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Abstract. A retrieval of total column water vapour (TCWYV) from the new daytime, clear-sky near-infrared measurements of the
Flexible Combined Imager (FCI) onboard the geostationary satellite Meteosat Third Generation Imager (MTG-I, Meteosat-12)
is presented. The retrieval algorithm is based on the differential absorption technique, relating TCWV amounts to the radiance
ratio of a non-absorbing band at 0.865 um and a nearby WV absorbing band at 0.914 pm. The sensitivity of the band ratio
to WV amount increases towards the surface which means that the whole atmospheric column down to the boundary layer
moisture variability can be observed well.

The retrieval framework is based on an Optimal Estimation (OE) method, providing pixel-based uncertainty estimates. It
builds on well-established algorithms for other passive imagers with similar spectral band settings. Transferring knowledge
gained in their development onto FCI required new approaches. The absence of additional, adjacent window bands to estimate
the surface reflectance within FCI’s absorbing channel is mitigated using a Principal Component Regression (PCR) from the
bands at 0.51, 0.64, 0.865, 1.61, and 2.25 pum.

We utilise synergistic observations from Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface
Temperature Radiometer (SLSTR) to generate “FCI-like” measurements. OLCI bands were complemented with SLSTR bands,
enabling evaluation of the retrieval’s robustness and global performance of the PCR. Furthermore, this enabled algorithm testing
under realistic conditions using well-characterised data, at a time when a long-term, fully calibrated FCI Level 1c dataset has
not been available. We built a forward model for two FCI equivalent OLCI bands at 0.865 and 0.9 um. A long-term validation
of OLCI against a single Atmospheric Radiation Measurement (ARM) reference site without the PCR resulted in a bias of 1.85
kg/m?, centred root mean square deviation (cCRMSD) of 1.26 kg/m? and a Pearson correlation coefficient (r) of 0.995.

A first verification of the OLCI/SLSTR “FCI-like” TCWV against well-established ground-based TCWYV products con-
cludes with a wet bias between 0.33 — 2.84 kg/m?, a cRMSD between 1.46 —2.21 kg/m? and r between 0.98 — 0.99. In this set
of comparisons, only land pixels were considered. Furthermore, a dataset of FCI Level 1c observations with a preliminary cal-

ibration was processed. The TCWYV processed for these FCI measurements aligns well with reanalysis TCWV and collocated
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OLCI/SLSTR TCWYV but show a dry bias. A more rigorous validation and assessment will be done once a longer record of
FCI data is available.

TCWYV observations derived from geostationary satellite measurements enhance monitoring of WV distributions and asso-
ciated meteorological phenomena from synoptic scales down to local scales. Such observations are of special interest for the

advancement of nowcasting techniques and Numerical Weather Prediction (NWP) accuracy as well as process-studies.

1 Introduction

Water vapour (WV) is the fundamental ingredient in the formation of clouds and precipitation. Spatio-temporal WV distri-
butions and fluxes impact the intensity and duration of precipitation. The presence of sufficient low-level moisture in the
atmospheric boundary layer facilitates the formation of convective development through the enhancement of atmospheric in-
stability. Low-level moisture also contributes to storm severity by acting as a source of energy, once a storm has initiated (e.g.,
Johns and Doswell, 1992; Doswell et al., 1996; Fabry, 2006; Pucik et al., 2015; Peters et al., 2017). On a global, climatological
scale, WV is a major contributor to global energy fluxes and, due to its abundance and absorption over a wide range of the
solar and terrestrial spectrum, acts as the strongest greenhouse gas (e.g., Trenberth et al., 2003; Schmidt et al., 2010). Within
a changing climate, a warmer atmosphere will contain more WV, which may form a positive feedback loop and further en-
hance global warming. Moreover, a moister atmosphere is predicted to produce more severe weather (e.g., Allen and Ingram,
2002; Neelin et al., 2022; Chen and Dai, 2023). But apart from that, WV is considered an inconvenient atmospheric compo-
nent for several remote sensing applications for which precise information on WV amounts in the atmosphere are needed for
atmospheric correction methods (e.g., Gao et al., 2009; Wiegner and Gasteiger, 2015; Valdés et al., 2021).

Observations of total column water vapour (TCWV) from satellite-based passive imagers operating in the visible (VIS),
near-infrared (NIR) and thermal infrared (TIR) spectral ranges play a key role in monitoring its distribution at regional to
global scales. WV retrievals using TIR measurements have a long history and are widely used, particularly from geostationary
satellite platforms. On the one hand, a split-window technique using weakly absorbing WV measurements can be employed to
retrieve TCWYV or boundary layer WV with relatively high uncertainties (e.g., Kleespies and McMillin, 1990; Casadio et al.,
2016; Hu et al., 2019; Dostalek et al., 2021; El Kassar et al., 2021). Lindsey et al. (2014) and Lindsey et al. (2018) showed
that the split-window difference by itself may already provide valuable insight on the WV content in the boundary layer or
lowest layers of the troposphere. On the other hand, measurements from strongly absorbing WV bands serve to retrieve WV
amounts limited to upper tropospheric levels and/or layered WV products (e.g., Koenig and De Coning, 2009; Martinez et al.,
2022). However, due to the absorption and re-emission of radiation by WV in the IR, such approaches rely on knowledge of the
atmospheric temperature profile in addition to the atmospheric WV profile. Using observations in the VIS/NIR largely avoids
these temperature-related complications.

The use of the so-called por WV absorption region in the NIR (0.9 to 1.0 um) is not new. This designation stems the
from first observations of atmospheric absorption of solar radiation in the 19th century (Langley, 1902). Within the por,

light is more likely to be absorbed by WV molecules compared to spectral regions outside these absorption features (window
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regions). These NIR measurements exhibit the greatest sensitivity to WV amounts near the surface. Consequently, this allows
for the retrieval of accurate clear-sky TCWYV fields as well as providing information on changes of WV amounts in the lower
troposphere. For several decades, the poT region has been researched using radiative transfer models and exploited in TCWV
retrieval schemes (e.g., Fischer, 1988; Gao and J., 1992; Bennartz and Fischer, 2001; Albert et al., 2005; Lindstrot et al., 2012;
Diedrich et al., 2015; Preusker et al., 2021). The focus first lay on ground-based radiometers and soon shifted to airborne and
space-borne imagers. The first satellites that carried instruments with dedicated NIR WV bands were almost exclusively on
satellite platforms with sun-synchronous, polar orbits and could deliver global daily coverage at a hm to km resolution. Even at
a km resolution, NIR TCWYV can resolve convective phenomena such as horizontal convective rolls or gravity waves (Carbajal
Henken et al., 2015; Lyapustin et al., 2014).

The new Meteosat Third Generation Imager (MTG-I, hereinafter referred to as MTG) carries the Flexible Combined Imager
(FCI) (Holmlund et al., 2021; Martin et al., 2021). The European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) commissions this third generation of European geostationary meteorological satellites for monitoring weather
and climate. FCI is the successor to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Schmetz et al., 2002)
and will enhance the temporal and spatial resolution of geostationary remote sensing observations. Also, an expanded set of
spectral channels allows for more comprehensive observations of atmospheric and surface properties. FCI includes a new NIR
WYV absorption band not available on any other instrument onboard a geostationary platform to date. This band is located
within the poT WV absorption region at 0.914 um.

The introduction of MTG and its new FCI NIR band will expand our ability to quantify and characterise local to global-
scale WV distributions and monitor their changes. This has important implications for both weather and climate research and
applications. Particularly in the domain of nowcasting, FCI’s fine-scale observation of TCWV could substantially advance
the field (e.g., Benevides et al., 2015; Van Baelen et al., 2011; Dostalek et al., 2021). The Nowcasting and Very Short Range
Forecasting Satellite Application Facility (NWCSAF) is an organisation funded by EUMETSAT and aims to support meteoro-
logical services with satellite products critical for the prediction of high-impact weather (e.g., storms, fog). They commission,
develop and maintain software which utilises many weather satellite instruments, including MTG-FCI/Meteosat-12 (Garcia-
Pereda et al., 2019). A high-resolution NIR TCWYV product in the portfolio of NWCSAF’s software will greatly benefit the
nowecasting and meteorological community at large.

