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Unveiling the optimal regression model for 

source apportionment of the oxidative 

potential of PM  

 

Authors response 

We thank the reviewers for their time and valuable comments that helped improve our manuscript's 

quality. We have answered the reviewers' comments in red and in blue italic are the changes included 

in the manuscript. 

Anonymous Referee #1 

The manuscript prepared by Thuy et al. deconvolved the source of OPDTT and OPAA for 1-year PM10 

samples collected at six sites in France using receptor models (EPA PMF) coupled with eight separate 

regression methods. The relationship among source, composition, and OP is complex. The importance 

of apportionment methods on OP repartition by different PM sources was investigated in a variety of 

environments. Potential impacts from source variation on OP apportionment were also evaluated. The 

study demonstrated that different monitoring sites may have different optimal OP SA regression 

methods. By performing in-depth analysis of PM chemical composition and OP source, the authors 

further provided recommendations on how to select a suitable OP source apportionment model based 

on specific data characteristics and offered the possibility of real-time OP monitoring and accurate 

source identification in future studies. Overall, the manuscript was within the scientific scope, but there 

remain some unresolved issues. Therefore, I would like to recommend this manuscript to be published 

in Atmos. Chem. Phys. once the following concerns can be fully addressed. 

Specific comments: 

The authors only applied the PMF-regression methods to OPDTT and OPAA. There are many other 

acellular OP assays. The authors did not discuss the applicability of the current source apportionment 

method to other acellular OP assays. For example, whether the SA optimization framework proposed 

here can be applicable for OPGSH, OPESR, OPDCFH, etc. At least this should be discussed in the limitation 

part at the end of the manuscript. 

Reply: Thanks for your suggestion. The present study only focused on the 2 most popular OP assays, 

mostly because this is already demonstrative of our purpose, testing the applicability of a large set of 

deconvolution methods for these two widely used assays. Further, we do not think that there is any data 

set published that present a full comparison of PM sources study with PMF for 6 sites of different 

typology for a full year, associated with OP measurement with more than 2 assays. Our group already 

published a study of OP source apportionment at one site with 5 different OP assays (OPAA, OPDTT, 

OPDCFH, OPOH, OPFOX) by using MLP and WLS models, showing that these regression methods are 

applicable for all these assays (https://doi.org/10.1039/D3EA00007A). We understand that the work 

proposed by the reviewer would be interesting and valuable, but it represents an amount of work out of 

https://doi.org/10.1039/D3EA00007A
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our reach at the moment, and thus, we have updated the limitations of the study as follows (line 661 to 

664): 

This study only focused on the two most popular OP assays of PM10 (OPDTT and OPAA). However, there 

are actually various OP assays, such as OPDCFH, OPOH, OPFOX, OPGSH, OPESR and different sizes of PM 

(PM1, PM2.5, PM5). Further research should include more OP assays, which can be helpful in 

evaluating the performance of various regression models for different OP and different PM sizes. 

Another limitation of the present work is the authors should be aware of the differences between intrinsic 

particle-bond PM OP measured/discussed here and in vitro ROS release. What kind of implications that 

the current work can help elucidate the health outcomes from PM exposure? The authors may want to 

add some specific discussions more about the implications of future applying such OP SA method in 

real-time OP monitoring and PM health impacts prediction. 

Reply: Thanks for this comment. We agree with the reviewer that the OP measurement is only one 

aspect (the exogenous one) of the formation of the in vivo ROS in human, the other one being the 

endogenous reactions that take place in the body. This is clearly acknowledged in the research 

community working on OP measurement of PM (Brook et al., 2010; Tao et al., 2003). It is also 

recognized that measuring OP, with this relevant concept of the quantification of the release of oxidative 

species to the body, is probably one step forward for a better understanding and prediction of the health 

impacts compared to the measurement of the sole PM mass. Studies have shown the associations 

between OP and toxicological assays on epithelial cells (Daellenbach et al., 2020; Leni et al., 2020). All 

the more, several recent studies tend to indicate that OP may be more predictive of health effects, 

including several performed in our group that found positive associations between OPDTT and respiratory 

outcomes in the little childhood (L. J. S. Borlaza et al., 2023; Marsal et al., 2023) and with acute 

respiratory outcomes in Bolivia (Borlaza et al., 2024 under review). However, this approach needs to 

assess long time series better to understand the associations between OP and health outcomes. 

Further, just like it is for the PM mass, unraveling the different sources of the PM that are important for 

the health impact due to their OP values is quite important both for a better assessment of epidemiology 

studies, but also for the implementation of their regulation. Future studies may apply the best 

deconvolution of OP of PM sources by the different methods discussed in our work in order to provide 

the most accurate long-term time series of OP exposure per source to evaluate their associations to 

specific health outcomes.  

We believe that our work also paves the way for the coming applications for future near-real-time (NRT) 

OP monitoring and the possibilities it opens. The fact that current NRT PM chemical measurements are 

mainly performed for PM1 fraction is evidently something to be considered, since it changes the 

perception of the PM sources (cutting off most of the sources emitting the in coarse mode) and provides 

a more difficult framework for PMF studies. Our team already tried to tackle these difficulties, with the 

coupling of NRT chemical measurement with off line 4-hr OP measurements (Camman et al., 2023). 

The authors developed this OP source apportionment method for PM10 samples and proposed online 

OP monitoring by the end of this manuscript. Most online PM chemical composition monitoring 

techniques are designed for smaller particles (PM1 or PM2.5). Have the authors testified the robustness 
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of this OP SA method with PM of smaller sizes? In other words, the authors should be aware of this and 

give some discussion over the potential impacts of PM size on the current OP SA method.  

