Models (ESMs) simulations in a coupled mode. Although the direct feedbacks on climate from this additional sectoral625

water use are relatively minor, they play an important role in realistically modelling of other ESM variables, such as runoff and

river flow.
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Code and data availability. The model code with the new sectoral water use module, as well as the experiment setups, can be accessed with

the following DOI: https://doi.org/10.5281/zenodo.10579224 (last access 29th January 2024). The data needed to reproduce this study can

be accessed with the following DOI: https://doi.org/10.5281/zenodo.10518843 (last access 29th January 2024). The scripts used in this study630

are available at https://github.com/VUB-HYDR/2024_Taranu_etal_GMD, with the following DOI: https://doi.org/10.5281/zenodo.12675434

(last access 6th July 2024).
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Figure A1. Standard configuration of the CLM5 subgrid hierarchy. Box in upper right shows hypothetical subgrid distribution for a single

grid cell. Note that the crop land unit is only used when the model is run with the crop model active. TBD = tall building district; HD =

high density; MD = medium density; G = glacier; L = lake; U = urban; C = crop; V = vegetated; PFT = plant functional type; Irr = irrigated;

Rnfd = rainfed. Red arrows indicate allowed land unit transitions. Purple arrows indicate allowed patch-level transitions. Figure taken from

Lawrence et al. (2019) and used with author permission.

Appendix A: Modelling framework
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Figure A2. Schematic representation of primary processes and functionality in CLM5. SCF = snow cover fraction; BVOC = biogenic

volatile organic compounds; C/N = carbon and nitrogen. For biogeochemical cycles, the black arrow denotes carbon flux, and the purple

arrow denotes nitrogen flux. Note that not all soil levels are shown. Not all processes are depicted. Optional features that are not active in

default configurations are italicized. Figure taken from Lawrence et al. (2019) and used with author permission.
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Figure B1.
::::::::
Comparison

:::::::
between

:::::
global

:::::
annual

::::::
sectoral

:::::
water

::::::::
withdrawal

:::
and

::::::::::
consumption

::::::::
computed

::::
from

:::
the

::::::
original

:::::
dataset

::
at

:::::::
0.5x0.5◦

:::::::
resolution

:::::
(black

:::::
lines)

:::
and

:::
the

::::::::::
preprocessed

:::::
dataset

::
at
::::::::

0.9x1.25◦
::
on

:::
the

::::::
CLM5

:::
land

:::::
mask

::::::
(colored

:::::::
circles).

:::
The

::::::::
remapping

::::::
process

::::
was

:::
done

:::::
using

::::::
existing

:::::
CLM5

::::
tools

:::::::
modules,

::
by

::::::::
extending

::::::
support

::
for

::::::
sectoral

:::::
water

:::
use

::::::
datasets

::::::::::::
(Taranu, 2024b).

Figure B2. Relative errors between global annual sectoral water withdrawal and consumption computed from the original dataset at 0.5◦

resolution and the preprocessed dataset 0.9x1.25◦ on the CLM5 land mask (Fig. ??).

Appendix B: Sectoral use module validation
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Figure B3. Comparison between expected monthly sectoral withdrawal values from input data, and monthly values aggregated from daily

expected or actual withdrawal from model outputs. Each point represents the monthly value for a given grid cell.
:::
The

:::::
points

:::
are

::::::
plotted

:::::::::::::
semi-transparently

::::::::::
(alpha=0.5),

:::::::
therefore

::
the

::::
more

::::::
intense

:::::::
coloured

::::
parts

:::::
simply

::::::
indicate

:
a
:::::
larger

::::::::::
concentration

::
of

:::::
values

::
in

:::
that

:::::
range.

:
This

plot was made by using the outputs for the year 2000 of the SectorWater experiment, and units for both axis are mm/month.
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Figure B4. Comparison between expected monthly sectoral consumption values from input data, and monthly values aggregated from daily

expected or actual consumption from model outputs. Each point represents the monthly value for a given grid cell.
::
The

:::::
points

:::
are

::::::
plotted

:::::::::::::
semi-transparently

::::::::::
(alpha=0.5),

:::::::
therefore

::
the

::::
more

::::::
intense

:::::::
coloured

::::
parts

:::::
simply

::::::
indicate

:
a
:::::
larger

::::::::::
concentration

::
of

:::::
values

::
in

:::
that

:::::
range.

:
This

plot was made by using the outputs for the year 2000 of the SectorWater experiment, and units for both axis are mm/month.
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Figure B5.
::::::::
Evaluation

::
of

::
the

:::::::
sectoral

:::::::::
competition

::::::::
algorithm,

::::
with

::::
each

::::
point

:::::::::
representing

::
a
::::
daily

::::
value

::
at
::::

grid
:::
cell

:::::
level.

