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Abstract. A retrieval of total column water vapour (TCWV) from the new daytime, clear-sky near-infrared measurements of the

Flexible Combined Imager (FCI) onboard the geostationary satellite Meteosat Third Generation Imager (MTG-I, Meteosat-12)

is presented. The retrieval algorithm is based on the differential absorption technique, relating TCWV amounts to the radiance

ratio of a non-absorbing band at 0.865 µm and a nearby WV absorbing band at 0.914 µm. The sensitivity of the band ratio

to WV amount increases towards the surface which means that the whole atmospheric column down to the boundary layer5

moisture variability can be observed well.

The retrieval framework is based on an Optimal Estimation (OE) method, providing pixel-based uncertainty estimates. It

builds on well-established algorithms for other passive imagers with similar spectral band settings. Transferring knowledge

gained in their development onto FCI required new approaches. The absence of additional, adjacent window bands to estimate

the surface reflectance within FCI’s absorbing channel is mitigated using a Principal Component Regression (PCR) from the10

bands at 0.51, 0.64, 0.865, 1.61, and 2.25 µm.

We utilise synergistic observations from Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface

Temperature Radiometer (SLSTR) to generate “FCI-like” measurements. OLCI bands were complemented with SLSTR bands,

enabling evaluation of the retrieval’s robustness and global performance of the PCR. Furthermore, this enabled algorithm testing

under realistic conditions using well-characterised data, at a time when a long-term, fully calibrated FCI Level 1c dataset has15

not been available. We built a forward model for two FCI equivalent OLCI bands at 0.865 and 0.9 µm. A long-term validation

of OLCI against a single Atmospheric Radiation Measurement (ARM) reference site without the PCR resulted in a bias of 1.85

kg/m2, centred root mean square deviation (cRMSD) of 1.26 kg/m2 and a Pearson correlation coefficient (r) of 0.995.

A first verification of the OLCI/SLSTR “FCI-like” TCWV against well-established ground-based TCWV products con-

cludes with a wet bias between 0.33 – 2.84 kg/m2, a cRMSD between 1.46 – 2.21 kg/m2 and r between 0.98 – 0.99. In this set20

of comparisons, only land pixels were considered. Furthermore, a dataset of FCI Level 1c observations with a preliminary cal-

ibration was processed. The TCWV processed for these FCI measurements aligns well with reanalysis TCWV and collocated
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OLCI/SLSTR TCWV but show a dry bias. A more rigorous validation and assessment will be done once a longer record of

FCI data is available.

TCWV observations derived from geostationary satellite measurements enhance monitoring of WV distributions and asso-25

ciated meteorological phenomena from synoptic scales down to local scales. Such observations are of special interest for the

advancement of nowcasting techniques and Numerical Weather Prediction (NWP) accuracy as well as process-studies.

1 Introduction

Water vapour (WV) is the fundamental ingredient in the formation of clouds and precipitation. Spatio-temporal WV distri-

butions and fluxes impact the intensity and duration of precipitation. The presence of sufficient low-level moisture in the30

atmospheric boundary layer facilitates the formation of convective development through the enhancement of atmospheric in-

stability. Low-level moisture also contributes to storm severity by acting as a source of energy, once a storm has initiated (e.g.,

Johns and Doswell, 1992; Doswell et al., 1996; Fabry, 2006; Púčik et al., 2015; Peters et al., 2017). On a global, climatological

scale, WV is a major contributor to global energy fluxes and, due to its abundance and absorption over a wide range of the

solar and terrestrial spectrum, acts as the strongest greenhouse gas (e.g., Trenberth et al., 2003; Schmidt et al., 2010). Within35

a changing climate, a warmer atmosphere will contain more WV, which may form a positive feedback loop and further en-

hance global warming. Moreover, a moister atmosphere is predicted to produce more severe weather (e.g., Allen and Ingram,

2002; Neelin et al., 2022; Chen and Dai, 2023). But apart from that, WV is considered an inconvenient atmospheric compo-

nent for several remote sensing applications for which precise information on WV amounts in the atmosphere are needed for

atmospheric correction methods (e.g., Gao et al., 2009; Wiegner and Gasteiger, 2015; Valdés et al., 2021).40