Reply: This comment is very similar to the end of the previous one. We agreed with the referee that the 

PM size could impact the OP SA since the sources were changed by the PM faction. For instance, the 

tracers of traffic non-exhaust and primary biogenic cannot be appropriately identified in the PM1 

fraction. However, we present here different statistical models that describe the OP based on the PM 

sources. These kinds of models can be applied to all sorts of particle sizes, the only condition is the 

robustness of PMF-derived sources. Our group recently published an article about the OP SA of PM1, 

which showed that the MLR model works well for apportioning PM1 (Camman et al., 2023) 

(https://doi.org/10.5194/acp-24-3257-2024). In the present study, we have not tested the performance 

of the OP SA method for different PM sizes. Nevertheless, we are looking forward to test the OP SA 

methods developed in this study with the sets of online data (chemistry + OP) that we intend to collect 

in a near future. The limitation of the study is updated as follows (line 661 to 664): 

This study only focused on the two most popular OP assays of PM10 (OP DTT and OP AA). However, 

there are actually various OP assays, such as OPDCFH, OPOH, OPFOX, OPGSH, OPESR and different sizes 

of PM (PM1, PM2.5, PM5). Further research should include more OP assays, which can be helpful to 

evaluate the performance of regression models in different OP and different PM sizes. 

The division of 80% for training and 20% for testing has any references? Have the authors performed 

sensitivity analysis on other training vs testing percentages? 

Reply: The training set is the dataset used to build and fit predictive models, while the test set is a subset 

of the dataset to assess the likely future performance of a model. The division of 80% for training and 

20% for testing in our study is based on Patero principle (Dunford et al., 2014), which demonstrates that 

80% of consequences come from 20% of the causes. The 80/20 split is widely used and the same as the 

split obtained in each iteration of 5-fold cross-validation. Our main concern was to ensure our results 

were robust to different train/test splits (with the same train/test ratio); this is why we performed 500 

random 80/20 splits for each experiment and report the variability across the 500 repetitions. We did 

examine a 70/30 train/test split, whose results did not clearly differ when accounting for the variability 

across the 500 random splits. 

OPv is significantly affected by PM mass concentration while OPm (mass normalized OP) reflects 

chemical composition. This may be another piece of work but have the authors looked into the OP SA 

method on OPm for those PM10 samples?  Some discussions are needed. 

Reply: Thanks for your comments. Since the goal of the paper is ultimately for the quest of the best 

deconvolution of the PM sources for exposure, we of course focused on OPv. In addition, the PMF-

derived sources are the contribution of sources to mass concentration of PM10 which are normalized 

with the air volume sampled (µg m-3), while the OPm is the intrinsic OP property of 1 μg of PM. These 

measurements are not in the same state (one normalized by air volume and the other normalize by PM10 

mass) and we could not perform an OP SA on the OPm . 

Line 39: Crouse et al., 2012 may not be the right citation for this statement    

 Reply: Thanks for your comment. We updated the reference (line 39) 

https://doi.org/10.5194/acp-24-3257-2024
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However, various research shows that the impacts of PM also depend on other factors such as chemical 

composition, size distribution, particle morphology, and biological mechanisms (Brook et al., 2010). 

Line 42: any reference for the OP definition? 

Reply: Thanks for your clarification, we added the reference (line 45).  

The quantification of the PM capacity to generate ROS into a biological media is called oxidative 

potential (OP) (Bates et al., 2019; Daellenbach et al., 2020; Dominutti et al., 2023). 

Line 46: the most prone to 

Reply: Thanks for your revision, we updated the sentence (line 47): 

The relationship between PM chemical components and OP activities may identify which components 

are the most prone to generate ROS. 

Line 55: any references for this 

Reply: Thanks for your comment, we added the references (line 57-58) 

Regression analysis is the most common and effective way to estimate the redox activity of receptor 

model-derived PM sources (Borlaza et al., 2021; Dominutti et al., 2023; Fadel et al., 2023; Li et al., 

2023; Liu et al., 2018; Weber et al., 2018; Zhang et al., 2023). 

Line 73: the first place of OLS should be in Line 60 

Reply: Thanks for your comment, we updated in the main text as follows (line 62 – 64): 

Numerous regression models can be used for such OP source apportionment (SA), with multiple linear 

regression fitted by ordinary least squares (OLS) being the most common regression technique (Bates 

et al., 2015; Deng et al., 2022; Li et al., 2023; Liu et al., 2018; Shangguan et al., 2022; Verma et al., 

2014; Y. Wang et al., 2020; Yu et al., 2019) 

Line 185-280: the introduction of 8 regression models can be moved to supplemental information. 

Method 2.5 and 2.6 can be combined 

Reply: Thanks for your suggestion, we thought that it was crucial to show all the methods that we applied 

together with the condition and assumption of the regression model. That elucidates some conditions 

that should be respected when using the model for OP source apportionment. Hence, we want to put the 

description of the methods in the main text.  

We combined section 2.5 and 2.6. 

Line 303: be specific on what are the 2 OPs 

Reply: Thanks for your comment. We clarified in the main text ( line 317-319) 

Conversely, for the alpine valley sites, CHAM presents higher OPAA than OPDTT, while GRE-fr 

experiences similar levels of OPAA and OPDTT. 

Line 349: this is a bit misleading. In the methodology the author claimed 8 regression models but here 

you added 3 weighted models so 11 in total actually—this should be clearly stated in the above method 

section and Figure 1 
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Reply: Thanks for your suggestion. These are always 8 regression techniques, but some of them were 

applied twice, with and without weighting (PLS, Ridge, Lasso). We clarified in the main text (line 101-

104). 

These 8 regression techniques were applied to find the relationship between OP and PM sources, 

however, PLS, Ridge, and Lasso were performed 2 times, with and without weighting, consequently, 

there are 11 results of regression techniques that will be presented. 

Line 398: Any inner relationship between collinearity and heteroscedasticity? 

Reply: There is no connection between collinearity and heteroscedasticity; one or both can be present. 

In addition, a study by Alabi et al. 2020 (http://dx.doi.org/10.4236/ojs.2020.104041) showed that 

statistical tests for heteroscedasticity may fail in the presence of collinearity.  

Line 432: any explanations for the larger differences among small OPAA sources? Also, previous work 

showed that OPAA is metal sensitive (DOI: 10.1021/acs.est.8b03430), I am not sure why the dust source 

plays a negative role in OPAA 

Reply: Thanks for your comments. We agreed that OPAA is sensitive to some metals, including Cu, Fe, 

Pb, Zn, and Mn (Bates et al., 2019; Calas et al., 2018). Nevertheless, the dust source in our study is 

mainly mineral dust, which contains a high proportion of Ca2+, Al, and Ti. These metals are known as 

low redox-active species whose correlations with OPAA are lower than 0.3 (Calas et al., 2018). In 

addition, the negative intrinsic OPAA of dust is not surprising and was found in other studies in France 

(Dominutti et al., 2023; Weber et al., 2018). 

