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Abstract 14 

The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative 15 

stress, is thought to be a main pathway for the health effect of PM inhalation. Exogenous ROS from PM can be 16 

assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the 17 

lungs. Here, we investigate the importance of OP apportionment methods on OP repartition by PM10 sources in 18 

different types of environments. PM10 sources derived from receptor models (e.g. EPA PMF) are coupled with 19 

regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid 20 

(OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: 21 

Ordinary Least Squares, Weighted Least Squares, Positive Least Squares, Ridge, Lasso, Generalized Linear 22 

Model, Random Forest, and Multilayer Perceptron. The models are evaluated on one year of PM10 samples and 23 

chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source 24 

variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment 25 

accuracy vary substantially by model, highlighting the importance of model selection depending on the datasets. 26 

Recommendations for the selection of the most accurate model are provided, encompassing considerations such 27 

as multicollinearity and homoscedasticity. 28 

Key words: Oxidative potential, source apportionment, OP apportionment.  29 

1. Introduction 30 

Ambient particulate matter (PM) is one of the key contributors to atmospheric pollution and is responsible for 31 

approximately 7 million premature deaths worldwide yearly (WHO, 2021). Many epidemiological studies have 32 

linked PM exposure to adverse health effects including (i) acute effects studies using time series and related studies 33 

to evaluate the immediate impact of PM exposure (Bell et al., 2004; Dominici, 2004; Pope and Dockery, 2006; 34 

Peng et al., 2009) and (ii) cohort studies aiming to evaluate the long-term effects of chronic PM exposure (Pelucchi 35 

et al., 2009; Crouse et al., 2012, 2015; Beelen et al., 2014; Ayres et al., 2008; Yu et al., 2021). These studies mainly 36 

focused on the association with PM mass concentrations. However, various research shows that the impacts of PM 37 

also depend on other factors such as chemical composition, size distribution, particle morphology, and biological 38 

mechanisms(Brook et al., 2010) . PM's capacity to generate reactive oxygen species (ROS) in vivo has recently 39 

been introduced as a pivotal indicator of PM biological mechanism, with direct implications for oxidative stress 40 
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and cellular damage (Li et al., 2008; Lodovici and Bigagli, 2011; Mudway et al., 2020; Nelin et al., 2012; Rao et 41 

al., 2018; Ayres et al., 2008; Akhtar et al., 2010; Leni et al., 2020). The quantification of the PM capacity to oxidize 42 

a biological media is called oxidative potential (OP) (Bates et al., 2019; Daellenbach et al., 2020; Dominutti et al., 43 

2023). Various acellular assays of OP have been introduced, differentiating ROS generation mechanisms of PM 44 

(Dominutti et al., 2023; Calas et al., 2018). Dithiothreitol (DTT) and ascorbic acid (AA) assays are two of the 45 

commonly used ones in the literature (Liu and Ng, 2023). 46 

The relationship between PM chemical components and OP activities may identify which components are the most 47 

prone to generate ROS (Calas et al., 2019; Godri et al., 2011; Yang et al., 2014; Janssen et al., 2014; Szigeti et al., 48 

2016; Crobeddu et al., 2017; Szigeti et al., 2015; Calas et al., 2018). However, this research pathway struggles 49 

with the co-variation between measured and unmeasured PM components (Calas et al., 2018; Weber et al., 2018). 50 

An alternative approach is to examine the association between OP and sources of PM obtained using receptor 51 

models such as chemical mass balance, positive matrix factorization (PMF), or principal components analysis. 52 

PMF is the most popular method for its ability to quantify PM source contributions without extensive prior 53 

information on specific sources at the site studied (Belis et al., 2013; Viana et al., 2008; Paatero and Tappert, 1994; 54 

Brown et al., 2015; Paatero and Hopke, 2009). 55 

Regression analysis is the most common and effective way to estimate the redox activity of receptor model-derived 56 

PM sources (Bates et al., 2015; Deng et al., 2022; Li et al., 2023; Liu et al., 2018; Shangguan et al., 2022; Verma 57 

et al., 2014; Wang et al., 2020a; Yu et al., 2019). Generally, this is achieved by regression analyses to characterize 58 

the relationship between OP activities (nmol min-1 m-3) and PM sources contribution (µg m-3). This approach 59 

provides the OP activities attributed to each microgram of each source (nmol min-1 µg-1), denoted as intrinsic OP, 60 

which can be used to calculate the contribution of each source for each observation day. Numerous regression 61 

models can be used for such OP source apportionment (SA), with multiple linear regression fitted by ordinary least 62 

squares (OLS) being the most common regression technique (Bates et al., 2015; Deng et al., 2022; Li et al., 2023; 63 

Liu et al., 2018; Shangguan et al., 2022; Verma et al., 2014; Wang et al., 2020b; Yu et al., 2019). Further, some 64 

studies exclude sources with negative intrinsic OP, assuming that negative OP activities are geochemically 65 

nonsensical (Bates et al., 2018; Weber et al., 2018). Additionally, weighted least square can be used to introduce 66 

a weighting term, usually using the OP analysis uncertainties to take into account the measurement uncertainties 67 

of the OP assays (Borlaza et al., 2021; Daellenbach et al., 2020; Dominutti et al., 2023; Fadel et al., 2023; in 't 68 

Veld et al., 2023b; Weber et al., 2021). Finally, non-linear models, such as multilayer perceptron, have been used 69 

to try to capture possible non-linearities between OP activities and PM sources (Borlaza et al., 2021; Elangasinghe 70 

et al., 2014; D. Wang et al., 2023). However, no study to date has compared the performance and applicability of 71 

these various regression models. Each model implies different assumptions which should be carefully considered 72 

when selecting a given model. 73 

This study aims to evaluate the variability in PM10 OP SA techniques by comparing eight regression techniques: 74 

multiple linear regression fitted by OLS, weighted least squares (WLS), positive least squares (PLS), Ridge 75 

regression (Ridge), Least Absolute Shrinkage and Selection Operator (Lasso), generalized linear model (GLM), 76 

random forest (RF), and multilayer perceptron (MLP). These techniques are applied to apportion PM10 OPAA and 77 

PM10 OPDTT to PM10 sources at six sites in France. The PM10 SA outputs have been published previously in Weber 78 

et al. (2021), using a harmonized PMF methodology based on one year of sampling with similar chemical analyses 79 

for a large set of chemical tracers. The results of the PM10 OP SA models are compared with regard to the estimated 80 

intrinsic PM10 OP of each source, the out-of-sample accuracy of the apportionment, and the assumptions inherent 81 

in each model. The most appropriate model at each site is compared with OLS to quantify the difference between 82 

choosing a model based on data characteristics vs. using the most common approach. Finally, this study provides 83 

guidelines for selecting the most suitable model in the strategy for OP contribution regarding sources of PM10. 84 

This holds particular significance in the context of the implementation of OP monitoring as a novel air quality 85 
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metric as foreseen in research programs (such RI-Urbans) and in the process of the revision of the European 86 

Directive 2008/50/CE. 87 

2. Methodology 88 

2.1. General organisation of this work 89 

Figure 1 illustrates the general workflow of this work. Sections 2.2, 2.3, and 2.4 describe the methods used to 90 

analyse the temporal evolution of PM10 sources and PM10 OP, identify collinearity among PM10 sources, and 91 

examine homoscedasticity in the relationship between PM10 OP and PM10 sources. Section 2.5 describes the eight 92 

regression techniques (OLS, WLS, PLS, Ridge, Lasso, GLM, RF, and MLP), used for PM10 OP SA. Each 93 

technique is applied to each site separately using PM10 OPv (nmol min-1 m-3) as the dependent variable and PM10 94 

sources (µg m-3) as independent variables. The coefficient of the regression called the intrinsic PM10 OP of the 95 

source (nmol min-1 µg-1), represents the capacity of each µg of PM10 from the given source to generate oxidative 96 

stress; the higher the intrinsic PM10 OP of a source, the more redox-active. Each model is trained on a randomly 97 

selected (without replacement) 80% subsample of the dataset and validated on the remaining 20%. This process is 98 

repeated 500 times to estimate uncertainty, a method particularly needed for sources with strong seasonality. For 99 

