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Abstract 

The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative 15 

stress, is thought to be a main pathway for the health effect of PM inhalation. Exogenous ROS from PM can be 

assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the 

lungs. Here, we investigate the importance of OP apportionment methods on OP repartition by PM sources in 

different types of environments. PM sources derived from receptor models (e.g. EPA PMF) are coupled with 

regression models expressing the associations between PM sources and OP measured by ascorbic acid (OPAA) and 20 

dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: Ordinary Least 

Squares, Weighted Least Squares, Positive Least Squares, Ridge, Lasso, Generalized Linear Model, Random 

Forest, and Multilayer Perceptron. The models are evaluated on one year of PM10 samples and chemical analyses 

at each of six sites of different typologies in France to assess the possible impact of PM source variability on OP 

apportionment. Source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by 25 

model, highlighting the importance of model selection depending on the datasets. Recommendations for the 

selection of the most accurate model are provided, encompassing considerations such as multicollinearity and 

homoscedasticity. 

Key words: Oxidative potential, source apportionment, OP apportionment.  

1. Introduction 30 

Ambient particulate matter (PM) is one of the key contributors to atmospheric pollution and is responsible for 

approximately 7 million premature deaths worldwide yearly (WHO, 2021). Many epidemiological studies have 

linked PM exposure to adverse health effects including (i) acute effects studies using time series and related studies 

to evaluate the immediate impact of PM exposure (Bell et al., 2004; Dominici, 2004; Peng et al., 2009; Pope & 

Dockery, 2006) and (ii) cohort studies aiming to evaluate the long-term effects of chronic PM exposure (Ayres et 35 

al., 2008; Beelen et al., 2014; Crouse et al., 2012, 2015; Pelucchi et al., 2009; Yu et al., 2021). These studies 

mainly focused on the association with PM mass concentrations. However, various research shows that the impacts 

of PM also depend on other factors such as chemical composition, size distribution, particle morphology, and 

biological mechanisms (Crouse et al., 2012). PM's capacity to generate reactive oxygen species (ROS) in vivo has 

recently been introduced as a pivotal indicator of PM biological mechanism, with direct implications for oxidative 40 
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stress and cellular damage (Akhtar et al., 2010; Ayres et al., 2008; Leni et al., 2020; Li et al., 2008; Lodovici & 

Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao et al., 2018). The quantification of the PM capacity to 

oxidize a biological media is called oxidative potential (OP). Various acellular assays of OP have been introduced, 

differentiating ROS generation mechanisms of PM (Calas et al., 2018; Dominutti et al., 2023). Dithiothreitol 

(DTT) and ascorbic acid (AA) assays are two of the commonly used ones in the literature (Liu & Ng, 2023). 45 

The relationship between PM chemical components and OP activities may identify which components are most 

prone to generate ROS (Calas et al., 2018, 2019; Crobeddu et al., 2017; Godri et al., 2011; Janssen et al., 2014; 

Szigeti et al., 2015, 2016; Yang et al., 2014). However, this research pathway struggles with the co-variation 

between measured and unmeasured PM components (Calas et al., 2018; Weber et al., 2018). An alternative 

approach is to examine the association between OP and sources of PM obtained using receptor models such as 50 

chemical mass balance, positive matrix factorization (PMF), or principal components analysis. PMF is the most 

popular method for its ability to quantify PM source contributions without extensive prior information on specific 

sources at the site studied (Belis et al., 2013; Brown et al., 2015; Paatero & Hopke, 2009; Paatero & Tappert, 1994; 

Viana et al., 2008). 

Regression analysis is the most common and effective way to estimate the redox activity of receptor model-derived 55 

PM sources. Generally, this is achieved by regression analyses to characterize the relationship between OP 

activities (nmol min-1 m-3) and PM sources contribution (µg m-3). This approach provides the OP activities 

attributed to each microgram of each source (nmol min-1 µg-1), denoted as intrinsic OP, which can be used to 

calculate the contribution of each source for each observation day. Numerous regression models can be used for 

such OP source apportionment (SA), with multiple linear regression fitted by ordinary least squares being the most 60 

common regression technique (Bates et al., 2015; Deng et al., 2022; Li et al., 2023; Liu et al., 2018; Shangguan et 

al., 2022; Verma et al., 2014; Wang et al., 2020; Yu et al., 2019). Further, some studies exclude sources with 

negative intrinsic OP, assuming that negative OP activities are geochemically nonsensical (Bates et al., 2018; 

Weber et al., 2018). Additionally, weighted least square can be used to introduce a weighting term, usually using 

the OP analysis uncertainties to take into account the measurement uncertainties of the OP assays (Borlaza et al., 65 

2021; Daellenbach et al., 2020; Dominutti et al., 2023; Fadel et al., 2023; in 't Veld et al., 2023b; Weber et al., 

2021). Finally, non-linear models, such as multilayer perceptron, have been used to try to capture possible non-

linearities between OP activities and PM sources (Borlaza et al., 2021; Elangasinghe et al., 2014; Wang et al., 

2023). However, no study to date has compared the performance and applicability of these various regression 

models. Each model implies different assumptions which should be carefully considered when selecting a given 70 

model. 

This study aims to evaluate the variability in OP SA techniques by comparing eight regression techniques: multiple 

linear regression fitted by ordinary least squares (OLS), weighted least squares (WLS), positive least squares 

(PLS), Ridge regression (Ridge), Least Absolute Shrinkage and Selection Operator (Lasso), generalized linear 

model (GLM), random forest (RF), and multilayer perceptron (MLP). These techniques are applied to apportion 75 

OPAA and OPDTT to PM sources at six sites in France. The PM SA outputs have been published previously in 

Weber et al., (2021), using a harmonized PMF methodology based on one year of sampling with similar chemical 

analyses for a large set of chemical tracers. The results of the OP SA models are compared with regard to the 

estimated intrinsic OP of each source, the out-of-sample accuracy of the apportionment, and the assumptions 

inherent in each model. The most appropriate model at each site is compared with OLS to quantify the difference 80 

between choosing a model based on data characteristics vs. using the most common approach. Finally, this study 

provides guidelines for selecting the most suitable model in the strategy for OP contribution regarding sources of 

PM. This holds particular significance in the context of the implementation of OP monitoring as a novel air quality 

metric as foreseen in research programs (such RI-Urbans) and in the process of the revision of the European 

Directive 2008/50/CE. 85 
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2. Methodology 