Figure 6 and Figure 7: it is hard to believe salt, nitrate and sulfate rich sources are significant contributors 

of OPAA and OPDTT given that sulfate and nitrate cannot consume AA or DTT 

Reply: Thanks for your comment. Secondary inorganic aerosol (SIA) has been shown to have less effect 

on ROS generation (Daellenbach et al., 2020). However, the sulfate-rich and nitrate-rich in NIC were 

identified with 15-25% of metals (As, Cd, Mn, Mo, Ni, Pb, Ti, V, Zn) in their chemical profiles, so, they 

are not solely sulfate or nitrate. The presence of these metals could be the reason that makes a higher 

contribution of sulfate and nitrate rich to OPAA and OPDTT. The high intrinsic OP of sulfate rich and 

nitrate rich in PM10 is also found in previous studies (D. Wang et al., 2022; Weber et al., 2018). The 

NIC sampling site is located near the port area of Nice where there are many shipping activities. The 

shipping emissions, including EC, V, Ni and some metals, could be transported with sea salt as well as 

aging particles such as SIA. The chemical profiles of salt, sulfate-rich and nitrate-rich in NIC are added 

in Figure S.20, S.21, S.22 in the Supplement, respectively. 

Line 473: Any references for this 60% threshold? It may be too rush to draw the 60% conclusion here 

given that the mechanisms are not fully elucidated.  Some earlier work on synergistic and antagonistic 

OP can also be added here, https://doi.org/10.1021/acs.est.7b01272; https://doi.org/10.5194/acp-18-

3987-2018 

Reply: Samake et al. (2017) demonstrated that the presence of bacterial cells in aerosol decreasing the 

redox activity of Cu and 1,4-naphthoquinone, with a maximum decreasing of 60% compared to the 

oxidative reactivity considered individually. Pietrogrande et al. (2022) indicated that the mixture of Cu, 

Fe, 9,10-phenanthrene quinone and 1,2-naphthoquinone reduces the rate consumption of AA and DTT, 

http://dx.doi.org/10.4236/ojs.2020.104041
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up to 50% depending on the quantity of each chemical. Wang et al. (2018) reported that the mixing of 

Cu and naphthalene secondary organic aerosol (SOA) and phenanthrene SOA only got half of DTT rate 

consumption compared to the consumption when considering separately. Xiong et al. (2017) showed 

the presence of antagonists in the interaction of Fe and quinones, nevertheless, much lower than those 

in the other studies (under 10%). These references reported that antagonistic effects of a mixture can 

significantly reduce the consumption rate of OPDTT and OPAA, and this impact varies widely from 10% 

to 60% depending on the type of chemical species and the quantity of each species in the mixture. We 

selected the maximum antagonistic effect (60%) based on these studies to describe the possibility of 

getting the intrinsic OP negative, although it definitely exists many kinds of mechanisms behind this 

effect that we cannot simulate. We added these references in the main text as follow (line 485-489): 

Second, we postulate that negative intrinsic OP values are possible since previous studies have reported 

that total PM intrinsic OP can be modulated due to the synergetic/antagonistic effects involving, for 

example, soluble copper, quinones, and bacteria (Borlaza et al., 2021; Pietrogrande et al., 2022; 

Samake et al., 2017; S. Wang et al., 2018; Xiong et al., 2017).  

Line 580: the authors pointed out that one of the limitations of the present work is the type of regression 

method used and recommended more methods should be applied in future studies. Can the authors give 

some examples of future regression methods here? 

Reply: Thanks for your comments. We added more details in the limitations section (line 639-645). 

This study compares eight regression models but is not exhaustive; further research could add more 

regression techniques to evaluate result variations across models. The potential techniques that could 

be applied for OP SA are gradient boosting techniques for resolving regression models, or supervised 

machine learning techniques which allows the investigation of linear and non-linear regression 

relationships. However, the consistently strong performance of ordinary linear regression across six 

locations in France suggests that there may be little to gain from applying more complex models in 

areas with similar PM10 sources. 

Line 590: writing of this paragraph, and the whole manuscript can be improved. 

Reply: Thanks for your suggestion. We rewrote this paragraph (line 655-660). 

Observations ranged between 100 and 200 samples at each site, which may be insufficient to obtain a 

fair performance of GLM, decision trees and neural network models even though this number of samples 

is sufficient to address SA through the PMF model for offline analyses. Therefore, this study outlines 

well the limitations of GLM, RF, and MLP for offline datasets. Future investigations should be 

performed in an extended dataset, such as long-term or real-time measurement data, to investigate the 

performance of machine learning algorithms. 

 

Anonymous Referee #2 

This manuscript explores the relationship between PM10 sources and its oxidative potential (OP) at six 

sites in France, utilizing PMF for source apportionment and machine learning to estimate each source's 

intrinsic OP. By examining source characteristics, the authors devise a protocol for selecting the best 
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regression model for specific datasets, enhancing consistency in intrinsic OP values across sites 

compared to a reference model. 

The study insightfully addresses the choice of the optimal machine learning model based on dataset 

characteristics like collinearity and heteroscedasticity. The rigorous strategy for optimal source selection 

and the comparison of the best and reference algorithms' intrinsic OP support the selection criteria. 

However, the methodology lacks clarity on model testing and validation protocols, and intrinsic OP 

levels for RF and MLP models are absent. The paper does not discuss extrinsic OP, which may diminish 

its environmental relevance. Further discussions on algorithm selection based on volume-normalized 

OP could enhance the manuscript's utility for future research on source contributions to OP. 

Overall, this well-conducted study merits publication with minor revisions, addressing suggested 

improvements for a more comprehensive presentation and analysis. 

Specific comments are as follows: 

The authors mentioned an 80-20 train-test split method. For optimal hyperparameter development, a 

validation set is crucial. Did the authors incorporate a validation phase beyond testing? 

