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Abstract. A new 4D-variational data assimilation method for chaotic climate models is introduced using
::
is

::::::
applied

:::
to the

Lorenz ’63 model . This
:
to
:::::::::
introduce

:
a
::::
new

::::::
method

:::
for

:::::::::
parameter

::::::::
estimation

::
in
:::::::
chaotic

::::::
climate

:::::::
models.

::::
The approach aims to

optimise an Earth system model (ESM), for which no adjoint exists, by utilising an adjoint model
:::
the

::::::
adjoint

:
of a different,5

potentially simpler ESM. The technique relies on
:::
This

:::::
relies

:::
on

:::
the

:
synchronisation of the model to observed time series

dataemploying the dynamical
::::
data.

:::::::::
Dynamical

:
state and parameter estimation (DSPE) method

::
is

::::
used

:
to stabilise the tangent

linear system by reducing all positive Lyapunov exponents to negative values. Therefore, long windows can be used to improve

parameter estimation . In this new extension ,
:::::::
thereby

::::::::
improving

:::::::::
parameter

:::::::::
estimation

::
by

:::::::
enabling

::::
long

:::::::::::
assimilation

::::::::
windows.

:::
The

:::::::
method

:::::::::
introduces a second layer of synchronisation is added between the two models, with and without an adjoint, to10

facilitate linearisation around the trajectory of the model without an adjoint . The method is conceptually demonstrated
:::
for

:::::
which

::
no

::::::
adjoint

::::::
exists.

::::
This

::
is

::::::::
achieved by synchronising two Lorenz ’63 systems, representing two ESMs, one with and the

other without an adjoint model. Results are presented for an idealised case of identical, perfect models and for a more realistic

case in which they differ from one another. If employed with a coarser ESM with an adjoint
::
on

:
a
:::::::::::::
high-resolution

:::::
ESM

:::
for

:::::
which

:
a
::::::

coarse
:::::::::
resolution

::::::
adjoint

:::::
exists, the method will save computational power

:::::::
resources

:
as only one forward run with15

the full
::::::::::::
high-resolution ESM per iteration needs to be carried out

:
is

::::::
needed. It is demonstrated that there is negligible error

and uncertainty change compared to the ‘traditional ’optimisation of
::::::::
traditional

:::::::::::
optimisation

::
of

::
a full ESM with an adjoint. In

a variation of the method outlined,
::::::::
Stemming

::::
from

::::
this

::::::::
approach,

::
it

::
is

::::::
shown

:::
that

:::
the

:
synchronisation between two identical

models can be used to filter noisy data . This reduces optimised parametric model uncertainty
:
in

:
a
:::::::::
dynamical

::::
way

:::::
which

:::::::
reduces

::
the

::::::::::
parametric

:::::::::
uncertainty

::
of

:::
the

:::::::::
optimised

:::::
model

:
by approximately one third. Such a precision gain could prove valuable for20

seasonal, annual, and decadal predictions.

1 Introduction

The
::::
time

::::::::
evolution

::
of

:::
the Earth system can be realistically described using numerical models that capture it’s processes and time

evolution.
::::::::
simulated

:::::
using

::::::::
numerical

:
Earth system models (ESMs)

:
.
:::::::
Provided

:::::
these

::::::
models

:::::::
skilfully

:::::::
describe

:::
the

::::::::
system’s

::::
time
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:::::::
evolution

::::
and

:::::::
observed

:::::::::
processes,

::::
they can be used to forecast future states of the system provided that the past and present are25

known
::
as

::::
long

::
as

:::::::
accurate

:::::
initial

:::::::::
conditions

::::
exist. Data assimilation is a powerful tool that combines observations

::
to

::::
bring

::::::
ESMs

:::
into

:::::::::
agreement

::::
with

:::
the

::::::::
observed

:::::::
climatic

::::
state

::
by

:::::::::
combining

::::
data

:
with the numerical model to represent the

:::::
while

:::::::::
preserving

dynamic principles governing the system. This generates an estimation of its state (Wunsch and Heimbach, 2006; Nichols, 2010)

in an attempt
:::::::::::::::::::::::::::::::::::::::

(Wunsch and Heimbach, 2006; Nichols, 2010)
::::
while

::::
also

:::::::::
attempting

:
to further improve the ESM’s predictive

skills.30

There are two common approaches
:::::::::
assimilation

::::::::::
approaches

::::::::
typically

::::
used to incorporate observations into a model, a

:
: se-

quentialdata assimilation scheme (Bertino et al., 2003) and
:::
and

:
variationaldata assimilation (Le Dimet and Talagrand, 1986)

.
::::
data

::::::::::
assimilation

::::::::
schemes

:::::::::::::
(Wunsch, 1996)

:
.
:
Sequentialdata assimilation

::::
data

::::::::::
assimilation

::::::::::::::::::
(Bertino et al., 2003) involves

the application of a filter, most commonly Kalman filters (Kalman, 1960; Evensen, 1994, 2003; Tippett and Chang, 2003;

Houtekamer and Mitchell, 2001). This technique performs assimilation sequentially at each
::::::
merges

::
a
::::::::
predicted

::::
state

:::::
with35

::::::::::
observations

::
at
:::::

each
:::::::
analysis

:
time step by inputting the physical model’s output state variable and updating it using the

observations. This is done by estimating a joint probability distribution between the two which also takes
::
by

::::::
taking

:
into ac-

count their respective modelling and observational uncertainties. Other filtering techniques, such as
:::::::
Variants

::
of

:::
the

:::::::
Kalman

::::
filter

::::::::
technique

:::::::
include: extended Kalman filters, ensemble Kalman filters, and square-root filters,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bar-Shalom et al., 2004; Simon, 2006; Evensen, 2003; Van Der Merwe and Wan, 2001; Tippett et al., 2003)

:
.
::::
They

:::
all share a similar basic procedure with variations in methodology often being case specific ; i.e. for a scenario with40

sparse observational data
:::::
while

:::::::
differing

::
in

::::
case

:::::::
specific

::::::::
variations

::
of

:::
the

:::::::::::
methodology. The strength of all filtering techniques

is the sequential procedure which
:::
that

:::
the

:::::::::
sequential

::::::::
procedure allows for real-time assimilation of observations. In contrast

:
,

::
for

::::::::
example

::
in

::::::::
initialised

:::::::::
numerical

::::::
weather

::::::::::
forecasting.

::
In

:::::::
contrast,

:
variationaldata assimilation is performed

:::
data

::::::::::
assimilation

:::::::::::::::::::::::::::
(Le Dimet and Talagrand, 1986)

::::::::
estimates

:
a
:::::

joint

:::::::::
probability

::::::::::
distribution

::::
over

::
an

::::::::
extended

::::::
period

::
of

::::
time

:
by minimising a scalar cost functionwhich is

:::
cost

::::::::
function,

:
defined45

as the quadratic misfit between
:::
the

:::::
model

:::::::::
trajectory

:::
and

:
all available observations and model trajectory within a given

:::::
within

:
a
:::::::
defined time window. 4DEnVar (Desroziers et al., 2014).In this work, we use the

:::
The

:::::
most

:::::::
common

::::::::::
approaches

:::::::
include

::::::::::::::
four-dimensional

:::::::::
variational

::::::::::
assimilation

::::::::
(4D-var.)

:::::::::::::::::::
(Rabier and Liu, 2003)

:
,
:::::::::::::::
three-dimensional

:
variationaldata assimilation

approach. This method is commonly known as four-dimensional variational assimilation (4D-Var
:::
data

::::::::::
assimilation

:::::::
(3D-var.) (Rabier and Liu, 2003)

, which
::::::::::::::::::::
(Gustafsson et al., 2001),

:::::
weak

:::
and

::::::
strong

::::::::
constraint

::::::
4D-var

:::::::::::::::::::::::::::::
(Tremolet, 2006; Fisher et al., 2011)

:
,
:::
and

::::::::
ensemble

:::::::::
variational50

:::::
filters

::::::::
including

::::::::
4DEnVar

::::::::::::::::::::
(Desroziers et al., 2014).

::::::::::
Variational

::::
data

::::::::::
assimilation

::
is

:
a
::::::
useful

::::::::
technique

:::
for

::::::
solving

::::
both

::::::
initial

::::
value

::::
and

::::::::
parameter

:::::::::
estimation

:::::::
problems

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Evensen et al., 2022; Goodliff et al., 2015; Ruiz et al., 2013; Zou et al., 1992)

:
.
::
It

:::
will

::
be

:::::::::
exclusively

:::::
used

::
in

:::
this

:::::
study.

:

:::
The

:::::::
4D-var.

:::::::
approach

:
utilises an adjoint of the model to iteratively minimise the model-data misfit by adjusting control vari-

ables (Tett et al., 2017; Lyu et al., 2018; Köhl and Willebrand, 2002; Allaire, 2015; Navon, 2009). Aside from data assimilation55

purposes, adjoint models have
:::
The

::::::
adjoint

:::::::::
equations

::
of

::
a
::::
fully

:::::::::
non-linear

::::::
model

::::
are

::::::
derived

:::::
from

:::
the

:::::::
forward

:::::::::
equations

::::
using

::::::::::
integration

::
by

:::::
parts.

:::
In

:::
the

::::
data

::::::::::
assimilation

::::::
context

::::
this

:::
can

:::
be

::::
used

::
to

::::::::::
numerically

::::::::
calculate

:::
the

:::::::
gradient

:::
of

:::
the

::::
cost

:::::::
function

:::::
which

::
is

:::::::::::
subsequently

::::
used

:::
to

:::
find

:::
the

::::
cost

::::::::
functions

:::::::::
minimum

::
in

::
an

:::::::
iterative

:::::::::
procedure.

:::::::
Adjoint

:::::::
models

::::
have

::::
also

been widely used for sensitivity analysis in meteorology and oceanography (Hall et al., 1982; Hall and Cacuci, 1983; Hall,
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1986; Marotzke et al., 1999; Stammer et al., 2016); this includes , calculating sensitivity with respect to lateral boundary60

condition
::::::::
conditions (Gustafsson et al., 1998), estimating the sensitivity of the 2m surface temperature with respect to the sea

surface temperature, sea ice, and sea surface salinity (Stammer et al., 2018).
::
In

:::::::
practice,

:::
the

:::::::
primary

::::::::
limitation

::
in
:::::::

finding
:::
the

::::::::
minimum

::
of

:::
the

::::
cost

:::::::
function

:
is
:::
the

:::::
large

::::::
amount

::
of

::::::::::::
computational

::::::::
resources

::::::::
required

:::
due

::
to

:::::::::
non-linear

::
or

::::::
chaotic

::::::::
elements

::
of

::
the

:::::::
system.