WLS, PLS, Ridge, and Lasso models, PM10 OP analytical errors were used as a weighting, implying that the PM10 100 

OP with the high analysis uncertainties has less influence on the model. These 8 regression techniques were applied 101 

to find the relationship between PM10 OP and PM10 sources, however, PLS, Ridge, and Lasso were performed 2 102 

times, with and without weighting, consequently, there are 11 results of regression techniques that will be 103 

presented. Section 2.6 describes the statistical validation of the models using root mean square error (RMSE), 104 

mean absolute error (MAE), R-square (R2). The geochemical validation is based on the regression coefficient (the 105 

intrinsic PM10 OP) of each source. These are calculated separately for the training and testing data and averaged 106 

across the 500 sampling iterations.  107 

 108 

  109 

Figure 1. Workflow of the comparison of PM10 OP sources apportionment methodology 110 
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2.2. Study sites and PM10 sources 111 

Six French sites are selected in this work for their different typologies: Roubaix and Nice (traffic sites within urban 112 

areas), Port-de-Bouc (industrial hotspot), Talence (urban background site), Grenoble and Chamonix (urban 113 

background sites in Alpine Valley). At each site, sampling was conducted over at least one year to capture the 114 

complete annual evolution of PM10 and its components. These sites and sampling series were previously used and 115 

described by Weber et al. (2019).  116 

In brief, daily filter samples were collected on pre-heated Pallflex quartz fibre filters every third day through high-117 

volume sampling (DA80, Digitel). These filters were analyzed to determine PM's chemical species and OP 118 

activities. Further details regarding the chemical species and PM10 OP analyses methodology can be found in 119 

Weber et al. (Weber et al., 2019, 2021). Briefly, the elemental carbon (EC) and organic carbon (OC) were analyzed 120 

using the EUSAAR2 thermo-optical protocol with a Sunset Lab analyser. Major ionic components (Cl-, NO3
-, 121 

SO4
2-, NH4

+, Na+, K+, Mg2+, Ca2+) and methanesulfonic acid (MSA) were measured by ion chromatography (IC). 122 

Anhydro-sugars and saccharides (including levoglucosan, mannosan, arabitol, sorbitol, and mannitol) were 123 

analysed by high-performance liquid chromatography with pulsed amperometry detection (HPLC-PAD). Major 124 

and trace elements (Al, Ca, Fe, K, As, Ba, Cd, Co, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Sr, V, and Zn) were determined 125 

by inductively coupled plasma atomic emission spectroscopy or mass spectrometry (ICP-AES or ICP-MS). 126 

Furthermore, colocated PM10 measurements were conducted automatically at each site using the Tapered Element 127 

Oscillating Microbalance equipped with a Filter Dynamics Measurement System (TEOM-FDMS).  128 

We used the PM10 sources identified by Weber et al. (2019), who performed a separate PMF for each site using a 129 

harmonized approach for all sites (same chemical species and measurement methods, same procedure to estimate 130 

uncertainties, same constraints on the preliminary solutions). Table 1 provides a data description, including the 131 

sampling duration, the number of samples collected, and the identified PM10 sources at each site, while Figure 2 132 

presents the localisation of the sites in France, together with the respective proportion of each PM10 source at each 133 

site.  134 
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  135 

Figure 2. The location of the selected sites for this study. The small colored dots represent the typology of 136 

sites. The pie charts are the PM10 source apportionment for each site with the colors identifying the PM10 137 

sources. Background photography from ESRI satellite. 138 

Table 1. Data description 139 

 PdB TAL GRE-fr CHAM RBX NIC 

Name Port de Bouc Talence Grenoble Chamonix Roubaix Nice 

N of 

samples 
185 147 125 115 156 107 

Sampling 

dates 

2014-06 to 

2016-06 

2012-02 to 

2013-04 

2017-02 to 

2018-03 

2013-11 to 

2014-10 

2013-01 to 

2014-05 

2014-07 to 

2015-05 

N of 

sources 
10 10 10 8 9 9 

 140 

2.3. OP analysis 141 

PM10 OP assays were performed on PM10 extracted from the filters using simulated lung fluid, as detailed in Calas 142 

et al. (2017, 2018). The AA assay involved ascorbic acid, a natural antioxidant in the lungs inhibiting lipid and 143 

protein oxidation in the lining fluid, using the method presented by  Kelly & Mudway (2003) and further described 144 

by Calas et al. (2018). Conversely, the DTT assay used dithiothreitol (DTT) as a chemical surrogate for cellular 145 

reducing agents, specifically nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate 146 
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oxidase, thereby replicating in vivo interactions between PM10 and biological oxidants (Cho et al., 2005; Calas et 147 

al., 2018). Both assays measured the consumption of AA or DTT during the assay, i.e., the rate of the transfer of 148 

electrons from AA or DTT to oxygen. The assays were conducted with 96-well plates of UV-transparent quality 149 

(CELLSTAR, Greiner-Bio), and absorption measurements were acquired using a TECAN spectrophotometer, 150 

Infinite M200 Pro, at the wavelengths of 265nm for the AA assay and 412nm for the DTT assay (Calas et al., 151 

2017, 2018, 2019). Each sample extraction was subjected to four analyses; the PM10 OP in this study represents 152 

the mean and the analysis uncertainty is the standard deviation of these four PM10 OP analyses. After analysis, the 153 

PM10 OP activities of each sample were blank-subtracted using lab and field blanks, and normalized using the air 154 

sampling volumes and the mass concentration. The resulting OPV represents the PM10 OP due to PM10 per cubic 155 

meter of air (nmol min-1 m-3). To simplify the denotation of PM10 OP, OP is used to represent PM10 OP throughout 156 

this article. 157 

2.4. Collinearity and heteroscedasticity tests 158 

The result of a regression model strongly depends on the characteristics of the dataset because each model makes 159 

assumptions about the data. Two critical assumptions in OLS regression analysis are that (1) there is little 160 

collinearity between independent variables (the PM10 sources in this study), and (2) the variance of the regression 161 

residuals is constant (called homoscedasticity). These assumptions should be tested in different ways.  162 

2.4.1. Collinearity 163 

Collinearity occurs when one or more of the independent variables is close to a linear combination of the other 164 

independent variables. When collinearity is present, small changes in the data can cause large changes in estimated 165 

coefficients, and the estimated standard errors of the coefficients are large. Variance Inflation Factor (VIF) is an 166 

indicator of the collinearity between the independent variables (Craney & Surles, 2002; O'Brien, 2007; Rosenblad, 167 

2011). VIF of a specific source is calculated as: 168 

𝑉𝐼𝐹𝑖 =  
1

1 − 𝑅𝑖
2 , 𝑖 = 1, … , 𝑝 − 1 (𝐸𝑞1) 169 

In this equation, p is the number of PM10 sources, R2 is the coefficient of determination of a multiple linear 170 

regression model between the ith source and the other sources. VIF values of a PM10 source present a range between 171 

1, and ∞. The higher the VIF values, the greater the collinearity between this PM10 source and the other ones. A 172 