Reply: Thanks for your question. Yes, we used 5-fold cross-validation on the training data for 

hyperparameter tuning. The training dataset was separated into 5 parts: 4 parts were used for training, 

and the remaining was used for validation. This process was repeated 5 times, and the hyperparameter 

value producing the lowest mean RMSE across the 5 parts was selected. This is now explained in the 

text as follow (line 265-270 for RF and line 288-291 for MLP): 

RF is customizable via hyperparameters such as the number of trees, the size of the bootstrap sample, 

and the number of features to evaluate at each node. The hyperparameters tuning used 5-fold cross-

validation on the training data for hyperparameter tuning. The training dataset was separated into 5 

parts: 4 parts were used for training, and the remaining was used for validation. This process was 

repeated 5 times, and the hyperparameter value producing the lowest mean RMSE across the 5 parts 

was selected. The hyperparameters tuning is shown in section S1.1 Supplement. 

The choice of hyperparameters to ensure the MLP model's robustness is processed by hyperparameter 

tuning using 5-fold cross-validation and shown in section S1.2 of the supplement. Thanks to 

hyperparameter tuning, the two hidden layers and a logistic sigmoid activation function were selected 

in this study to capture the non-linear relationships between OP activities and PM sources. 

For the GLM model, a logarithmic transformation of the dependent variable showed poor predictions. 

Were alternative transformations, such as inverse or power functions, considered? 

Reply: We explored a logarithmic transformation because the distribution of OPv was approximately 

log-normal (Figure below). Given the strong performance of the (ordinary) linear regression models, we 

did not explore other transformations, but this could be an interesting point for future studies.  
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The authors noted insufficient sample numbers for robust results. Did combining similar sites improve 

predicted intrinsic OP? 

Reply: This is a point that we have considered, in order to improve the performance of the MLP and RF. 

However, as shown in Table S2 Supplement, the sites with the same typology do not have the same PM 

sources. Combining these sites potentially risk losing some specific sources in a site, for example, HFO 

in PdB or Industrial in PdB, TAL, GRE, which are known to have a high redox activity in literature. 

However, as said in the conclusions, this is something to be tested in future research for longer time 

series data. 

RF and MLP's poor test results might result from unoptimized hyperparameters. Consider further tuning 

and a dedicated validation set for improvement. 

Reply: Thanks for your suggestion. The hyperparameters are shown in Table S.11, Supplement. The 

hyperparameters of the best performance are different across sites; however, the change in the 

hyperparameter did not change much the model accuracy (under 0.1 of accuracy score). Further, running 

the model is very time-consuming: 500 runs for each model per site take over 48 hours to get the result. 

In addition, given the good performance of OLS, RF is unlikely to give much better results on the dataset 

of this study. The extensive parameter tuning therefore could be a good direction for further studies. 

 Intrinsic OP might not be directly obtainable from RF and MLP but could be inferred from source 

importance and mass contribution. 

Reply: The feature importance of RF and MLP could be assessed to understand which feature (or PM 

sources in our case) is vital in predicting OP. This study estimated the permutation importance of each 

PM source as the mean increase in the mean squared error of predicted OP when the values of the PM 

source were permuted. However, the feature importance does not represent the intrinsic predictive value. 

In addition, the presence of a source could improve the accuracy, but we cannot know precisely if the 

interaction between OP and this source is negative or positive, i.e. OP value increases or decreases as 
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the contribution of a source increases. For all these reasons, we decided not to include the feature 

importance result in the paper. Indeed, a SHapley Additive exPlanations analysis was performed but not 

included in this paper because the overall performances of RF and MLP were not good. 

Adding extrinsic OP, normalized by air volume, could clarify environmental implications across models. 

Reply: Thanks for this comment. We agree with the reviewer that the evaluation of volume-normalized 

OP could bring other insights into the environmental implications of OP. However, this includes the 

mass of each source, which is not similar between the sites evaluated since it depends on the total PM 

mass. We then focused on the intrinsic OP obtained for each PM source for comparison purposes. 

The MAE and RMSE equations (line 290) are incorrect. 

Reply: Thanks for your comment. We corrected the equations (line 306 and 307). 

 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦�̂�|

𝑚
𝑖=0

𝑚
(𝐸𝑞13) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑚
𝑖=0

𝑚
 (𝐸𝑞14) 

It's recommended to display MAE and RMSE values for training data in Figure 5, alongside test data. 

"OP intrinsic" (line 453) should be revised to "intrinsic OP." 

Reply: Thanks for your comment. The MAE and RMSE values (mean ± std) for training and testing 

dataset are shown in Table S.4 and S.5 in the Supplement, respectively. We did not include the MAE 

and RMSE values of training dataset in Figure 5 because it is dense and invisible to put the both training 

and testing results on this plot. In addition, we selected the best model based on the performance of the 

testing, so that we wanted to show the values of testing dataset. 

We updated the line as follow (line 468): 

The comparison of intrinsic OP among regression models in NIC demonstrated that OPDTT and intrinsic 

OPAA values exhibit variation across different models with and without weighting, illustrating that the 

choice of the model significantly influences the values obtained for intrinsic OP of PM sources (A similar 

pattern is observed for all other sites and shown in Fig S.3 to Fig S.7 for OPAA and Fig S.8 to S.12 for 

OPDTT). 

The sentence spanning lines 474-476 requires clarification. 

Reply: This was already discussed in a question of the referee #1. The main text is updated as follow 

(line 488-499) 

Samake et al. (2017) demonstrated that the presence of bacterial cells in aerosol decreasing the redox 

activity of Cu and 1,4-naphthoquinone, with a maximum decreasing of 60% compared to the oxidative 

reactivity considered individually. Pietrogrande et al. (2022) indicated that the mixture of Cu, Fe, 9,10-

phenanthrene quinone and 1,2-naphthoquinone reduces the rate consumption of AA and DTT, could be 

up to 50% depending on the quantity of each chemical. Wang et al. (2018) reported that the mixing of 

Cu and naphthalene secondary organic aerosol (SOA) and phenanthrene SOA only got half of DTT rate 
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consumption compared to the consumption of considering separately. Xiong et al. (2017) showed the 

presence of antagonists in the interaction of Fe and quinones, nevertheless, much lower than those in 

the other studies (under 10%). These references reported that the antagonistic of a mixture reduces the 

consumption rate of OPDTT and OPAA, and this impact varies widely from 10% to 60% depending on the 

type of chemical species and the quantity of each species in the mixture.  