In this work, we present our TCWYV retrieval framework utilizing the novel NIR measurements obtained from MTG-FCI.
Our approach builds on established TCWV retrieval frameworks successfully applied to other passive imagers sharing similar
spectral band configurations. The differential absorption technique, using the ratio of measurements in the poT-absorption
band and nearby window bands, was previously employed in measurements of the Medium Resolution Imaging Spectrometer
(MERIS) onboard Envisat (Bennartz and Fischer, 2001; Lindstrot et al., 2012). With the launch of the Copernicus Sentinel-3A
and Sentinel-3B satellites (Donlon et al., 2012) and onboard Ocean and Land Colour Imager (OLCI), the retrieval framework
has been extended to fully exploit OLCI’s extended spectral capabilities by using multiple bands sensitive to WV absorption
(Preusker et al., 2021). Operational and calibrated FCI Level 1c data only became available at the end of 2024. Due to the

unique technical characteristics of FCI as well as the limited availability of a well-calibrated FCI data record at the time this
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work was conducted, new strategies are imperative for our methodology and its assessment. One key element is the surface
reflectance approximation method for the absorption band, which can be assessed with the use of OLCI/SLSTR “FCI-like”
data. In particular, we applied the same forward model and inversion principles to OLCI band 17 (0.865 um) and band 19
(0.9 ym) as were used for FCI. The use of the OLCI/SLSTR synergy presents an excellent opportunity to establish an adapted
retrieval framework and provides a robust test bed to explore algorithm performance accordingly. Additionally, OLCI Level 1b
has well-known radiometric characterization and worldwide coverage, allowing for a practical and reliable basis to assess and
refine the retrieval framework under a wide range of realistic atmospheric and surface conditions.

The structure of this paper is as follows: Section 2 introduces the FCI data, OLCI/SLSTR data, auxiliary data, and the TCWV
reference datasets, along with the associated matchup method. The FCI TCWV algorithm, covering the physical background,
forward model, inversion method and the albedo approximation method integral to the algorithm, as well as the finalised
retrieval framework are presented in Section 3. After that, Section 4 presents the results of the matchup assessments conducted
on both local and global scales, along with initial analyses using a preliminary calibrated FCI dataset and a representative case

study. The discussion and outlook are given in Section 5. Finally, Section 6 concludes the paper.

2 Data
2.1 MTG-FCI Data

MTG is an operational EUMETSAT satellite mission, which currently consists of one satellite in geosynchronous orbit at 0°
longitude. It carries the Lightning Imager (LI) and the FCI which is a multispectral instrument that scans with a fast east-west
and a slow north-south motion. It has 16 bands which range from the VIS (0.44 um) to the TIR (13.3 um). The full-disk scan
service covers approximately one-fourth of the Earth’s surface within 10 minutes, covering Europe, Africa, and parts of the
Atlantic and Indian oceans (Durand et al., 2015; Holmlund et al., 2021). In the future, a second FCI will provide a rapid scan
service, which covers the northern third of the full-disk within 2.5 minutes, covering parts of Europe and the Mediterranean.
The spatial resolution at sub-satellite point (SSP) of one VIS band at 0.64 ym and one SWIR band at 2.25 pym is 0.5 km. The
spatial resolution of the other VIS to SWIR bands and the TIR bands at 3.8 um and 10.5 pm is 1.0 km at SSP. The remaining
TIR bands have an SSP resolution of 2.0 km. Due to the curvature of the Earth, the actual spatial resolution outside the SSP is
slightly lower. E.g., the 1 km SSP resolution (VIS, NIR and 10.5 pm) in Northern Europe is closer to 2.0 to 3.0 km.

The first MTG satellite was launched successfully into orbit on 13th of December 2022 and has left the commissioning
phase in December 2024. Work on this algorithm concluded in November 2024. Because of that, we used the latest release
of preliminary FCI Level 1c data at the time provided by EUMETSAT in February 2024 (EUMETSAT, 2024b). They consist
of one full-disk scene from 13th January 2024 between 11:50 and 12:00 UTC. They were downloaded from EUMETSAT’s
SFTP server and more details on this dataset can be found in EUMETSAT (20244a). At the time of publication, no cloud mask
was available for the FCI test data. Therefore, we built a simple cloud mask algorithm. The cloud masking algorithm is largely
based on the work presented in Hiinerbein et al. (2023). In this publication, the authors adapted and extended cloud masking

and typing algorithms developed for NASA’s Aqua/Terra Moderate Imaging Spectrometer (MODIS) (Ackerman et al., 2002) to
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ESA’s Cloud Aerosol and Radiation Explorer Mission (EarthCARE) Multi Spectral Imager (MSI). We adapted a subset of their
tests to the FCI bands and estimated new coefficients and thresholds. Ultimately, the cloud mask consists of two tests: threshold

tests for reflectances, a reflectance ratio or the Global Environmental Monitoring Index (GEMI) (Pinty and Verstraete, 1992).
2.2 S3-OLCI/SLSTR Data

Sentinel-3 is an operational COPERNICUS satellite mission of the European Commission, managed by EUMETSAT. It con-
sists of two sister satellites (Sentinel-3A: S3A; Sentinel-3B: S3B) which orbit the Earth at an altitude of 814.5 km, an inclination
of 98.65 ° and a local equator crossing time of 10:00 AM. S3B is phase-shifted to S3A by 140 °. This way, the imaging in-
struments onboard the two satellites achieve global coverage almost daily. The payloads consist of OLCI, the Sea and Land
Surface Temperature Radiometer (SLSTR) and the Synthetic Aperture Radar Altimeter (SRAL), supported by the Microwave
Radiometer (MWR).

OLCI is a push-broom multispectral imaging spectrometer that consists of five cameras. It measures at 21 bands ranging
from the VIS (0.4 um) to the NIR (1.02 um). The swath width of OLCI is 1215 km at a full SSP resolution of 0.3 km per pixel,
which is referred to as “Full Resolution”. In the “Reduced Resolution”, 4 by 4 pixels are aggregated into 1.2 km pixels. That
is the resolution used in this study. A characteristic of OLCI is an across-track spectral shift due to the five discrete cameras.
This can be corrected for by taking into account the actual central wavelength at each of the across-track pixels (Preusker et al.,
in prep.). In order to mimic the capabilities of FCI at a similar spatial resolution and with similar spectral characteristics, we
collocated SLSTR observations to the OLCI grid using nearest-neighbour sampling. The SLSTR bands used are S5 (1.612 um,
0.5 km) and S6 (2.25 um, 0.5 km). They have been mapped to OLCI’s reduced resolution at 1.2 km. Using Sentinel-3A and B,
a representative set of swaths was created for every month of the year 2021 which amounts to a total of 1800 swaths across 80
days. The Identification of Pixel features (IdePIX) cloud detection algorithm was used to create cloud masks (Iannone et al.,

2017; Wevers et al., 2021; Skakun et al., 2022).
2.3 ECMWF ERAS Forecast and Reanalysis Data

Our TCWYV retrieval is based on an inversion technique (Section 3) which uses a first guess, as well as a priori and ancillary
parameter data. These may come from a climatology or could be set to a global climatological value. However, retrieval
performance can be greatly increased and sped up if the a priori data are already slightly closer to the solution. This is why
we chose to provide the algorithm with Numerical Weather Prediction (NWP) forecast fields. These were acquired from the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERAS forecasts initialised at 6 UTC and 18 UTC of each
day (Hersbach et al., 2020). The ERAS5 forecasts are a byproduct of the reanalysis and more readily available for past time steps
than the operational forecasts. They are different from ECMWF’s Integrated Forecasting System (IFS) operational forecasts
since they use more assimilated data in the initialisation time step. The forecasts are at a resolution of 0.25° and in 3 h steps.
The data fields are interpolated to the observation time and FCI coordinates.