2.1. General organisation of this work 

Figure 1 illustrates the general workflow of this work. Sections 2.2, 2.3, and 2.4 describe the methods used to 

analyse the temporal evolution of PM sources and OP activities, identify collinearity among PM sources, and 

examine homoscedasticity in the relationship between OP activities and PM sources. Section 2.5 describes the 90 

eight regression techniques (OLS, WLS, PLS, Ridge, Lasso, GLM, RF, and MLP), used for OP SA. Each technique 

is applied to each site separately using OPv (nmol min-1 m-3) as the dependent variable and PM sources (µg m-3) 

as independent variables. The coefficient of the regression called the intrinsic OP of the source (nmol min-1 µg-1), 

represents the capacity of each µg of PM from the given source to generate oxidative stress; the higher the intrinsic 

OP of a source, the more redox-active. Each model is trained on a randomly selected (without replacement) 80% 95 

subsample of the dataset and validated on the remaining 20%. This process is repeated 500 times to estimate 

uncertainty, a method particularly needed for sources with strong seasonality. For WLS, PLS, Ridge, and Lasso 

models, OP analytical errors were used as a weighting, implying that the OP with the high analysis uncertainties 

has less influence on the model. Section 2.6 describes the statistical validation of the models using root mean 

square error (RMSE), mean absolute error (MAE), R-square (R2). The geochemical validation is based on the 100 

regression coefficient (the intrinsic OP) of each source. These are calculated separately for the training and testing 

data and averaged across the 500 sampling iterations. 

 

 

 105 

Figure 1. Workflow of the comparison of OP sources apportionment methodology 
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2.2. Study sites and PM sources 

Six French sites are selected in this work for their different typologies: Roubaix and Nice (traffic sites within urban 

areas), Port-de-Bouc (industrial hotspot), Talence (urban background site), Grenoble and Chamonix (urban 

background sites in Alpine Valley). At each site, sampling was conducted over at least one year to capture the 110 

complete annual evolution of PM and its components. These sites and sampling series were previously used and 

described by Weber et al. (2019).  

In brief, daily filter samples were collected on pre-heated Pallflex quartz fibre filters every third day through high-

volume sampling (DA80, Digitel). These filters were analyzed to determine PM's chemical species and OP 

activities. Further details regarding the chemical species and OP analyses methodology can be found in Weber et 115 

al. (2019, 2021). Briefly, the elemental carbon (EC) and organic carbon (OC) were analyzed using the EUSAAR2 

thermo-optical protocol with a Sunset Lab analyser. Major ionic components (Cl-, NO3
-, SO4

2-, NH4
+, Na+, K+, 

Mg2+, Ca2+) and methanesulfonic acid (MSA) were measured by ion chromatography (IC). Anhydro-sugars and 

saccharides (including levoglucosan, mannosan, arabitol, sorbitol, and mannitol) were analysed by high-

performance liquid chromatography with pulsed amperometry detection (HPLC-PAD). Major and trace elements 120 

(Al, Ca, Fe, K, As, Ba, Cd, Co, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Sr, V, and Zn) were determined by inductively 

coupled plasma atomic emission spectroscopy or mass spectrometry (ICP-AES or ICP-MS). Furthermore, 

colocated PM10 measurements were conducted automatically at each site using the Tapered Element Oscillating 

Microbalance equipped with a Filter Dynamics Measurement System (TEOM-FDMS).  

We used the PM sources identified by Weber et al., (2019), who performed a separate PMF for each site using a 125 

harmonized approach for all sites (same chemical species and measurement methods, same procedure to estimate 

uncertainties, same constraints on the preliminary solutions). Table 1 provides a data description, including the 

sampling duration, the number of samples collected, and the identified PM sources at each site, while Figure 2 

presents the localisation of the sites in France, together with the respective proportion of each PM source at each 

site.  130 
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Figure 2. The location of the selected sites for this study. The small colored dots represent the typology of 

sites. The pie charts are the PM10 source apportionment for each site with the colors identifying the PM 

sources. Background photography from ESRI satellite. 

Table 1. Data description 135 

 PdB TAL GRE-fr CHAM RBX NIC 

Name Port de Bouc Talence Grenoble Chamonix Roubaix Nice 

N of 

samples 
185 147 125 115 156 107 

Sampling 

dates 

2014-06 to 

2016-06 

2012-02 to 

2013-04 

2017-02 to 

2018-03 

2013-11 to 

2014-10 

2013-01 to 

2014-05 

2014-07 to 

2015-05 

N of 

sources 
10 10 10 8 9 9 

 

2.3. OP analysis 

OP assays were performed on PM extracted from the filters using simulated lung fluid, as detailed in Calas et al. 

(2017, 2018). The AA assay involved ascorbic acid, a natural antioxidant in the lungs inhibiting lipid and protein 

oxidation in the lining fluid, using the method presented by  Kelly & Mudway (2003) and further described by 140 

Calas et al., (2018). Conversely, the DTT assay used dithiothreitol (DTT) as a chemical surrogate for cellular 

reducing agents, specifically nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate 

oxidase, thereby replicating in vivo interactions between PM and biological oxidants (Calas et al., 2018; Cho et 

al., 2005). Both assays measured the consumption of AA or DTT during the assay, i.e., the rate of the transfer of 

electrons from AA or DTT to oxygen. The assays were conducted with 96-well plates of UV-transparent quality 145 

(CELLSTAR, Greiner-Bio), and absorption measurements were acquired using a TECAN spectrophotometer, 

Infinite M200 Pro, at the wavelengths of 265nm for the AA assay and 412nm for the DTT assay (Calas et al., 

2017, 2018, 2019). Each sample extraction was subjected to four analyses; the OP activities in this study represent 

the mean and the analysis uncertainty is the standard deviation of these four OP analyses. After analysis, the OP 

activities of each sample were blank-subtracted using lab and field blanks, and normalized using the air sampling 150 

volumes and the mass concentration. The resulting OPV represents the OP activities due to PM per cubic meter of 

air (nmol min-1 m-3).  

2.4. Collinearity and heteroscedasticity tests 

The result of a regression model strongly depends on the characteristics of the dataset because each model makes 

assumptions about the data. Two critical assumptions in OLS regression analysis are that (1) there is little 155 

collinearity between independent variables (the PM sources in this study), and (2) the variance of the regression 

residuals is constant (called homoscedasticity). These assumptions should be tested in different ways.  

2.4.1. Collinearity 

Collinearity occurs when one or more of the independent variables is close to a linear combination of the other 

independent variables. When collinearity is present, small changes in the data can cause large changes in estimated 160 

coefficients, and the estimated standard errors of the coefficients are large. Variance Inflation Factor (VIF) is an 

indicator of the collinearity between the independent variables (Craney & Surles, 2002; O'Brien, 2007; Rosenblad, 

2011). VIF of a specific source is calculated as: 

𝑉𝐼𝐹𝑖 =  
1

1 − 𝑅𝑖
2 , 𝑖 = 1, … , 𝑝 − 1 (𝐸𝑞1) 
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In this equation, p is the number of PM sources, R2 is the coefficient of determination of a multiple linear regression 165 

model between the ith source and the other sources. VIF values of a PM source present a range between 1, and ∞. 