Observations of total column water vapour (TCWV) from satellite-based passive imagers operating in the visible (VIS),

near-infrared (NIR) and thermal infrared (TIR) spectral ranges play a key role in monitoring its distribution at regional to

global scales. WV retrievals using TIR measurements have a long history and are widely used, particularly from geostationary

satellite platforms. On the one hand, a split-window technique using weakly absorbing WV measurements can be employed to

retrieve TCWV or boundary layer WV with relatively high uncertainties (e.g., Kleespies and McMillin, 1990; Casadio et al.,45

2016; Hu et al., 2019; Dostalek et al., 2021; El Kassar et al., 2021). Lindsey et al. (2014) and Lindsey et al. (2018) showed

that the split-window difference by itself may already provide valuable insight on the WV content in the boundary layer or

lowest layers of the troposphere. On the other hand, measurements from strongly absorbing WV bands serve to retrieve WV

amounts limited to upper tropospheric levels and/or layered WV products (e.g., Koenig and De Coning, 2009; Martinez et al.,

2022). However, due to the absorption and re-emission of radiation by WV in the IR, such approaches rely on knowledge of the50

atmospheric temperature profile in addition to the atmospheric WV profile. Using observations in the VIS/NIR largely avoids

these temperature-related complications.

The use of the so-called ρστ WV absorption region in the NIR (0.9 to 1.0 µm) is not new. This designation stems the

from first observations of atmospheric absorption of solar radiation in the 19th century (Langley, 1902). Within the ρστ ,

light is more likely to be absorbed by WV molecules compared to spectral regions outside these absorption features (window55
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regions). These NIR measurements exhibit the greatest sensitivity to WV amounts near the surface. Consequently, this allows

for the retrieval of accurate clear-sky TCWV fields as well as providing information on changes of WV amounts in the lower

troposphere. For several decades, the ρστ region has been researched using radiative transfer models and exploited in TCWV

retrieval schemes (e.g., Fischer, 1988; Gao and J., 1992; Bennartz and Fischer, 2001; Albert et al., 2005; Lindstrot et al., 2012;

Diedrich et al., 2015; Preusker et al., 2021). The focus first lay on ground-based radiometers and soon shifted to airborne and60

space-borne imagers. The first satellites that carried instruments with dedicated NIR WV bands were almost exclusively on

satellite platforms with sun-synchronous, polar orbits and could deliver global daily coverage at a hm to km resolution. Even at

a km resolution, NIR TCWV can resolve convective phenomena such as horizontal convective rolls or gravity waves (Carbajal

Henken et al., 2015; Lyapustin et al., 2014).

The new Meteosat Third Generation Imager (MTG-I, hereinafter referred to as MTG) carries the Flexible Combined Imager65

(FCI) (Holmlund et al., 2021; Martin et al., 2021). The European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT) commissions this third generation of European geostationary meteorological satellites for monitoring weather

and climate. FCI is the successor to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Schmetz et al., 2002)

and will enhance the temporal and spatial resolution of geostationary remote sensing observations. Also, an expanded set of

spectral channels allows for more comprehensive observations of atmospheric and surface properties. FCI includes a new NIR70

WV absorption band not available on any other instrument onboard a geostationary platform to date. This band is located

within the ρστ WV absorption region at 0.914 µm.

The introduction of MTG and its new FCI NIR band will expand our ability to quantify and characterise local to global-

scale WV distributions and monitor their changes. This has important implications for both weather and climate research and

applications. Particularly in the domain of nowcasting, FCI’s fine-scale observation of TCWV could substantially advance75

the field (e.g., Benevides et al., 2015; Van Baelen et al., 2011; Dostalek et al., 2021). The Nowcasting and Very Short Range

Forecasting Satellite Application Facility (NWCSAF) is an organisation funded by EUMETSAT and aims to support meteoro-

logical services with satellite products critical for the prediction of high-impact weather (e.g., storms, fog). They commission,

develop and maintain software which utilises many weather satellite instruments, including MTG-FCI/Meteosat-12 (García-

Pereda et al., 2019). A high-resolution NIR TCWV product in the portfolio of NWCSAF’s software will greatly benefit the80

nowcasting and meteorological community at large.