The variables needed are: horizontal wind speed (WSP) calculated from u- and v-component of the horizontal wind speed

at 10 m above ground (U10, V10), TCWYV, surface air temperature at 2 m above ground (T2M), and surface air pressure
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(SP). The data were accessed via the Copernicus Climate Change (C3S) data store (Copernicus Climate Change Service and
Climate Data Store, 2023). For testing and algorithm development, we used the ERAS forecasts. In the later processing for the
NWCSAF GEO software package, the operational ECMWF IFS forecasts at a resolution of 0.5° and 1 h steps will be used.

2.4 Aerosol Optical Thickness Climatology

One key parameter for the retrieval of TCWV over water is the aerosol optical thickness (AOT). As a first guess for AOT, we
use a climatology at a 1° spatial resolution. It was built from monthly means of the Oxford-Rutherford Appleton Laboratory
Aerosol and Cloud (ORAC, Thomas et al. (2009)) AOT dataset retrieved with SLSTR and the Environmental Satellite (EN-
VISAT) Advanced Along Track Scanning Radiometer (AATSR) between 2002 and 2022. These data were also accessed via
the C3S data store (Copernicus Climate Change Service and Climate Data Store, 2019).

2.5 Reference Datasets, Matchup Analysis and Performance Indicators

In order to verify the credibility of the retrieved TCW'V, we need reference data within the field of view of FCI. There are four
established sources of TCWV estimates: radiosondes, ground-based GNSS meteorology, ground-based MWR, and ground-
based direct sun-photometry. TCWV from NWP Reanalyses may also be used, but their coarse resolution cannot resolve the
fine variabilities found in the WV field at the satellite-pixel scale. Reanalyses may be used to assess the stability of the dataset
later on. Unfortunately, until the completion of this work, no long-term record of FCI data was available in the final calibration.
Because of this, we processed the spectrally representative FCI data discussed above and compared these against TCWV from
the ERAS reanalysis. The performance of our algorithm and the accuracy of our calculations require testing on real data.
Hence, we processed a 7-year matchup database of OLCI Level 1b observations and MWR TCWYV from the Southern Great
Plains site of the Atmospheric Radiation Measurement network (ARM) (Sisterson et al. (2016). Additionally, the set of 1800
OLCI/SLSTR swaths was processed with our algorithm (including the surface reflectance approximation from Section 3.4).
These were compared against reference TCW'V data retrieved at sites of 1) the Aerosol Robotic Network (AERONET) (Holben
et al. (1998)), 2) the ARM network (Turner et al. (2007); Cadeddu et al. (2013)) and 3) the SUOMINET network (Ware et al.,
2000).

Prior to the analysis, OLCI swaths and ground-based network sites were collocated within 1 km and 30 minutes of a satellite
overpass. A square of 11 by 11 pixels around the collocated centre pixel was taken into account. Then, these pixels were
screened for convergence, a cost-function below 1, and cloud-screened with a buffer of 3 pixels around the cloud mask,
minimizing the effect of cloud and cloud shadow contamination. Matchup cases with less than 95% valid pixels were rejected,
the central 3 by 3 pixels had to be completely cloud-free.

Both in the assessment of assumptions and the assessment of TCWYV quality, we used metrics. Their abbreviations are as
follows: N is the number of matchups, MADP is the mean absolute percentage deviation, RMSD is the root-mean-square
deviation, cRMSD is the centred RMSD (i.e., the observation is corrected for the bias against the reference), r is the Pearson
correlation coefficient. ODR « and 3 are the orthogonal distance regression coefficients for the intersect and slope, respectively,

with equal weights for all data points.
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3 Algorithm Description
3.1 Physical Background

The poT WV absorption bands are due to the vibrational reaction in a gaseous water molecule hit by a photon within a specific
range of wavelengths, see Fig. 1. The absorption of WV in this spectral region is weak compared to the TIR at, e.g., 6.7 or 7.3
um (traditionally referred to as WV bands). Because of that, the whole column’s content of atmospheric WV can be probed
using the po7. While the signal within the absorption band decreases with WV content, an adjacent window band will be
virtually unaffected by any change in WV amount along the line-of-sight (LOS). FCI features a “window” band with a nominal
centre wavelength of 0.865 pm and an “absorption” band with a nominal centre wavelength of 0.914 ym. The spectral response

functions (SRF) are also shown in Fig. 1.

1.0

0.8 1

0.6

0.4 4

Attenuation [1]

0.2 4 Water vapour: 57.6 kg/m?

Water vapour: 7.4 kg/m?
0.0 }

1.04 =

0.5 1 = SENTINEL3-OLCI
SENTINEL3-SLSTR

Spectral
Response [1]

1.04

0.5 4
—— MTG-FCI

Spectral
Response [1]

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Wavelength [um]

Figure 1. Upper panel: The WV attenuation spectrum for an atmosphere with a low TCWV amount in orange (7.4 kg/m?) and high TCWV
amount in blue (57.6 kg/m?) with data obtained from the Correlated K-Distribution Model Intercomparison Project (CKDMIP, Hogan and
Matricardi (2020)). Centre panel: The SRFs in the NIR part of the spectrum for the satellite instruments OLCI (blue) and SLSTR (orange).
Lower panel: the SRFs in the NIR for FCI (red).

The overall strongest influence factor on the signal measured at the satellite sensor is the surface reflectance. This is also
referred to as the surface spectral albedo (ALB) and is the ratio of outgoing irradiance against incoming irradiance at one
specific wavelength. This ratio depends on the type of surface covering (e.g., vegetation, sand, snow, etc.) and to some degree
on the sun and viewing angles. For land cases, the spectral albedo in the NIR is well above 0.3 and thus provides a strong signal
relative to the absorption by WV. Over the majority of water surfaces, however, the surface reflectance is often well below 0.03.

There is no direct way to measure this spectral albedo, hence an approximation is necessary.
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A slightly less important effect comes from scattering aerosol layers below a certain level of aerosol optical thickness (AOT).
In that case, the effective LOS is shortened by the higher aerosol layer, and since the humidity content on average is much lower
in the higher troposphere, the absorption is decreased substantially. Over bright surfaces, this effect is much less influential
than over dark surfaces (Lindstrot et al., 2012). Since most natural surfaces over land are bright in the NIR, the shielding effect
of an average aerosol layer is small (Diedrich et al., 2015).

Under most circumstances, this assumption is not valid for water surfaces, though. Due to the low albedo, already slightly
scattering layers of aerosol may create the effect described above. To a certain degree, this effect can be corrected for by
simulating an aerosol layer with a specific AOT in the algorithm. However, for this, the effective height of the aerosol layer
needs to be estimated, which is a challenge in and of itself. Another important aspect over water surfaces is sunglint, i.e.,
the reflectance’s dependency on wind-speed and viewing/solar geometry. High wind speeds create a rough surface with low
reflectance peaks spread out over a range of observation geometry angles. At lower wind speeds, a calm surface results in
a higher reflectance peak over a limited range of observation angles, similar to a mirror. In regions with strong sunglint, the
relative influence of aerosol scattering is reduced.

Over both land and water surfaces, the atmospheric temperature profile and surface pressure play a lesser role due to
temperature- and pressure-dependent line broadening (Rothman et al., 1998). In contrast to TCWV retrievals in the TIR,
the impact of the temperature profile is substantially lower but not negligible. The uncertainties due to a mis-characterised

temperature profile are approximately 0.6 kg/m? and surface pressure at about 0.9 kg/m? (Lindstrot et al., 2012).
3.2 Forward Model

The first step in our framework is to run radiative transfer simulations (RTS) for a set of complete and comprehensive at-
mospheric, surface and geometric conditions as described in the previous section and summarised in Table 1 and 2. For the
simulation of top-of-atmosphere (TOA) reflectances we used the Matrix Operator Model (MOMo, Fell and Fischer (2001);
Hollstein and Fischer (2012); Doppler et al. (2014)). These simulations are then sorted into two look-up-tables (LUT) for land
surfaces and water surfaces, respectively.