Due to the non-linearities within ESMs, the relevance of adjoint methods can be
::
In

:::
the

::::::
context

:::
of

:
a
::::
full

::::::::
non-linear

::::::
ESM,65

::
the

::::
use

::
of

::::::
adjoint

:::::::
models

::::
faces

:::::::
several

:::::::::
challenges.

:::::::::
Applying

::
an

::::::
adjoint

::::::
model

::
to

::
a

::::::::::::
state-of-the-art

:::::
Earth

::::::
system

::::::::
problem

::
is

:::::::
primarily

:
limited by the

::::
very

::::
large

:::::::
number

::
of

::::
state

::::::::
variables

::::::::::::
O(107 − 108)

:::::
which

:::::::
requires

:::::::::
significant

::::::::::::
computational

::::::::
resources

:::
and

:::::::::::
observational

::::::::::
constraints.

::::::::
However,

::::
more

::::::::::
fundamental

::
is

:::
the

:::
fact

::::
that

::::::::
non-linear

::::::::
dynamics

::
of

:::
the

::::::
system

::::
limit

:::
the

::::::::::
applicability

::
of

::::::
adjoint

:::::::
methods

::
to

:::
the

:::::
Earth

::::::
system

:
predictability time scale. This can lead to spikes in the

::::::::::
exponentially

::::::::
growing adjoint

sensitivities as a result of multiple local minima in the cost-function. Under such circumstances spikes occur in the estimated70

gradients and the cost function becomes very rough by showing an increasing number of local minima (Köhl and Willebrand,

2002; Lea et al., 2000). Fortunately, the problem can be mitigated by
::::::
through synchronisation which removes the non-linear

or chaotic dynamics from the adjoint model leading to a smooth cost function(Abarbanel et al., 2010; Sugiura et al., 2014)

::::::::::::::::::::
(Abarbanel et al., 2010). This method allows

::
for

:::
the

:
extension of the assimilation window beyond the predictability time-

scale, provided that sufficient observations are available. Another challenge of applying
:::::::
However,

::::
this

:::::::
solution

::::::
comes

::
at

:::
the75

::::::
expense

:::
of

:
a
::::::::
violation

::
of

:::
the

::::::
original

::::::
model

:::::::::
equations.

:::
The

:::::::
creation

:::
of

:
an adjoint model to any state-of-the-art system is that these ESMs have a very large number of state

variables O(107 − 108), and the computation of its adjoint would be very time consuming and require significant volumes

of memory (Stammer et al., 2018)
::::
code

:::::
from

:::
the

:::::::
forward

::::
code

::::::
usually

:::::::
requires

:::::::::::
considerable

::::::
effort.

:::::::::
Automatic

::::::::::::
differentiation

::::
tools,

:::::
such

::
as

::::::::::::::::::::::::::::::::::::::::::::::::
Giering and Kaminski (1998); Hascoet and Pascual (2013)

::::
were

:::::::::
developed

::
to

:::
aid

:::
in

:::
this

:::::
step.

:::
But

::::::::::
substantial80

::::::
changes

::
to
:::
the

:::::::
forward

:::::
model

::::
code

:::
are

:::::::
required

::::::
unless

:
it
::::
was

::::::
already

::::::::
developed

::::
with

:::
the

::::::
adjoint

:::::::::
modelling

::
in

:::::
mind.

::::::::::::::::::
Stammer et al. (2018)

::::::
created

:::
the

::::
first

::::::
adjoint

::
of

:::
an

:::::::::::
intermediate

:::::::::
complexity

:::::
fully

:::::::
coupled

::::
earth

:::::::
system

:::::
model

::::
that

::
is

::::::::::::
automatically

::::::
created

:::::
from

::
the

::::::::
forward

:::::
model

:::
by

:::::::::
automatic

::::::::::::
differentiation

:::::
using

:::
the

:::::
TAF

::::::::
compiler,

::::::
called

:::
the

::::::::
Centrum

:::
für

:::::::::::::::::
Erdsystemforschung

::::
und

::::::::::::
Nachhaltigkeit

::::::
(CEN)

:::::
Earth

:::::::
System

:::::::::::
Assimilation

::::::
Model

:::::::::
(CESAM).

::::
The

::::::
adjoint

:::
of

:::
this

:::::::::::::::::::::
intermediate-complexity

::::::
model

::
is

:::::::
intended

::
to

:::
be

::::::
utilised

:::
for

::::::
tuning

::::
more

::::::::
complex

:::::::::
CMIP-type

:::::::
models

:::::::
through

::::::::
parameter

:::::::::
estimation

:::::
since

:::
the

::::
basic

::::::::::
underlying85

::::::
physics

::
is

::::
very

::::::
similar.

:::::::::
Otherwise

:::
this

::
is

:
a
::::::
manual

::::::
process

::::
with

:::::::::::
considerable

::::::::
ambiguity

::
in

:::
the

::::::
choice

::
of

:::::::::
parameters

:::::::::::::::::::
(Mauritsen et al., 2012)

.

To mitigate both problems
::::::::
Therefore, we propose a novel framework where

::
in

:::::
which

:
we use two climate models both cou-

pled through synchronisation, one with a high resolution
:::::::::
complexity

:
and the other with coarse resolution

::
of

:::::::::::
intermediate

:::::::::
complexity for which an adjoint exists

:
to
:::::::
address

:::
the

::::::
second

:::::::
problem.

::::
The

::::::::
technique

::::
also

:::
has

:
a
:::::
much

:::::
wider

:::::
range

::
of

:::::::::
additional90

::::::::::
applications,

:::::
since

:::::::::
resolutions

:::::
using

:::
the

::::::
adjoint

:::::::
method

:::
lag

::::::
behind

:::::
those

::::::::::
applications

::::::::
featuring

::::::
simpler

::::::::::
assimilation

::::::::
methods

::
as

:::::::::
variational

:::::::
methods

:::
are

::::::::
typically

::
a

:::::
factor

::
of

::::
100

:::::
more

:::::
costly

::::
than

:::::::
running

:::
the

:::::::::
associated

:::::::
forward

::::::
model. In this context

we only use the adjoint of
:::
For

::::::::
example, the low-resolution model to estimate the parameters that optimise the high-resolution

model; i.e. , that brings the model closer to the assimilated observations. A pre-requisite of this method is that the parameters

3



being optimised must be the same in both models. The
:::::
global

::::::::
GECCO3

::::::
ocean

:::::::::
reanalysis

:::::
based

:::
on

:::
the

:::::::
adjoint

:::::::
method95

:::::::::::
(Köhl, 2020)

::::::
features

::::
only

::
a

:::::::
nominal

::::::::
resolution

::
of

:::
0.4◦

:
,
:::::
while

::
for

::::::::
instance

::
the

::::::
GOFS

:::
3.1

::::::::::::::::
(Laboratory, 2016)

:::::
based

::
on

:::::::
3D-Var

:::::::::::::::::::::::::::
(Cummings and Smedstad, 2013)

:::::::
features

::::
1/12◦

:::::::::
resolution.

:::::::::
Employing

:::::::
coarser

:::::::
versions

::
of

:::
the

::::::
adjoint

:::::
while

::::
still

:::::::
running

:::
the

::::::
forward

::::::
model

::::
with

::::
full

::::::::
resolution

:::::
could

:::::::::::
significantly

::::::
reduce

:::
the

::::
cost

::
of

:::
the

:::::::::::
assimilation

:::::
effort.

:::::::::
Therefore,

:::
the

:
objective of

this paper is to quantify
::::::::
investigate

:
the accuracy and precision benefit of such a synchronised data assimilation approach. We

perform this test using a Lorenz ’63 modelsystem.100

The Lorenz ’63 system (Lorenz, 1963) is a well established proxy model to study
:::::::::::::
well-established

::::::
proxy

:::::
model

::
of

:
chaotic

fluid systems, such as the atmosphere (Gauthier, 1992; Miller et al., 1994; Pires et al., 1996; Stensrud and Bao, 1992; Kravtsov

and Tsonis, 2021; Huai et al., 2017; Yang et al., 2006; Daron and Stainforth, 2015; Errico, 1997). The advantage is that it can

be used to quantitatively evaluate the parameter dependence of the system prior to
:::::
rapidly

::::::::
evaluate

:::::::::
parameter

:::::::::
estimation

:::::::::
techniques

::
in

::::
data

:::::::::::
assimilation

:::::::
schemes

:::::
prior

::
to
:::::

their
:
application in a full model

:::::
ESM

::::
with

::::
low

::::::::::::
computational

::::::::
resource105

::::::::::
requirements. New modelling techniques can thus be trialled in relatively fast experiments (Pasini and Pelino, 2005; Tandeo

et al., 2015; Goodliff et al., 2020; Marzban, 2013; Yin et al., 2014). It can also be used in a wide range of other applications

::::::::
including,

:::
but

:::
not

:::::::
limited

:::
to,

::::
data

::::::::::
assimilation,

:::::::::
stochastic

:::::::::
modelling

:::::
terms,

::::
and

:::::::::
predictions (Du and Shiue, 2021; Cameron

and Yang, 2019; Pelino and Maimone, 2007). The system generates a three dimensional, time varying
:::::::::::::::
three-dimensional,

::::::::::
time-varying

:
trajectory which with variation of both model parameters and/or initial conditions will produce very different110

trajectories. Thus, it is an ideal test bed for non-linear modelling in a number of fields (Hirsch et al., 2013).
:::
The

:::::::::
Lyapunov

:::::::
exponent

:::
of

:::
the

::::::
Lorenz

::::
’63

::::::
model

::
is

::::::
directly

:::::::::
dependent

:::::
upon

:::
its

:::::::::
parameters

:::::::
making

::
it
:::::
ideal

:::
for

::::::::::::
climatological

:::::::::
parameter

::::::::
estimation

:::::::::::
experiments.

::::
For

:::
our

:::::::
specific

::::
case

::::
these

:::::::::
properties

:::::
make

::
it

::::
ideal

:::
to

:::::::
evaluate

:::
our

:::::::::
techniques

::::::
merits.