In this work, we present our TCWV retrieval framework utilizing the novel NIR measurements obtained from MTG-FCI.

Our approach builds on established TCWV retrieval frameworks successfully applied to other passive imagers sharing similar

spectral band configurations. The differential absorption technique, using the ratio of measurements in the ρστ -absorption

band and nearby window bands, was previously employed in measurements of the Medium Resolution Imaging Spectrometer85

(MERIS) onboard Envisat (Bennartz and Fischer, 2001; Lindstrot et al., 2012). With the launch of the Copernicus Sentinel-3A

and Sentinel-3B satellites (Donlon et al., 2012) and onboard Ocean and Land Colour Imager (OLCI), the retrieval framework

has been extended to fully exploit OLCI’s extended spectral capabilities by using multiple bands sensitive to WV absorption

(Preusker et al., 2021). Operational and calibrated FCI Level 1c data only became available at the end of 2024. Due to the

unique technical characteristics of FCI as well as the limited availability of a well-calibrated FCI data record at the time this90
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work was conducted, new strategies are imperative for our methodology and its assessment. One key element is the surface

reflectance approximation method for the absorption band, which can be assessed with the use of OLCI/SLSTR “FCI-like”

data. In particular, we applied the same forward model and inversion principles to OLCI band 17 (0.865 µm) and band 19

(0.9 µm) as were used for FCI. The use of the OLCI/SLSTR synergy presents an excellent opportunity to establish an adapted

retrieval framework and provides a robust test bed to explore algorithm performance accordingly. Additionally, OLCI Level 1b95

has well-known radiometric characterization and worldwide coverage, allowing for a practical and reliable basis to assess and

refine the retrieval framework under a wide range of realistic atmospheric and surface conditions.

The structure of this paper is as follows: Section 2 introduces the FCI data, OLCI/SLSTR data, auxiliary data, and the TCWV

reference datasets, along with the associated matchup method. The FCI TCWV algorithm, covering the physical background,

forward model, inversion method and the albedo approximation method integral to the algorithm, as well as the finalised100

retrieval framework are presented in Section 3. After that, Section 4 presents the results of the matchup assessments conducted

on both local and global scales, along with initial analyses using a preliminary calibrated FCI dataset and a representative case

study. The discussion and outlook are given in Section 5. Finally, Section 6 concludes the paper.

2 Data

2.1 MTG-FCI Data105

MTG is an operational EUMETSAT satellite mission, which currently consists of one satellite in geosynchronous orbit at 0◦

longitude. It carries the Lightning Imager (LI) and the FCI which is a multispectral instrument that scans with a fast east-west

and a slow north-south motion. It has 16 bands which range from the VIS (0.44 µm) to the TIR (13.3 µm). The full-disk scan

service covers approximately one-fourth of the Earth’s surface within 10 minutes, covering Europe, Africa, and parts of the

Atlantic and Indian oceans (Durand et al., 2015; Holmlund et al., 2021). In the future, a second FCI will provide a rapid scan110

service, which covers the northern third of the full-disk within 2.5 minutes, covering parts of Europe and the Mediterranean.

The spatial resolution at sub-satellite point (SSP) of one VIS band at 0.64 µm and one SWIR band at 2.25 µm is 0.5 km. The

spatial resolution of the other VIS to SWIR bands and the TIR bands at 3.8 µm and 10.5 µm is 1.0 km at SSP. The remaining

TIR bands have an SSP resolution of 2.0 km. Due to the curvature of the Earth, the actual spatial resolution outside the SSP is

slightly lower. E.g., the 1 km SSP resolution (VIS, NIR and 10.5 µm) in Northern Europe is closer to 2.0 to 3.0 km.115

The first MTG satellite was launched successfully into orbit on 13th of December 2022 and has left the commissioning

phase in December 2024. Work on this algorithm concluded in November 2024. Because of that, we used the latest release

of preliminary FCI Level 1c data at the time provided by EUMETSAT in February 2024 (EUMETSAT, 2024b). They consist

of one full-disk scene from 13th January 2024 between 11:50 and 12:00 UTC. They were downloaded from EUMETSAT’s