Over land surfaces, the surface albedo (ALB) is defined as isotropic. Over water surfaces, the surface reflectance is estimated
from the 10 m wind speed (WSP) using Cox and Munk (1954). Standard atmospheric profiles were taken and adapted from
Anderson et al. (1986) to provide the vertical distribution of temperature and humidity. The numbers refer to: 1. mid-latitude
summer, 2. mid-latitude winter, 3. sub-Arctic summer, 4. sub-Arctic winter, 5. tropical. Based on the forecast surface air
temperature (T2M) and surface pressure (SP) the associated atmospheric profile group is chosen. The humidity profiles are
scaled with TCWV. All simulations are done for a set of satellite zenith angles (SATZ), sun zenith angles (SUNZ) and relative
azimuth (RAZI). RAZI is calculated from the satellite azimuth angle (SATA) and sun azimuth angle (SUNA) following:

RAZI = arccos(cos(SUN A) * cos(SATA) + sin(SUNA) x sin(SATA)) (1)

The aerosol mixtures and their optical properties have been calculated using the OPAC software package (Optical Properties

of Aerosols and Clouds, Hess et al. (1998)). Within their documentation, one can find details on the used aerosol mixtures



Variable Name Increments and units Variable name Range and units

TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m® TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m?

ALB 0,0.1,0.3,0.6, 1 AOT 0.001, 0.1, 0.3, 0.5, 0.7, 1.2 at 700 to 1000 m height

WSP 2,3,5,10, 15 m/s

M standard atmospheric profiles 1 to 5* T2M standard atmospheric profiles 1 to 5*

Sp 500, 650, 750, 850, 950, 1050 hPa Sp 950, 1000, 1050 hPa

SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90° SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90°

SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85° SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85°

RAZI 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180° RAZI 0, 18, 36, 54,72, 90, 108, 126, 144, 162, 180°
Table 1. Land Surface Setup for MOMo. * Standard profiles from Table 2. Water Surface Setup for MOMo. * Standard profiles from
Anderson et al. (1986). Anderson et al. (1986).

for the two types selected for the land and water surface simulations. Over land, we used the aerosol mixture “continental

average”, over ocean we used the aerosol mixture “maritime clean”. In both cases, we simulated a homogenous aerosol layer

240 between 700 and 1000 m height above ground with the specified AOT. An overview of the inputs and increments used for the
simulations is shown in Tables 1 and 2.

The observations we simulate are the normalised radiance in the window channel (nLro4(0.865um)) and the pseudo

optical thickness in the absorption channel (7,704 (0.9144m)). The normalised radiance is calculated as follows:

nLTOA ()\) = L;ié\())\) (2)

245 where Fj is the spectral solar irradiance.

The pseudo optical thickness 7,70 4 is calculated as follows:

nL (A)
log( 7LL:(;):*()\) )

b 3
AMF ©

TpTOA(/\) = —a—

where AM F is the air mass factor, nLTo4" is the normalised radiance corrected for the influence of WV absorption, a and
b are the so-called correction coefficients which may correct for a systematic bias discovered in a validation against reference
250 TCWYV observations.
The AMF is calculated as follows:

1 1

AMF =
cos(SUNZ) + cos(SATZ)

“4)

Dividing through AMF, the relationship between TCWV and TproA becomes more linear, reducing the number of
necessary iterations in the inversion later on. nLpo 4™ needs to be approximated using other available information (e.g., a

255 climatology atlas, neighbouring window channels). Here, we use a more elaborate technique, described in Subsection 3.4.
Preusker et al. (2021) have obtained the correction coefficients ¢ and b by minimizing the differences between simulated

and measured OLCI observations using ARM-SGP.C1-MWR TCWYV as an input (see Preusker et al. (2021) for details). For
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OLCTI’s version of this algorithm, a and b for band 19 (at 0.9 um) were estimated to be -0.008 and 0.984, respectively, from the
results shown in Section 4.1. For FCI, other MWR TCWYV references will be necessary. We intend to use reference sites such
as Meteorological Observatory Lindenberg — Richard Assmann Observatory (MOL-RAQ) (Knist et al., 2022), the Cabauw
Experimental Site for Atmospheric Research (CESAR) (Van Ulden and Wieringa, 1996) or ARM — Eastern North Atlantic
(ENA) (Mather and Voyles, 2013).

The set of simulations is sorted into a multidimensional look-up table (LUT). This LUT can then be used to simulate a
measurement (y) for a given set of states () and parameters (p) using an interpolator. This is referred to as the forward model

F'. With this forward model, we can estimate a sensor’s observation for a given set of states as follows:
y="F(z,p)+e (5)

€ denotes the measurement and forward model error. The state vector of land consists of TCWV and ALB(0.865 um), over
water surfaces it consists of TCWV, WSP, and AOT. The parameter vector is composed of T2M, SP, SUNZ, SATZ and RAZI.

3.3 Inversion Using Optimal Estimation

Eq. 5 can be inverted to retrieve a state associated with an observation. There are various ways of performing this inversion.
We chose to follow the optimal estimation (OE) approach for atmospheric inverse problems described by Rodgers (2000). In
essence, this inversion is based on the principle of minimizing the cost function J by iteratively changing the initial first guess
of a state or the state of the prior iteration step.

The iterative process is stopped if either the maximum number of allowed steps is reached or the following criterion is met

by the retrieved state x;41:

(zi —@ip1)" S;

3

1($i—$i+1)§n'€ (6)

where S is the retrieval error-covariance, n is the number of state variables. More details on the process of OE within a TCWV
retrieval framework can be found in Preusker et al. (2021) and El Kassar et al. (2021). One crucial advantage of OE is the

simultaneous retrieval of the associated uncertainty, the so-called retrieval error covariance matrix S.
S=(Sa '+ K-S K;)! (7

Where, S, is the a priori error covariance matrix associated with x4, Se is the measurement error covariance matrix asso-
ciated with y and K is the Jacobian which contains the partial derivatives of each measurement to each state at step ¢ (i.e.,
K; = 0F(x;)/0x;). The covariances may either be set to values that correspond to the actual covariances within a given
variable. However, the covariances may also be used as tuning parameters in order to make the algorithm lean more towards
the measurement or more towards the prior knowledge (Rodgers, 2000). Over land surfaces we set the a priori uncertainty
of TCWV very high (16 kg/m?) since the information content of the absorption band is high over bright surfaces. Over the
ocean, the TCWYV a priori uncertainty was set much lower (2.5 kg/m?). The ALB a priori uncertainty is set to 0.5, the WSP a

10
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priori uncertainty is set to 5 m/s, the AOT a priori uncertainty is set to 0.55. The corresponding covariances are the squared
uncertainties.

The error covariance of 7,70 4 is estimated using the signal-to-noise-ratio (SNR), the interpolation-error from the uncertainty
in estimating nL7o 4" (€intp) and the AMF:

1 1 1
Se(mroa) = (SNR2 T SNRE ¥ emt,,) "AMF ®

In Eq. 8, the two SNR-terms refer to the uncertainty of nLr04(0.914) and nL1o4"(0.914). For nL1o 4(0.865um) the error
covariance is simply <z
An additional metric this inversion technique provides is the so-called averaging kernel A:

A-c. K=-2% ©)
ox

where G is the Gain matrix, which contains the partial derivative of the true state O in relation to the partial derivative of the
measurement Jy. While the true state & is unknown, the relative changes at each step quantify the sensitivity of & towards
changes in y.