The higher the VIF values, the greater the collinearity between this PM source and the other ones. A VIF value 

between 5 and 10 is commonly interpreted as moderate collinearity, while values greater than 10 indicate high 

collinearity (Craney & Surles, 2002). 

2.4.2. Heteroscedasticity 170 

Heteroscedasticity occurs when the variance of regression residuals is not constant but varies for different values 

of the dependent variable. In this case, the estimated standard errors of the regression coefficients are not reliable. 

The Goldfeld–Quandt test was developed by Goldfeld & Quandt (1965) to evaluate residual variance in a 

regression model. To implement the Goldfeld–Quandt test, an OLS regression was performed between OP and 

PM sources to identify the residual of OP prediction. Next, the PM sources and residual corresponding are divided 175 

into three segments: the upper segment is the group with higher PM sources concentration, the lower segment is 

the group with lower PM sources concentration, and the middle segment, constituting 10% of the moderate PM 

concentration, is excluded. A subsequent regression analysis is then conducted on the two remaining subgroups to 

determine the ratio of residual sums of squares. Finally, an F-test is conducted on this ratio to assess whether the 

variances are the same, with a p-value below 0.05 interpreted as evidence of heteroscedasticity. 180 

The Variance Inflation Factor (VIF) and the Goldfeld–Quandt test were performed in Python 3.9, using the 

statsmodels 0.14.0 package (Seabold & Perktold, 2010). 

2.5. Regression models 

The fundamental principle of regression models in this study is to use the PM sources to predict OP activities by 

identifying the parameters (coefficients and residuals) that minimize an error term (Hastie, 2009). A simple 185 

regression model can be represented by Eq. 2, which defines the estimated function of the regression model, and 

Eq. 3, which estimates the residuals. 

�̂� = 𝑓(𝑋) + 𝑒 (𝐸𝑞2)  

𝑒 =  𝑦 −  �̂�(𝐸𝑞3) 

Here, �̂� is the estimated OP (nmol min-1 m-3), 𝑋 are the PM source contributions (µg m-3), y is the observed OP 190 

(nmol min-1 m-3), and e denotes the residuals (nmol min-1 m-3). Each model has certain assumptions and a 

minimization term, as presented below.  

Ordinary least squares (OLS):  

OLS is a linear regression technique that minimizes the residual sum of squares. This model is based on several 

assumptions: (1) Linearity: The relationship between OP and PM sources is linear. (2) Independence: The PM 195 

sources must be independent, with no collinearity. (3) Homoscedasticity: The variance of residuals is constant 

across all values of PM sources. (4) Normality: The residuals are normally distributed. In the OLS model, the 

estimated equation and objective to minimize are defined as follows: 

�̂� = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖

𝑝

1

(𝐸𝑞4)  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 −  𝑦�̂�)
2

𝑚

𝑖=1

 (𝐸𝑞5) 200 
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Here, the 𝛽0 denotes the intercept (nmol min-1 m-3), 𝛽𝑖
 represents the regression coefficient (intrinsic OP, nmol 

min-1 µg-1) of source i, 𝑥𝑖 is the concentration of source i (µg m-3), p is the number of PM sources, and m is the 

number of observations. 

Weighted least square (WLS): 

The assumptions and the minimization term in WLS closely align with those in OLS. The only difference is that 205 

WLS accounts for heteroscedasticity by introducing a weighting term for individual OP observations, whose 

variance is assumed to be related to the variance of the residuals. The estimation equation in WLS is the same as 

that of OLS, but the objective to minimize is expressed as:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦�̂� − 𝑦𝑖)2

𝑚

𝑖=1

∗  𝑤𝑖  (𝐸𝑞6) 

𝑤𝑖 =
1

𝑆𝐷𝑖
2 210 

With 𝑤𝑖
 being the weight assigned to each observation, and SDi is the OP analysis variance of each observation. 

Positive least square (PLS): 

The assumptions for PLS primarily include linearity, independence, and normality. PLS can be applied with 

weighting, if there is heteroscedasticity in the data. PLS extends OLS with the constraint that the regression 

coefficients must be non-negative. The estimation equation and the error term, PLS, are similar to OLS (without 215 

weighting) and WLS (applying weighting). To ensure the positivity of coefficients, a specific condition must be 

met:  

𝛽𝑖 ≥ 0, ∀𝑖 𝑖𝑛 𝑃𝑀 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝐸𝑞7) 

Ridge: 

Shrinkage methods such as Ridge regression try to produce a more interpretable model or reduce error in the 220 

presence of collinearity by selecting a subset of the independent variables. Ridge regression is introduced by Hoerl 

& Kennard (1970), which incorporates a penalty term that shrinks the coefficients towards zero. The Ridge 

regression minimizes the residual sum of squares plus a penalty term proportional to the sum of squares of the 

coefficients (L2 regularization) as shown in Eq 8. Consequently, Ridge regression reduces the influence of a PM 

source that exhibits minimal impact on OP prediction without excluding it from the model. 225 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑚

𝑖=1

+  𝜆 ∗  ∑ 𝛽𝑗
2

𝑝

𝑗=1

 (𝐸𝑞8) 

where 𝜆 is the parameter representing the amount of shrinkage, the larger 𝜆, the greater the shrinkage. The 

hyperparameter tuning was implemented with different values of 𝜆 (5, 1, 0.5, 0.1, 0.01, 0.005, 0.001, 0.0005, 

0.0001). The best 𝜆  for every site varied from 0.005 to 0.01 and in this study, 0.01 was selected. Ridge can be 

applied with weighting to account for heteroscedasticity. 230 

 

Least Absolute Shrinkage and Selection Operator (Lasso):  

Lasso (Tibshirani, 1996) is a shrinkage method that uses a penalty term proportional to the sum of the absolute 

regression coefficients (L1 regularization). This penalty term shrinks the coefficients of a source with a low impact 

on OP prediction to zero, effectively removing it from the model. This results in a sparse model that may be easier 235 

to interpret and may reduce error on out-of-sample data. However, Lasso is more sensitive to outliers than ridge 
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regression and is less stable when data are collinear. Lasso can be applied with weighting to account for 

heteroscedasticity. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑚

𝑖=1

+  𝜆 ∗ ∑|𝛽𝑗|

𝑝

𝑗=1

 (𝐸𝑞9) 

Similar to Ridge, 𝜆 is the parameter representing the amount of shrinkage. 𝜆 is selected as 0.01 in this study by 240 

running the hyperparameter tuning using the same values as for Ridge. 