 

Anonymous Referee #3 

Multilinear regression models have been commonly used to bridge PM mass sources obtained from 

PMF with PM oxidative potential (OP). However, a comprehensive assessment and comparison of those 

models has yet to be conducted. Thuy et al. evaluated the performances of eight regression techniques 

in estimating the contribution of PM10 sources to PM10 OP (OPAA and OPDTT). From the evaluation, a 

flowchart was established as a guideline for regression model selection. However, a few concerns shall 

be addressed below: 

Most of my major concerns are related to the regression models: 

In Figure 6 and Figure 7, results from WLS were identical with wRidge; while OLS were the same as 

Ridge. From Figure S3 to Figure S12, WLS and Ridge are equal, and OLS and wRidge are the same. I 

felt that this is very strange. How could the regression models have the same results, and how could the 

model similarity trend in the main manuscript and SI be different? 

Reply: Thanks for your comments. The first thing we should clarify here is in Figure 6 and Figure 7, the 

"wRidge" is the model incorporating the weighting, and "Ridge" is the model without weighting. From 

Figure S3 to Figure S12, "Ridge" is the model incorporating the weighting and "Ridge wo weight" is 

the model without weighting. We are sorry for the confusion, all figures (Figure S3 to Figure S12) in 

the Supplement were corrected to the same name as Figures 6 and 7. Overall, for all sites, the results 

from WLS were identical with wRidge, and the OLS were the same as Ridge. 

The results for OLS and Ridge as well as for WLS and wRidge were very similar because we used a 

small value (0.01) for lambda, the regularization parameter of ridge regression. As shown in Eq9, the 

minimize term of Ridge will become OLS when 𝜆 = 0. The lambda was chosen by implementing 

hyperparameter tuning, with 𝜆 in (5, 1, 0.5, 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001). 

In Figure S6, the dust in Lasso has some contribution, but why the contribution became 0 in wLasso? A 

detailed explanation of those models incorporated weighting is required. 

 Reply: Thanks for your comment. The different result between the model applying the weighting and 

without weighting is not surprising, as shown in Figures 6 and 7 for NIC and Figures S3 to S12 for 

remaining sites, both OPDTT and OPAA. The model without weighting treats every data point differently; 

the point with lower uncertainty in OP analysis has more effect on the model. The model without 

weighting treats every data point similarly. That is the reason why we get different results for Lasso and 

wLasso. The intrinsic OP of dust is 0 in Lasso without weighting, demonstrating that the source of dust 

does not help to get a robust performance for Lasso, so it is shrinked to 0. The minimized term of Ridge 

and Lasso with weighting was added in the main text (line 233 and 246, respectively): 
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Ridge: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2𝑚
∑ 𝑤𝑖(𝑦𝑖 −  𝑦�̂�)

2

𝑚

𝑖=1

+  𝜆 ∗ ∑ 𝛽𝑗
2

𝑝

𝑗=1

 (𝐸𝑞9) 

Least Absolute Shrinkage and Selection Operator (Lasso):  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2𝑚
∑ 𝑤𝑖(𝑦𝑖 − 𝑦�̂�)

2

𝑚

𝑖=1

+  𝜆 ∗ ∑|𝛽𝑗|

𝑝

𝑗=1

 (𝐸𝑞11) 

Lasso regression encourages 0 coefficients on the factors. From my experience, many of the factors' 

(components, sources, etc.) coefficients became 0 when applying Lasso. While in this study, conducting 

Lasso does not exclude many sources from the OP contribution. Some minor sources are still in the 

Lasso results (such as primary biogenic and salt in Lasso in Figure S8). Can you explain the details of 

doing the Lasso regression? 

 Reply: Thanks for your question. We implemented hyperparameter tuning, with 𝜆 in (5, 1, 0.5, 0.1, 

0.01, 0.005, 0.001, 0.0005, 0.0001). The selecting parameter was run using the 5-fold cross-validation. 

Finally, the best solution varied between 0.005 and 0.01 for 6 sites. We selected the highest value of 𝜆 

i.e., 0.01. The minor sources are still in the Lasso result because of the low amount of shrinkage. 

However, in our case, the best 𝜆 is very low, so few sources were excluded from the model. That could 

be explained by the synergistic effects can cause a source with low intrinsic OP to be important, and the 

model supposed every PM source is important in OP prediction, consequently, the tuning selected a 

value for lambda that keeps most sources in the model. Indeed, for some sites (GRE-fr, PdB) the Lasso 

does shrink more than 4 sources to 0 (Figure S4, S5 Supplement). 

Line 460: 'Intrinsic OP values obtained in this way from the best model encompassing all six sites are 

called intrinsic OP of the best model, and the intrinsic OP values derived from the OLS from all six sites 

are called intrinsic OP of the reference model.' The authors should clearly list the best models for each 

site. 

Reply: Thanks for your suggestion. We added this information in the main text as follow (lines 476-

479): 

Intrinsic OP values obtained in this way from the best model (the best model presented in Table 3 for 

OPAA and Table 4 for OPDTT) encompassing all six sites are called intrinsic OP of the best model, and 

the intrinsic OP values derived from the OLS from all six sites are called intrinsic OP of the reference 

model.  

The advantage of the best model over OLS shall be better emphasized. Some irrelevant content shall be 

reduced. 

 Reply: Thanks for your suggestion. We updated in the main text (line 514 to line 539 for the comparison 

of OPAA and line 544 to line 581 for the comparison of OPDTT. 

However, the interquartile ranges (IQR) of the intrinsic OP values are consistently narrower for the 

best models across all sources, accounting for less divergence in intrinsic OP values across sites. 

However, the interquartile ranges (IQR) of the intrinsic OP values are consistently narrower for the 
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best models across all sources, accounting for less divergence in intrinsic OP values across sites. 

