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Abstract. Analytical solutions to approximations of the Stokes equations are invaluable tools for verifying numerical ice-

sheet models. Halfar (1981) derived a time-dependent solution to the Shallow Ice Approximation (SIA). Here, I derive the 

associated ice velocity vector field, and the resulting thinning rates, which may serve as additional checks for numerical ice-10 

sheet models. 

1 Introduction 

Numerical ice-sheet models are the most commonly used tools to study the evolution of the Greenland and Antarctic ice 

sheets under anthropogenic climate change (Aschwanden et al., 2021). Assessing the performance of such models consists of 

two steps: verification (i.e. checking if the underlying equations are being solved correctly), and validation (i.e. checking if 15 

the correct equations are being solved). Ideally, models are verified by comparing to analytical solutions of the underlying 

equations. However, due to the complexity of the Stokes equations, analytical solutions exist, to the best of my knowledge, 

only for the two most simplified approximations to the Stokes equations: the Shallow Ice Approximation (SIA; Halfar, 1981; 

Bueler et al., 2005, 2007), and the Shallow Shelf Approximation (Schoof, 2006). The solutions by Halfar (1981) and Bueler 

(2005, 2007) describe the ice thickness as a function of time and space, whereas the solution by Schoof (2006) describes 20 

only the velocity as a function of space, for a fixed geometry (a slab of ice lying on a flat, inclined plane). These analytical 

solutions have been invaluable in aiding modellers to identify and remedy issues with their numerical solutions to the Stokes 

equations. 

 

One component of ice-sheet models that has never been checked against analytical solutions is the vertical ice velocity. Ice-25 

sheet models typically assume ice is incompressible, implying a constant density. Conservation of mass is thereby reduced to 

stating that the divergence of the ice velocity field must equal zero, i.e.: 

∇𝒖 = !"
!#
+ !$

!%
+ !&

!'
= 0.           (1) 

Compared to the frightening complexity of the Stokes equations, this equation appears simple enough that most model 

description papers do not describe the details of its numerical implementation. However, as anyone who has ever constructed 30 

an ice-sheet model from scratch will know, such implementations are far from trivial. The boundary conditions at the ice 
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base and ice surface are not immediately obvious, particularly in the case of floating ice that is being melted by warm ocean 

water, so that the base itself moves due to the changing buoyancy of the melting ice, but the ice itself also flows both along 

and through the base. Moreover, to deal with the time-evolving ice thickness, many models use a ‘terrain-following’ vertical 

coordinate transformation to ensure that their first and last grid points in the vertical dimension respectively coincide with 35 

the ice surface and the ice base (or, in some models, vice versa; e.g. Lipscomb et al., 2019; Berends et al., 2021). Applying 

this coordinate transformation to both Eq. 1 and its boundary conditions is a mathematical exercise that is not undertaken 

lightly. Lastly, defining the extensional strain rates !"
!#

, !$
!%

 at the ice margin presents additional problems, as the ice thickness 

and velocity there are discontinuous, and the margin generally does not coincide exactly with any grid point. 

 40 

To aid ice-sheet modellers in verifying their numerical models, I here derive the ice velocity field, including the vertical 

component, for the time-dependent solution to the SIA by Halfar (1981). 

2 Derivation 

Before beginning the mathematical derivation, I will define the symbols used hereafter. 
Table 1: Symbols, units, and values where applicable. 45 

Symbol Description Units Value 

𝐴 Glen’s flow law factor Pa-n yr-1  

𝑔 Gravitational acceleration m s-2 9.81 

𝐻 Ice thickness m  

𝐻( Ice thickness at the divide at 𝑡 = 0 m  

𝑛 Glen’s flow law exponent  3 

𝑅(  Ice margin radius at 𝑡 = 0 m  

𝜌 Density of ice kg m-3 910 

𝑢 Horizontal ice velocity in x-direction m yr-1  

𝑣 Horizontal ice velocity in y-direction m yr-1  

𝑤 Vertical ice velocity m yr-1  

 

Halfar’s 1981 time-dependent solution to the SIA reads: 

 

𝐻 = 𝐻(𝑥, 𝑦, 𝑡) = 𝐻( 5
)!*)
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6
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,           (3) 50 

Γ = 2
.
𝐴(𝜌𝑔)/.            (4) 

 

To simplify the subsequent derivations, we first abbreviate the different exponents appearing in (2): 

 

𝑝- =
42
./*0

,            (5a) 55 

𝑝2 =
4-
./*0

,            (5b) 

𝑝0 =
/*-
/

,            (5c) 

𝑝5 =
/

2/*-
.            (5d) 

 

We then introduce a few additional substitutions: 60 

 

𝑟 = 𝑟(𝑥, 𝑦) = @𝑥2 + 𝑦2,           (6) 

𝑓- = 𝑓-(𝑡) = 5)!*)
)!
6

"#
$%&' = 5)!*)

)!
6
6(

,         (7) 

𝑓2 = 𝑓2(𝑡) = 5)!*)
)!
6

"(
$%&' = 5)!*)

)!
6
6#

,         (8) 

𝑓0 = 𝑓0(𝑥, 𝑦) =
7
,!