:::
The

:::::
points

:::
are

:::::
plotted

::::::::::::::
semi-transparently

:::::::::
(alpha=0.5),

::::::::
therefore

::
the

:::::
more

:::::
intense

:::::::
coloured

:::::
parts

:::::
simply

::::::
indicate

::
a
:::::
larger

::::::::::
concentration

::
of

:::::
values

::
in
::::

that

::::
range.

::::
The

:::
plot

::::
was

::::
made

::
by

::::::::
sampling

::
the

::::
first

::
30

::::
days

::
of

:::
the

:::
year

:::::
2000

::::
from

:::
the

:::::::::
SectorWater

:::::::::
experiment.

:::
The

:::::::::
intersection

:::::::
between

:::
the

::::::::
unsatisfied

::::::
sectoral

::::::::
withdrawal

::
of

:::
the

::::
sector

:::::
higher

::
in
::::::
priority

:::
and

:::
the

::::
actual

:::::::::
withdrawal

::
of

::
the

:::::
sector

:::::
lower

::
in

:::::
priority

::::::::
represents

:::
the

:
0
:::::
value.
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Figure C1.
::
The

:::::
figure

:::::
shows

:::::
annual

:::::
global

::::::
sectoral

:::::::::
withdrawal

::
(a,

::
c)

::
for

:::
the

:::
year

:::::
2010,

:::
and

::
the

:::::::::
time-series

::
of

:::::
global

:::::
unmet

::::::
sectoral

::::::
demand

::::::::
throughout

:::
the

:::::
period

::::::::
1973–2010

:::
(b,

::
d).

:::::::::::
Non-irrigative

:::::
sectors

:::
are

::::::
separate

::::
from

:::::::
irrigation

::
in

:::
the

:::::
second

:::
row

:::
(c,

::
d)

::
for

:::::
better

:::::::
visibility.

Appendix C: Recycled flow
:::::
Global

:::::::
Trends635
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Figure C2. Annual global expected sectoral withdrawal and return flow (without irrigation) throughout the years 1973—2010. This figure

was produced using the SectorWater experiment results.
:
It
::::::
should

::
be

::::
noted

:::
that

:::
the

::::::::::
consumption

:::
rate

::
in

:::
the

:::::::::::::::
(Huang et al., 2018)

:::::
dataset

:::
for

::
the

:::::::
livestock

:::::
sector

::
is

::::
quite

:::
low

::::
when

::::::::
compared

::
to

::::
other

:::::
studies

::::
(0.4

::
vs

::::
1.0).

:::
This

::::::::
explained

::
by

:::
the

::::
usage

::
of
::::::

USGS
:::::::
estimated

::::::::::
consumption

:::
rates

:::::::
globally,

:::::
while

::::
other

:::::
models

::::::
simply

:::::
assume

:::::
100%

::::::::::
consumption.
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Figure D1.
:::::::
Difference

::
in

::::
mean

::::::
annual

:::
river

::::::::
discharge

::::::
between

:::::
CTRL

:::
and

::::::::::
SectorWater

:::::::::
experiments.

Figure D2.
:::::::
Difference

::
in

::::
total

:::::
annual

::::
river

:::::::
discharge

::
to

:::::
ocean

::
for

:::
the

:::::
period

:::::::::
1973–2010.

Appendix D:
::::::::::
Streamflow

:::
and

::::::
ocean

::::::::
discharge

::::::::
changes
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Figure E1. Fraction of unsatisfied domestic demand averaged over 30 years period (1981–2010). This figure was produced using the Sector-

Water experiment results, by comparing expected vs actual withdrawal.

Appendix E: Water Scarcity
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Figure E2. Fraction of unsatisfied livestock demand averaged over 30 years period (1981–2010). This figure was produced using the Sector-

Water experiment results, by comparing expected vs actual withdrawal.
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Figure E3. Fraction of unsatisfied thermoelectric demand averaged over 30 years period (1981–2010). This figure was produced using the

SectorWater experiment results, by comparing expected vs actual withdrawal.
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Figure E4. Fraction of unsatisfied manufacturing demand averaged over 30 years period (1981–2010). This figure was produced using the

SectorWater experiment results, by comparing expected vs actual withdrawal.
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Figure E5. Fraction of unsatisfied mining demand averaged over 30 years period (1981–2010). This figure was produced using the Sector-

Water experiment results, by comparing expected vs actual withdrawal.
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Figure E6. Fraction of unsatisfied irrigation demand averaged over 30 years period (1981–2010). This figure was produced using the Sec-

torWater experiment results, by comparing expected vs actual withdrawal.

Figure E7. Average number of days per year, from 1973—2010, when modeled
:::::::
modelled water supply was insufficient to meet the demand

for all sectors. The values are aggregated at the first administrative divisions level within each country. Note
::
the

:
non-linear color

::::
colour

:
bar.
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