Moreover, the median intrinsic OP values obtained from the best model closely approximated the mean 

values, indicating the absence of extreme intrinsic OP values. For instance, in the case of road traffic, 

the mean and median values were 0.24 and 0.23 nmol min-1 µg-1, respectively. Conversely, the reference 

model exhibited a large difference between the mean and median values, implying lower consistency 

across sites and sampling iterations. The same result was observed in biomass burning source, in which 

the median and mean intrinsic OP in the best model had fewer discrepancies. Further, the biomass 

burning intrinsic OP in GRE-fr of the best model is more consistent with those in other sites (best: 0.30 

nmol min-1 µg-1, reference: 0.35 nmol min-1 µg-1).  

When considering sources with low intrinsic OP, the variability can be larger between the two methods. 

As an example, for the sulfate-rich sources, the median intrinsic OP values were positive (0.002 nmol 

min-1 µg-1), while the mean intrinsic OP values were negative (-0.008 nmol nmol min-1 µg-1). The mean 

intrinsic OP in the best model exhibited fewer negative values in individual sites than in the reference 

model (for aged salt, salt, primary biogenic, MSA rich, sulfate-rich and nitrate-rich). In addition, the 

best model showed the less disparate intrinsic OP among individual sites for instance, the aged salt 

sources in GRE-fr and the primary biogenic and salt sources in CHAM. Furthermore, the best model 

displayed an intrinsic OP meaningful in terms of geochemical, which showed in the source of salt, 

primary biogenic, sulfate-rich. For instance, in the reference model, the average intrinsic OP of the 

primary biogenic in NIC (-0.03 nmol min-1 µg-1), the intrinsic OP of salt in GRE-ft (-0.07 nmol min-1 µg-

1) as well as the sulfate-rich source in CHAM (-0.05 nmol min-1 µg-1) represented a 100% reduction 

compared to the mean intrinsic OP of all sites. Moreover, the negative intrinsic OP was observed in 

NIC (Primary biogenic), and some extreme values in GRE-fr (aged salt, salt), CHAM (salt, primary 

biogenic, MSA-rich) (where heteroscedasticity was presented) in the OLS model, underscores that the 

model assumptions on data characteristics proving false could impact the accuracy of OP prediction. 

Consequently, these results highlight the advantage of considering the data in model selection. 

Line 544 to line 581 for OPDDT comparison as follow:  

Similar to OPAA, for OPDTT the IQR of the best model is narrower for most of the sources than the IQR 

of the reference model (OLS). Except for the road traffic, industrial, and MSA-rich, the IQR is slightly 

higher in the best model (Figure 9 and Table S.9). In the two models, the mean intrinsic OP is essentially 

unchanged, where the traffic is the most critical source (0.27±0.10), followed by HFO (0.18±0.01), 

biomass burning (0.12±0.03), dust (0.12±0.07), primary biogenic (best: 0.10±0.06, reference: 

0.12±0.08) and MSA rich (best: 0.11±0.09, reference: 0.09±0.09). The minimum difference between the 

two models in the dominant sources again confirms the conclusion in the OPAA comparison, 

demonstrating the similar pattern of the best and the reference model in the most crucial sources of 

OP. For both best and reference, OPDTT activities showed sensitivity to more sources than OPAA, as 

discussed in many works (Borlaza et al., 2021; Calas et al., 2019; Dominutti et al., 2023; Fadel et al., 

2023).  

While the best and reference models give the same mean intrinsic OPDTT of all sites, the mean OPDTT at 

each individual site can vary substantially between the two models. The best model exhibited the positive 

intrinsic OP for all sources, while the reference model displayed negative intrinsic OP in RBX (MSA-

rich and sulfate-rich). Especially in the case of sulfate-rich in RBX, the negative intrinsic OP in the 
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reference model passed the threshold of negative value, which presented a 110% reduction compared 

to the mean intrinsic OP of all sites. This is also found in the OPAA comparison, which confirmed that 

the best model generates a geochemical meaningful OP intrinsic. In addition, the best model exhibited 

consistent intrinsic OP across sites, especially for the source of dust, salt, primary biogenic, sulfate-rich 

in TAL (heteroscedasticity is presented in this site), where OP intrinsic in TAL in the best model is more 

similar to the other sites. For instance, the reference model presented that the intrinsic OP in TAL is 

0.20 nmol min-1 µg-1, far from the mean of all sites (0.07 nmol min-1 µg-1). We observed the same for OP 

intrinsic of nitrate-rich source in CHAM (where the heteroscedasticity is detected), which displayed the 

less dissimilar of CHAM with the other site in the best model. This again validates the conclusion in 

OPAA comparison, demonstrating that respecting model assumption is essential to obtain a robust OP 

SA result. 

Figure 8 and Figure 9 are difficult to understand. Box plots shall be better (just a suggestion). I also have 

a concern related to the calculation of the median value. For example, in Nitrate rich of Figure 8. The 

3rd and 4th values in OLS are near ~-0.01, so the median value shall be close to -0.01. However, the 

displayed median value is ~-0.005. 

Reply: Thanks for your comment. We would like to keep this plot as it is since, with the box plot, we 

cannot clearly see the average intrinsic OP of every site. To clarify, the points in Figure 8 represent the 

mean intrinsic OP but not the median. Therefore, it is reasonable to get the 3rd and 4th values are near 

-0.01 and the median value of all sites is -0.006. 

Line 290: There is no difference in calculating MAE and RMSE. 

Reply: Thanks for your comment. We corrected the equations as follow (line 306 and 307): 

 

𝑀𝐴𝐸 =  
∑ (𝑦𝑖 − 𝑦�̂�)

𝑚
𝑖=0

𝑚
(𝐸𝑞13) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑚
𝑖=0

𝑚
 (𝐸𝑞14) 

Line 460: 'The OLS model is used as a representative of usual practices that do not consider the database 

characteristics.' References are required to support your statements. 

 Reply: We added the reference for this sentence (line 473-474) 

The OLS model is used as a representative of usual practices that do not consider the database 

characteristics (Williams et al., 2013). 