VIF value between 5 and 10 is commonly interpreted as moderate collinearity, while values greater than 10 indicate 173 

high collinearity (Craney and Surles, 2002). 174 

2.4.2. Heteroscedasticity 175 

Heteroscedasticity occurs when the variance of regression residuals is not constant but varies for different values 176 

of the dependent variable. In this case, the estimated standard errors of the regression coefficients are not reliable. 177 

The Goldfeld–Quandt test was developed by Goldfeld & Quandt (1965) to evaluate residual variance in a 178 

regression model. To implement the Goldfeld–Quandt test, an OLS regression was performed between OP and 179 

PM10 sources to identify the residual of OP prediction. Next, the PM10 sources and residual corresponding are 180 

divided into three segments: the upper segment is the group with higher PM10 sources concentration, the lower 181 

segment is the group with lower PM10 sources concentration, and the middle segment, constituting 10% of the 182 

moderate PM10 concentration, is excluded. A subsequent regression analysis is then conducted on the two 183 

remaining subgroups to determine the ratio of residual sums of squares. Finally, an F-test is conducted on this ratio 184 

to assess whether the variances are the same, with a p-value below 0.05 interpreted as evidence of 185 

heteroscedasticity. 186 

The Variance Inflation Factor (VIF) and the Goldfeld–Quandt test were performed in Python 3.9, using the 187 

statsmodels 0.14.0 package (Seabold and Perktold, 2010). 188 
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2.5. Regression models 189 

The fundamental principle of regression models in this study is to use the PM10 sources to predict OP activities by 190 

identifying the parameters (coefficients and residuals) that minimize an error term (Hastie, 2009). A simple 191 

regression model can be represented by Eq. 2, which defines the estimated function of the regression model, and 192 

Eq. 3, which estimates the residuals. 193 

𝑦̂ = 𝑓(𝑋) + 𝑒 (𝐸𝑞2)  194 

𝑒 =  𝑦 −  𝑦̂(𝐸𝑞3) 195 

Here, 𝑦̂ is the estimated OP (nmol min-1 m-3), 𝑋 are the PM10 source contributions (µg m-3), y is the observed OP 196 

(nmol min-1 m-3), and e denotes the residuals (nmol min-1 m-3). Each model has certain assumptions and a 197 

minimization term, as presented below.  198 

Ordinary least squares (OLS):  199 

OLS is a linear regression technique that minimizes the residual sum of squares. This model is based on several 200 

assumptions: (1) Linearity: The relationship between OP and PM10 sources is linear. (2) Independence: The 201 

PM10 sources must be independent, with no collinearity. (3) Homoscedasticity: The variance of residuals is 202 

constant across all values of PM10 sources. (4) Normality: The residuals are normally distributed. In the OLS 203 

model, the estimated equation and objective to minimize are defined as follows: 204 

𝑦̂ = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖

𝑝

1

(𝐸𝑞4)  205 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 −  𝑦𝑖̂)
2

𝑚

𝑖=1

 (𝐸𝑞5) 206 

Here, the 𝛽0 denotes the intercept (nmol min-1 m-3), 𝛽𝑖
 represents the regression coefficient (intrinsic OP, nmol 207 

min-1 µg-1) of source i, 𝑥𝑖 is the concentration of source i (µg m-3), p is the number of PM10 sources, and m is the 208 

number of observations. 209 

Weighted least square (WLS): 210 

The assumptions and the minimization term in WLS closely align with those in OLS. The only difference is that 211 

WLS accounts for heteroscedasticity by introducing a weighting term for individual OP observations, whose 212 

variance is assumed to be related to the variance of the residuals. The estimation equation in WLS is the same as 213 

that of OLS, but the objective to minimize is expressed as:  214 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑚

𝑖=1

∗  𝑤𝑖  (𝐸𝑞6) 215 

𝑤𝑖 =
1

𝑆𝐷𝑖
2 216 

With 𝑤𝑖
 being the weight assigned to each observation, and SDi is the OP analysis variance of each observation. 217 

Positive least square (PLS): 218 

The assumptions for PLS primarily include linearity, independence, and normality. PLS can be applied with 219 

weighting, if there is heteroscedasticity in the data. PLS extends OLS with the constraint that the regression 220 

coefficients must be non-negative. The estimation equation and the error term, PLS, are similar to OLS (without 221 

weighting) and WLS (applying weighting). To ensure the positivity of coefficients, a specific condition must be 222 

met:  223 
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𝛽𝑖 ≥ 0, ∀𝑖 𝑖𝑛 𝑃𝑀 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝐸𝑞7) 224 

Ridge: 225 

Shrinkage methods such as Ridge regression try to produce a more interpretable model or reduce error in the 226 

presence of collinearity by selecting a subset of the independent variables. Ridge regression is introduced by Hoerl 227 

& Kennard (1970), which incorporates a penalty term that shrinks the coefficients towards zero. The Ridge 228 

regression minimizes the residual sum of squares plus a penalty term proportional to the sum of squares of the 229 

coefficients (L2 regularization) as shown in Eq 8 and Eq 9. Consequently, Ridge regression reduces the influence 230 

of a PM10 source that exhibits minimal impact on OP prediction without excluding it from the model. 231 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑚

𝑖=1

+  𝜆 ∗  ∑ 𝛽𝑗
2

𝑝

𝑗=1

 (𝐸𝑞8) 232 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2𝑚
∑ 𝑤𝑖(𝑦𝑖 −  𝑦𝑖̂)

2𝑚
𝑖=1 +  𝜆 ∗  ∑ 𝛽𝑗

2𝑝
𝑗=1  (𝐸𝑞9) where 𝜆 is the parameter representing the amount of 233 

shrinkage, the larger 𝜆, the greater the shrinkage. The hyperparameter tuning was implemented with different 234 

values of 𝜆 (5, 1, 0.5, 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001). The best 𝜆  for every site varied from 0.005 to 0.01 235 

and in this study, 0.01 was selected. Ridge can be applied with weighting to account for heteroscedasticity. 236 

Least Absolute Shrinkage and Selection Operator (Lasso):  237 

Lasso (Tibshirani, 1996) is a shrinkage method that uses a penalty term proportional to the sum of the absolute 238 

regression coefficients (L1 regularization). This penalty term shrinks the coefficients of a source with a low impact 239 

on OP prediction to zero, effectively removing it from the model. This results in a sparse model that may be easier 240 

to interpret and may reduce error on out-of-sample data. However, Lasso is more sensitive to outliers than ridge 241 

regression and is less stable when data are collinear. Lasso can be applied with weighting to account for 242 

heteroscedasticity. 243 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑚

𝑖=1

+  𝜆 ∗ ∑|𝛽𝑗|

𝑝

𝑗=1

 (𝐸𝑞10) 244 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2𝑚
∑ 𝑤𝑖(𝑦𝑖 − 𝑦𝑖̂)

2

𝑚

𝑖=1

+  𝜆 ∗ ∑|𝛽𝑗|

𝑝

𝑗=1

 (𝐸𝑞11) 245 

 246 

Similar to Ridge, 𝜆 is the parameter representing the amount of shrinkage. 𝜆 is selected as 0.01 in this study by 247 

running the hyperparameter tuning using the same values as for Ridge. 248 

Generalized linear model (GLM):  249 

Generalized linear models, as introduced by McCullagh (1989), provide a framework for regression analysis that 250 

can contain non-normal error distributions and capture non-linear relationships between OP activities and PM10 251 

sources. GLM allows for error variance that is a function of the predicted value, hence accounting for 252 

heteroskedasticity. Key assumptions underlying GLM include (1) independence, (2) the non-normal distribution 253 

of OP, and (3) the relationship between the PM10 sources and the transformed OP (logarithm in this study) is linear. 254 