The entries along the diagonal of A correspond to the state variables and show a range of values between 0 and 1. At 0,
the proportion of the retrieved state to & is lowest; the measurement did not contribute to the retrieval. At 1, the proportion of
the retrieved state to the true state is highest. Everything inbetween indicates that some improvement of the prior information

about the state could be made using the measurement. The trace of AVK gives the degrees of freedom of the measurements.
3.4 Estimation of nL1o ™ with Principal Component Regression

For some surfaces (e.g., calm, clear water), the difference in spectral albedo between the window and absorption channel is
small. Over most other surfaces, however, this is not the case. Simply using nL1o 4(0.865um) for nLro4™ would yield an
unreliable estimate of the pseudo optical depth 7,704. Thus, in order to calculate 7,704 We need an accurate estimate of
the spectral slope between the window and the absorption channel. For satellite sensors such as MODIS or OLCI, the WV
absorption bands have at least two accompanying window bands (i.e. at 0.865, 0.885, 1.02 or 1.2 um). FCI and other future
instruments do not have such additional window channels close by. Hence, another technique to estimate the spectral slope is
needed.

The principal component regression (PCR) facilitates the reconstruction of a continuous set of observations from few discrete
data points. This approach is already used with reasonable success in the estimation of BRDFs and reflectance spectra within
RTTOV (Vidot and Borbas, 2014). Their approach was used as a blueprint for our spectral slope estimation.

The ECOSTRESS spectral library version 1.0 provided by the United States of America Geological Service (USGS) is a
collection of spectral reflectances for individual materials and/or mixtures at a high spectral resolution (Meerdink et al., 2019).
The library consists of spectra for a wide range of material groups: human-made, rock, soil, mineral, photosynthetic vegetation,
non-photosynthetic vegetation, water (which includes fresh-water, ice, and snow). A small selection of these spectra is depicted

in the upper part of Fig. 2. In the lower two panels of Fig. 2, the SRFs of a selection of sensors are shown.

11
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Figure 2. Upper panel: overview of a selection of surface reflectance spectra from Meerdink et al. (2019), the labels are representative and

not the actual spectra designations. Central panel: the SRFs of OLCI (blue) and SLSTR (orange). Lower panel: the SRFs of FCI (red).

Only spectra between 0.4 and 2.35 um were taken into account and linearly interpolated to a spectral resolution of 0.001
pum. To avoid a sampling bias towards a specific group of spectra, we used similarly sized subsets of each category. From this
database, the principal components (the Eigenvectors, PCs) are calculated and sorted by their associated Eigenvalue. Instead of
reconstructing spectrally high-resolution reflectances, we use the PCs to reconstruct the reflectance of two channels: at 0.865
um and at 0.914 um, referred to as the farget. Following the nomenclature of Vidot and Borbds (2014), R¢qyge: is the vector
of reflectance spectra folded to the target SRFs, ¢, is the regression coefficient vector (also referred to as weights) from
the window bands and U ;4 is the matrix of the selected PCs of the high-resolution reflectance spectra, folded to the target
SRFs.

Rtarget = cwinUtarget (10)
Using the Moore-Penrose Pseudo inverse, the regression coefficient c,,;,, follows:
T T -1
Cwin = Rwinme(UwinUwin) (1 1)

An optimal configuration of the number of PCs and bands was then found by comparing different band combinations with
several numbers of PCs. In order to do this, we reconstructed all available spectra at the target bands which were used in the
PCR from the folded spectra at the window bands. Using this approach, the optimal configuration for FCI was found with the
use of five window bands (i.e., negligible WV attenuation) in the VIS to SWIR (0.51, 0.64, 0.865, 1.61, 2.25 um) and only the

first four PCs. We are able to reproduce the actual surface reflectance at the absorption and window band with a bias of 0.0045
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and 0.0038 and a RMSD of 0.016 and 0.02, respectively. Folding the PCs to the SRFs of other sensors would make this matrix
applicable to other instruments with similar bands, as shown in Fig. 2. In order to estimate the spectral slope in the PCR, FCI’s

normalised radiances at the window channels need to be transformed into irradiance reflectances:

- nLTOA()\) =T

A) = 12
proalN) = SN Z) (12)
From the reconstructed surface reflectances, we calculate the slope 7:
914
p = 20914) (13)
p(0.865)

This ratio is then multiplied with the nL70 4(0.865um) in order to yield a more accurate estimate of nLro 4™ at the absorption

band. The underlying assumption is that between 0.865 and 0.914 pm, atmospheric scattering and attenuation other than WV

ALB(0.914) _, poroa(0.914)
> ALB(0.865) ~ poroa(0.865)

of thick, scattering layers (e.g., clouds, aerosols) or very slant viewing geometries (S AT Z > 82°), this is the case. Over water

are nearly identical. Thus holds true. Given a sufficiently bright surface and outside the influence
surfaces, the influence of scattering processes in the atmosphere is much stronger. Hence, the uncertainties over water pixels
are higher. Furthermore, the influence of water constituents (e.g., sediment, pigments) on the water reflectance spectrum in the
NIR has not been taken into consideration. The PCA training dataset almost exclusively consisted of terrestrial reflectances

and only a few fresh water reflectances.
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r: 0.9986 5 r:0.9965 r:0.9973
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(a) Relative differences in nL1o 2o ™* over land surfaces. (b) Relative differences in nL7o 4 ™* over ocean surfaces.

*ext

Figure 3. Relative differences between two proposed nLroa™ against the extrapolated nLroa as used in the COWa algorithm over

xext and

land and water surfaces, respectively.nLto A*P R from the PCR in blue and the relative difference between extrapolated nLroa
nL1o4(0.865um) in orange. The associated metrics in the corresponding colours are found in the top corners. The solid black line indicates

0% relative deviation.
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Using the OLCI/SLSTR synergy allows us to assess the performance of the PCR to estimate 7,704 rather than directly
using the window (nL7o 4(0.865 um)) against a common reference. In the Copernicus Sentinel-3 OLCI Water Vapour product
(COWa) algorithm, nL1o (0.9 um) is extrapolated from the two adjacent window bands at 0.865 and 0.885 um (Preusker
et al., 2021). For 7,704(0.94um), nL104*(0.94 um) is interpolated from the two window bands 0.885 um and 1.020pm.
This is substantially closer to the “real” surface reflectance than using the PCR. Hence, we compare nLpoa*" “40.9 pm)

against nLpoa "

(0.9 um) from the extrapolation using the two adjacent window channels. For this and other comparisons,
we calculated the relative difference in % by dividing the absolute difference (observation minus reference) by the reference
multiplied by the factor 100. Fig. 3a and 3b reveal that the vast majority of points lie close to 0 % line for both land and water
pixels, albeit with a positive bias. In contrast, using the 0.865 um normalised radiance by itself would yield much worse results,
i.e., a strong bi-modal distribution over land and a weaker bi-modal distribution with a wide spread over water (see Fig. 3a and
3b).

On average, there is a small positive bias in nLpo AP CA(0.9 um), both over land (+0.3%) and water (+0.8%). Over land
pixels, the 98th percentile of the relative percentage deviation is 1.7% against the 2.6% when using nL1o4(0.865 pm) as
nLroa™. Over water pixels, the 98th percentile of the relative percentage deviation lies at 2.2%, whereas this value is 4%
when using nL1o4(0.865m) as nLro4*. On average, an increase of 1% in nL1o4"(0.9 pm) roughly translates to a 1.6%
increase (approx. 0.9 kg/m?) of TCWV estimate. A correction of this bias may be possible, but since such an analysis cannot
be carried out using FCI, we decided against it. Because the PCR performed better than the window channel by itself, we

decided to use nLroa TR

(0.9 um) to calculate 7,70 4 over both land and water surfaces. Despite the slight deviations, the
PCR approach remains a good technique in order to reduce the impact of the spectral slope as much as possible.
This can also be demonstrated using a TCW'V processed from a single day of OLCI/SLSTR observations. Here, we compared

P CR, and nL1o 4(0.865 um) to calculate 7,70 4 as input to the algorithm.

the retrievals from using each nLpoa*"", nLroa*
In order to only see the influence on precision of TCWYV, both datasets have been bias-corrected. The results are shown in Fig.
4. Over land surfaces, the bi-modal distribution in using nL1o4(0.865 um) persists with large spread and systematic over-
and under-estimations. Over the ocean, the difference between the two approaches is even more pronounced. Both MAPD

PC

and RMSD indicate that using nLrox™ R instead of nL7104(0.865 um) for the calculation of 7,70 4 improves the retrieval

substantially.
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Figure 4. Relative difference between TCWYV retrieved with 7,704 calculated from extrapolated nLro4**** and nLroa*"°F from the
PCR in blue and 7,104 calculated from nL704(0.865 um) in orange. The TCWYV has been bias-corrected against the reference (TCWV
using nL1o4*¢""). The data are for a random subset of one day in June 2021. The associated metrics in the corresponding colours are found

in the top corners. The solid black line indicates 0% relative deviation.