There are some citation errors, such as 'Liu, & Ng. (2023). Toxicity of Atmospheric Aerosols: 

Methodologies & Assays.', ‘Paatero, P., & Tappert, U. (1994). POSITIVE MATRIX 

FACTORIZATION: A NON-NEGATIVE FACTOR MODEL WITH OPTIMAL UTILIZATION OF 

ERROR ESTIMATES OF DATA VALUES*. In ENVIRONMETRICS (Vol. 5).', 'Wang, Wang, M., 

Li, S., Sun, H., Mu, Z., Zhang, L., Li, Y., & Chen, Q. (2020). Study on the oxidation potential of the 

water-soluble components of ambient PM2.5 over Xi'an, China: Pollution levels, source apportionment 



14 

 

and transport pathways. Environment International, 136(January), 105515. 

https://doi.org/10.1016/j.envint.2020.105515 

Reply: thanks for your remark, we corrected these references in the main text 

 

Anonymous Referee #4 

Thuy et al. have performed a study to provide a guideline for researchers interested in apportioning the 

contribution of different PM sources from conventional PMF-based source apportionment studies and 

linking it to its oxidative potential (OP). They achieved this by systematically comparing several 

commonly employed regression models and calculating their OP predictions. They compared the 

intrinsic PM OP using eight different MLR models and discussed the limitations and strengths of each 

approach. Finally, they provided a workflow for choosing the best OP model based on the PMF data 

available. 

Overall, the manuscript is well-written, easy to follow, and focused. However, I would appreciate 

clarification on the methodology section, the environmental relevance of the results, and the result 

interpretation section of the manuscript. 

 

Specific comments: 

Lines 95-100: The authors mention, "OP analytical errors were used in weighing." Were these analytical 

errors calculated based on replicate measurements of the same sample? This information is important 

because, typically, in a lab setting, when performing PM OP analysis, there should not be significant 

variations in the standard deviation (SD) if replicates are analyzed. This is because the errors should 

ideally be more or less constrained within a lab using the same measurement protocol. The sample 

replicate SD gets even more constrained, especially when using automated OP systems for PM OP 

measurements (SD < 10%). Consequently, I don't think weighing based on the same sample's analytical 

replicates would significantly impact the regression (unless there was, in fact, high variability in the 

replicate measurements, which is an OP experiment protocol issue and should be fixed first) since all 

the PM OP from a single site was measured from the same lab. I expect a limited spread in weights. I 

would like to know the authors' thoughts on what uncertainty to be used when running these models. 

The choice of uncertainty data used will also alter the workflow provided in Figure 10 when choosing 

the best model for the dataset? 

Reply: Thanks for the interesting suggestion. Yes, the analytical errors were calculated as the standard 

deviation of 4 replicate measurements on the same sample, as practiced in our lab. We agree with the 

referee that the SD is consistently below 10% for our analytical errors and that maybe we could not get 

a significant impact. However, when applying analytical errors as the weighting, we aim to mark out 

that the OP PM10 gets a high analytical uncertainty and should have a lower impact on the model. In our 

opinion, this is a reasonable point of view. Nevertheless, from a static point of view, the weight could 

be assessed in different ways (Montgomery C et al., 2012) (Page 191): (1) Prior information from the 

theoretical model, (2) using the residual extracted from OLS model, (3) The selecting of weighting based 

on the uncertainty of instrument if the dependent variable measured by a different method and (4) If the 
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dependent variable is the average of different observations, the weighting selected based on the error of 

these observations (our weightings were chosen in this case). Overall, the weighting choice depends on 

the study's purpose. We cannot recommend the selection of the weighting in Figure 10 since we did not 

perform the test on this. However, the limitations have been updated for future studies (line 665-670).  

This study used the analytical uncertainty as the weighting for the weighted model. However, the 

weighting can be selected based on different ways, as reported by Montgomery et al. (2012): (1) Prior 

information from the theoretical model, (2) Using the residual extracted from the OLS model, (3) The 

selecting of weighting based on the uncertainty of instrument if the dependent variable measured by a 

different method and (4) If the dependent variable is the average of different observations, the weighting 

selected based on the error of these observations.  

Regarding the sample set used in this study, since the compiled data was not provided at a single location 

and was spread across multiple previously published studies from the research group, it was difficult to 

visualize the entire dataset. However, based on the information provided, I would assume that for all the 

data presented, the authors must have observed a good correlation (r) between OPv and PM10 mass 

concentration for all sites. My question is whether the authors observe any difference in model 

performance for datasets with low or poor correlation between PM mass and OPv. OPv is the combined 

effect of PM mass and intrinsic OP; I want to know if the results will hold in cases where intrinsic OP 

was more important than bulk mass of the PM, in driving the OPv? 

Reply: Thanks for your question. The first step we were doing before running an MLR model was 

looking at the relationship between PM mass concentration and OPV as well as OPm, to investigate the 

global relationship of OP and PM. The table below shows the coefficient of determination (R2) between 

the PM mass concentration and OPV (PM vs OPv) and R2 between the observed OPV and predicted OPV 

by the best model (Note: Model performance). The OP source apportionment model’s performance was 

not clearly related to the correlation between OP and PM mass concentration. For example, PM mass 

was more correlated with OPDTT than with OPAA, but the model performed better with OPAA than OPDTT. 

PM mass was least correlated with OPAA at NIC and PdB (correlation < 0.4) but the model performed 

similarly at these sites and at TAL, where the correlation between PM mass and OPAA was much higher. 

  GRE-fr CHAM NIC PdB RBX TAL Note 

OPAA
v

 0.68 0.55 0.35 0.36 0.62 0.69 PM vs OPv 

OPAA
v 0.94 0.89 0.78 0.81 0.67 0.82 Model performance 

OPDTT
v 0.78 0.86 0.75 0.58 0.83 0.68 PM vs OPv 

OPDTT
v 0.83 0.83 0.68 0.75 0.65 0.70 Model performance 

 

I am also interested in the relative contribution of the different identified sources to overall OPv since 

OPv is a more health-relevant endpoint than OPm. This will also inform us if these models can identify 

and quantify PM10 sources that contribute differently to the PM10 mass vs. OPv. The whole objective 

of this exercise is to quantify the health-related impact of PM10. Are there any differences in the source-

specific relative contribution based on OP source apportionment vs. PM mass source apportionment? If 

not for all models; you could show this comparison for the best regression-modeled OPv at each site 

and compare it to PM mass contribution. 
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Reply: Thanks for your suggestion. Yes, we indeed obtained the difference between the contribution of 

sources to PM mass and OPv. This was described in several of our previous papers (Borlaza et al., 

2021b; Dominutti et al., 2023; Weber et al., 2021). For instance, in RBX, biomass burning contribution 

in PM10 is only 2 µg m-3 (10% to total mass), while this source contributes highest to OPAA (0.6 nmol 

min-1 m-3
, 25% to OPAA). Alternatively, the secondary inorganic aerosol is the main contributor to PM10 

mass but has low redox activity for all sites. Additionally, the OPm of PM sources is similar across sites, 

but each source’s contribution to OPv varies between sites because of differences between sites in source 

contributions to PM mass concentration. We updated the contribution of sources to PM and OPV for 

each site in the Supplement (Figure S.14 to Figure S.19). 