Generalized linear model (GLM):  

Generalized linear models, as introduced by McCullagh (1989), provide a framework for regression analysis that 

can contain non-normal error distributions and capture non-linear relationships between OP activities and PM 

sources. GLM allows for error variance that is a function of the predicted value, hence accounting for 245 

heteroskedasticity. Key assumptions underlying GLM include (1) independence, (2) the non-normal distribution 

of OP, and (3) the relationship between the PM sources and the transformed OP (logarithm in this study) is linear. 

The mathematical expression for GLM can be represented as follows:  

𝑙𝑜𝑔(�̂�) = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖

𝑝

0

(𝐸𝑞10)   

where 𝛽0 denotes the intercept,  𝛽𝑖
 represents the regression coefficient of source i, and 𝑥𝑖 is the concentration of 250 

source i. 

Random forest (RF): 

RF, an ensemble learning method introduced by Breiman (2001), combines multiple decision trees to make 

predictions. In the reference implementation, each tree is grown on a bootstrap sample of the data and a random 

subset of the available features is evaluated at each node to choose the best split. The predictions of all trees are 255 

averaged to give the forest's final prediction. RF is customizable via hyperparameters such as the number of trees, 

the size of the bootstrap sample, and the number of features to evaluate at each node. The hyperparameters of RF 

in this study were chosen by tuning, as shown in section S1.1 Supplement. 

RF does not assume a specific equation to express the relationship between OP activities and PM sources, with the 

result that intrinsic OP could not be computed in this regression model. Nevertheless, RF can estimate the relative 260 

importance of each PM source in OP prediction. This study estimated the permutation importance of each PM 

source as the mean increase in the mean squared error of predicted OP when the values of the PM source were 

permuted. 

Multilayer perception (MLP): 

MLP is an artificial neural network that consists of multiple layers of interconnected nodes or neurons organized 265 

in a feedforward structure (Akhtar et al., 2018; Bourlard & Wellekens, 1989; Chianese et al., 2018). These layers 

include an input layer (PM sources), one or several hidden layers, and an output layer (OPAA or OPDTT activities). 

In MLP, the neurons in the hidden layers are linked with the previous neurons by the connection weight, where 

every neuron is independent and has a different weight. The output of each neuron depends on its inputs and an 

activation function, which, if non-linear, allows the model to capture non-linear relationships. The implementation 270 

of MLP includes three steps: (1) forward pass to training model: the input is passed to the model, multiplied with 

an initial weight, add bias at every layer, then calculate output of the model. (2) error calculation: after applying 

step 1, the output of the model and the observed data are used to calculate the error. (3) backward pass: the error 

is propagated back through the network, and then the weights are adjusted to minimize overall error. These 3 steps 

are repeated until the error is minimized.  275 
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The choice of hyperparameters to ensure the MLP model's robustness is processed by hyperparameter tuning and 

shown in section S1.2 of the supplement. Thanks to hyperparameter tuning, the two hidden layers and a logistic 

sigmoid activation function were selected in this study to capture the non-linear relationships between OP activities 

and PM sources.  

All regression models were performed using the Python package statsmodels 0.14.0 (Seabold & Perktold, 2010) 280 

and scikit-learn 1.3.1 (Pedregosa et al., 2011). 

2.6. Performance of the models 

The performance metrics R-square (R2), mean absolute error (MAE), and root mean square error (RMSE) were 

used to assess the goodness of fit of models as described by Kuhn & Johnson (2013). R² quantifies the model's 

ability to explain the variance in the data. R2 equal to 1 indicates a perfect fit. RMSE represents the aggregation of 285 

the individual differences between predicted OP and measured OP, while MAE assesses the average magnitude of 

errors between them. Lower RMSE and MAE values indicate a better fit, with a perfectly fitting model yielding 

an RMSE or MAE of 0. Eq12, Eq13, and Eq14, respectively, define R2
, MAE, RMSE. These indicators are 

computed for the training and testing data of each sampling iteration and averaged across the 500 sampling 

iterations.  290 

𝑅2 = 1 − 
Sum of Squared Residuals

Total Sum of Squares
=  1 −  

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑚

𝑖=0

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑚

𝑖=0

 (𝐸𝑞12) 

𝑀𝐴𝐸 =  
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑚
𝑖=0

𝑚
(𝐸𝑞13) 

𝑅𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑚
𝑖=0

𝑚
(𝐸𝑞14) 

3. Result and discussion 

Assessments of collinearity and homoscedasticity are addressed in Section 3.1. Model performance, including key 295 

performance metrics and identification of the optimal model, is detailed in Section 3.2. Section 3.3 compares the 

intrinsic OP estimated by the different models. Section 3.4 compares intrinsic OP between the combined best-fit 

and reference models. Lastly, Section 3.5 proposes recommendations for selecting an appropriate model

3.1. Dataset characteristics 

The contributions of identified sources (µg m-3) and the OPv activities (nmol min-1 m-3) in each site are presented 300 

in Figure 3, illustrating variations in annual average OP activities and PM source contributions by sites. Most sites, 

including traffic and industrial ones, show higher OPDTT activities than OPAA. Conversely, for the alpine valley 

sites, CHAM presents higher OPAA than OPDTT, while GRE-fr experiences similar levels of the 2 OPs. 

Additionally, the average OP activities in every site are not proportional to the average PM concentration. For 

instance, CHAM and NIC had lower PM concentrations but higher OP activities than other sites, while TAL 305 

showed high PM concentrations but relatively lower OP activities. 

The variations observed in the levels of PM and OP across six sites can be attributed to distinctions in identified 

sources and their respective contributions. These disparities are contingent upon the unique typologies of each site, 

which are discussed in Weber et al., 2021. Further, we can observe a significant seasonality in the OP activities 

(Table S.1). Strong seasonality of OP in Alpine valley sites has been addressed in previous studies (Borlaza et al., 310 

2021; Dominutti et al., 2023; Weber et al., 2018, 2021), with thermal inversions during winter increasing pollutants 

concentrations and OP activities compared to summer. Conversely, OP activities in cold and warm periods in other 

sites are not significantly different. 
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The PM sources and their repartition vary among sites (Figure 3) because of the difference in typology and local 

activities. For instance, in the industrial site (PdB), two specific sources are identified: shipping emissions (HFO) 315 

with an annual mean contribution of 1.39 µg m-3 and industrial sources at 0.86 µg m-3. The urban background site 

TAL also appears to be influenced by industrial sources (2.34 µg m-3), which might, however, be partly due to 

biases induced by the application of the harmonized receptor model protocol (Weber et al., 2019). Note that the 

application of a site-specific PMF procedure for this site leads to a much lower contribution of this source category 

but relatively similar contributions of other sources (Favez, 2017). GRE-fr, an urban background site in an alpine 320 

valley, presents significant long-range transport sources, with secondary sulfate contributing 3.90 µg m-3 followed 

by biomass burning at 2.21 µg m-3. As expected, biomass burning is an abundant source in CHAM, accounting for 

7.28 µg m-3 of the PM contribution, while the traffic sites RBX and NIC displayed high contributions of traffic 

sources (at 2.43 µg m-3 and 1.45 µg m-3 respectively).  