:
In a previous

study(Lyu et al., 2018) using ,
:::::::::::::::
Lyu et al. (2018)

:::
used

:
the Lorenz ’63 model , the assimilation primarily focused on the fit of

:::
and

::
its

::::::
adjoint

:::
to

::
fit a single parameter ρ and the initial conditions (x,y,z) in a single model with an adjoint. This study will115

expand on the previous to
::
to

:::::::::::
observations.

::::
This

::::::
present

:::::
study

::::::
builds

::
on

:::::::::::::::
Lyu et al. (2018)

:
to

:::::::::::::
simultaneously fit all three model

parameters simultaneously and use a model with
::
an

:
adjoint to optimise the parameters of a

::::::
another

:
model without one.

The structure of the remaining paper is as follows: In Section 2 we introduce the model, outline the methodology of how these

models are synchronised, show how
:::::::::::::
synchronisation,

:::
the

::::
cost

:::::::
function

:::
and

:
the adjoint methodis applied, describe our proposed

multi-model setup, and detail the fitting procedure, including the minimisation algorithm
:
.
::::::
Section

::
3

::::::::
introduces

:::
the

:::::::
Lorenz

:::
’63120

::::::
model,

:::::::::
describes

:::
our

::::::::
reference

::::::
setup,

:::::
before

::::::::::
introducing

::::
our

:::
two

:::::
novel

:::::::::::
multi-model

::::::::
methods,

:::::::::
describing

:::
our

::::::::::::
minimisation

::::::::
algorithm,

::::
and

:::::::
detailing

::::
our

::::::::
statistical

::::::
metrics

:::
for

:::::::::
evaluating

::::::
results. Section 4 shows and discusses the results of our multi-

model setups, using a single model setup as a baseline for comparison. The results of introducing a mismodelling term to the

adjoint model are also included. Our results are summarised and conclusions discussed in
:
A

::::::::
summary

:::
and

::::::::::
concluding

:::::::
remarks

::
are

:::::
given

:
Section 5.125

4



2 Methodology

2.1
:::::::::::::

Synchronisation

::
In

::::::
chaotic

:::::::
systems,

::::::::::
integrating

::::
over

::::::
periods

::::::
longer

::::
than

:::
the

:::::::::::
predictability

::::
time

:::::
scale

::::::
creates

::::::::
problems

:::
for

:::::::
accurate

:::::::::
parameter

:::::::::
estimation.

::::
This

::
is

:::
due

::
to

::::::::::::
exponentially

:::::::
growing

::::::::
gradients,

::::
and

:
a
:::::::::
maximum

::::::::
likelihood

::::::::
estimate

::::
with

::
an

:::::::::
increasing

:::::::
number

::
of

::::
local

:::::::
maxima

:::::::::::::::::::::::::::::::::::::
(Köhl and Willebrand, 2002; Lea et al., 2000)

:
.
:::
The

:::::::::
non-linear

:::
or

::::::
chaotic

:::::::::
dynamics,

:::::
which

::::::::::::
detrimentally

:::::
effect130

::
the

:::::::::
maximum

:::::::::
likelihood

::::::::
estimate,

::::
can

:::
be

:::::::
removed

:::
by

::::::::::::::
synchronisation

:::::::::::::::::::::::::::::::::::::
(Abarbanel et al., 2010; Sugiura et al., 2014)

:::::
which

:::::::::
transforms

::
the

:::::::
chaotic

:::::
model

:::
into

::::
one

::::
with

:::::
linear

::::::::
dynamics

::::::
without

:::::::
positive

::::::::
Lyapunov

:::::::::
exponents

::::::
leading

::
to

::::::::
maximum

:::::::::
likelihood

:::::::
functions

::::
with

::::
one

::::::
unique

:::::::
maxima.

::::
This

::::
can

::
be

:::::::::::
implemented

::::
into

:
a
::::::
generic

::::::
model

::
of

:::::::
ordinary

::::::::::
differential

::::::::
equations,

:

ẋ(t) = f(x(t),θ, t)
:::::::::::::::

(1)

:::::
where

::::
x(t)

::
is

:::
the

::::
state

::::::
vector,

::
θ
::
is
:::
the

:::::::::
parameter

::::::
vector,

:::
and

::
t
::
is

:::
the

:::::
time,

:::::::::::::
synchronisation

:::
can

:::
be

:::::::::::
incorporated

::
by

::::::
adding

::
a135

::::
term

:::::
which

::::::::
penalises

:::
the

::::::::
difference

::::::::
between

::
the

::::::
model

:::
and

:::::::::::
observations.

::::
This

:::::
term

:
is
::::::
simply

::::::
added

::
to

:::
the

::::::::
equations

ẋ(t) = f(x(t),θ, t)+α(xo(t)−x(t))
:::::::::::::::::::::::::::::::

(2)

:::::
where

::
α

::
is

::
the

::::::::::::::
synchronisation

:::::::::
coefficient

:::
and

:::::
xo(t)::

is
:::
the

:::::::::
observation

:::::
state

:::::
vector.

::::::::
According

::
to
:::
the

::::
law

::
of

::::
large

::::::::
numbers

::::
both

::::
with

::::::
perfect

::::::
models

::::
and

::
in

:::
the

:::::::
presence

::
of

::::::
noise,

::
the

::::::::
precision

::
of

:::
the

:::::::::
recovered

:::::::::
parameters

::::
will

:::::::
improve

::::
with

:::::::::
increasing

:::::::
window

::::::
length

:::::
since

:::::
more

::::
data

::
is

:::::::::
integrated

:::
into

::::
the

:::::::::
estimation.

:::::::
Similar

:::::::
benefits140

::::
could

:::
be

:::::::
achieved

:::
by

::::::::
averaging

::::::::
estimates

::::::::
obtained

::::
over

:::::
short

::::::::
windows,

:::
for

:::::
which

:::
no

:::::::::::::
synchronisation

::
is

:::::::::
necessary.

::::::::
However,

:::::::::
underlying

:::::::::
restrictions

::::::
differ.

:::
For

::::::::::::::
synchronisation,

::::
noise

::::::
affects

:::
the

:::::
state

::::
over

:::
the

:::::
entire

:::::::
window,

:::::::
whereas

:::
for

:::::
short

::::::::
windows

::::
noise

::::::
effects

:::
are

:::::::::::
transported.

:::::
Short

:::::::
window

::::::::::
assimilation

::::
can

::
be

:::
of

::::::
benefit

::
in

::::::
perfect

::::::
model

:::::::
settings

:::::
from

:::
the

::::
error

:::::::
growth

::
as

::::::::
suggested

:::
by

:::
the

::::::::::
quasi-static

:::::::::
variational

:::::::::::
assimilation

:::::::
(QSVA)

:::::::::
framework

::::::::::::::::
(Pires et al., 1996)

:::
due

::
to

::::
fact

::::
that

::::::::::
sensitivities

:::::::
increase

:::::::::::
exponentially

::::
with

::::
time

::
in
:::::::
chaotic

:::::::
models.

:::
The

::::::::
analogue

::
of

::::
this

:::::
QSVA

::::::
effect

::
in

:::
the

:::::::::
Dynamical

:::::
State

:::
and

:::::::::
Parameter145

:::::::::
Estimation

::::::
(DSPE)

:::::::
method

::::::::::::::::::::
(Abarbanel et al., 2009)

:
is
:::
the

:::::::
attempt

::
to

::::::
reduce

::
the

::::::::::::::
synchronisation

::::::::
parameter

::
as

:::
the

:::::::::::
optimisation

::::::::
progresses

::::
and

:::::::::
parameters

:::::
move

:::::
closer

::
to
:::::
their

:::
true

::::::
values.

:::::
Since

:::::
errors

::::
and

::::::::::
sensitivities

::::
grow

::::::::::::
exponentially,

:::::::
feasible

:::::::
window

::::::
lengths

::
in

::::::
QSVA

::::
have

::
a
:::::::::
maximum

:::::
value

:::
due

:::
to

::::::
limited

:::::::::
numerical

::::::::
precision.

:::::::::
Similarly,

:::::::::::::
synchronisation

::::::::::
parameters

::::::
cannot

:::::::
approach

::::
zero

:::
for

::::::::::
assimilation

::::::::
windows

:::::
much

:::::
larger

::::
than

:::
the

:::::::::::
predictability

:::::
limit,

:::::::
because

:::::::::::::
synchronisation

::::
will

:::::::::
eventually

:::
fail

:
if
:::::::
positive

::::::::
Lyapunov

:::::::::
exponents

::::
exist

::::::::::::::::
(Quinn et al., 2009)

:
.
:::
We

::::
note

:::
that

:::
the

::::::::
reasoning

:::
for

:::
the

::::
need

::
of

::::
long

::::::::::
assimilation

::::::::
windows150

:
is
:::::::::

somewhat
::::::::
different

::
in

:::
the

:::::::
context

::
of

:::
full

::::::
ESM,

:::
for

:::::
which

::
it
::
is
::::::::
essential

::
to

:::::::
resolve

::::
long

::::
time

:::::
scale

:::::::
physical

:::::::::::
mechanisms

:::::::
impacted

:::
by

:::
the

::::::
specific

::::::
choice

::
of

::::::::::
parameters,

::::
such

::
as

::::::
air-sea

::::::::::
interactions

::
of

::::::::
advection

::::
time

::::::
scales

::
in

:::
the

:::::
ocean.

:

2.2
:::
The

::::
cost

:::::::
function

::
As

:::::::::
previously

:::::::::
mentioned,

:::
in

::
the

:::::::
context

::
of

:::::::::
variational

::::
data

::::::::::
assimilation

:
a
::::
cost

:::::::
function,

:::
J ,

::::
must

::
be

:::::::::
introduced

::::::
which

::::::::
measures

::
the

:::::::::
quadratic

:::::
misfit

:::::::
between

:::
the

::::::
model

:::::::::
trajectory

:::
and

:::::::::::
observations.