Finally, is PMF followed by MLR the best approach for PM OP source apportionment? As you have 

also described in your introduction, OP is a complex reaction term, and specific components in PM 

could be driving these sources. In the conventional PMF approach, the emphasis is on mass-based 

apportionment, and if the contribution of a source to the mass is below a certain threshold, the source is 

often eliminated. One contention for such an approach is that we would be missing out on identifying 

sources that may have a low contribution to overall PM10 mass but are significant contributors to OP. 

How would the authors suggest approaching this complexity, especially considering a major application 

of the research to use with "European Directive 605 2008/50/CE"? I would expect one goal of the 

revision to include OP to be to give more insights into identifying sources with high intrinsic OP and 

less contribution to mass and vice versa. 

Reply: Thanks for your remarks and questions. Tackling the complexity of PM sources determination 

as well as the OP of PM processes is indeed the aim of the authors' research, which focuses on improving 

the methodology of both PM source apportionment and OP deconvolution. Our group has been 

published various publications for 10 years which aimed to reach the limit of the PMF in determine the 

PM sources by incorporating the more tracer of sources (Borlaza et al., 2021a; Samaké et al., 2019; 

Waked et al., 2014; Weber et al., 2019) as well as developed the OP source apportionment techniques, 

by introduce the linear models (Weber et al., 2018, 2021) and non-linear models (Borlaza et al., 2021b; 

Dominutti et al., 2023).  

We used to measure about 160 chemical species at least 1 year for every site study. The sources tracer 

is sufficient to identify from 10 to 12 PM sources, which get the slope almost to 1 and R2 > 0.9 for all 

of these sites. In addition, our PMF result can identify sources that contribute from 1 to 4% in mass 

(secondary biogenic in GRE-fr, CHAM, BBX), and which are already very minor sources. Conversely, 

we are conscious that sometimes, the PMF results do not adequately represent PM mass concentration 

for several reasons, such as the lack of a trace species to identify a source, an insufficient sample size or 

the source contribution being too small to be identified or collinearity matters. For example, the both 

sources of traffic including exhausted and non-exhausted are rarely separated because of the strong co-

variation. For these cases, we could recommend subtracting the total source contribution from PM mass 

concentration to get a part that PMF cannot simulate. The information in this part maybe contains the 

vital source.  

This study demonstrated that the source has a less significant mass contribution but high redox activity, 

such as primary traffic in CHAM (5% in PM mass contribution), but gets the second rank in intrinsic 

OPDTT (0.17 nmol min-1 µg-1). Conversely, sulfate-rich sources contribute 27% in PM mass 
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concentration, but its intrinsic OPAA is 0.01 nmol min-1 µg-1. The contribution of sources to PM10 and 

OPV for each site are shown in the Supplement (Figure S.14 to figure S.19). Finally, we acknowledge 

that the assumption of assigning the relative contribution of OP from multi-linear regression may be 

strong if we consider the potential antagonistic and synergistic effects in OP assays. But if we were to 

miss important sources in terms of OP that had a minimal contribution in terms of mass and that could 

have been omitted, we would obtain a weak signal for OP reconstruction, yet we obtain a very good 

comparison between the modeled OP from MLR and the observations. For all these reasons, we are 

confident in the validity of the PMF + MLR approach for assigning the apportionment of oxidive 

potential to each source of PM emissions. 

We added in the recommendation as follow (line 626-637): 

Finally, these techniques of OP apportionment could not be well performed with uncertain PMF-derived 

sources. The PMF results sometimes do not adequately represent PM mass concentration for several 

reasons, such as the lack of a trace species to identify a source, an insufficient sample size, the source 

contribution being too small to be identified (under 1%), or collinearity matters. The important 

information could be missed because of these problems in PMF implementation, which is apprehended 

by the model's low accuracy. Our study did not encounter this problem since the PMF is harmonized 

and performed according to European recommendations which could well perform the regression 

technique and allow to obtain a very satisfactory successive OP modelled in comparison to observations 

after regression techniques (R2 from 0.7 to 0.9). However, this problem could potentially happen, and 

for these cases, we could recommend either subtracting the total source contribution from PM mass 

concentration to get a part that PMF cannot simulate. The information in this part may contain vital 

sources. Alternatively, it is possible to re-execute the PMF to validate the result and ensure the 

robustness of the chemical profile and the contribution of sources.  

Minor comments 

Since this is a numerical model intercomparison study, sharing the code or uploading it to a public 

repository is important. While I understand these are standard models, the codes are still useful for the 

reader and reviewers to understand the specific constraints used, how the uncertainty was handled, etc. 

Reply: Thanks for your suggestion, we also would like to share the model for the other researcher. The 

code will be shared in a repository. DOI: https://doi.org/10.5281/zenodo.11070914. 

Throughout the main text, instead of using the term "OP activity" or "OP", it is more appropriate to write 

"PM10 OP". OP is general terminology used in different fields of science; here, you are working with 

PM10 OP specifically. 

Reply. Thanks for your suggestion. We modified the main text (line 156-157).  

To simplify the denotation of PM10 OP, OP is used for represented to the PM10 OP throughout this 

article. 

 In Tables S6 to S8, include the OP units. Also, mention in the SI tables that the data reported are for 

intrinsic PM10 OP. Intrinsic OP is PM size-specific, so it is important to mention the size of the PM 

investigated. 
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Reply. Thanks for your suggestion. We added the unit in these tables in the Supplement. We updated 

OP to PM10 OP in Supplement. 
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