The mathematical expression for GLM can be represented as follows:  255 

𝑙𝑜𝑔(𝑦̂) = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖

𝑝

0

(𝐸𝑞12)   256 
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where 𝛽0 denotes the intercept,  𝛽𝑖
 represents the regression coefficient of source i, and 𝑥𝑖 is the concentration of 257 

source i. 258 

Random forest (RF): 259 

RF, an ensemble learning method introduced by Breiman (2001), combines multiple decision trees to make 260 

predictions. In the reference implementation, each tree is grown on a bootstrap sample of the data and a random 261 

subset of the available features is evaluated at each node to choose the best split. The predictions of all trees are 262 

averaged to give the forest's final prediction. RF is customizable via hyperparameters such as the number of trees, 263 

the size of the bootstrap sample, and the number of features to evaluate at each node. The hyperparameters tuning 264 

used 5-fold cross-validation on the training data for hyperparameter tuning. The training dataset was separated 265 

into 5 parts: 4 parts were used for training, and the remaining was used for validation. This process was repeated 266 

5 times, and the hyperparameter value producing the lowest mean RMSE across the 5 parts was selected. The 267 

hyperparameters tuning is shown in section S1.1 Supplement.  268 

RF does not assume a specific equation to express the relationship between OP activities and PM10 sources, with 269 

the result that intrinsic OP could not be computed in this regression model. Nevertheless, RF can estimate the 270 

relative importance of each PM10 source in OP prediction. This study estimated the permutation importance of 271 

each PM10 source as the mean increase in the mean squared error of predicted OP when the values of the PM10 272 

source were permuted. 273 

Multilayer perception (MLP): 274 

MLP is an artificial neural network that consists of multiple layers of interconnected nodes or neurons organized 275 

in a feedforward structure (Akhtar et al., 2018; Chianese et al., 2018; Bourlard and Wellekens, 1989). These layers 276 

include an input layer (PM10 sources), one or several hidden layers, and an output layer (OPAA or OPDTT activities). 277 

In MLP, the neurons in the hidden layers are linked with the previous neurons by the connection weight, where 278 

every neuron is independent and has a different weight. The output of each neuron depends on its inputs and an 279 

activation function, which, if non-linear, allows the model to capture non-linear relationships. The implementation 280 

of MLP includes three steps: (1) forward pass to training model: the input is passed to the model, multiplied with 281 

an initial weight, add bias at every layer, then calculate output of the model. (2) error calculation: after applying 282 

step 1, the output of the model and the observed data are used to calculate the error. (3) backward pass: the error 283 

is propagated back through the network, and then the weights are adjusted to minimize overall error. These 3 steps 284 

are repeated until the error is minimized.  285 

The choice of hyperparameters to ensure the MLP model's robustness is processed by hyperparameter tuning using 286 

5-fold cross-validation as shown in section S1.2 of the supplement. Thanks to hyperparameter tuning, the two 287 

hidden layers and a logistic sigmoid activation function were selected in this study to capture the non-linear 288 

relationships between OP activities and PM10 sources.  289 

All regression models were performed using the Python package statsmodels 0.14.0 (Seabold and Perktold, 2010) 290 

and scikit-learn 1.3.1 (Pedregosa et al., 2011). 291 

Performance of the models 292 

The performance metrics R-square (R2), mean absolute error (MAE), and root mean square error (RMSE) were 293 

used to assess the goodness of fit of models as described by Kuhn & Johnson (2013). R² quantifies the model's 294 

ability to explain the variance in the data. R2 equal to 1 indicates a perfect fit. RMSE represents the aggregation of 295 

the individual differences between predicted OP and measured OP, while MAE assesses the average magnitude of 296 

errors between them. Lower RMSE and MAE values indicate a better fit, with a perfectly fitting model yielding 297 

an RMSE or MAE of 0. Eq13, Eq14, and Eq15, respectively, define R2
, MAE, RMSE. These indicators are 298 



10 

 

computed for the training and testing data of each sampling iteration and averaged across the 500 sampling 299 

iterations.  300 

𝑅2 = 1 − 
Sum of Squared Residuals

Total Sum of Squares
=  1 −  

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑚

𝑖=0

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑚

𝑖=0

 (𝐸𝑞13) 301 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑚
𝑖=0

𝑚
(𝐸𝑞14) 302 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑚
𝑖=0

𝑚
 (𝐸𝑞15) 303 

 304 

3. Result and discussion 305 

Assessments of collinearity and homoscedasticity are addressed in Section 3.1. Model performance, including key 306 

performance metrics and identification of the optimal model, is detailed in Section 3.2. Section 3.3 compares the 307 

intrinsic OP estimated by the different models. Section 3.4 compares intrinsic OP between the combined best-fit 308 

and reference models. Lastly, Section 3.5 proposes recommendations for selecting an appropriate model

3.1. Dataset characteristics 310 

The contributions of identified sources (µg m-3) and the OPv activities (nmol min-1 m-3) in each site are presented 311 

in Figure 3, illustrating variations in annual average OP activities and PM10 source contributions by sites. Most 312 

sites, including traffic and industrial ones, show higher OPDTT activities than OPAA. Conversely, for the alpine 313 

valley sites, CHAM presents higher OPAA than OPDTT, while GRE-fr experiences similar levels of OPAA and 314 

OPDTT. Additionally, the average OP activities in every site are not proportional to the average PM concentration. 315 

For instance, CHAM and NIC had lower PM10 concentrations but higher OP activities than other sites, while TAL 316 

showed high PM10 concentrations but relatively lower OP activities. 317 

The variations observed in the levels of PM10 and OP across six sites can be attributed to distinctions in identified 318 

sources and their respective contributions. These disparities are contingent upon the unique typologies of each site, 319 

which are discussed in Weber et al., 2021. Further, we can observe a significant seasonality in the OP activities 320 

(Table S.1). Strong seasonality of OP in Alpine valley sites has been addressed in previous studies (Borlaza et al., 321 

2021; Dominutti et al., 2023; Weber et al., 2018, 2021), with thermal inversions during winter increasing pollutants 322 

concentrations and OP activities compared to summer. Conversely, OP activities in cold and warm periods in other 323 

sites are not significantly different. 324 

The PM10 sources and their repartition vary among sites (Figure 3) because of the difference in typology and local 325 

activities. For instance, in the industrial site (PdB), two specific sources are identified: shipping emissions (HFO) 326 

with an annual mean contribution of 1.39 µg m-3 and industrial sources at 0.86 µg m-3. The urban background site 327 

TAL also appears to be influenced by industrial sources (2.34 µg m-3), which might, however, be partly due to 328 

biases induced by the application of the harmonized receptor model protocol (Weber et al., 2019). Note that the 329 

application of a site-specific PMF procedure for this site leads to a much lower contribution of this source category 330 

but relatively similar contributions of other sources (Favez, 2017). GRE-fr, an urban background site in an alpine 331 

valley, presents significant long-range transport sources, with secondary sulfate contributing 3.90 µg m-3 followed 332 

by biomass burning at 2.21 µg m-3. As expected, biomass burning is an abundant source in CHAM, accounting for 333 

7.28 µg m-3 of the PM contribution, while the traffic sites RBX and NIC displayed high contributions of traffic 334 

sources (at 2.43 µg m-3 and 1.45 µg m-3 respectively).  335 

The presence of multicollinearity and homoscedasticity were tested to assess the data characteristic of every site. 336 

The only site with evidence of collinearity was NIC, where the VIF of the traffic source was equal to 5.0. For all 337 
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other sites, VIF values are below 5, indicating limited collinearity among sources. This is expected, as the PMF 338 

analysis is constrained to avoid collinearity between sources. VIF values for each site can be found in Table S.2.  339 