The presence of multicollinearity and homoscedasticity were tested to assess the data characteristic of every site. 325 

The only site with evidence of collinearity was NIC, where the VIF of the traffic source was equal to 5.0. For all 

other sites, VIF values are below 5, indicating limited collinearity among sources. This is expected, as the PMF 

analysis is constrained to avoid collinearity between sources. VIF values for each site can be found in Table S.2.  

The presence of heteroscedasticity is commonly found when the dependent variable (or OP in this study) exhibits 

a large difference between the minimum and maximum values or when the error variance varies proportionally 330 

with an independent variable (PM sources). The heteroscedasticity was assessed by applying the Goldfeld–Quandt 

test. Table 2 presents the p-values of the Goldfeld–Quandt test, indicating homoscedasticity of OP prediction when 

p >0.05. This test reveals that heteroscedasticity was detected in CHAM, GRE-fr, NIC for OPAA and in CHAM 

and TAL for OPDTT (Table 2). We observed a large difference between the cold and warm periods for both OPAA 

and OPDTT in CHAM, similar to what was seen for OPAA in GRE-fr (Table S1), which can be the reason for the 335 

presence of heteroscedasticity. For NIC and TAL, there is an insignificant difference between the cold and warm 

periods, which indicates the presence of heteroscedasticity may be because of the relationship between the PM 

sources and error variance. When heteroscedasticity is detected, unweighted regression for OP prediction 

according to sources may not accurately reflect the uncertainty of each source's intrinsic OP. The scatterplots 

representing the relationship between the regression analysis residuals and the fitted values (for observed OP) are 340 

available in Figures S.1 and S.2, Supplement. 

Table 2. The p-value of the Goldfeld–Quandt heteroscedasticity test  

 
PdB TAL GRE-fr CHAM RBX NIC 

AA 0.15 0.78 << 0.001 << 0.001 0.44 0.002 

DTT 0.59 << 0.001 0.189 << 0.001 0.56 0.91 
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Figure 3. The contribution of sources to PM10  and the OP activities in 6 sites. The left y-axis and bar show 345 

the contribution of PM sources in µg m-3. The right y-axis, circles and squares showed the mean OPv 

activities in nmol min-1 m-3, with red circle for OPAA and black square for OPDTT . 

3.2. The performances of regression models  

The 11 regression models, with or without weighing for some of them, were tested by comparing their performance 

metrics between the measured and reconstructed OPs. For each run (n = 500 iterations), the R2, RMSE, and MAE 350 

were computed for the testing and training dataset, resulting in 500 values for each performance metric. Figure 4 

presents the mean R² values of the training data sets, the mean and the standard deviation of the testing datasets of 

the OPAA models across the 500 sampling iterations, and Figure 5 presents the mean RMSE and MAE. The same 

result pattern was found for OPDTT, as presented in the tables S.3, S.4, S.5, Supplement. The WLS, wPLS, wRidge, 

and wLasso models incorporated weighting, while the OLS, PLS, Ridge, Lasso, GLM, RF, and MLP models were 355 

unweighted. 
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Figure 4. The R2 of 11 OPAA models in 6 sites. The mean R2 of training data is shown in a blue bar, the mean 

R2 of testing data is shown by a red triangle, and the red bar is the standard deviation of the R2 of the testing 

data. The y-axis represents the models, and the x-axis denotes the R2 values. 360 
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Figure 5. The MAE and RMSE of 11 OPAA models in every site for the testing data. Blue and red lines 

present the RMSE and the MAE, respectively. The values in the figure are the mean of RMSE and MAE of 

500 iterations.  365 

OP predictions across all sites are statistically validated, with testing R² values observed in RBX, NIC, PdB, TAL, 

CHAM, and GRE-fr being 0.66, 0.76, 0.76, 0.78, 0.87, 0.90, respectively. The lowest mean test set RMSE values 

are 0.70, 0.28, 0.21, 0.37, 0.70, 0.31 nmol min⁻¹ m⁻³, respectively, for the same sites. The lowest mean test set 

MAE values are 0.49, 0.23, 0.14, 0.25, 0.45, and 0.21 nmol min⁻¹ m⁻³, respectively. Notably, the GLM model 

exhibits for all sites the lowest R² values and the highest RMSE (Table S.3, S.4, S.5, Supplement). These results 370 

strongly suggest that the relationship between OPAA and PM sources is not log-linear. 

Differences in MAE, RMSE, and R² between the training and testing database for RF and MLP are significant 

across the sites. Notably, RF displays a large difference in R², with a gap of up to 0.6 in RBX (R² training: 0.92, 

R² testing: 0.27). Similar gaps were found in RMSE and MAE. RF consistently performed best on the training set, 

characterized by the highest R² and the lowest MAE and RMSE values, but had lower set test R² values than the 375 

other models (except GLM). Conversely, MLP exhibited training R² values comparable to other models but lower 

test R2. These findings suggest overfitting: the flexible algorithms identify relationships in the training data that 

do not generalize to the testing data. This observation may be attributed to the limitations of data coverage, possibly 

failing to fully represent the underlying relationships, leading to poor performance in testing datasets (Benkendorf 

& Hawkins, 2020; Hawkins, 2004; Hernandez et al., 2006; Matsuki et al., 2016; Raudys & Jain, 1991; Stockwell 380 

& Peterson, 2002; Wisz et al., 2008). Pearce and Ferrier (2000) recommended that the minimum number of 

samples for robust performance should be over 250 for GLM model, while (Raudys & Jain, 1991) showed that the 

minimum number of sample are based on the complexity of the model and the number of predictors. Additionally, 

Harrell (2016) suggested that the number of predictors (PM sources) should be below the number of samples 

divided by 15, a threshold not reached in this analysis. For example, in NIC, the minimum number of samples 385 

should be 135 for the training set (9 PM sources x 15), while in total, we have only 107 samples. Therefore, we 

https://doi.org/10.5194/egusphere-2024-361
Preprint. Discussion started: 19 February 2024
c© Author(s) 2024. CC BY 4.0 License.



14 

 

can also recommend that, for optimal performance of RF, and MLP, the number of samples and PM sources should 

satisfy these thresholds. 