SFTP server and more details on this dataset can be found in EUMETSAT (2024a). At the time of publication, no cloud mask120

was available for the FCI test data. Therefore, we built a simple cloud mask algorithm. The cloud masking algorithm is largely

based on the work presented in Hünerbein et al. (2023). In this publication, the authors adapted and extended cloud masking

and typing algorithms developed for NASA’s Aqua/Terra Moderate Imaging Spectrometer (MODIS) (Ackerman et al., 2002) to
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ESA’s Cloud Aerosol and Radiation Explorer Mission (EarthCARE) Multi Spectral Imager (MSI). We adapted a subset of their

tests to the FCI bands and estimated new coefficients and thresholds. Ultimately, the cloud mask consists of two tests: threshold125

tests for reflectances, a reflectance ratio or the Global Environmental Monitoring Index (GEMI) (Pinty and Verstraete, 1992).

2.2 S3-OLCI/SLSTR Data

Sentinel-3 is an operational COPERNICUS satellite mission of the European Commission, managed by EUMETSAT. It con-

sists of two sister satellites (Sentinel-3A: S3A; Sentinel-3B: S3B) which orbit the Earth at an altitude of 814.5 km, an inclination

of 98.65 ◦ and a local equator crossing time of 10:00 AM. S3B is phase-shifted to S3A by 140 ◦. This way, the imaging in-130

struments onboard the two satellites achieve global coverage almost daily. The payloads consist of OLCI, the Sea and Land

Surface Temperature Radiometer (SLSTR) and the Synthetic Aperture Radar Altimeter (SRAL), supported by the Microwave

Radiometer (MWR).

OLCI is a push-broom multispectral imaging spectrometer that consists of five cameras. It measures at 21 bands ranging

from the VIS (0.4 µm) to the NIR (1.02 µm). The swath width of OLCI is 1215 km at a full SSP resolution of 0.3 km per pixel,135

which is referred to as “Full Resolution”. In the “Reduced Resolution”, 4 by 4 pixels are aggregated into 1.2 km pixels. That

is the resolution used in this study. A characteristic of OLCI is an across-track spectral shift due to the five discrete cameras.

This can be corrected for by taking into account the actual central wavelength at each of the across-track pixels (Preusker et al.,

in prep.). In order to mimic the capabilities of FCI at a similar spatial resolution and with similar spectral characteristics, we

collocated SLSTR observations to the OLCI grid using nearest-neighbour sampling. The SLSTR bands used are S5 (1.612 µm,140

0.5 km) and S6 (2.25 µm, 0.5 km). They have been mapped to OLCI’s reduced resolution at 1.2 km. Using Sentinel-3A and B,

a representative set of swaths was created for every month of the year 2021 which amounts to a total of 1800 swaths across 80

days. The Identification of Pixel features (IdePIX) cloud detection algorithm was used to create cloud masks (Iannone et al.,

2017; Wevers et al., 2021; Skakun et al., 2022).

2.3 ECMWF ERA5 Forecast and Reanalysis Data145

Our TCWV retrieval is based on an inversion technique (Section 3) which uses a first guess, as well as a priori and ancillary

parameter data. These may come from a climatology or could be set to a global climatological value. However, retrieval

performance can be greatly increased and sped up if the a priori data are already slightly closer to the solution. This is why

we chose to provide the algorithm with Numerical Weather Prediction (NWP) forecast fields. These were acquired from the

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 forecasts initialised at 6 UTC and 18 UTC of each150

day (Hersbach et al., 2020). The ERA5 forecasts are a byproduct of the reanalysis and more readily available for past time steps

than the operational forecasts. They are different from ECMWF’s Integrated Forecasting System (IFS) operational forecasts

since they use more assimilated data in the initialisation time step. The forecasts are at a resolution of 0.25◦ and in 3 h steps.

The data fields are interpolated to the observation time and FCI coordinates.

The variables needed are: horizontal wind speed (WSP) calculated from u- and v-component of the horizontal wind speed155

at 10 m above ground (U10, V10), TCWV, surface air temperature at 2 m above ground (T2M), and surface air pressure
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(SP). The data were accessed via the Copernicus Climate Change (C3S) data store (Copernicus Climate Change Service and

Climate Data Store, 2023). For testing and algorithm development, we used the ERA5 forecasts. In the later processing for the

NWCSAF GEO software package, the operational ECMWF IFS forecasts at a resolution of 0.5◦ and 1 h steps will be used.