,           (9) 65 

𝐺 = 𝐺(𝑥, 𝑦, 𝑡) = 1 − :5)!*)
)!
6

"(
$%&' 7

,!
;

%&(
%

= 1 − (𝑓2𝑓0)6'.       (10) 

 

Substituting (7), (8), (9), and (10) into (2) yields: 

 

𝐻 = 𝐻(𝑓-𝐺6).            (11) 70 

 

We can derive the different partial derivatives with respect to 𝑥, 𝑦, and 𝑡 of 𝑓-, 𝑓2, 𝑓0, and 𝐺: 

 

!8(
!)
= 6(

)!
5)!*)
)!
6
6(4-

,           (12) 

!8#
!)
= 6#

)!
5)!*)
)!
6
6#4-

,           (13) 75 

!8'
!#
= -

,!

!7
!#
= #

7,!
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!9
!#
= −𝑝0𝑓2

6'𝑓0
6'4- !8'

!#
,           (15) 

!9
!)
= −𝑝0𝑓2

6'4- !8#
!)
𝑓0
6'.           (16) 

 

We can apply the product rule to (11) to find the thinning rate and the surface slope: 80 

 
!3
!)
= 𝐻( 5

!8(
!)
𝐺6) + 𝑓-𝑝5𝐺6)4-

!9
!)
6,          (17) 

!3
!#
= 𝐻(𝑓-𝑝5𝐺6)4-

!9
!#

.           (18) 

 

Here, it is useful to expand (18) by substituting (15) and (14) into it: 85 

 
!3
!#
= 𝐻(𝑓-𝑝5𝐺6)4- 5−𝑝0𝑓2

6'𝑓0
6'4- !8'

!#
6 	

= −𝐻(𝑝0𝑝5𝑓-𝑓2
6'𝑓0

6'4-𝐺6)4- !8'
!#

 	

= −𝐻(𝑝0𝑝5𝑓-𝑓2
6'𝑓0

6'4-𝐺6)4- #
7,!

  

= 𝑄𝑥,             (19) 90 

𝑄 = 𝑄(𝑥, 𝑦, 𝑡) = 43!
7,!

𝑝0𝑝5𝑓-𝑓2
6'𝑓0

6'4-𝐺6)4-.         (20) 

 

This expression can be further simplified by collecting all terms that do not depend on 𝑥, 𝑦: 

 

𝑄( = 𝑄((𝑡) =
43!
,!
𝑝0𝑝5𝑓-𝑓2

60.          (21) 95 

 

Substituting (21) into (20) yields: 

 

𝑄 = :!
7
𝑓0
6'4-𝐺6)4-.           (22) 

 100 

Note that (19) implies that: 

 

|∇𝐻| = |𝑄|𝑟.            (23) 

 

The analytical solution to the SIA for isothermal ice on a flat bed reads: 105 
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𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 42;
/*-

(𝜌𝑔)/|∇𝐻|/4- !3
!#
(𝐻/*- − (𝐻 − 𝑧)/*-).      (24) 

 

We can simplify this equation by defining: 

 110 

𝑐 = 42;
/*-

(𝜌𝑔)/,            (25) 

𝐷/ = 𝐷/(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻/ − (𝐻 − 𝑧)/.         (26) 

 

Substituting (25), (23), (19), and (26) into (24) yields: 

 115 

𝑢 = 𝑐|∇𝐻|/4- !3
!#
𝐷/*- = 𝑐(|𝑄|𝑟)/4-𝑄𝑥𝐷/*- = 𝑐|𝑄|/𝑟/4-𝐷/*-𝑥.      (27) 

 

We can apply the product rule to (27) to find the extensional strain rate: 

 
!"
!#
= 𝑐 I5𝑛|𝑄|/4- !|:|

!#
𝑟/4-𝐷/*-𝑥6 + 5|𝑄|/(𝑛 − 1)𝑟/42

!7
!#
𝐷/*-𝑥6 + 5|𝑄|/𝑟/4-

!=%&(
!#

𝑥6 + (|𝑄|/𝑟/4-𝐷/*-)J. (28) 120 

 

Here, we need the partial derivatives of |𝑄| and 𝐷/: 

 
!|:|
!#

= 𝑄( I5
4-
7#

!7
!#
𝑓0
6'4-𝐺6)4-6 + 56'4-

7
𝑓0
6'42 !8'

!#
𝐺6)4-6 + 56)4-

7
𝑓0
6'4-𝐺6)42 !9

!#
6J ∗ sign(𝑄),   (29) 

!=%
!#

= 𝑛𝐻/4- !3
!#
− 𝑛(𝐻 − 𝑧)/4- !3

!#
= 𝑛 !3

!#
𝐷/4-.        (30) 125 

 

Note that, in (28), only 𝐷/*- and !=%&(
!#

 have a dependency on 𝑧. It is therefore useful to rearrange (28) to read: 