::::
For

:::
the

::::
case

:::
of

:::::::
perfectly

:::::::
known

:::::
initial

:::::::::
conditions,

::::
but155
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:::::::
uncertain

::::::::::
parameters

::
θ,

::
J

::::
takes

:::
the

:::::::
generic

::::
form

:

J =
1

2N
(θ−θb)

T 1

σ2
θb

(θ−θb)+
1

2N

N∫
0

dt(xo(t)−h(x(t)))
T 1

σ2
xo

(xo(t)−h(x(t)))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

:::
N

::
is

:::
the

::::
total

::::::::::
integration

:::::
time,

::::
σxo ::

is
:::
the

::::::
known

::::::::::
uncertainty

:::::::::
associated

:::::
with

:::
the

::::::::::::
observational

:::::
noise,

::::::::
h(x(t))

::
is

::
the

::::::::::::
measurement

:::::::
function

:::
on

:::::::
model’s

::::::::
predicted

::::
state

::::::
vector

:::
x,

:::
and

:::
xo::

is
:::
the

::::::::::
observation

:::::
state

::::::
vector.

:::
The

:::::
prior

:::::::::
parameter

:::::::::
information

::::
with

:::
the

:::::::::
associated

::::::::::
uncertainty

:
is
:::::::
denoted

:::
by

::
θo::::

and
::::
σθb

,
::::::::::
respectively.

::::
The

:::::
global

::::::::
minimum

::
of
::::
this

:::::::
function

::
is

:::
the160

::::::::
maximum

:::::::::
likelihood

:::::::
estimate

::
of

:::
the

:::::
model

:::::::::
parameter

::::::
values

::::::
relative

::
to

:::
the

:::::::::::
observations

:::
and

::::
prior

:::::::::::
information.

2.3
:::
The

::::::
adjoint

:::::::
method

::::
and

:::
the

::::
cost

::::::::
function

:::::::
gradient

::
To

:::
aid

::
in

:::
the

:::::::::::
minimisation

::
of

:::
the

::::
cost

::::::::
function,

:
it
::
is
::::::::
standard

::::::
practice

:::
to

:::::::
calculate

:::
its

:::::::
gradient

:::
and

:::
use

::::
this

::
to

::::::::
iteratively

::::::
adjust

::::::
control

::::::::::
parameters.

:::
The

:::::::
adjoint

:::::
model

::
is
::::::::::
introduced

::
to

::::::
provide

:::::
these

::::
cost

:::::::
function

::::::::
gradients

::::
and

:::::::
requires

:::
the

:::::::::
generation

:::
of

::
the

:::::::
adjoint

::
of

:::
the

:::::::
forward

:::::
model

:::::::::
equations.

:::
The

::::::::
resulting

::::::
adjoint

::::::
model

:::
can

::::
then

::
be

:::::::::
integrated

::
in

:::
the

::::::
reverse

::::::::
direction

::
to

::::
give165

::
the

::::::::
gradient

::
of

:::
the

:::
cost

::::::::
function.

::::
The

::::::::::
background

::::
term

::
in

:::
Eq.

::
3
:::
can

:::
be

::::::
omitted

::::::::
assuming

::
a

:::::::::
well-posed

::::::::
problem,

::::::
without

:::::
prior

:::::::::
information

:::
on

:::
the

:::::::::
parameter.

:::::::::
Therefore,

:::
the

:::::::
gradient

::
of

:::
the

:::
cost

::::::::
function

::::
with

::::::
respect

::
to

:::
the

:::::::::
parameters

::
is

∇θJ =− 1

N

N∫
0

dtλ(t)∂θf(x(t),θ, t),

::::::::::::::::::::::::::::::

(4)

:::::
where

:::
N

::
is

:::::
again

:::
the

::::
total

::::::::::
integration

::::
time

:::::::
period,

::::
λ(t)

::
is

:::
the

:::::::
adjoint

:::::
vector

:::
at

::::
time

::
t,
::::
and

::::::::::::
∂θf(x(t),θ, t):::

is
:::
the

::::::
partial

:::::::::
differential

::
of

:::
the

:::::
model

:::::
with

::::::
respect

::
to

:::
the

:::::
model

:::::::::
parameters

::
at
::::
time

::
t.
:

170

3
::::::::::::
Experimental

:::::
setup

3.1 Lorenz ’63 model

In this study, we use the coupled Lorenz ’63 system as described by Yang et al. (2006)
:::
for

::
all

:::
our

:::::::::::
experiments

::::::::::::
(Lorenz, 1963).

The model is defined by the equations:

dx

dt
= σ(y−x), (5a)175

dy

dt
= ρx− y−xz, (5b)

dz

dt
= xy−βz (5c)

where (x,y,z)
::::::::::
x= (x,y,z) are the state variables at each given time step and σ, ρ, and β

::::::::::
θ = (σ,ρ,β)

:
are the model pa-

rameters. Throughout this article, we integrate all our models using the fourth-order Runge-Kutta method with a step size

of ∆t= 0.01 and total time period of 100 time units [TUs]. This system of equations will be
::::::::::
subsequently

:
referred to as180
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the true model for which we will apply the standard values for σt = 10, ρt = 28, and βt = 8/3. This true
:::
true

:::::
model

:::::
with

::
the

::::::::::
parameters

:::::::::::::::
θt = (10,28,8/3).

::::
This

::::
true

:
model is used to generate pseudo-observation which will be used to synchronise

our physical models in Sub-section 2.1
::
for

::::::::::::::
synchronisation,

::::
data

::::::::::
assimilation,

::::
and

::::::::
parameter

:::::::::
estimation. Noise is included in

these pseudo-observations by adding random values from a Gaussian distribution centred at zero to the true values
::::::
relative

::
to

:::
the

:::
true

::::::::
trajectory. The random noise value magnitudes are bounded by a given percentage relative to the systems’standard185

distribution
::
to

::::
25%

::
of

:::
the

::::::
Lorenz

:::
’63

:::::::
system’s

:::::::
standard

::::::::
deviation. These pseudo-observations will be labelled as (xo,yo,zo)::::::::::::::

xo = (xo,yo,zo).

3.2 Adjoint method
:::::::::
Reference

:::::
setup

::::::
(single

::::::
model)

For the
::
To

::::::::
quantify

:::
the

:::::::
efficacy

::
of

::::
our

:::::
novel

:::::::
method

:::
we

::::::
outline

::
a

::::::::
reference

:::::
setup

:::
for

:
a
::::::::::::

synchronised Lorenz ’63 system

outlined in Eq. (5) the adjoint matrix can be derived by transposing its tangent liner matrix (TLM). The TLM follows from

Eq. (5) as:190

MT ≡ ∂ẋi

∂xj
=


−σ σ 0

ρ− z −1 −x

y x −β

 .

The adjoint M∗ is then given by M∗ ≡MT . As part of the adjoint model assimilation process, the adjoint equations are

integrated backwards in time to calculate the gradient of the cost function with respect to control parameters which are used

subsequently in an iterative process to adjust the control parameters such that the system is brought into consistency with

observations.195

3.3 Synchronisation

A fundamental limitation of the adjoint method arises when integrating over periods that are longer than the predictability

time scale of a system, leading to exponentially growing gradients and a cost function with an increasing number of local

minima (Köhl and Willebrand, 2002; Lea et al., 2000). The problem can be mitigated by synchronisation which removes the

non-linear or chaotic dynamics which effect the cost function (Abarbanel et al., 2010; Sugiura et al., 2014). To incorporate a200

synchronisation technique, we
:::::::::
framework

::::::
similar

::
to
:::::

those
:::::::::

described
::
in

:::::::::::::::::::::::::::::
Yang et al. (2006); Lyu et al. (2018)

:
.
:::
We

:
expand the

Lorenz ’63 model by adding so-called nudging
:::
(Eq.

:::
5)

::
by

::::::
adding

:::::::::::::
synchronisation

:
terms which then reads:

dxa

dt

dx

dt
::

= σ(ya −xay−x
::::

)+α(xo −xa), (6a)

dya
dt

dy

dt
::

= ρxa − ya −xazax− y−xz
::::::::

+α(yo − ya), (6b)

dza
dt

dz

dt
::

= xaya−xy−
:::

βza+α(zo − z)
:::::::::

. (6c)205

Here α is the synchronisation constant, sub-script a denotes the model with an adjoint, (xo,yo,zo):::::::::
coefficient

:::
and

::::::::::::::
xo = (xo,yo,zo)

are the pseudo-observations generated from the true model. For this synchronised model we will apply the standard values used
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in the true system
:::
true

::::::
model.

:::
We

::
set

:::
the

:::::
initial

:::::::::
parameter

:::::
values

::
of

::::
this

:::::
model

::
at

:::
the

::::
start

::
of

:::
the

::::::::::
optimisation

::
as

:::
the

::::
true

::::::
system

:::::
values plus a 10%-error, which

:
.
::::
This gives σa = 11, ρa = 30.8, and βa = 44/15 . These

:::::
which

:
will act as our initial conditions

:::::
values

:
for the parametric fit. The adjoint matrix for the synchronised model in Eq. (6) is given by:210

M∗
a =


−(σ+α) ρ− za ya

σ −(1+α) xa

0 −xa −β

 .

The synchronisation constant is the only difference from the adjoint of Eq. (??)
:::
The

::::::
initial

:::::::::
conditions

:::
will

::::::
remain

::::::::::
unchanged

::::::::
compared

::
to

:::
the

::::
true

::::::
model

::
as

:::
our

::::::::
interests

:::
are

::::::::::
exclusively

::
in

:::::::
climatic

:::::::::
parameter

:::::::::
estimation.

::::::::::::::
Synchronisation

:::
will

::::::
occur

::
at

::::
every

::::
time

::::
step

::
in

:::
all

:::
our

:::::
setups

::::
and

::
its

:::::::::
coefficient

:::
will

::::
also

:::
be

::::::
present

::
in

:::
the

::::::
adjoint

::::::::
equations. The significance of this change

will be shown
:::
will

::
be

::::::::
discussed

:
in Section 4, as α has a critical role in the precision and accuracy to which parameters can be215

estimated, due to its influence on both the cost function and its gradient.

:::
For

::::
each

:::::
state

:::::::
variable

::
in

:::
Eq.

::
6
::
a
:::::::::::::
synchronisation

:::::
term

::
is

::::::::
included.

:
There are seven possible combinations of the three

::::
these

:
state variables which can be synchronised. The effect of each of the possible choices on the root mean squared error

(RMSE) between the true
:::
true

:
and adjoint systems is shown in Fig. 1 by varying the synchronisation constant α from 0 to

30.
::
30

::
is
::::::
shown

::
in

::::
Fig.

::
1.