The WLS, OLS, wPLs, wRidge, and wLasso models show more robust performances with fewer differences 

between the training and testing data. At most sites, there is very little difference between the R2, RMSE, and MAE 390 

of OLS and Ridge, with or without weighting, and often PLS and Lasso as well. This consistency is observed even 

in the collinearity case of NIC, where VIF = 5. The difference between these models is a maximum of 0.06 in R2, 

0.01 in MAE and 0.1 in RMSE, indicating that these models work well for OP prediction. Nevertheless, it is worth 

noting that every model exhibits different assumptions that have to be respected. The assumption violations may 

lead to unreliable regression coefficients (intrinsic OP) even though the prediction is good (Cohen et al., 2013; 395 

Williams et al., 2013).  

The best model for each site was selected based on both data characteristics (collinearity and heteroscedasticity) 

and testing data performance. For sites with collinearity, the Ridge, Lasso were considered most appropriate. For 

sites with heteroscedasticity, models with weights were considered the most appropriate. For sites with neither 

collinearity nor heteroskedasticity, OLS and PLS were considered most appropriate. Tables 3 and 4 present the 400 

best OPAA and OPDTT prediction models for each site. It follows that the best model is not necessarily the same one 

for both series of OP for a given site. As a rule, the model that exhibits the best performance metrics (the best 

model by error in Table 3 for OPAA and Table 4 for OPDTT) is suited to the best model chosen by data 

characteristics; therefore, choosing a model according to data characteristics help to more reliable in OP 

predictions.  405 

Table 3. Criteria to select the best model for OPAA 

 PdB TAL GRE-fr CHAM RBX NIC 

Collinearity No No No No No Yes 

Heteroscedasticity No No Yes Yes No Yes 

Best model by 

characteristic 

OLS/  

PLS 

OLS/  

PLS 

WLS/ 

wPLS 

WLS/ 

wPLS 

OLS/  

PLS 

wRidge/  

wLasso 

Best by error PLS  PLS wPLS wPLS OLS wRidge 

Table 4. Criteria to select the best model for OPDTT 

 PdB TAL GRE-fr CHAM RBX NIC 

Collinearity No No No No No Yes 

Heteroscedasticity No Yes No Yes No No 

Best model by 

characteristic 

OLS/  

PLS 

WLS/ 

wPLS 

OLS/  

PLS 

WLS/ 

wPLS 

OLS/  

PLS 

Ridge/  

Lasso 

Best by error OLS wPLS PLS wPLS  PLS  Ridge 

 

3.3. Effect of the choice of a model on intrinsic OP 

It is particularly important to try to define the best way of calculating the more accurate PM sources intrinsic OP 410 

and the contribution of sources to OP, since these values are fundamental inputs in all the works of large-scale 

modelling of OP with chemical transport models (CTM) (Daellenbach et al., 2020; Vida et al., 2024). Figures 6 

and 7 show the variations of intrinsic OP for all the models, focusing on the results of NIC as an example. The 

evaluation of the 5 other sites is presented in Fig S.3 to Fig S.7 for OPAA and Fig S.8 to S.12 for OPDTT. The 

differences in equations, error term minimizations, and assumptions can explain the differences in intrinsic OP per 415 

µg of source among the eight regression models. While the R², RMSE, and MAE values are similar among models 

(except for GLM, RF, and MLP), the intrinsic OP values significantly differ between the models with and without 
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weighting and between the linear and non-linear regression models. The average intrinsic OP of 500 iterations is 

discussed in this section since these values are usually used to calculate the contribution of the PM source to OP 

in prior studies (Borlaza et al., 2021; Dominutti et al., 2023; Weber et al., 2018). The mean and standard deviation 420 

of intrinsic OPAA and OPDTT for the 6 sites are shown in Table S.6 and S.7, respectively.  

Intrinsic OPAA of PM sources at NIC is the same between WLS and wRidge and between the OLS and Ridge, 

revealing that the moderate collinearity of the road traffic source did not affect the estimated intrinsic OPAA. PLS 

sets the intrinsic OPAA of some sources to zero, therefore producing slightly different results. Lasso regression sets 

the intrinsic OPAA of some sources to zero and shrinks the estimates for all other sources toward zero. GLM 425 

produces intrinsic OPAA values that represent a multiplicative change on the log scale, so they are not directly 

comparable to the other models. However, the direction and importance of the sources are similar to the other 

models. Whatever the model, road traffic appears as the source with the highest intrinsic OPAA, followed by 

biomass burning, aged salt, salt and sulfate-rich sources, in NIC. Traffic and biomass burning sources have been 

similarly recognized as significant contributors to OPAA in prior studies (Borlaza et al., 2021; Dominutti et al., 430 

2023; Stevanović et al., 2023). The intrinsic OP of the dominant sources is stable, indicating that all these models 

could give the same information about the intrinsic OP of the main sources. Conversely, the differences are larger 

between models for the sources with small to very small intrinsic OP (MSA rich, primary biogenic, nitrate-rich, 

dust), whose intrinsic OP varies from positive to negative among models.  

 435 

Figure 6. Intrinsic OPAA
 values of the different PM sources at Nice were obtained with the different models.  
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The OPDTT intrinsic values in NIC (Figure 7) display minimal variation among the WLS, wPLS. This consistency 

is linked to the absence of negative intrinsic values. On the other hand, even though there is the presence of 

moderate collinearity, wRidge still has the same result as WLS and wPLS. In line with the OPAA results, the wLasso 

and GLM models exhibit distinct responses compared to the other models. The intrinsic OPDTT of all sources varies 440 

depending on the presence or absence of weighting. While the WLS models tend to amplify the influence of some 

sources (aged sea salt, primary biogenic, sea salt, and sulfate-rich), the OLS reduces the intrinsic OPDTT of these 

sources. Conversely, MSA-rich, nitrate, and road traffic sources undergo less influence in WLS but higher in OLS. 

Different from OPAA, OPDTT  prediction shows more variation among models, highlighting the effect of choosing 

a model on evaluating the intrinsic OPDTT of PM sources. 445 

 

Figure 7. The variations of the intrinsic OPDTT 
 of the different PM sources at Nice were obtained with the 

different models.  