In very rare cases (<0.1%), there are large deviations (>5%). Upon visual inspection, these extreme deviations mostly occur
along rivers, coasts, in high elevations or at the poles. We explain these cases by 1) unidentified clouds, 2) coastal and inland
water pixels with mixed contributions by land and water, 3) water-constituents changing the NIR reflectance of the water
surface substantially, 4) adjacency effects, the brightening effect of dark pixels by diffuse radiation from neighbouring bright
pixels and 5) geolocation and unphysical spectral matches between OLCI and SLSTR. Yet, these rare deviations are still lower

than the extreme deviations found by using the window band at 0.865 um itself.
3.5 Finalised Retrieval Framework

The retrieval procedure is as follows. FCI (or OLCI/SLSTR) radiometric and ancillary data are read and the necessary auxiliary
fields (ECMWF forecast, AOT) are interpolated to satellite resolution. In the next step, the cloud mask and the measurements
(e.g., reflectances, 7,704, etc.) are calculated. A land and water processing mask is produced. Pixels which are marked as
cloudy or where SUN Z is too slant (> 80°) are filtered out.

The inversion is run up until the pre-defined convergence criterion. Once this is reached, this state is passed out of the

algorithm and these pixels are marked as converged. If the algorithm exceeds the maximum allowed number of iterations (6
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over land, 8 over ocean), the inversion stops, and these pixels are marked as not-converged. Furthermore, the algorithm’s output
includes the associated retrieval error covariance of the final state.

After the processing has finished for all pixels, data are only marked as valid if their cost is below a threshold (currently
<1) and if the convergence criterion has been met. Such a check may filter out some cloudy pixels which have been missed by
the cloud mask or pixels which contain a thick and/or elevated aerosol layer. Here, an extremely high cost may be caused by
a substantial underestimation of TCWV with regard to the prior/first guess TCWYV due the shielding effect. However, a higher

cost does not necessarily relate to a failed retrieval.

4 Results
4.1 Sentinel3 OLCI and OLCI/SLSTR data

An initial test for our forward model and the inversion technique was the application to an existing matchup database used for
the validation and quality control of COWa. OLCI measurements were spatio-temporally collocated with the ARM network
site Southern Great Plains (SGP) positioned in the Midwest of the United States of America (USA). The dataset is limited to
one location only and runs from 2016 to 2023. Since SLSTR measurements are missing from this dataset, the approximation

PC

of nLroa* " in the absorption band using the PCA regression could not be done. Instead, we chose the same approach as

COWa: extrapolate nL1o 4 from band 17 (0.865 um) and band 18 (0.885 um) to band 19 (0.9 um).
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Figure 5. Comparison of S30LCI “FCI-like” TCWV (using nLro.4**"") against ARM TCWYV at the SGP site, coloured with the relative

frequency of occurrence. The solid black line presents the 1:1 line, the red line marks the ODR curve.

The analysis of the two-band OLCI TCWYV is shown in Fig. 5 and yields a strong correlation with a Pearson correlation
coefficient () of 0.995. The bias of 1.848 kg/m?, orthogonal distance regression (ODR) coefficients, i.e., offset («) and slope
(B) of 1.122 and 1.038, respectively, indicate a slight wet bias. The cRMSD of 1.256 kg/m?, RMSD of 2.235 kg/m? and MAPD
of 13.433% still indicate slight spread.

In a next step, we processed the global dataset of the OLCI/SLSTR synergy. This has been done in order to assess the quality
of the two-band approach and the LUT-inversion in combination with the PCR approach to estimate 7,704(0.9 um). This
TCWYV was compared against three different reference networks. For this matchup analysis, we followed the same matchup
procedure as before. The results of the comparisons are depicted in Fig. 6a to 6d. Fig. 6a shows the positions of the ground-
based reference sites with at least one valid matchup according to their network. For the ARM network, only 3 stations in North
America were available for 2021. With AERONET and SUOMINET, a wider range of different climate zones and atmospheric
conditions can be covered. The comparison of 714 valid matchups against 80 AERONET stations in Fig. 6b reveals a wet bias
of 2.84 kg/mQ, a MAPD of 18.36%, a RMSD of 3.6 kg/m2, cRMSD of 2.21 kg/m2, r of 0.98, and ODR offset and slope of
0.56 and 1.13, respectively. The analysis results for 45 valid matchups against ARM MWR observations can be seen in Fig. 6¢
and show a slight wet bias of 0.33 kg/m?, a MAPD of 6.64 %, a RMSD of 1.49 kg/m?, a cRMSD of 1.46 kg/m?, r of 0.99, and
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ODR offset and slope of 0.33 and 1, respectively. In the comparison of 5439 matchups against 368 SUOMINET stations, we
find a wet bias of 1.38 kg/m?, a MAPD of 16.03 %, a RMSD of 2.22 kg/m?, a cRMSD of 1.75 kg/m?, a r of 0.98, and ODR
420 offset and slope of 0.65 and 1.04, respectively. Most SUOMINET stations are positioned in Central and North America.
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Figure 6. Matchup Analysis of OLCI/SLSTR “FCI-like” TCWYV against globally distributed reference sites. This TCWV uses the PCR

approach to estimate 7,70 4. The solid black lines present the 1:1 line, and the red lines mark the respective ODR curves.

4.2 MTG-FCI Data

In order to test our algorithm with regard to future nominal FCI data, we applied the first prototype on test data provided by
EUMETSAT. Since this dataset is still preliminary, this is neither a definitive nor quantitative assessment. Rather, it serves to

check the processor’s performance with real data and check the product for any unexpected behaviour and/or defects. The data
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425 were gathered on the 13th of January 2024 at 11:50 UTC. The full-disk true colour RGB and processed TCWYV are depicted in
Fig. 7a and 7b, respectively.
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Figure 7. Full disk visualisation of TCWYV and related products, processed from FCI data acquired on 13 January 2024. Dark grey marks

land surfaces, light grey marks water surfaces.

In parallel processing, the running time of one full disk scene on a workstation with 64 GBs of RAM and a 12 core CPU
is below 5 minutes. In single processing, the running time of a single chunk takes about 30 to 50 seconds. This includes

input/output operations, cloud-masking, PCR, and inversion.
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Arid regions such as the Sahara or the Arabian Peninsula are clearly visible. Europe also exhibits low TCWV. Synoptic
features such as bands of elevated moisture are visible. Despite the wide range of viewing zenith and solar zenith angles and
their implications for the line of sight, there appears to be no influence on the TCWYV product. Over Central Africa, some
clouds that are visible in the RGB have not been detected by the cloud mask. Such areas are also distinguishable by their
decreased TCWV values compared to the surrounding areas. This underestimation due to clouds as well as the finer details
can be seen in a close-up of the scene in Fig. 8b. Because of the 1 km resolution of FCI's NIR channels, we can also detect
meso- to mini-scale features such as smaller pockets of high moisture over the ITCZ or the mixing between dry and moist air
masses. Closer to the shore, the TCWYV field shows slight discontinuities between the water and land surface. The water-pixels
close to the shoreline often show values which deviate a few percent from the adjacent land-pixels; in most cases, there is an
over-estimation.