::::::
Noise

:::
was

::::::
added

:::::
(with

::::
zero

:::::
mean

:::
and

::::

√
2

:::::::
standard

:::::::::
deviation)

::
to

:::
the

::::
true

:::::
when

:::::::::::
constructing

:::
the220

:::::::::::::::::
pseudo-observations. The figure demonstrates that synchronising the z-component is ineffective at reducing the RMSE (Yang

et al., 2006). In contrast, synchronising both x and y prove effective, with y leading the lowest RMSE values of the single

variable for all values of α. Synchronising xyz and xy achieve the most effective reduction in RMSE for the lowest value of

α. It can be seen
:
in
:::
the

::::::
figure that synchronising z can lead to model instability. Thus, we choose to only synchronise x and y

in the following , as seen in Eq. 6,
::::::
research

:
to achieve more stable and accurate results with negligible precision loss.225

The Lorenz ’63 attractors for the trajectories of the true
:::
true

:
model and that with an adjoint are shown in Fig. 2a without syn-

chronisation. A large divergence is visible between the trajectories. However, if synchronisation is introduced
::
the

::::::::::
trajectories

::::::
become

::::
very

::::::
similar, as shown in Fig. 2b, the trajectories become very similar. There is now significant overlap between their

kernel density estimations (KDEs). We choose to use KDEs throughout this paper as they
:::::
KDEs represent a smoothed esti-

mate of the PDF for the trajectory
:::::
model

:::::::::
trajectory

::::
over

:
a
:::::
given

::::
time

::::::
period. This allows for convenient visual comparison of230

trajectories. A more numerically rigorous method to check for effective synchronisation will be discussed in section
::::::
Section 4.

:::
For

::
all

::::::::::
subsequent

:::::::::::
experiments

::::
with

:::
our

:::::::
setups,

:
a
:::::::
parallel

::::::::::
experiment

::::
will

::
be

:::::::::
performed

:::::
with

:::
this

::::::::
reference

::::::
setup.

::::
The

:::::::::
differences

::
in

:::
the

::::::
results

:::
can

::::
then

::
be

:::::::::
compared

::
to

:::::::
evaluate

:::
the

:::::::::
advantages

:::
and

::::::::::::
disadvantages

::
of

:::
the

:::::
novel

::::::::::
techniques.

3.3 Multi-model data assimilation

This technique
:
A

:::::::::::
multi-model

::::::
tandem

:::::::::
technique

::
is

::::
now

::::::::::
considered,

:::::
which

:
consecutively synchronises two forward models235

before running the adjoint of the second model backward in time. For this purpose, Eq. 6 must be modified to incorporate a

consecutive synchronisation. A schematic of this setup is provided in Fig.3 and the implications of the two possible ways to

calculate the cost function are discussed in the subsequent subsections.
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Figure 1. Different coupling schemes are trialled.
:::
The RMSE is calculated between the truth

:::
true and model

:::::::
reference

:::::
model

:
trajectories

after
:
in
:::::
seven

::::::
different

:
synchronisation to pseudo-observations. Noise was added (with zero mean and

√
2 standard deviation) to the truth

when constructing the pseudo-observations
:::::::
scenarios. The synchronisation constant α is varied from 0 to 30 in steps of 0.5.

:::
The

::::
solid

:::
line

::
is

::
the

::::::
median

:::
and

:::
the

:::::
shaded

::::
area

:
is
:::
the

::::
68%

:::::::
percentile

::::::
interval

:::
for

::
the

:::::::
ensemble

::
of
::::
100

:::::::::
experiments

:::::
carried

:::
out.

:::
The

::::
first

:::::
model

:::
has

:::
no

::::::
adjoint

::::::::
equations

:::
and

::
is

:::
the

:::::
target

:::::
model

:::
for

:::::
which

:::
we

::::
wish

::
to

:::::::
optimise

:::
the

::::::::::
parameters.

:
The equations

of model 1, which is run only in forward mode, are240

dxf

dt
= σ(yf −xf )+α(xo −xf ), (7a)

dyf
dt

= ρxf − yf −xfzf +α(yo − yf ), (7b)

dzf
dt

= xfyf −βzf (7c)

where the sub-script f denotes the forward run of model 1 and sub-script o denotes observations generated from truth
:::
true

model. The system of equations for the model 2 which has an adjoint will now be modified to synchronise with the forward-245

9
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Figure 2. The bottom left quadrants show the Lorenz ’63 truth
:::
true and model

::::
model

:
attractors from the main three variable orientations. The

diagonal plots show kernel density estimations (KDEs). Fig. 2a shows the trajectories without synchronisation. Fig. 2b shows the trajectories

with synchronisation.
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only model and not the observations:

dxa

dt
= σ(ya −xa)+α(xf −xa), (8a)

dya
dt

= ρxa − ya −xaza +α(yf − ya), (8b)

dza
dt

= xaya −βza (8c)

where the sub-script a denotes model 2 which has an adjoint. This model synchronises with the model 1 but never directly with250

the observations.

Observation

0 N
time

JHDA

Truth

Model 1

Model 2

Adjoint∇J

α

α

JSFDA

Figure 3. Illustration of the multi-model setup where each pseudo-observation generated from the truth
::

true
:::::
model

:
includes random additive

Gaussian noise. The cost function can measure the difference between the observations and either model 1 or 2 depending on the assumptions

made. Both options are discussed in the text.

To assimilate the data, we fit one of the synchronised models to the observations by optimising the model parameters.

A cost function is constructed to calculate the misfit between observations and the model of interest. The gradient of the

cost function, with respect to the model parameters, is always calculated using the adjoint method associated with model 2.

However, the form of the adjoint will vary between the two methods we subsequently present. The adjoint model is numerically255

evaluated by automatic differentiation (AD) of the forward model 2 with respect to either model 1 or 2 depending on our

11



chosen setup. This is done in the python package JAX which numerically evaluates the vector Jacobian product of the model

with respect to its state variable vector (Bradbury et al., 2018). This is then integrated using an inverse Runge-Kutta scheme.

Our code stores the state variables and adjoint vectors at each time step. It is also possible to carry out the entire integration

using JAX. The process of synchronising all models, calculating the cost function and its gradient, and then adjusting model260

parameters is carried out iteratively by our chosen minimisation algorithm. Throughout all steps the parameter value of

forward-only and adjoint models are identical and optimised simultaneously.For the present study we have chosen to use

the minimisation package iminuit (Dembinski and et al., 2020). The version currently used is the Minuit2 algorithm

MIGRAD which is a variable-metric method including an inexact line search, a stable metric updating scheme, and it checks for

positive-definiteness. This is chosen as it is a robust and stable minimiser that both utilises the gradient we derive using adjoint265

equations, and calculates accurate uncertainty estimates for all fitted parameters. The procedure stops when the estimated-distance-to-minimum

(EDM) stopping criteria is met. This measures the difference between the true cost function value at the estimated minimum and

the estimated cost function value at the true minimum. The EDM criteria is given by maximum EDM < tolerance · 0.002, where

we use the default tolerance = 0.1. This is appropriate for accurate uncertainty recovery at no adverse cost to computational

speed. Further information on the specific minimisation algorithm details are given in James and Roos (1975).270

3.3.1 Setup 1 - state filtered data assimilation (SFDA)

Assuming that both Lorenz models
:::::
model

::
1
::::
and

:
2
:
can be thought of as representing two identical climate models, the cost

function can be placed on the model 2. This allows model 1 to filter out some of the background noise on the observations before

they are given to the cost function attached to model 2. This favourably increases the signal to background ratio synchronised

into model 2. Such a filtering setup would theoretically reduce parametric uncertainty below that of traditional single model275

data assimilation because model 1 should act to reduce the amount of noise synchronised into model 2. We will subsequently

refer to this setup as state filtered data assimilation (SFDA.)

In SFDA the cost function acts to constrain model 2. The cost function is

JSFDA =
1

2N

∑∫
::

N
t=0dt: (xo(t)−xa(t))

T 1

σ2
xo

(xo(t)−xa(t)) (9)

N is
::::
again

:
the total number of time steps of the assimilation window, and σxo

is the uncertainty associated with the observation280

noise. The adjoint matrix includes additional terms , compared with Eq. ??,
:::::
terms arising from the second synchronisation step

::::::
tandem

::::
layer

:::
of

:::::::::::::
synchronisation for model 2. This is given by:

MM∗
SFDA =



−(σ+α) ρ− za ya 0 0 0

σ −(1+α) xa 0 0 0

0 −xa −β 0 0 0

α 0 0 −(σ+α) ρ− zf yf

0 α 0 σ −(1+α) xf

0 0 0 0 −xf −β


(10)

12



which in practice is numerically evaluated using AD
:::
the

::::::::
automatic

::::::::::::
differentiation

::::
(AD)

:::::::
package

:
jax

::
to

::::::::
calculate

::
the

:::::::::::::
vector-Jacobian

:::::::
product.285

:::
The

::::::
adjoint

::::::::
equation

::
for

::::::
SFDA

::
is

:::::
given

:::
by:

λ̇SFDA(t)
:::::::

=
:

1

σ2
xo

((xo(t),0,0,0)− (xa(t),0,0,0))

::::::::::::::::::::::::::::::

(11a)

−M∗
SFDA(t)λSFDA(t) for t=N,...,0

:::::::::::::::::::::::::::::

with λSFDA(N)
::::::::::::

=
:

0.
:

(11b)

:::::
These

::::::::
equations

::::
were

:::::::
derived

:::::
using

:::
the

::::::
method

:::::::
detailed

::
in

::::::::::::::
Talagrand (2010)

:
.
:::
The

:::::::
gradient

::::
can

::::
then

::
be

:::::::::
calculated

::::
with

::::::
respect290

::
to

:::
the

::::::::::
parameters

:::::::
(σ,ρ,β)

::::::
notated

:::
by

:::
the

:::::::
subscript

:::
θ.

::::
This

:::::
yields

∇θJSFDA =
1

N

0∫
t=N

dtλSFDA(t)



ya(t)−xa(t)

xa(t)

−za(t)

yf (t)−xf (t)

xf (t)

−zf (t)


:::::::::::::::::::::::::::::::::::::::

(12)

:::::
which

::
is

:
a
::::::::::::::
component-wise

::::::::::::
multiplication

:
at
:::::
each

::::
time

:::
step.