 
!"
!#
= 𝑐 I5𝑛|𝑄|/4- !|:|

!#
𝑟/4-𝑥6 + 5|𝑄|/(𝑛 − 1)𝑟/42 !7

!#
𝑥6 + (|𝑄|/𝑟/4-)J𝐷/*- + 𝑐|𝑄|/𝑟/4-𝑥

!=%&(
!#

.   (31) 

 130 

We abbreviate this by introducing: 

 

𝑈- = 𝑈-(𝑥, 𝑦, 𝑡) = 𝑐 I5𝑛|𝑄|/4- !|:|
!#
𝑟/4-𝑥6 + 5|𝑄|/(𝑛 − 1)𝑟/42 !7

!#
𝑥6 + (|𝑄|/𝑟/4-)J.    (32) 

 

Substituting (32) into (31) yields: 135 
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!"
!#
= 𝑈-𝐷/*- + 𝑐|𝑄|/𝑟/4-𝑥

!=%&(
!#

.          (33) 

 

Substituting (30) into (33) yields: 

 140 
!"
!#
= 𝑈-𝐷/*- + 𝑐|𝑄|/𝑟/4-𝑥(𝑛 + 1)

!3
!#
𝐷/.         (34) 

 

We abbreviate this further by introducing: 

 

𝑈2 = 𝑈2(𝑥, 𝑦, 𝑡) = 𝑐|𝑄|/𝑟/4-𝑥(𝑛 + 1) !3
!#

.         (35) 145 

 

Substituting (35) into (34) yields: 

 
!"
!#
= 𝑈-𝐷/*- +𝑈2𝐷/.           (36) 

 150 

A similar derivation for the y-dimension yields: 

 
!$
!%
= 𝑉-𝐷/*- + 𝑉2𝐷/.           (37) 

 

We can now substitute (36) and (37) into (1) to find an expression for the vertical extensional strain rate !&
!'

. Since the Halfar 155 

dome assumes non-sliding, non-melting ice on a non-deforming bed, we know that the boundary condition at the ice base is 

𝑤(𝑧 = 0) = 0, which implies that: 

 

𝑤 = 𝑤(𝑥, 𝑦, 𝑧) = ∫ !&
!'*
𝑑𝑧>'

( = −∫ 5!"
!#
+ !$

!%
6𝑑𝑧>'

( .        (38) 

 160 

Substituting (36) and (37) into (38) yields: 

 

𝑤 = −∫ [(𝑈- + 𝑉-)𝐷/*- + (𝑈2 + 𝑉2)𝐷/]𝑑𝑧>
'
( .        (39) 

 

Since 𝑈-, 𝑈2, 𝑉-, 𝑉2 are functions only of 𝑥, 𝑦, and 𝑡, they can be removed from the integral: 165 

 

𝑤 = −(𝑈- + 𝑉-) ∫ 𝐷/*-𝑑𝑧>
'
( − (𝑈2 + 𝑉2) ∫ 𝐷/𝑑𝑧>

'
( .        (40) 
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Integrating (26) yields: 

 170 

V 𝐷/𝑑𝑧>
'

(
= V (𝐻/ − (𝐻 − 𝑧>)/)𝑑𝑧>

'

(
= V 𝐻/𝑑𝑧>

'

(
−V (𝐻 − 𝑧>)/𝑑𝑧>

'

(
= 𝑧𝐻/ − W

−1
𝑛 + 1

(𝐻 − 𝑧)/*- −
−1
𝑛 + 1𝐻

/*-X	

= 𝑧𝐻/ − -
/*-

(𝐻/*- − (𝐻 − 𝑧)/*-) = 𝑧𝐻/ − =%&(
/*-

.        (41) 

 

Substituting (41) into (40) yields: 

 175 

𝑤 = −(𝑈- + 𝑉-) 5𝑧𝐻/*- − =%&#
/*2

6 − (𝑈2 + 𝑉2) 5𝑧𝐻/ − =%&(
/*-

6.       (42) 

 

The velocity solution is visualised in Fig. 1, for an ice sheet with an initial margin radius 𝑅( = 500	km, initial thickness at 

the divide 𝐻( = 3000	m, Glen’s flow exponent 𝑛 = 3, and Glen’s flow law parameter 𝐴 = 104-?	Pa40	yr4-. 

 180 
Figure 1: A) A transect of the ice sheet along the positive x-axis, showing the ice velocity field as an arrow plot, B) the horizontal 
velocity component u, C) the vertical velocity component w. 

Note that the SIA predicts that the surface slope diverges to infinity at the ice margin. While the horizontal velocity 

components 𝑢, 𝑣 are not affected (as the ice thickness terms in (24) tend to zero, yielding a real limit for 𝑢, 𝑣), the vertical 

velocity component 𝑤 diverges to minus infinity. This suggests that SIA-based ice-sheet models (which are increasingly 185 

rare) will always need to include an exception for the ice margin in their calculation of 𝑤. Whether this is also the case for 

other approximations to the Stokes equations is not clear. 
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