The presence of heteroscedasticity is commonly found when the dependent variable (or OP in this study) exhibits 340 

a large difference between the minimum and maximum values or when the error variance varies proportionally 341 

with an independent variable (PM10 sources). The heteroscedasticity was assessed by applying the Goldfeld–342 

Quandt test. Table 2 presents the p-values of the Goldfeld–Quandt test, indicating homoscedasticity of OP 343 

prediction when p >0.05. This test reveals that heteroscedasticity was detected in CHAM, GRE-fr, NIC for OPAA 344 

and in CHAM and TAL for OPDTT (Table 2). We observed a large difference between the cold and warm periods 345 

for both OPAA and OPDTT in CHAM, similar to what was seen for OPAA in GRE-fr (Table S1), which can be the 346 

reason for the presence of heteroscedasticity. For NIC and TAL, there is an insignificant difference between the 347 

cold and warm periods, which indicates the presence of heteroscedasticity may be because of the relationship 348 

between the PM10 sources and error variance. When heteroscedasticity is detected, unweighted regression for OP 349 

prediction according to sources may not accurately reflect the uncertainty of each source's intrinsic OP. The 350 

scatterplots representing the relationship between the regression analysis residuals and the fitted values (for 351 

observed OP) are available in Figures S.1 and S.2, Supplement. 352 

Table 2. The p-value of the Goldfeld–Quandt heteroscedasticity test  353 

 

PdB TAL GRE-fr CHAM RBX NIC 

AA 0.15 0.78 << 0.001 << 0.001 0.44 0.002 

DTT 0.59 << 0.001 0.189 << 0.001 0.56 0.91 

 354 

 355 

Figure 3. The contribution of sources to PM10  and the OP activities in 6 sites. The left y-axis and bar show 356 

the contribution of PM sources in µg m-3. The right y-axis, circles and squares showed the mean OPv 357 

activities in nmol min-1 m-3, with red circle for OPAA and black square for OPDTT. 358 

3.2. The performances of regression models  359 

The 11 regression models, with or without the weighting for some of them, were tested by comparing their 360 

performance metrics between the measured and reconstructed OPs. For each run (n = 500 iterations), the R2, 361 

RMSE, and MAE were computed for the testing and training dataset, resulting in 500 values for each performance 362 
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metric. Figure 4 presents the mean R² values of the training data sets, the mean and the standard deviation of the 363 

testing datasets of the OPAA models across the 500 sampling iterations, and Figure 5 presents the mean RMSE and 364 

MAE. The same result pattern was found for OPDTT, as presented in the tables S.3, S.4, S.5, Supplement. The 365 

WLS, wPLS, wRidge, and wLasso models incorporated weighting, while the OLS, PLS, Ridge, Lasso, GLM, RF, 366 

and MLP models were unweighted. 367 

 368 

Figure 4. The R2 of 11 OPAA models in 6 sites. The mean R2 of training data is shown in a blue bar, the mean 369 

R2 of testing data is shown by a red triangle, and the red bar is the standard deviation of the R2 of the testing 370 

data. The y-axis represents the models, and the x-axis denotes the R2 values. 371 
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 372 

 373 

Figure 5. The MAE and RMSE of 11 OPAA models in every site for the testing data. Blue and red lines 374 

present the RMSE and the MAE, respectively. The values in the figure are the mean of RMSE and MAE of 375 

500 iterations.  376 

OP predictions across all sites are statistically validated, with testing R² values observed in RBX, NIC, PdB, TAL, 377 

CHAM, and GRE-fr being 0.66, 0.76, 0.76, 0.78, 0.87, 0.90, respectively. The lowest mean test set RMSE values 378 

are 0.70, 0.28, 0.21, 0.37, 0.70, 0.31 nmol min⁻¹ m⁻³, respectively, for the same sites. The lowest mean test set 379 

MAE values are 0.49, 0.23, 0.14, 0.25, 0.45, and 0.21 nmol min⁻¹ m⁻³, respectively. Notably, the GLM model 380 

exhibits for all sites the lowest R² values and the highest RMSE (Table S.3, S.4, S.5, Supplement). These results 381 

strongly suggest that the relationship between OPAA and PM10 sources is not log-linear. 382 

Differences in MAE, RMSE, and R² between the training and testing database for RF and MLP are significant 383 

across the sites. Notably, RF displays a large difference in R², with a gap of up to 0.6 in RBX (R² training: 0.92, 384 

R² testing: 0.27). Similar gaps were found in RMSE and MAE. RF consistently performed best on the training set, 385 

characterized by the highest R² and the lowest MAE and RMSE values, but had lower set test R² values than the 386 

other models (except GLM). Conversely, MLP exhibited training R² values comparable to other models but lower 387 

test R2. These findings suggest overfitting: the flexible algorithms identify relationships in the training data that 388 

do not generalize to the testing data. This observation may be attributed to the limitations of data coverage, possibly 389 

failing to fully represent the underlying relationships, leading to poor performance in testing datasets (Matsuki et 390 

al., 2016; Benkendorf and Hawkins, 2020; Stockwell and Peterson, 2002; Wisz et al., 2008; Hernandez et al., 391 

2006; Hawkins, 2004; Raudys and Jain, 1991). Pearce and Ferrier (2000) recommended that the minimum number 392 

of samples for robust performance should be over 250 for GLM model, while (Raudys and Jain, 1991) showed 393 

that the minimum number of sample are based on the complexity of the model and the number of predictors. 394 

Additionally, Harrell (2016) suggested that the number of predictors (PM sources) should be below the number of 395 

samples divided by 15, a threshold not reached in this analysis. For example, in NIC, the minimum number of 396 

samples should be 135 for the training set (9 PM sources x 15), while in total, we have only 107 samples. Therefore, 397 
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we can also recommend that, for optimal performance of RF, and MLP, the number of samples and PM sources 398 

should satisfy these thresholds. 399 

The WLS, OLS, wPLs, wRidge, and wLasso models show more robust performances with fewer differences 400 

between the training and testing data. At most sites, there is very little difference between the R2, RMSE, and MAE 401 

of OLS and Ridge, with or without weighting, and often PLS and Lasso as well. This consistency is observed even 402 

in the collinearity case of NIC, where VIF = 5. The difference between these models is a maximum of 0.06 in R2, 403 

0.01 in MAE and 0.1 in RMSE, indicating that these models work well for OP prediction. Nevertheless, it is worth 404 

noting that every model exhibits different assumptions that have to be respected. The assumption violations may 405 

lead to unreliable regression coefficients (intrinsic OP) even though the prediction is good (Williams et al., 2013; 406 

Cohen et al., 2002).  407 

The best model for each site was selected based on both data characteristics (collinearity and heteroscedasticity) 408 

and testing data performance. For sites with collinearity, the Ridge, Lasso were considered most appropriate. For 409 

sites with heteroscedasticity, models with weights were considered the most appropriate. For sites with neither 410 

collinearity nor heteroskedasticity, OLS and PLS were considered most appropriate. Tables 3 and 4 present the 411 

best OPAA and OPDTT prediction models for each site. It follows that the best model is not necessarily the same one 412 

for both series of OP for a given site. As a rule, the model that exhibits the best performance metrics (the best 413 

model by error in Table 3 for OPAA and Table 4 for OPDTT) is suited to the best model chosen by data 414 

characteristics; therefore, choosing a model according to data characteristics help to more reliable in OP 415 

predictions.  416 

Table 3. Criteria to select the best model for OPAA 417 

 PdB TAL GRE-fr CHAM RBX NIC 

Collinearity No No No No No Yes 

Heteroscedasticity No No Yes Yes No Yes 

Best model by 

characteristic 

OLS/  

PLS 

OLS/  

PLS 

WLS/ 

wPLS 

WLS/ 

wPLS 

OLS/  

PLS 

wRidge/  

wLasso 

Best by error PLS  PLS wPLS wPLS OLS wRidge 

Table 4. Criteria to select the best model for OPDTT 418 

 PdB TAL GRE-fr CHAM RBX NIC 

Collinearity No No No No No Yes 

Heteroscedasticity No Yes No Yes No No 

Best model by 

characteristic 

OLS/  

PLS 

WLS/ 

wPLS 

OLS/  

PLS 

WLS/ 

wPLS 

OLS/  

PLS 

Ridge/  

Lasso 

Best by error OLS wPLS PLS wPLS  PLS  Ridge 

 419 
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3.3. Effect of the choice of a model on intrinsic OP 420 