3.3.2 Setup 2 - hybrid
:::::::
Tandem

:
data assimilation (HDA

::::
TDA)

Here
::
In

:::
this

:::::::
section, we want to explore if using an existing adjoint from one model could be utilised to optimise a different295

target model without adjoint. This will be referred to as hybrid
::::::
tandem data assimilation (HDA.)In HDA

:::::
TDA).

::
In

:::::
TDA we

assume that both models may differ in resolution or numerical formulation but are governed by the same equations
:::::::::
continuum

::::::::
dynamics. Instead of interpolating or transforming the original model variables onto the adjoint model grid, formulation of

the adjoint model through synchronisation would provide a simpler means to do this , as only essential parameters need to be

interpolated. Auxiliary variables and parameters
:::
will

::
be

:::::::::
generated

::
by

:::
the

::::::::::::
synchronised

:::::
model, including those that may not300

exist in the target model, will be generated by the synchronised model.

The cost function of HDA is
::::
TDA

::
is

:

JHDATDA
::

=
1

2N

∑∫
::

N
t=0dt: (xo(t)−xf (t))

T 1

σ2
xo

(xo(t)−xf (t)) . (13)

N is the total number of time steps of the assimilation window and σxo is the uncertainty associated with the observation noise.

This measures the quadratic misfit between the forward-only model 1 and the observations. Model 1,
:
xf:

, will be constrained305

by this cost function and its gradient will be calculated using the adjoint of model 2
:
, xa.

:
In

::::
this

::::::::::
formulation,

:::
the

::::
two

:::::::
systems

::
are

:::
no

::::::
longer

:::::::::
considered

::
as

:
a
::::::
single

:::::::::::
synchronised

:::
one

:::
but

::
as

::::
two

:::::::
separate

:::::::
models,

:::
one

:::
for

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
trajectory

::::
and

13



::
the

:::::
other

:::
for

::::::::::
calculating

:::
the

:::::::
gradient

:::::
from

::
its

:::::::
adjoint.

::::
The

::::::::
algorithm

::
is

::::
also

:::
no

:::::
longer

:::::
exact

:::
as

:::
we

::::
only

::::::
assume

::::
that

::::::
model

:
2
:::::
ajoint

::::
will

:::::::
provide

:
a
:::::
good

::::::::::::
approximation

::
as

::::
long

:::
as

::
its

::::::::
trajectory

:::::::
follows

::::::
model

:
1
::::::
closely

::::
and

::
is

:::::
driven

:::
by

:::
the

::::::::::
model-data

:::::::::
differences

::
of

:::::
model

::
1.
:
The adjoint matrix is310

MHDAMTDA
::

∗ =


−(σ+α) ρ− za ya

σ −(1+α) xa

0 −xa −β

 . (14)

which is numerically evaluated using AD. The synchronisation with model 1 ensures that the trajectory of model 2 xa closely

follows that of model 1.

3.3.3 Cost function gradient

The gradient of the cost function, with respect to the state variables at t= 0, is given by315

∇xa
J =

1

N
λ(0),

where λ is the adjoint vector. The adjoint vector is calculated by integration of the differential adjoint equation in the reverse

time direction. This will differ between our two setups.

3.3.3 SFDA (setup 1)

This adjoint equation for SFDA is given by:320

λ̇SFDA(t) =
1

σ2
xo

(xo(t)−xa(t))

−M∗
SFDA(t)λSFDA(t) for t=N,...,0

with λSFDA(N) = 0.

These equations were derived using the method detailed in Talagrand (2010). The gradient can then be calculated with respect

to the parameters (σ,ρ,β) notated by the subscript θ. This yields325

∇θJSFDA =
1

N

0∑
t=N

λSFDA(t)



ya(t)−xa(t)

xa(t)

−za(t)

yf (t)−xf (t)

xf (t)

−zf (t)


which is a component-wise multiplication at each time step.
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3.3.4 HDA (setup 2)

This
:::
The

:
adjoint equation for HDA

::::
TDA is given by:

λ̇HDATDA
::

(t) =
1

σ2
xo

(xo(t)−xf (t)) (15a)330

−MHDA−:MTDA
::

∗(t)λHDATDA
::

(t) for t=N,...,0

with λHDATDA
::

(N) = 0. (15b)

The gradient with respect to the parameters θ = (σ,ρ,β) is calculated to be:

∇θJHDATDA
::

=
1

N

∑∫
::

0
t=Ndt

:
λHDATDA

::
(t)


ya(t)−xa(t)

xa(t)

−za(t)

 (16)

which is again a component-wise multiplication at each time step. For HDA
::::
TDA

:
and SFDA, the trajectories of both models335

and adjoint vectors are stored for evaluation of the gradient.

4 Results

Throughout the following section we will use the single model described in Lyu et al. (2018) as our benchmark to compare the

new setups against. To understand the behaviour of the setups at different operating extremes, assimilations are carried out for

variations of observational noise andα. This will help establish the optimal synchronisation strength dependent on the noise340

amplitude. We will also be able to compare the errors and uncertainties of

3.1
:::::::::::

Minimisation
:::::::::
algorithm

::
To

:::::::::
assimilate

:::
the

::::
data,

:::
we

::
fit

:::
one

:::
of

:::
the

:::::::::::
synchronised

::::::
models

::
to

:
the single model with our multi-model setups

::::::::::
observations

:::
by

:::::::::
optimising

:::
the

:::::
model

::::::::::
parameters.

::
A

:::
cost

::::::::
function

::
is

:::::::::
constructed

::
to

::::::::
calculate

:::
the

:::::
misfit

:::::::
between

:::::::::::
observations

:::
and

:::
the

::::::
model

::
of

::::::
interest.

::::
The

:::::::
gradient

::
of

:::
the

::::
cost

:::::::
function,

::::
with

:::::::
respect

::
to

::
the

::::::
model

::::::::::
parameters,

:
is
::::::
always

:::::::::
calculated

:::::
using

:::
the

::::::
adjoint

:::::::
method.345

::::::::
However,

:::
the

::::
form

:::
of

:::
the

::::::
adjoint

::::
will

::::
vary

:::::::
between

:::
the

::::
two

:::::::
methods

:::
we

::::::::
presented

:::
in

::::
Eqs.

::
11

::::
and

:::
15.

::::
The

::::::
adjoint

::::::
model

::
is

::::::::::
numerically

::::::::
evaluated

::
by

::::
AD

::
of

::::::
model

::
2.

::::
This

::
is
:::::

done
::
in

:::
the

:::::::
python

:::::::
package

:
JAX

:::::
which

::::::::::
numerically

::::::::
evaluates

:::
the

::::::
vector

:::::::
Jacobian

:::::::
product

::
of

:::
the

::::::
model

::::
with

::::::
respect

:::
to

::
its

:::::
state

:::::::
variable

:::::
vector

:::::::::::::::::::
(Bradbury et al., 2018)

:
.
::::
This

::
is

::::
then

:::::::::
integrated

:::::
using

::
an

::::::
inverse

:::::::::::
Runge-Kutta

:::::::
scheme.

::::
Our

::::
code

::::::
stores

:::
the

::::
state

::::::::
variables

:::
and

:::::::
adjoint

::::::
vectors

::
at

::::
each

:::::
time

::::
step.

::
It

::
is

::::
also

:::::::
possible

::
to

::::
carry

::::
out

:::
the

:::::
entire

:::::::::
integration

:::::
using

:
JAX

:
.
::::
The

::::::
process

:::
of

:::::::::::
synchronising

:::
all

:::::::
models,

:::::::::
calculating

:::
the

::::
cost

::::::::
function

:::
and

:::
its350

:::::::
gradient,

:::
and

::::
then

::::::::
adjusting

::::::
model

:::::::::
parameters

::
is

::::::
carried

:::
out

:::::::::
iteratively

::
by

:::
our

::::::
chosen

:::::::::::
minimisation

:::::::::
algorithm.

::::::::::
Throughout

:::
all

::::
steps

:::
the

::::::::
parameter

:::::
value

::
of

:::::::::::
forward-only

::::
and

::::::
adjoint

::::::
models

:::
are

:::::::
identical

::::
and

::::::::
optimised

:::::::::::::
simultaneously.
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3.2
::::::::

Statistical
:::::::
metrics

To get a more robust quantification of our setup’s behaviour, it is necessary to repeat our study over a number data sets to

calculate medians and percentile intervals
::::
(PIs). This allows us to examine general traits of our model without an individual355

noise event obscuring trends and features of significance. Here this is done by generating 100 pseudo-data sets and assimilating

each set independently. The plotting package is then applied directly
::::::
directly

:::::::
applied to these 100 outputs to plot the median

and 68% percentile intervals. The percentile intervals
:::
PIs.

::::
The

:::
PIs

:
are included to illustrate the statistical spread of the results

and reproducibility, not to explicitly indicate uncertainty.
::::::
Hence,

:::
we

::::::
choose

::::
68%

:::
for

:::
our

:::
PIs

::
to

::::
give

:
a
:::::::
concise

:::::::::::
visualisation

::
of

::
the

::::::
central

:::
1σ

::
of

:::::::
results. The mean percentage error and uncertainty are plotted separately to allow for quantification of both360

the accuracy and precision of our results. 1,1
:::::
These

:::
are

::::::::
calculated

:::
by:

:

mean %-error = 100% ·

√√√√1

3
·

[(
σ−σt

σt

)2

+

(
ρ− ρt
ρt

)2

+

(
β−βt

βt

)2
]

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(17)

:::
and

mean %-uncertainty = 100% ·

√√√√1

3
·

[(
∆σ

σt

)2

+

(
∆ρ

ρt

)2

+

(
∆β

βt

)2
]
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(18)

The error is simply calculated by percentage difference between the fitted and true
::::
true

::::::::
parameter

:
values. The

:::::::::
parametric365

uncertainty is calculated by the minimisation algorithm using a Hessian estimate.

::::
After

:::::::::
parameter

:::::::::
estimation,

::::
the

::::::::
optimised

::::::::::
parameters

:::
are

::::
used

:::
to

:::::::
initialise

::
a
::::
free

:::::::::::::
unsynchronised

:::
run

:::
of

:::
the

::::::
model.

::::
The

:::::::
attractors

::::
are

::::::
plotted

::::::
against

:::
the

::::::::
attractor

::
of

:::
the

::::
true

:::::::
model.