At this stage, a rigorous quantitative validation of the TCWYV product is not feasible, and our comparison against TCWV
from the ERAS reanalysis is not intended as such. As a preliminary way to check the TCWYV field for consistency, we plotted
the relative difference between the FCI TCWV and a collocated ECMWF ERAS reanalysis TCWV, shown in Fig. 7c. This
gives us a first impression whether any artifacts or defects appear or whether the algorithm works as intended. The image in
Fig. 7c is dominated by negative differences, which translates to a dry bias against the reanalysis TCWV. On average, FCI
TCWYV is approximately 10% drier than the reanalysis over land surfaces and 5% drier over water surfaces. Furthermore, there
are areas with positive and negative differences close to one another, often resembling a line, e.g., over Northern Africa or over
the South Atlantic. Fig. 7d depicts the AVK at each pixel. Over land, the value is close to 1 for most pixels since the forward
model is very sensitive to changes in the measurements. Over water, this value lies between 0 and 0.7. In areas of sunglint, the
AVK ranges from 0.4 to 0.7. In areas with low water-surface reflectance, the AVK approaches 0. Areas with increased AMF
and/or TCWYV exhibit a slightly higher AVK between 0.1 and 0.3.

To showcase FCI’s spatial resolution, we compare a TCWYV field from Sentinel3-A OLCI/SLSTR with real preliminary
calibrated FCI from the 27th June 2023 in Fig. 8. Both are processed with the algorithm described above. The temporal
difference between the two fields is approximately 5 minutes. The scene is situated in northern Mali in West Africa. The
differences in viewing geometry are visible between FCI and OLCI. In the true colour RGB of FCI, longer cloud shadows
are visible, which are much smaller in the S3A-OLCI image, or their positions are shifted. The TCWV fields reveal a moist
air mass in the South-East, while a drier air mass is positioned in the North-West. Consistent with the comparison against the
ERAS analysis, FCI TCWYV is about 10% lower than OLCI TCWV. Hence, another colourmap-range is used in the FCI TCWV
image(8b).
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Figure 8. Comparison of FCI TCWV and OLCI/SLSTR “FClI-like” TCWYV for a close-up on 27 June 2023 over Northern Mali.

FClI is capable of reproducing the amount of detail found in the OLCI TCWYV field: e.g., a dry line in the western half of the
460 image (i.e., strong gradients in moisture between the air masses) or gravity waves in the southern half or north-eastern corner
(local, wave-like peaks and troughs in TCWYV). The positioning of features appears to be coherent between the two sensors.
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Furthermore, we can see slight indications of FCI’s scan-lines in Fig. 8b. These are noisy pixels that follow lines that run from
East to West. The effect is more pronounced over water surfaces. In both figures, the effect of unidentified cloud pixels on the
TCWYV is visible as decreased TCWYV at cloud edges. In contrast, there are some thin dust layers visible in the North-Western
and Central-Eastern parts of the RGBs, which do not show in either of the TCWV products.

25.5°N

24°N

22.5°N

() (b) (©)

Figure 9. Time sequence of FCI TCWV shown in Fig. 8b with 1 hour between each frame.

To further highlight the potential of FCI TCWV observations for convective nowcasting purposes, we showcase the TCWV
field from Fig. 8b again in 9 with the TCWV from two time steps later in Fig. 9a to 9c. The sequence demonstrates how one
can track the propagation of the gravity waves and the north-western movement of the moist air mass along the moisture-front.
The formation of what appear to be small updrafts or thermals is indicated by stark increases in TCWYV from Fig. 9b to 9c.
This results in a pattern similar to convective rolls shown in Carbajal Henken et al. (2015). In the lower centre, first clouds are

forming at around 11:40 UTC.

5 Discussion and Outlook

In the multiannual validation against the reference ARM SGP TCWYV dataset (2016 — 2023), the OLCI 2-band TCWYV shows
a good performance with a bias of 1.848 kg/m?, RMSD of 2.235 kg/m?, cRMSD of 1.256 kg/m?, and high r of 0.99. The
wet bias may be corrected following the procedure described in Preusker et al. (2021). In a comparison against their COWa
algorithm applied to the same matchup dataset, they have a similar R? of 0.99 but a lower RMSD of 1.3 kg/m?, which may well
be attributed to both the use of an additional absorption band at 940 nm and initial 7,770 4-correction. Such a good performance
against the reference TCWYV is promising. However, for this comparison, 7,70 4 has been estimated from two adjacent window
bands (i.e., the same way COWa estimates 7,704).

For FCI, the accuracy of 7,704 and subsequently TCWV mostly hinges on the PCR’s ability to estimate the spectral slope.

As shown in Figs. 3a and 3b, the approximation shows a good performance against the next-best estimate, i.e., extrapolation
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from two adjacent window bands using OLCI measurements, and exceeds the performance of just using the window band at
0.865 um. Approximated nL7o ™ may deviate from the reference nLro4™ on average by 1.5 % over land and 3.5 % over
water. In rare cases the PCR failed. We assume that there may be several processes at play that require deeper investigations.
Mis-characterisations of the surface reflectance translate to an additional uncertainty of about 1 to 2 kg/m?. Nevertheless, these
initial results demonstrate that our approach is effective and advancing well towards an operational TCWYV retrieval framework
for FCI.

The global comparison against the reference networks returned slightly lower performance indicators with r between 0.98
to 0.99, bias between 0.33 to 2.84 kg/rnQ, MAPD between 6.64 and 18.36 %, RMSD between 1.49 to 3.6 kg/mz, and cRMSD
between 1.46 to 2.21 kg/m?. The highest RMSD and bias are found in the comparison against AERONET, which is most likely
due to AERONET’s dry bias (Pérez-Ramirez et al., 2014). The OLCI/SLSTR matchup analysis shows a decreased performance
against the multi-year matchup of only OLCI over ARM SGP. This is due to a reduced number of matchups over a shorter time
span and a higher geographic spread. A more rigorous validation would require a longer time period. However, the aim of this
assessment is to show that the PCR does not drastically reduce the algorithm’s performance. The actual performance of FCI
TCWYV may deviate from these verification results since the spectral characteristics and calibration are different from OLCI.
Future validation studies have to be conducted for further characterization, which may also lead to a more elaborate correction
for initial 7,704 estimation.

To assess the functionality of the current algorithm prototype, we applied it to the FCI Level Ic test dataset provided
by EUMETSAT. Conceptually, everything is in working order. The running times are close to or below the 5-minute mark
(FCT’s nominal temporal resolution on a 2024 computer) and allow for a near-real-time and operational application of our
TCWYV algorithm. Full disk comparisons show that the algorithm produces a sensible TCWYV field. The relative difference
between collocated ECMWF ERAS reanalysis TCWV at 12 UTC and FCI TCWYV product reveals a systematic dry bias of
approximately 8%. We suspect three probable reasons for this systematic dry bias: 1) the bias might be related to the preliminary
calibration of the FCI data, 2) the PCR systematically over-estimates the surface reflectance at 0.914 um and thus 7 is too low
and 3) undetected deficits in our LUTs. If this systematic bias persists and no underlying reason can be found, we may mitigate
it using the empirical correction method described in Preusker et al. (2021). Furthermore, there are large-scale patterns of
positive and negative deviations close to one another. Such patterns are to be expected in a comparison against model data and
indicate that the model struggles with accurately capturing the advection of air masses in both space and time. The observed
TCWYV fields might be closer to the actual state.