It is particularly important to try to define the best way of calculating the more accurate PM sources intrinsic OP 421 

and the contribution of sources to OP, since these values are fundamental inputs in all the works of large-scale 422 

modelling of OP with chemical transport models (CTM) (Daellenbach et al., 2020; Vida et al., 2024). Figures 6 423 

and 7 show the variations of intrinsic OP for all the models, focusing on the results of NIC as an example. The 424 

evaluation of the 5 other sites is presented in Fig S.3 to Fig S.7 for OPAA and Fig S.8 to S.12 for OPDTT. The 425 

differences in equations, error term minimizations, and assumptions can explain the differences in intrinsic OP per 426 

µg of source among the eight regression models. While the R², RMSE, and MAE values are similar among models 427 

(except for GLM, RF, and MLP), the intrinsic OP values significantly differ between the models with and without 428 

weighting and between the linear and non-linear regression models. The average intrinsic OP of 500 iterations is 429 

discussed in this section since these values are usually used to calculate the contribution of the PM10 source to OP 430 

in prior studies (Borlaza et al., 2021; Dominutti et al., 2023; Weber et al., 2018). The mean and standard deviation 431 

of intrinsic OPAA and OPDTT for the 6 sites are shown in Table S.6 and S.7, respectively.  432 

Intrinsic OPAA of PM10 sources at NIC is the same between WLS and wRidge and between the OLS and Ridge, 433 

revealing that the moderate collinearity of the road traffic source did not affect the estimated intrinsic OPAA. PLS 434 

sets the intrinsic OPAA of some sources to zero, therefore producing slightly different results. Lasso regression sets 435 

the intrinsic OPAA of some sources to zero and shrinks the estimates for all other sources toward zero. GLM 436 

produces intrinsic OPAA values that represent a multiplicative change on the log scale, so they are not directly 437 

comparable to the other models. However, the direction and importance of the sources are similar to the other 438 

models. Whatever the model, road traffic appears as the source with the highest intrinsic OPAA, followed by 439 

biomass burning, aged salt, salt and sulfate-rich sources, in NIC. Traffic and biomass burning sources have been 440 

similarly recognized as significant contributors to OPAA in prior studies (Borlaza et al., 2021; Dominutti et al., 441 

2023; Stevanović et al., 2023). The intrinsic OP of the dominant sources is stable, indicating that all these models 442 

could give the same information about the intrinsic OP of the main sources. Conversely, the differences are larger 443 

between models for the sources with small to very small intrinsic OP (MSA rich, primary biogenic, nitrate-rich, 444 

dust), whose intrinsic OP varies from positive to negative among models.  445 
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 446 

Figure 6. Intrinsic OPAA
 values of the different PM10 sources at Nice were obtained with the different models.  447 

The OPDTT intrinsic values in NIC (Figure 7) display minimal variation among the WLS, wPLS. This consistency 448 

is linked to the absence of negative intrinsic values. On the other hand, even though there is the presence of 449 

moderate collinearity, wRidge still has the same result as WLS and wPLS. In line with the OPAA results, the wLasso 450 

and GLM models exhibit distinct responses compared to the other models. The intrinsic OPDTT of all sources varies 451 

depending on the presence or absence of weighting. While the WLS models tend to amplify the influence of some 452 

sources (aged sea salt, primary biogenic, sea salt, and sulfate-rich), the OLS reduces the intrinsic OPDTT of these 453 

sources. Conversely, MSA-rich, nitrate, and road traffic sources undergo less influence in WLS but higher in OLS. 454 

Different from OPAA, OPDTT  prediction shows more variation among models, highlighting the effect of choosing 455 

a model on evaluating the intrinsic OPDTT of PM10 sources. 456 
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 457 

Figure 7. The variations of the intrinsic OPDTT 
 of the different PM10 sources at Nice were obtained with the 458 

different models.  459 

The comparison of intrinsic OP among regression models in NIC demonstrated that OPDTT and OPAA intrinsic 460 

values exhibit variation across different models with and without weighting, illustrating that the choice of the 461 

model significantly influences the values obtained for intrinsic OP of PM10 sources (A similar pattern is observed 462 

for all other sites and shown in Fig S.3 to Fig S.7 for OPAA and Fig S.8 to S.12 for OPDTT). Because of the difference 463 

in intrinsic OP across models, a comparison between the best-performing and most commonly used models (OLS) 464 

is presented in the following section to elucidate the advantage of choosing a model based on data characteristics 465 

(section 3.4). 466 

3.4. Comparisons between the best site-specific model and OLS  467 

In this section, the intrinsic OP of the best model is selected for each site as discussed in Section 3.2, and the 468 

intrinsic values of each source are compared to the ones returned by the OLS model. The OLS model is used as a 469 

representative of usual practices that do not consider the database characteristics (Williams et al., 2013). Each 470 

PM10 source's average intrinsic OP value is calculated from all the 500 bootstrapping iterations for all sites where 471 

that particular source is identified. Intrinsic OP values obtained in this way from the best model (the best model 472 

presented in Table 3 for OPAA and Table 4 for OPDTT) encompassing all six sites are called intrinsic OP of the 473 

best model, and the intrinsic OP values derived from the OLS from all six sites are called intrinsic OP of the 474 

reference model.  475 
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A meaningful comparison of the two series of intrinsic values requires two conditions. First, intrinsic OP should 476 

be consistent across all sites. While recognizing that intrinsic OP values depend on diverse factors, we assumed 477 

the sites share fairly uniform PM10 chemical source profiles in France. This is demonstrated by evaluating the 478 

Pearson distance and standardized identity distance similarity indicators of the source chemical profiles (Belis et 479 

al., 2015; Weber et al., 2019), and Figure S.13 indicates consistent profiles of sources for the 6 sites. Consequently, 480 

we could expect to observe minimal divergence in intrinsic OP values among these sites. Second, we postulate 481 

that negative intrinsic OP values are possible since previous studies have reported that total PM10 intrinsic OP can 482 

be modulated due to the synergetic/antagonistic effects involving, for example, soluble copper, quinones, and 483 

bacteria (Borlaza et al., 2021; Pietrogrande et al., 2022; Samake et al., 2017; S. Wang et al., 2018; Xiong et al., 484 

2017) . Samake et al. (2017) demonstrated that the presence of bacterial cells in aerosol decreases the redox activity 485 

of Cu and 1,4-naphthoquinone, with a maximum decreasing of 60% compared to the oxidative reactivity 486 

considered individually. Pietrogrande et al. (2022) indicated that the mixture of Cu, Fe, 9,10-phenanthrene quinone 487 

and 1,2-naphthoquinone reduces the rate consumption of AA and DTT, up to 50% depending on the quantity of 488 

each chemical. Wang et al. (2018) reported that the mixing of Cu and naphthalene secondary organic aerosol 489 