::
In

:::
all

:::::
cases

::::
with

:::::::::::::
synchronisation

:::::::
greater

::::
than

::
or

:::::
equal

:::
to

:::
the

:::::::
optimum

::::::
value,

:::
the

:::::::::
attractors’

:::::
KDE

::::::
shows

::::::
precise

::::
and

::::::::
consistent

::::::::::
agreement

::::
with

::::
that

::
of

:::
the

::::
true

::::::
model.

:::::::
Results

:::
are

::::
not

::::::::
displayed

::
as

::::
there

::
is

::
no

::::::::::
differences

:::::
which

:::
are

:::::
merit

:::::::::
discussion.

:::::
Thus,

:::
our

:::::
focus

::
in

:::
the

:::::::::
subsequent

::::::
results

::
is

::
to

:::::::
compare

::::
how

:::
the370

::::::::
examined

:::::
setups

:::::
differ

::
in

:::::
terms

::
of

::::::::
accuracy

:::
and

::::::::
precision

::
of

:::::::::
optimised

:::::::::
parameters

:::::::::
recovered.

4
::::::
Results

:::::::::
Throughout

:::
the

:::::::::
following

::::::
section

::
we

::::
will

:::
use

:::
the

:::::
single

::::::
model

::::::::
described

::
in

::::::::::::::
Lyu et al. (2018)

::
as

:::
our

:::::::::
benchmark

::
to
::::::::
compare

:::
the

:::
new

::::::
setups

::::::
against.

:::
To

:::::::::
understand

:::
the

:::::::::
behaviour

::
of

:::
the

:::::
setups

::
at
::::::::
different

::::::::
operating

::::::::
extremes,

:::::::::::
assimilations

:::
are

::::::
carried

:::
out

:::
for

::::::::
variations

::
of

:::::::::::
observational

:::::
noise

::::
and

::
α.

::::
This

::::
will

::::
help

:::::::
establish

::::
the

::::::
optimal

:::::::::::::
synchronisation

::::::::
strength

::::::::
dependent

:::
on

:::
the

:::::
noise375

::::::::
amplitude.

::::
We

:::
will

::::
also

::
be

::::
able

::
to

::::::::
compare

:::
the

:::::
errors

:::
and

:::::::::::
uncertainties

::
of

:::
the

:::::
single

::::::
model

::::
with

:::
our

::::::::::
multi-model

::::::
setups.

1mean %-error = 100% ·

√
1
3
·
[(

σ−σt
σt

)2
+

(
ρ−ρt
ρt

)2
+

(
β−βt
βt

)2
]

1mean %-uncertainty = 100% ·

√
1
3
·
[(

∆σ
σt

)2
+

(
∆ρ
ρt

)2
+

(
∆β
βt

)2
]
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Figure 4. The percentage error between the true
:::
true

:
values of (σ,ρ,β) and the fitted value from SFDA. A single model assimilation is

included for comparison. An ensemble of 100 assimilations is carried out over 100 different data sets. The median (lines) and 68% percentile

intervals (shaded areas) are plotted. The noise level is 25%.

4.1 SFDA (setup 1)

The results from a scan of α are shown in Fig. 4. The single model scan has two main regions. The first,
::
for

:
α≤ 7.5, is where

the system is poorly synchronised giving
::::::
leading

::
to
:

an inaccurate fit of the parameters
:::
and

::
an

::::::::
unstable

::::::
median

:::::
value. The

second, above
:::::
where

:
α > 7.5, is where the system is fully synchronised and recovers the true

:::
true

:
model parameters very380

effectively. SFDA has a higher onset of effective synchronisation than the single model setup, beginning at α= 11. Above

α= 12.5, SFDA has consistently more accurate parameter recovery than the single model setup
:
,
:::::
while

:::
the

::::::::
opposite

:::::
holds

:::::
below

::::::::
α= 12.5.

::::
The

::::::::
minimum

::::
error

::
at
:::
the

:::::::::
respective

::::::
optimal

::
α
::::::
values

:::
are

:::::
nearly

::::::::
identical.

Fig. 5 shows the results of two fits carried out with
::
for

::::
data

::::
with

:::
an

::::::
applied

:
noise of 25%

::::::
relative

::
to

:::
the

:::::::
systems’

::::::::
standard

:::::::
deviation. The mean percentage uncertainty over the three parameters is plotted for both setups. Noticing in particular the385

spread of the percentile intervals, the single model setup is found to be synchronised and have a high precision from α= 7.5

and SFDA from α= 11.5. Once the SFDA setup is synchronised, it is found to have a reduced uncertainty compared with the

single model. SFDA is found to be approximately one third more precise better than the single model setup for all value of α

investigated.
:::::::
However,

:::::
since

:::::
SFDA

:::::::
requires

:::::
larger

:::
α,

:::::::::
uncertainty

::::::
values

:::
for

::
the

:::::
same

::
α

::::::
cannot

::
be

:::::::
directly

:::::::::
compared.

:::
Fig.

::
4

::::::
suggest

::::
that

:::
the

::::::
SFDA

::::::::
technique

::
is
:::::
more

:::::::
accurate

::::
than

::
a
:::::::
standard

::::::
single

:::::
model

:::::
setup

::
at

::::::
higher

::::::
values

::
of

::
α.

::::
Fig.

::
5390

::::::::::
additionally

:::::
shows

:::
that

::::::
SFDA

::
is

::::
more

::::::
precise

::::
than

:
a
:::::
single

::::::
model

:::
for

::
all

:::::
values

:::
of

:
α
::::
after

:::
the

:::::
onset

::
of

:::::::
effective

::::::::::::::
synchronisation.

::
In

::::
cases

::::::
where

::::::::
accuracy

:::
and

::::::::
precision

:::
are

::::::::
desirable,

::::
and

::::::::::::
computational

::::::::
resources

:::
and

::::
time

:::
are

::::::::
available

::::
this

:::::
would

::::::::
advocate

::
for

:::
the

::::
use

::
of

::::::
SFDA.

::::::::
However,

::::
Fig.

::
4
:::::::
suggests

::::
that

:::
the

:::::
error

::::::::
estimates

::
do

:::
not

::::::::
represent

::::
the

:::::
actual

::::::::
achieved

:::::::
accuracy

:::
of

:::
the

::::::::
parameter

:::::::::
estimation.

:::::
Both

::::::
metrics

:::::::
suggest

:::
that

:::
the

::::::::
accuracy

::
is

:::
less

::::::::
sensitive

::
to

:::
the

:::::
choice

::
of

::
α
:::
for

::::::
SFDA.

::
It

::
is

:::
also

:::::::::
important
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Figure 5. The average percentage uncertainty on the three parameters (σ,ρ,β) after SFDA from the minimisation algorithm for different

values of α. A single model assimilation is included for comparison. An ensemble of 100 assimilations is carried out over 100 different data

sets. The median (line) and 68% percentile intervals (shaded areas) are plotted.

::
to

:::
note

::::
that

::
in

:::
the

::::::
context

:::::
where

::::::::
precision

::
is

:::
the

:::::::
priority,

::
the

::::::
lowest

:::::
value

::
of

::
α

::::
after

:::::::
effective

:::::::::::::
synchronisation

::::::
should

::
be

:::::::
chosen.395

::::::::
Increasing

::::::
values

::
of

::
α
:::::::
increase

:::
the

::::::::::
parametric

:::::::::
uncertainty

:::::::
because

::
of

:::
the

:::::::::
associated

::::::::
declining

:::::::::
sensitivity

::
of

:::
the

:::::::::
trajectory

::
to

::::::::
parameter

:::::::
changes.

:::::
This

:
is
::::
also

:::
the

::::::
reason

::::
why

:::
for

:::
the

::::
same

::
α

:::::
SFDA

::::::
shows

::::::::::
consistently

:::::
better

:::::::::::
performance:

:::
the

::::
less

:::::::
efficient

::::::
indirect

::::::::
constraint

:::
to

::
the

:::::::::::
observations

::::::
makes

:
it
:::::
more

:::::::
sensitive

::
to

:::
the

::::::::::
parameters.

:

Fig. 6 shows the results of varying the noise levels on the fitted parameter values. For all noise levels studied
::::::
applied

:::::
noise

:::::
levels the quality of the fit can be considered good as the median of the mean percentage uncertainty on the parameters remains400

below 0.5% even with noise levels of up to 50%. SFDA is found to have similar
:
a mean error performance

:::::
similar

:
to the

single model system across the range of noise levels tested. The
:::::::
However,

:::
the

:
spread of the error is slightly improved in the

double model setup at low noise likely due to the forward-only model ‘smoothing ’
:::::::::
smoothing outlying observation better than

a single model setup. The parametric uncertainty is found to be consistently reduced in the double model system for all noise

levels. This demonstrates the precision improvement achieved by running the forward model twice to ‘smooth ’
::::::
smooth the405

observations before carrying out data assimilation. The consequences of this are that for smaller or localised climate models,

where computational resources are available and improved precision is
:
or

::::::::
accuracy

:::
are desirable, SFDA could

:::
can reduce error

and particularly
:::::::
decrease uncertainty.

4.2 HDA
:::::
TDA (setup 2)

The results from a scan of α
::::::
Similar

::
to

::::::
SFDA,

::::
TDA

::::::
results

:::
are

::::::::
evaluated

::
in

:::::
terms

::
of

:::::::::
percentage

::::
error

:::
and

::::::::::
uncertainty

::::::::
estimates410

::::::
against

:::
the

:::::
single

::::::
model

::::
with

:
a
::::
data

:::::
noise

::::
level

::
of

:::::
25%.

:::::
Error

::::::::
estimates

:
are shown in Fig. 7 . The single model scan has two

18



10 20 30 40 50
noise level [%]

0

2

4

6

8

10
%

-e
rro

r

approach
single model
SFDA

(a) Percentage error.

10 20 30 40 50
noise level [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5

%
un

ce
rt

ai
nt

y

approach
single model
SFDA

(b) Percentage uncertainty.

Figure 6. The percentage error between the true
:::
true values of (σ,ρ,β) and those from SFDA, as well as average percentage uncertainty

on the SFDA parameters. A single model assimilation is included for comparison. An ensemble of 100 assimilations is carried out over 100

different data sets. The median (line) and 68% percentile intervals (shaded areas) are plotted. The noise level varies between 5% and 50% in

steps of 5%.

main regions. The first, α≤ 7.5, is where the system is poorly synchronised giving an inaccurate fit of the parameters. The

second,
:
as

:::::::
function

:::
of

::
α.