FCTI’'s TCWV AVK of almost 1 indicates a high sensitivity to the measurement and only a small contribution of prior
knowledge. This can be interpreted as the algorithm being independent of the NWP input. This is a key advantage of NIR
TCWYV in contrast to other satellite-retrieved TCWV. The decreased TCWV AVK over water surfaces is caused by the much
lower water surface reflectance in the NIR. In cases in which the reflectance is close to 0, the retrieval is challenging. However,
the OE may still provide an update of the a priori TCWYV field. Over sunglint, the AVKs above 0.4 indicate that the retrieval is

much more independent of the a priori and much more reliable.
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Comparing OLCI and FCI TCWYV up close, we can easily see that FCI TCWV matches the level of detail found in the
OLCI TCWYV product. For scenes over Europe, FCI’s resolution will be slightly lower compared to OLCT’s reduced resolution.
Yet, FCI’s resolution will be significantly higher than SEVIRTI’s. The stripes of enhanced noise that run across the FCI TCWV
image are caused by scan-lines of FCI. Similar scan-line artifacts are found in whisk-broom sensors such as MODIS or the
Visible Infrared Imaging Radiometer Suite (VIIRS), too. Over land this is barely noticeable. However, over dark water pixels
it is pronounced. This may change in future Level 1c processing versions. The assessment exercises discussed above helped
us identify several limitations and challenges regarding TCWYV retrievals from FCI measurements. The presence of clouds is
visible as pixels with considerably lower TCWV than their surrounding. A robust cloud mask is needed to filter out such pixels.
At a later stage, such retrieved pixels may be used for an “above cloud” water vapour product. Such a product may then be
used for the detection of WV entrainment into the stratosphere, e.g., in the presence of overshooting tops (Setvdk et al., 2008;
Dauhut et al., 2018; Khordakova et al., 2022).

While the PCR yields reliable nL1o4™ over the vast majority of surface types, in some cases it deviates far from the
reference. This may be addressed by extending the training dataset the PCs are calculated from.

So far, we use a fixed aerosol type, height, and thickness. Under conditions violating these assumptions (e.g., a strong dust
outbreak), retrieval quality would be decreased. We are considering simulating for additional aerosol mixtures and aerosol
layer heights. Furthermore, using AOT forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) could improve
the retrieval. Another issue is that over water surfaces, the inversion framework is under-determined: a measurement vector
with only two elements (nL70 4(0.865 pm), 7,70 4(0.914 pm)) is opposed by a state vector with three elements (TCWYV, AOT,
WSP). Outside sunglint, the influence of the wind speed is marginal, and AOT mainly increases the TOA signal (and thus the
forward model is not sensitive to changes of the wind speed), and inside sunglint the influence of a thin layer of aerosol is
reduced. Because of that, the information content is relatively balanced, and the impact is slightly reduced. Nevertheless, over
water surfaces, adding a third channel to the measurement vector (e.g., 0.51 or 1.61 um) may also improve the performance.

With FCI, we are able to monitor the temporal evolution of these small-scale patterns at a resolution similar to OLCI’s. This
allows for the tracking of large- and small-scale dynamics before, during, and after convective development. Such features
and their changes (e.g., convergence zones, convective rolls, deepening boundary layers) contain potential information for
nowcasting purposes. Furthermore, the patterns observed in FCI TCWV may also be tracked and used to retrieve lower level
atmospheric motion vectors (AMV).

Our framework may be adapted to provide accurate TCWV retrievals for other sensors featuring at least two channels in
and around the po7 band. The National Oceanic and Atmospheric Administration (NOAA) is commissioning GeoXO Imager
(GX1I), the successor to the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite - 3rd
generation (GOES), which will include a WV absorption band in the po7 region (Lindsey et al., 2024). Another future instru-
ment soon to be launched into a polar orbit is METImage, flying onboard EUMETSAT’s Meteorological Operational satellite
second generation A (METOP-SG-A) (Phillips et al., 2016). METImage will enable NIR TCWV with a spatial resolution
of 500 m and global coverage every day. METImage will also provide O2A band measurements (around 0.76 um), which
can be used to reduce ambiguity due to shielding of cirrus or elevated aerosol layers. A NIR TCWYV product from METImage
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may then be used in advanced synergies with sounders such as Infrared Atmospheric Sounder Interferometer - New Generation
(IASI-NG), which will also be flying on METOP-SG-A. TASI-NG is the successor of IASI, which provides all-sky temperature
and humidity profiles with a slightly lower accuracy in the presence of clouds (Miiller, 2017).

Furthermore, the Infrared Sounder (IRS) will be operating on MTG-S1, MTG-I1’s sister satellite, and will cover the same
field of view as FCI. This will enable a synergy between TCWYV from FCI and the IRS humidity profile product. NIR TCWV
could very well complement profile soundings for both IASI-NG and IRS: one shortcoming of these retrievals is their low or
missing sensitivity to the lowest layers of the troposphere (below 1-2 km). Furthermore, their spatial resolution is in the order
of tens of km, often insufficient for assessing small-scale weather patterns. A high-spatial resolution NIR TCWYV product,
sensitive to the whole column of air, could complement such sounding products perfectly, albeit in the absence of clouds. A
synergy could consist in an updated layer product or a product that provides the moisture content of the lowest levels of the
troposphere. Such synergy products could provide crucial insights into meteorological conditions, such as the atmospheric

instability, and improve the potential for the prediction of severe weather.

6 Conclusions

Leveraging our expertise in total column water vapour (TCWV) retrievals from Near-Infrared (NIR) measurements for various
satellite-based passive imagers, we developed a new retrieval framework for the new Meteosat Third Generation Flexible Com-
bined Imager (MTG-FCI) measurements. The use of OLCI/SLSTR synergy “FCI-like” data proved valuable for establishing
and validating an adapted TCWYV retrieval framework for MTG-FCI. It offers a realistic and reliable test bed that supports
algorithm development ahead of the availability of a sufficiently long and calibrated FCI data record. Key challenges, such as
the surface reflectance treatment in the WV absorption band, can be addressed in preparation for the large-scale application of
the retrieval to FCI data.

The evaluation exercises highlight the robustness of the retrieval framework and have helped identifying specific challenges
and limitations related to the MTG-FCI instrument, which can be further addressed with fully calibrated FCI data in the near
future.

As the successor to MSG-SEVIRI, MTG-FCI boasts extended observational and spectral capabilities that promise significant
advancements in weather and climate research and applications, particularly in the monitoring and study of atmospheric TCWV
amounts and dynamics. Notably, FCI is the first geostationary satellite instrument with measurements in the NIR por WV
absorption band. While SEVIRI TIR measurements allowed to derive information on WV amounts mainly in higher parts of
the troposphere, the FCI NIR WV absorption measurements exhibit the greatest sensitivity to WV amounts near the surface.
This enables accurate and high temporal resolution observations of changes in moisture content in the lower troposphere.
Consequently, these novel and comprehensive TCWYV observations will enhance the (real-time) monitoring of atmospheric
moisture distributions in the boundary layer, their evolution, and associated meteorological phenomena across regional to

continental scales, with the potential to significantly advance nowcasting techniques.
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Variable Definition/ Explanation

A averaging kernel matrix

a TpT O A correction offset

b TpT O A correction slope

ALB surface albedo, i.e., surface irradiance reflectance

AMF air mass factor

AVK averaging kernel

Cwin regression coefficient vector

€ forward model uncertainty

Eintp nLroa™ approximation uncertainty

F forward model

Fo spectral solar irradiance

G gain matrix

K jacobian matrix

A wavelength

Lroa top-of-atmosphere radiance

nLroa normalised top-of-atmosphere radiance

nLroa™ normalised top-of-atmosphere radiance corrected for WV attenuation
nLpoa*e®t nL1oa *estimated from extrapolation of window bands
nLroa™ PCR nLr1o 4 *estimated from principle component regression
D parameter vector

T Pearson correlation coefficient

r spectral slope

Riarget reflectance vector of target

Ryin reflectance vector of window channels (source)

P irradiance ratio reflectance

PTOA irradiance ratio reflectance at top-of-atmosphere

S retrieval error covariance matrix

Sa a priori state error covariance matrix

Se measurement error covariances matrix

SATA satellite azimuth angle

SATZ satellite zenith angle

SNR signal to noise ratio

SUNA sun azimuth angle

SUNZ sun zenith angle

TpTOA pseudo optical thickness

Utarget principle components folded to target band spectral response functions
Uwin principle components folded to window band spectral response functions
RAZI relative azimuth angle

RAZI relative azimuth angle

T state vector

& true state vector

Tq a priori state vector

x state vector

y measurement vector

Table A1. List of variables and their respective explanations.
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