(SOA) and phenanthrene SOA only got half of DTT rate consumption compared to the consumption when 490 

considered separately. Xiong et al. (2017) showed the presence of antagonists in the interaction of Fe and quinones, 491 

nevertheless, much lower than those in the other studies (under 10%). These references reported that the 492 

antagonistic effects of a mixture can significantly reduce the consumption rate of OPDTT and OPAA, and this impact 493 

varies widely from 10% to 60% depending on the type of chemical species and the quantity of each species in the 494 

mixture. Consequently, we consider here that the intrinsic OP value of an individual site for a given source could 495 

be negative only within a range of at most 60% of the mean combined intrinsic OP value of this source across all 496 

sites. Negative intrinsic OP exceeding this criterion may result from the mathematical construction of the model. 497 

The comparison of intrinsic OPAA of the best and reference model is presented in 3.4.1 and that of OPDTT is shown 498 

in 3.4.2.  499 

3.4.1. OPAA activities 500 

The results of the comparison of OPAA intrinsic values (Figure 8 and Table S.8) show that the anthropogenic 501 

sources get the highest intrinsic OP values in both the best and reference models. Among these sources, road traffic 502 

appears as the most prominent potent fraction, followed by biomass burning, HFO, and industrial. These results 503 

are aligned with prior research (Calas et al., 2019; Daellenbach et al., 2020; Dominutti et al., 2023; Fadel et al., 504 

2023; Fang et al., 2016; in 't Veld et al., 2023; Weber et al., 2018; Zhang et al., 2020) which has highlighted the 505 

sensitivity of OPAA to concentrations of metals, black carbon, and organic carbon. The differences between the 506 

best and reference models were insignificant for these sources, demonstrating that the best and reference models 507 

consistently captured similar patterns for the most critical sources of OP activities.  508 

However, the interquartile ranges (IQR) of the intrinsic OP values are consistently narrower for the best models 509 

across all sources, accounting for less divergence in intrinsic OP values across sites. Moreover, the median intrinsic 510 

OP values obtained from the best model closely approximated the mean values, indicating the absence of extreme 511 

intrinsic OP values. For instance, in the case of road traffic, the mean and median values were 0.24 and 0.23 nmol 512 

min-1 µg-1, respectively. Conversely, the reference model exhibited a large difference between the mean and 513 

median values, implying lower consistency across sites and sampling iterations. The same result was observed in 514 

biomass burning source, in which the median and mean intrinsic OP in the best model had fewer discrepancies. 515 

Further, the biomass burning intrinsic OP in GRE-fr of the best model is more consistent with those in other sites 516 

(best: 0.30 nmol min-1µg-1, reference: 0.35 nmol min-1µg-1).  517 

When considering sources with low intrinsic OP, the variability can be larger between the two methods. As an 518 

example, for the sulfate-rich sources, the median intrinsic OP values were positive (0.002 nmol min-1 µg-1), while 519 

the mean intrinsic OP values were negative (-0.008 nmol min-1µg-1). The mean intrinsic OP in the best model 520 
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exhibited fewer negative values in individual sites than in the reference model (for aged salt, salt, primary biogenic, 521 

MSA rich, sulfate-rich and nitrate-rich). In addition, the best model showed the less disparate intrinsic OP among 522 

individual sites for instance, the aged salt sources in GRE-fr and the primary biogenic and salt sources in CHAM. 523 

Furthermore, the best model displayed an intrinsic OP meaningful in terms of geochemical, which showed in the 524 

source of salt, primary biogenic, sulfate-rich. For instance, in the reference model, the average intrinsic OP of the 525 

primary biogenic in NIC (-0.03 nmol min-1 µg-1), the intrinsic OP of salt in GRE-ft (-0.07 nmol min-1 µg-1) as well 526 

as the sulfate-rich source in CHAM (-0.05 nmol min-1 µg-1) represented a 100% reduction compared to the mean 527 

intrinsic OP of all sites. Moreover, the negative intrinsic OP was observed in NIC (Primary biogenic), and some 528 

extreme values in GRE-fr (aged salt, salt), CHAM (salt, primary biogenic, MSA-rich) (where heteroscedasticity 529 

was presented) in the OLS model, underscores that the model assumptions on data characteristics proving false 530 

could impact the accuracy of OP prediction. Consequently, these results highlight the advantage of considering 531 

the data in model selection. 532 

 533 
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Figure 8. Intrinsic OPAA estimated by the best and the reference methods in the 6 sites. The y-axis represents 534 

the intrinsic OP values in nmol min-1 µg-1, the x-axis represents the sources. The grey bars are the median 535 

intrinsic OP values of the best models in the 6 sites (n = 500 bootstrapping * number of sites where the given 536 

source is detected) for each source. The white bars are the same median intrinsic OP values for the reference 537 

(OLS) model. The grey plus symbol represents the mean of intrinsic OP values. The hatched bars are the 538 

interquartile ranges of the intrinsic OP values. The dots represent the mean intrinsic OP of all sites, 539 

including grey – Chamonix, green – Grenoble, red – Nice, blue – Port-de-Bouc, purple – Roubaix, and 540 

orange-Talence. 541 

The detailed comparison of intrinsic OPAA between the best and reference models is categorized into four groups 542 

and discussed in detail in section S9. These groups include (1) anthropogenic sources without nitrate and sulfate 543 

(road traffic, biomass burning, HFO, industrial), (2) natural inorganic sources (aged sea salt, sea salt, dust), (3) 544 

biogenic sources (primary biogenic, MSA rich), and (4) nitrate and sulfate-rich sources. 545 

3.4.2. OPDTT activities 546 

Similar to OPAA, for OPDTT the IQR of the best model is narrower for most of the sources than the IQR of the 547 

reference model (OLS). Except for the road traffic, industrial, and MSA-rich, the IQR is slightly higher in the best 548 

model (Figure 9 and Table S.9). In the two models, the mean intrinsic OP is essentially unchanged, where the 549 

traffic is the most critical source (0.27±0.10), followed by HFO (0.18±0.01), biomass burning (0.12±0.03), dust 550 

(0.12±0.07), primary biogenic (best: 0.10±0.06, reference: 0.12±0.08) and MSA rich (best: 0.11±0.09, reference: 551 

0.09±0.09). The minimum difference between the two models in the dominant sources again confirms the 552 

conclusion in the OPAA comparison, demonstrating the similar pattern of the best and the reference model in 553 

the most crucial sources of OP. For both best and reference, OPDTT activities showed sensitivity to more sources 554 

than OPAA, as discussed in previous studies (Borlaza et al., 2021; Calas et al., 2019; Dominutti et al., 2023; Fadel 555 

et al., 2023).  556 

While the best and reference models give the same mean intrinsic OPDTT of all sites, the mean OPDTT at each 557 

individual site can vary substantially between the two models. The best model exhibited the positive intrinsic OP 558 

for all sources, while the reference model displayed negative intrinsic OP in RBX (MSA-rich and sulfate-rich). 559 

Especially in the case of sulfate-rich in RBX, the negative intrinsic OP in the reference model passed the threshold 560 

of negative value, which presented a 110% reduction compared to the mean intrinsic OP of all sites. This is also 561 

found in the OPAA comparison, which confirmed that the best model generates a geochemical meaningful OP 562 

intrinsic. In addition, the best model exhibited consistent intrinsic OP across sites, especially for the source of dust, 563 

salt, primary biogenic, sulfate-rich in TAL (heteroscedasticity is presented in this site), where intrinsic OP in TAL 564 

in the best model is more similar to the other sites. For instance, the reference model presented that the intrinsic 565 