2.4 Aerosol Optical Thickness Climatology160

One key parameter for the retrieval of TCWV over water is the aerosol optical thickness (AOT). As a first guess for AOT, we

use a climatology at a 1◦ spatial resolution. It was built from monthly means of the Oxford-Rutherford Appleton Laboratory

Aerosol and Cloud (ORAC, Thomas et al. (2009)) AOT dataset retrieved with SLSTR and the Environmental Satellite (EN-

VISAT) Advanced Along Track Scanning Radiometer (AATSR) between 2002 and 2022. These data were also accessed via

the C3S data store (Copernicus Climate Change Service and Climate Data Store, 2019).165

2.5 Reference Datasets, Matchup Analysis and Performance Indicators

In order to verify the credibility of the retrieved TCWV, we need reference data within the field of view of FCI. There are four

established sources of TCWV estimates: radiosondes, ground-based GNSS meteorology, ground-based MWR, and ground-

based direct sun-photometry. TCWV from NWP Reanalyses may also be used, but their coarse resolution cannot resolve the

fine variabilities found in the WV field at the satellite-pixel scale. Reanalyses may be used to assess the stability of the dataset170

later on. Unfortunately, until the completion of this work, no long-term record of FCI data was available in the final calibration.

Because of this, we processed the spectrally representative FCI data discussed above and compared these against TCWV from

the ERA5 reanalysis. The performance of our algorithm and the accuracy of our calculations require testing on real data.

Hence, we processed a 7-year matchup database of OLCI Level 1b observations and MWR TCWV from the Southern Great

Plains site of the Atmospheric Radiation Measurement network (ARM) (Sisterson et al. (2016). Additionally, the set of 1800175

OLCI/SLSTR swaths was processed with our algorithm (including the surface reflectance approximation from Section 3.4).

These were compared against reference TCWV data retrieved at sites of 1) the Aerosol Robotic Network (AERONET) (Holben

et al. (1998)), 2) the ARM network (Turner et al. (2007); Cadeddu et al. (2013)) and 3) the SUOMINET network (Ware et al.,

2000).

Prior to the analysis, OLCI swaths and ground-based network sites were collocated within 1 km and 30 minutes of a satellite180

overpass. A square of 11 by 11 pixels around the collocated centre pixel was taken into account. Then, these pixels were

screened for convergence, a cost-function below 1, and cloud-screened with a buffer of 3 pixels around the cloud mask,

minimizing the effect of cloud and cloud shadow contamination. Matchup cases with less than 95% valid pixels were rejected,

the central 3 by 3 pixels had to be completely cloud-free.

Both in the assessment of assumptions and the assessment of TCWV quality, we used metrics. Their abbreviations are as185

follows: N is the number of matchups, MADP is the mean absolute percentage deviation, RMSD is the root-mean-square

deviation, cRMSD is the centred RMSD (i.e., the observation is corrected for the bias against the reference), r is the Pearson

correlation coefficient. ODR α and β are the orthogonal distance regression coefficients for the intersect and slope, respectively,

with equal weights for all data points.
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3 Algorithm Description190

3.1 Physical Background

The ρστ WV absorption bands are due to the vibrational reaction in a gaseous water molecule hit by a photon within a specific

range of wavelengths, see Fig. 1. The absorption of WV in this spectral region is weak compared to the TIR at, e.g., 6.7 or 7.3

µm (traditionally referred to as WV bands). Because of that, the whole column’s content of atmospheric WV can be probed

using the ρστ . While the signal within the absorption band decreases with WV content, an adjacent window band will be195

virtually unaffected by any change in WV amount along the line-of-sight (LOS). FCI features a “window” band with a nominal

centre wavelength of 0.865 µm and an “absorption” band with a nominal centre wavelength of 0.914 µm. The spectral response

functions (SRF) are also shown in Fig. 1.