The comparison of intrinsic OP among regression models in NIC demonstrated that OPDTT and OPAA intrinsic 

values exhibit variation across different models with and without weighting, illustrating that the choice of the 450 

model significantly influences the values obtained for intrinsic OP of PM sources (A similar pattern is observed 

for all other sites and shown in Fig S.3 to Fig S.7 for OPAA and Fig S.8 to S.12 for OPDTT). Because of the difference 

in OP intrinsic across models, a comparison between the best-performing and most commonly used models (OLS) 

is presented in the following section to elucidate the advantage of choosing a model based on data characteristics 

(section 3.4). 455 
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3.4. Comparisons between the best site-specific model and OLS  

In this section, the intrinsic OP of the best model is selected for each site as discussed in Section 3.2, and the 

intrinsic values of each source are compared to the ones returned by the OLS model. The OLS model is used as a 

representative of usual practices that do not consider the database characteristics. Each PM source's average 

intrinsic OP value is calculated from all the 500 bootstrapping iterations for all sites where that particular source 460 

is identified. Intrinsic OP values obtained in this way from the best model encompassing all six sites are called 

intrinsic OP of the best model, and the intrinsic OP values derived from the OLS from all six sites are called 

intrinsic OP of the reference model.  

A meaningful comparison of the two series of intrinsic values requires two conditions. First, intrinsic OP values 

should be consistent across all sites. While recognizing that intrinsic OP values depend on diverse factors, we 465 

assumed the sites share fairly uniform PM chemical source profiles in France. This is demonstrated by evaluating 

the Pearson distance and standardized identity distance similarity indicators of the source chemical profiles (Belis 

et al., 2015; Weber et al., 2019), and Figure S.13 indicates consistent profiles of sources for the 6 sites. 

Consequently, we could expect to observe minimal divergence in intrinsic OP values among these sites. Second, 

we postulate that negative intrinsic OP values are possible since previous studies have reported that total PM 470 

intrinsic OP can be modulated due to the synergetic/antagonistic effects involving, for example, soluble copper, 

quinones, and bacteria (Borlaza et al., 2021; Pietrogrande et al., 2022; Samake et al., 2017). These last studies 

showed that the impact of synergistic and antagonistic effects cannot exceed 60% of the intrinsic OP value when 

assessed independently for each chemical. Consequently, we consider here that the intrinsic OP value of an 

individual site for a given source could be negative only within a range of at most 60% of the mean combined 475 

intrinsic OP value of this source across all sites. Negative intrinsic OP exceeding this criterion may result from the 

mathematical construction of the model. The comparison of intrinsic OPAA of the best and reference model is 

presented in 3.4.1 and that of OPDTT is shown in 3.4.2. 

3.4.1. OPAA activities 

The results of the comparison of OPAA intrinsic values (Figure 8 and Table S.8) show that the anthropogenic 480 

sources get the highest intrinsic OP values in both the best and reference models. Among these sources, road traffic 

appears as the most prominent potent fraction, followed by biomass burning, HFO, and industrial. These results 

are aligned with prior research (Calas et al., 2019; Daellenbach et al., 2020; Dominutti et al., 2023; Fadel et al., 

2023; Fang et al., 2016; in ’t Veld et al., 2023a; Weber et al., 2018; Zhang et al., 2020) which has highlighted the 

sensitivity of OPAA to concentrations of metals, black carbon, and organic carbon. The differences between the 485 

best and reference models were insignificant for these sources, demonstrating that the best and reference models 

consistently captured similar patterns for the most critical sources of OP activities.  

However, the interquartile ranges (IQR) of the intrinsic OP values are consistently narrower for the best models 

across all sources, accounting for less divergence in intrinsic OP values across sites. Moreover, the median intrinsic 

OP values obtained from the best model closely approximated the mean values, indicating the absence of extreme 490 

intrinsic OP values. For instance, in the case of road traffic, the mean and median values were 0.24 and 0.23 nmol 

min-1 µg-1, respectively. Conversely, the reference model exhibited a large difference between the mean and 

median values, implying lower consistency across sites and sampling iterations. The same result was observed in 

biomass burning source, in which the median and mean intrinsic OP in the best model had fewer discrepancies. 

Further, the biomass burning intrinsic OP in GRE-fr of the best model is more consistent with those in other sites 495 

(best: 0.30 nmol min-1µg-1, reference: 0.35 nmol min-1µg-1).  

When considering sources with low intrinsic OP, the variability can be larger between the two methods. As an 

example, for the sulfate-rich sources, the median intrinsic OP values were positive (0.002 nmol min-1 µg-1), while 

the mean intrinsic OP values were negative (-0.008 nmol min-1µg-1). The mean intrinsic OP in the best model 
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exhibited fewer negative values in individual sites than in the reference model (for aged salt, salt, primary biogenic, 500 

MSA rich, sulfate-rich and nitrate-rich), highlighting the advantage of considering the data in model selection. For 

example, the mean intrinsic OP values of the primary biogenic source revealed a negative intrinsic OP in NIC (-

0.03). This negative value represented a 100% reduction compared to the mean intrinsic OP of all sites. In the OLS 

model, the negative intrinsic OP observed in NIC and some extreme values in GRE-fr, CHAM, NIC (where 

heteroscedasticity was presented) underscores that the model assumptions on data characteristics proving false 505 

could impact the accuracy of OP prediction. 

 

Figure 8. Intrinsic OPAA  estimated by the best and the reference methods in the 6 sites. The y-axis represents 

the intrinsic OP values in nmol min-1 µg-1, the x-axis represents the sources. The grey bars are the median 

intrinsic OP values of the best models in the 6 sites (n = 500 bootstrapping * number of sites where the given 510 

source is detected) for each source. The white bars are the same median intrinsic OP values for the reference 

(OLS) model. The grey plus symbol represents the mean of OP intrinsic values. The hatched bars are the 

interquartile ranges of the intrinsic OP values. The dots represent the mean intrinsic OP of all sites, 
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including grey – Chamonix, green – Grenoble, red – Nice, blue – Port-de-Bouc, purple – Roubaix, and 

orange-Talence. 515 

The detailed comparison of intrinsic OPAA between the best and reference models is categorized into four groups 

and discussed in detail in section S9. These groups include (1) anthropogenic sources without nitrate and sulfate 

(road traffic, biomass burning, HFO, industrial), (2) natural inorganic sources (aged sea salt, sea salt, dust), (3) 

biogenic sources (primary biogenic, MSA rich), and (4) nitrate and sulfate-rich sources. 