:::
For

:::::
α≥ 3

::::::::::::::
synchronisation

::::
starts

::
to

:::
set

::
in

:::
and

:::::::::
parameter

:::::::::
estimation

::::::
begins

::
to

:::::::
improve.

::::
The

::::::
system

::
is

::::
only

:::::::::::
synchronising

:::::::::
effectively

:::
for

:
α≥ 7.5 , is where the system is synchronising very effectively and recovers

::
to

::::::::::
consistently

::::::
recover

:
the true model parametersvery accurately. The HDA

:
,
::
as

::
is

::::::
visible

::::
from

:::
the

:::::
small

::::::
spread

::
of

:::
the

:::::
error.

::::
The

:::::
TDA scan415

follows the behaviour of the primary model very closely
::::
with

:::
no

:::::
visible

:::::::::::
disadvantage.

Fig. 8 shows the results of two fits carried out with noise of 25%. The mean percentage uncertainty over the three parameters

is plotted
::
in

::::
Fig.

:
8
:

for both setups. HDA
::::
TDA is found to have almost identical uncertainty to the single model. The plot

consists of two regions. The first, for α < 7.5
:
, is the region where the model is not yet consistently synchronised producing

high variability depending on the specific noise. The second,
:::
for α≥ 7.5,

:
is where the system is consistently synchronised.420

The minimum median of the mean parametric uncertainty, after consistent synchronisation begins, is ≈ 0.35% and achieved at

α= 7.5. The subsequent increase in uncertainty is due to the
::::::
reduced

:::
the

:::::::::
parametric

:::::::::
sensitivity

:::::::::
associated

::::
with

:::
the increased

αboth reducing and flattening
:
,
::::::
thereby

::::::::
reducing

:::
the

::::::::
curvature

::
of the cost function which reduces the parametric sensitivity of

the fit
:
at

:::
the

::::::::
minimum.

Fig. 9 shows the results of varying the noise levels on the fitted parameter values. For all noise levels studiedthe quality of425

:
, the fit can be considered good

::
to

::
be

::::::::
accurate as the mean percentage error on the parameters remains below 1% even with

noise levels of 50%. The increased spread of the error results at low noise is thought to be the adjoint experiencing reduced
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Figure 7. The percentage error between the true
::

true
:
values of (σ,ρ,β) and those from HDA

:::
TDA. A single model assimilation is included

for comparison. An ensemble of 100 assimilations is carried out over 100 different pseudo-data sets. The median (lines) and 68% percentile

intervals (shaded areas) are plotted. The noise level is 25%.
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Figure 8. The percentage uncertainty, from the minimisation algorithm, averaged over all three parameters (σ,ρ,β) after HDA
:::
TDA. A

single model assimilation is included for comparison. An ensemble of 100 assimilations is carried out over 100 different data sets. The

median (lines) and 68% percentile intervals (shaded areas) are plotted.
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Figure 9. The percentage error between the true
::

true
:
values of (σ,ρ,β) and those from HDA

:::
TDA. A single model assimilation is included

for comparison. An ensemble of 100 assimilations is carried out over 100 different data sets. The median (lines) and 68% percentile intervals

(shaded areas) are plotted. The noise level varies between 5% and 50% in steps of 5%.

effects of the noise compared to the single model. The length of the time window used is 100TUs, but if the window were

increased the accuracy of the results would improve. The HDA
:::
due

::
to

:::
the

:::::
fixed

:::::
value

::
of

::
α

::::
used

:::
for

::
all

:::::
noise

:::::
levels

:::::::::
impacting

::
the

::::::::::::::
synchronisation

::
of

:::
the

:::::::
system.

:::
The

:::::
TDA

:
setup is found to have extremely consistent uncertainty compared to the single430

model system.

:::
The

:::::::::
consistent

::::::
results

:::
of

::::
TDA

:::
in

:::::
Figs.

::
7,

::
8,
::::

and
::
9
:::::::
relative

::
to

:::
the

::::::::
standard

::::::
single

::::::
model

:::::
setup

:::::
show

::::
that

::::::::::
transferring

:::::::::
information

:::
via

::::::::::::::
synchronisation

::::
does

:::
not

::::::::::
compromise

:::::::::
precision.

::::
Figs.

::
7,

::::
and

:
8
::::
also

::::::
concur

::::
with

:::::
those

::
of

::::::
SFDA

::
in

:::::::::
suggesting

:::
that

:::
the

:::::::
optimal

:::::
value

::
of

::
α
::
is
:::

the
::::::::

smallest
:::::
value

::::
after

:::
the

:::::
onset

:::
of

:::::::
effective

::::::::::::::
synchronisation.

:::
An

:::::::
increase

:::
in

::
α

::::::
beyond

::::
this

::::
point

:::
can

::::
lead

:::
to

:
a
:::::::::
significant

::::::::
reduction

::
in

:::
the

::::::::
precision

::
of

:::
the

::::::::::
parameters.

:::
In

::::
cases

::::::
where

::::
only

:
a
:::::::

simpler,
::::

but
::::::
similar,

::::::
model435

::::
with

::
an

::::::
adjoint

::
is

::::::::
available

:::::
results

:::
are

:::::
likely

:::
to

:::::::
degrade.

::
In

:::
the

::::::::
following

:::::::
section,

:::
we

::::
will

::::
study

:::
the

::::::::
potential

::::::
impact

::
of

::::::
model

::::::::::::
inconsistencies

:::
on

:::
the

::
the

::::::::
precision

::
of
:::
the

:::::::::
parameter

:::::::::
estimation.

:

4.3 Mismodelling in HDA
::::
TDA

HDA
:
In

::::
this

::::::
section,

:::
the

::::::
tandem

::::
data

::::::::::
assimilation

:
(setup 2) uses

:
is
:::
be

::::
used

::::
with different forward and adjoint models with some

shared physics . Therefore, it is important
:::
that

:::::
share

::::::::
common

::::::
physics

:
to examine the impact of a difference in the physics of440

these two models
::::::::::
introducing

:::::
model

::::::::::::
discrepancies. We construct a test case where the equations of model 2, which has an

adjoint, Eq. (8 )
:
8 are modified to give an oscillatory difference to both the truth

:::
true

::::::
model and model 1. This can be done in a

number of ways. We chose
::::::
choose to introduce a multiplicative sine function to the equations in such a way it is also included
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in the adjoint matrix and thus modifies the gradient values returned to the fitting algorithm. Model 2 with an adjoint is now
dxa

dt
= σ(ya −xa)+α(xf −xa), (19a)445

dya
dt

= ρxa − ya −xaza +α(yf − ya), (19b)

dza
dt

= xaya −βza · (1− ϵsin(2πt)) (19c)

where ϵ is term which determines the strength of the oscillation termand t is the simulation time. The effect of this term on the

attractor is shown in Fig. 10, without synchronisationand assimilation. When compared to Fig. 2a, it can be seen that this term

is very effective at
::::::::
successful

::
in
:
distorting the shape and probability density of the attractor.450
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Figure 10. The Lorenz truth
::
true

:::::
model

:
and model 2 attractors in the case of ϵ= 1.0. The bottom left and top right quadrants shows the

attractors from all possible co-ordinate orientations. The diagonal plots show kernel density estimations (KDEs). No noise is added.

The consequence
:::::::::::
consequences

:
of varying this term on the accuracy of parameter optimisation after assimilation are shown

in Fig. 11. With increasing epsilon
:
ϵ the percentage error and uncertainty between fitted and truth

:::
true

:
systems remains stable.

In spite of the large impact this term has on the attractor shape, this
:::
the

:::::
figure

:
demonstrates a resilience of HDA

::::
TDA

:
to

modelling differences between the forward-only model 1 and model 2 with an adjoint.

5 Conclusions455

In this paper we have demonstrated the ability to constrain a Lorenz ’63 model using a second model with
:::::
similar

:::::::
physics

:::
and an adjoint by 4D-Var data assimilation. Such an approach removes the need to generate an adjoint for a forward model,
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Figure 11. The percentage error (left) and uncertainty (right) between the true
:::
true values of (σ,ρ,β) and those from HDA

::::
TDA. An ensemble

of 100 assimilations is carried out over 100 different data sets. The median (line) and 68% percentile intervals (shaded areas) are plotted.

The noise level 25% and, α= 7.5.

if such an adjoint already exists for a separate, yet
::::::::::
dynamically

:
similar system. An important application of this technique in

Earth system modelling would be a situation where a low-resolution ESM with an adjoint shares a parametrisation with a high-

resolution ESM without an adjoint . The
:::
for

:::::
which

:::
no

::::::
adjoint

:::::
exists.

:::::::::
Moreover,

:::::
using

::
a

:::::::::::::
lower-resolution

:::::::
version

::
of

:::
the

:::::
same460

:::::
model

:::::
could

::::::::::::::
computationally

::::
make

::::
data

:::::::::::
assimilation

:::::
much

:::::
faster.

:::
We

::::
have

::::::
shown

::::
that

::
in

::::
both

:::::
cases

:::
the low-resolution ESM

::::
with

::
an

::::::
adjoint

:
could, through synchronisation, provide

:::::
follow

:::
the

:::::::::
trajectory

::
of

:::
the

:::::
more

:::::::
complex

:::
and

:::::::::::::
high-resolution

::::::
model

::::
while

:::
at

:::
the

::::
same

:::::
time

::::::::
providing

:
all necessary variables to run its tangent linear adjoint model. This can then be utilised to

estimate parameters in the high-resolution ESM without an adjoint. Moreover, using a simpler lower resolution version could

make data assimilation quicker and would use fewer computational resources than an adjoint of the
:::::::
complex

:
high-resolution465

ESM. We have also shown that running a forward model twice before beginning data assimilation can act to smooth the data

and reduce the parametric uncertaintyby roughly one third compared to a single forward run. Our overarching attention in this

approach is .
::::
Our

:::::
focus

::
is

::
in

:
optimising the parameters of a full ESM

:
, which will be tested as a next step. Nevertheless, it

:
It

would also be possible to optimise the state variables which are
::::
initial

::::::::
condition

::
of

:::
the

::::
state

::::::::
variables,

::::::
which

::
is more applicable

to weather forecasting techniques. Future work will examine the resilience of such setups to spacially and temporally sparse470

data.

Data availability. The pseudo-data samples used in this study are available on request from the authors.
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