OP in TAL is 0.20 nmol min-1 µg-1, far from the mean of all sites (0.07 nmol min-1 µg-1). We observed the same 566 

for OP intrinsic of nitrate-rich source in CHAM (where the heteroscedasticity is detected), which displayed the 567 

less dissimilar of CHAM with the other site in the best model. This again validates the conclusion in OPAA 568 

comparison, demonstrating that respecting model assumption is essential to obtain a robust OP SA result. 569 
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 570 

Figure 9. Intrinsic OPDTT was estimated by the best and the reference methods in the 6 sites. The y-axis 571 

represents the intrinsic OP values in nmol min-1 µg-1, the x-axis represents the sources. The grey bars are 572 

the median intrinsic OP values of the best models in the 6 sites (n = 500 bootstrapping * number of sites 573 

where the given source is detected) for each source. The white bars are the same median intrinsic OP values 574 

for the reference (OLS) model. The grey plus symbol represents the mean of intrinsic OP values. The 575 

hatched bars are the interquartile ranges of the Intrinsic OP values. The dots represent the mean intrinsic 576 

OP of all sites, including grey – Chamonix, green – Grenoble, red – Nice, blue – Port-de-Bouc, purple – 577 

Roubaix, and orange-Talence.  578 

The comparison of intrinsic OP between the best models and the reference model highlights the importance of 579 

considering the database characteristics when selecting a model for OP SA. For all the datasets studied here, using 580 

the best model for each site delivered more robust results with reduced uncertainty, reduced differences in intrinsic 581 
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OP across sites, and provided a more geochemically meaningful intrinsic OP. The recommendation for selecting 582 

a model based on the characteristics of the database is presented in section 3.5. 583 

3.5. Guidelines for the selection of regression model for OP SA.  584 

 585 

Figure 10. Workflow in model selection considering the characteristics of data 586 

 587 

Our results have highlighted the benefits of choosing a model that matches the characteristics of the data to improve 588 

the robustness of OP SA method. For this reason, this section develops a workflow to help make model selection 589 

decisions. Before selecting a regression for OP SA, the first question is whether the PM10 sources are collinear and 590 

the second is whether the residual variance of the regression between OP and PM10 mass is constant. These two 591 

questions represent the characteristics of PM10 sources and OP activities, which vary according to the study site.  592 

For data exhibiting collinearity between sources and generating a residual variance that varies according to the 593 

value of the PM10 sources, weighted regularisation regression can help to reduce collinearity and to match the 594 

model assumption about the residual. On the other hand, the unweighted Ridge and Lasso are introduced for data 595 

showing collinearity and homoscedasticity. Additionally, data with no collinearity are suitable for OLS and 596 

unweighted PLS in the case of homoscedasticity, while WLS, weighted PLS are used for data with 597 

heteroscedasticity. 598 

If the number of predictors (PM10 sources) is below the number of samples divided by 15, RF and MLP can also 599 

be employed to capture possible non-linear relationships between the OP and PM10 sources. However, cross-600 

validation must be used to ensure that there is no over-fitting. In addition, these models do not estimate intrinsic 601 

OP (nmol min-1µg-1) but only the importance of each PM10 source to the OP prediction. This is a large drawback 602 

since the intrinsic OP of sources is a must for the modelling effort of OP with CTM. However, RF and MLP could 603 

be useful for OP prediction in the case of larger datasets generated by online instruments.  604 

For each data characteristic there is more than one model that suits. Out-of-sample performance metrics should be 605 

employed to identify the most accurate of these models. 606 

Finally, these techniques of OP apportionment could not be well performed with uncertain PMF-derived sources. 607 

The PMF results sometimes do not adequately represent PM mass concentration for several reasons, such as the 608 

lack of a trace species to identify a source, an insufficient sample size, the source contribution being too small to 609 
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be identified (under 1%), or collinearity matters. The important information could be missed because of these 610 

problems in PMF implementation, which is apprehended by the model's low accuracy. Our study did not encounter 611 

this problem since the PMF is harmonized and performed according to European recommendations which could 612 

well perform the regression technique and allow to obtain a very satisfactory successive OP modelled in 613 

comparison to observations after regression techniques (R2 from 0.7 to 0.9). However, this problem could 614 

potentially happen, and for these cases, we could recommend either subtracting the total source contribution from 615 

PM mass concentration to get a part that PMF cannot simulate. The information in this part may contain vital 616 

sources. Alternatively, it is possible to re-execute the PMF to validate the result and ensure the robustness of the 617 

chemical profile and the contribution of sources.  618 

 619 

Limitations and perspectives of the study: 620 

- This study compares eight regression models but is not exhaustive; further research could add more 621 

regression techniques to evaluate result variations across models. The potential techniques that could be 622 

applied for OP SA are gradient boosting techniques for resolving regression models, or supervised 623 

machine learning techniques which allows the investigation of linear and non-linear regression 624 

relationships. However, the consistently strong performance of ordinary linear regression across six 625 

locations in France suggests that there may be little to gain from applying more complex models in areas 626 

with similar PM10 sources. 627 

- PMF coupled with a regression model remains a popular approach for OP SA. Notably, the uncertainties 628 

in PMF are typically addressed in chemical profiles, but not in contributions. Incorporating uncertainty 629 

from variations in contribution into models could enhance their robustness compared to relying only on 630 

absolute PMF results. 631 

- Observations ranged between 100 and 200 samples at each site, which may be insufficient to obtain a fair 632 

performance of GLM, decision trees and neural network models even though this number of samples is 633 

sufficient to address SA through the PMF model for offline analyses. Therefore, this study outlines well 634 

the limitations of GLM, RF, and MLP for offline datasets. Future investigations should be performed in 635 

an extended dataset, such as long-term or real-time measurement data, to investigate the performance of 636 

machine learning algorithms. 637 

- This study only focused on the two most popular OP assays of PM10 (OPDTT and OPAA). However, there 638 

are actually various OP assays, such as OPDCFH, OPOH, OPFOX, OPGSH, OPESR and different sizes of PM 639 

(PM1, PM2.5, PM5). Further research should include more OP assays, which can be helpful in evaluating 640 

the performance of various regression models for different OP and different PM sizes. 641 

- This study used the analytical uncertainty as the weighting for the weighted model. However, the 642 

weighting can be selected based on different ways, as reported by Montgomery et al. (2012): (1) Prior 643 

information from the theoretical model, (2) Using the residual extracted from the OLS model, (3) The 644 

selecting of weighting based on the uncertainty of instrument if the dependent variable measured by a 645 

different method and (4) If the dependent variable is the average of different observations, the weighting 646 

selected based on the error of these observations.  647 

 648 

4. Conclusion 649 

The results of the OP SA marked an important milestone as they were revealed for the first time through the use 650 

of eight regression models, including OLS, WLS, PLS, GLM, Ridge, Lasso, RF and MLP. This in-depth analysis 651 

was carried out on a complete set of data collected from six sites with different characteristics. The approach of 652 

selecting a suitable model for each site based on specific data characteristics resulted in a more consistent intrinsic 653 
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OP across sites, in stark contrast to the variation observed when using the basic OLS model. The revelations of the 654 

study have provided concrete recommendations for the judicious selection of an appropriate regression model 655 

based on the unique characteristics of the dataset. These guidelines should help to improve the accuracy of OP 656 

assessments and contribute to the refinement of air quality assessment methods. In addition, the implications of 657 

this research extend to the implementation of OP monitoring as a new measure of air quality, particularly on 658 

European supersites. As this initiative aligns with the ongoing revision process of the European Directive 659 

2008/50/CE, the study's findings assume a pivotal role in shaping the methodologies underpinning air quality 660 

assessments at a broader regulatory level. 661 
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