3.4.2. OPDTT activities 520 

Similar to OPAA, for OPDTT the IQR of the best model is narrower for most of the sources than the IQR of the 

reference model (OLS). Except for the road traffic, industrial, and MSA-rich, the IQR is slightly higher in the best 

model (Figure 9 and Table S.9). In the two models, the mean intrinsic OP is essentially unchanged, where the 

traffic is the most critical source (0.27±0.10), followed by HFO (0.18±0.01), biomass burning (0.12±0.03), dust 

(0.12±0.07), primary biogenic (best: 0.10±0.06, reference: 0.12±0.08) and MSA rich (best: 0.11±0.09, reference: 525 

0.09±0.09). The remaining sources, such as sea salt, sulfate-rich, industrial, and nitrate-rich, show a negligible 

contribution to OPDTT with an intrinsic OPDTT from 0.02 to 0.08. The minimum difference between the two models 

again confirms the conclusion in the OPAA comparison, demonstrating the similar pattern of the best and the 

reference model in the most crucial sources of OP. For both best and reference, OPDTT activities showed 

sensitivity to more sources than OPAA, as discussed in many works (Borlaza et al., 2021; Calas et al., 2019; 530 

Dominutti et al., 2023; Fadel et al., 2023). The traffic, HFO and biomass burning sources highlighted in (Fadel et 

al., 2023; Veld et al., 2023b; Serafeim et al., 2023; Y. Wang et al., 2020) are the most contributing to OPDTT 

activities. The primary biogenic highly contributes to OPDTT in both models, likely reflecting the sensitivity of 

OPDTT to organic compounds, as mentioned in (Dominutti et al., 2023; Li et al., 2023; Weber et al., 2021). The 

intrinsic OP of dust and MSA-rich have been shown to vary in the literature, indicating the different effects of the 535 

compositions to generate DTT ROS.  

While the best and reference models give the same mean intrinsic OPDTT of all sites, the mean OPDTT at each 

individual site can vary substantially between the two models. For the sulfate-rich source, the reference model 

showed a negative intrinsic OPDTT in RBX (-0.09 nmol min-1 µg-1), while the best model showed an intrinsic of 0. 

On the other hand, the reference model presents that the intrinsic OP in TAL is 0.20 nmol min-1 µg-1, far from the 540 

mean of all sites (0.07 nmol min-1 µg-1). The best model, conversely, shows a more consistent intrinsic OP in TAL 

compared to the other sites. A similar result was also found in primary biogenic sources, where the reference model 

overestimates the intrinsic OP of this source in TAL compared to the other sites. The reason is that 

heteroscedasticity was detected in TAL, which does not satisfy the assumption of OLS.  
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 545 

Figure 9. Intrinsic OPDTT was estimated by the best and the reference methods in the 6 sites. The y-axis 

represents the intrinsic OP values in nmol min-1 µg-1, the x-axis represents the sources. The grey bars are 

the median intrinsic OP values of the best models in the 6 sites (n = 500 bootstrapping * number of sites 

where the given source is detected) for each source. The white bars are the same median intrinsic OP values 

for the reference (OLS) model. The grey plus symbol represents the mean of intrinsic OP values. The 550 

hatched bars are the interquartile ranges of the Intrinsic OP values. The dots represent the mean intrinsic 

OP of all sites, including grey – Chamonix, green – Grenoble, red – Nice, blue – Port-de-Bouc, purple – 

Roubaix, and orange-Talence.  

The comparison of intrinsic OP between the best models and the reference model highlights the importance of 

considering the database characteristics when selecting a model for OP SA. For all the datasets studied here, using 555 

the best model for each site delivered more robust results with reduced uncertainty, reduced differences in intrinsic 
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OP across sites, and provided a more geochemically meaningful intrinsic OP. The recommendation for selecting 

a model based on the characteristics of the database is presented in section 3.5. 

3.5. Guidelines for the selection of regression model for OP SA.  

 560 

Figure 10. Workflow in model selection considering the characteristics of data 

 

Our results have highlighted the benefits of choosing a model that matches the characteristics of the data to improve 

the robustness of OP SA method. For this reason, this section develops a workflow to help make model selection 

decisions. Before selecting a regression for OP SA, the first question is whether the PM sources are collinear and 565 

the second is whether the residual variance of the regression between OP and PM mass is constant. These two 

questions represent the characteristics of PM sources and OP activities, which vary according to the study site.  

For data exhibiting collinearity between sources and generating a residual variance that varies according to the 

value of the PM sources, weighted regularisation regression can help to reduce collinearity and to match the model 

assumption about the residual. On the other hand, the unweighted Ridge and Lasso are introduced for data showing 570 

collinearity and homoscedasticity. Additionally, data with no collinearity are suitable for OLS and unweighted 

PLS in the case of homoscedasticity, while WLS, weighted PLS are used for data with heteroscedasticity. 

If the number of predictors (PM sources) is below the number of samples divided by 15, RF and MLP can also be 

employed to capture possible non-linear relationships between the OP and PM sources. However, cross-validation 

must be used to ensure that there is no over-fitting. In addition, these models do not estimate intrinsic OP (nmol 575 

min-1µg-1) but only the importance of each PM source to the OP prediction. This is a large drawback since the 

intrinsic OP of sources is a must for the modelling effort of OP with CTM. However, RF and MLP could be useful 

for OP prediction in the case of larger datasets generated by online instruments.  

For each data characteristic there is more than one model that suits. Out-of-sample performance metrics should be 

employed to identify the most accurate of these models. 580 

Limitations and perspectives of the study 

- This study compares eight regression models but is not exhaustive; further research could add more 

regression techniques to evaluate result variations across models. 
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- PMF coupled with a regression model remains a popular approach for OP SA. Notably, the uncertainties 

in PMF are typically addressed in chemical profiles, but not in contributions. Incorporating uncertainty 585 

from variations in contribution into models could enhance their robustness compared to relying only on 

absolute PMF results. 

- Observations ranged between 100 and 200 samples at each site, which may be insufficient to obtain fair 

performance of GLM, decision trees and neural network models. Such a number of samples is sufficient 

to address SA through PMF model for offline analyses. Therefore, such study outlines well the limitations 590 

of GLM, RF, MLP for such types of datasets. Future investigations should be performed in an extended 

dataset, such as long-term or real-time measurement data, to investigate the performance of such machine 

learning algorithms. 

4. Conclusion 

The results of the OP SA marked an important milestone as they were revealed for the first time through the use 595 

of eight regression models, including OLS, WLS, PLS, GLM, Ridge, Lasso, RF and MLP. This in-depth analysis 

was carried out on a complete set of data collected from six sites with different characteristics. The approach of 

selecting a suitable model for each site based on specific data characteristics resulted in a more consistent intrinsic 

OP across sites, in stark contrast to the variation observed when using the basic OLS model. The revelations of the 

study have provided concrete recommendations for the judicious selection of an appropriate regression model 600 

based on the unique characteristics of the dataset. These guidelines should help to improve the accuracy of OP 

assessments and contribute to the refinement of air quality assessment methods. In addition, the implications of 

this research extend to the implementation of OP monitoring as a new measure of air quality, particularly on 

European supersites. As this initiative aligns with the ongoing revision process of the European Directive 

2008/50/CE, the study's findings assume a pivotal role in shaping the methodologies underpinning air quality 605 

assessments at a broader regulatory level. 
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