Figure 1. Upper panel: The WV attenuation spectrum for an atmosphere with a low TCWV amount in orange (7.4 kg/m2) and high TCWV

amount in blue (57.6 kg/m2) with data obtained from the Correlated K-Distribution Model Intercomparison Project (CKDMIP, Hogan and

Matricardi (2020)). Centre panel: The SRFs in the NIR part of the spectrum for the satellite instruments OLCI (blue) and SLSTR (orange).

Lower panel: the SRFs in the NIR for FCI (red).

The overall strongest influence factor on the signal measured at the satellite sensor is the surface reflectance. This is also

referred to as the surface spectral albedo (ALB) and is the ratio of outgoing irradiance against incoming irradiance at one200

specific wavelength. This ratio depends on the type of surface covering (e.g., vegetation, sand, snow, etc.) and to some degree

on the sun and viewing angles. For land cases, the spectral albedo in the NIR is well above 0.3 and thus provides a strong signal

relative to the absorption by WV. Over the majority of water surfaces, however, the surface reflectance is often well below 0.03.

There is no direct way to measure this spectral albedo, hence an approximation is necessary.
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A slightly less important effect comes from scattering aerosol layers below a certain level of aerosol optical thickness (AOT).205

In that case, the effective LOS is shortened by the higher aerosol layer, and since the humidity content on average is much lower

in the higher troposphere, the absorption is decreased substantially. Over bright surfaces, this effect is much less influential

than over dark surfaces (Lindstrot et al., 2012). Since most natural surfaces over land are bright in the NIR, the shielding effect

of an average aerosol layer is small (Diedrich et al., 2015).

Under most circumstances, this assumption is not valid for water surfaces, though. Due to the low albedo, already slightly210

scattering layers of aerosol may create the effect described above. To a certain degree, this effect can be corrected for by

simulating an aerosol layer with a specific AOT in the algorithm. However, for this, the effective height of the aerosol layer

needs to be estimated, which is a challenge in and of itself. Another important aspect over water surfaces is sunglint, i.e.,

the reflectance’s dependency on wind-speed and viewing/solar geometry. High wind speeds create a rough surface with low

reflectance peaks spread out over a range of observation geometry angles. At lower wind speeds, a calm surface results in215

a higher reflectance peak over a limited range of observation angles, similar to a mirror. In regions with strong sunglint, the

relative influence of aerosol scattering is reduced.

Over both land and water surfaces, the atmospheric temperature profile and surface pressure play a lesser role due to

temperature- and pressure-dependent line broadening (Rothman et al., 1998). In contrast to TCWV retrievals in the TIR,

the impact of the temperature profile is substantially lower but not negligible. The uncertainties due to a mis-characterised220

temperature profile are approximately 0.6 kg/m2 and surface pressure at about 0.9 kg/m2 (Lindstrot et al., 2012).

3.2 Forward Model

The first step in our framework is to run radiative transfer simulations (RTS) for a set of complete and comprehensive at-

mospheric, surface and geometric conditions as described in the previous section and summarised in Table 1 and 2. For the

simulation of top-of-atmosphere (TOA) reflectances we used the Matrix Operator Model (MOMo, Fell and Fischer (2001);225

Hollstein and Fischer (2012); Doppler et al. (2014)). These simulations are then sorted into two look-up-tables (LUT) for land

surfaces and water surfaces, respectively.

Over land surfaces, the surface albedo (ALB) is defined as isotropic. Over water surfaces, the surface reflectance is estimated

from the 10 m wind speed (WSP) using Cox and Munk (1954). Standard atmospheric profiles were taken and adapted from

Anderson et al. (1986) to provide the vertical distribution of temperature and humidity. The numbers refer to: 1. mid-latitude230

summer, 2. mid-latitude winter, 3. sub-Arctic summer, 4. sub-Arctic winter, 5. tropical. Based on the forecast surface air

temperature (T2M) and surface pressure (SP) the associated atmospheric profile group is chosen. The humidity profiles are

scaled with TCWV. All simulations are done for a set of satellite zenith angles (SATZ), sun zenith angles (SUNZ) and relative

azimuth (RAZI). RAZI is calculated from the satellite azimuth angle (SATA) and sun azimuth angle (SUNA) following:

RAZI = arccos(cos(SUNA) ∗ cos(SATA)+ sin(SUNA) ∗ sin(SATA)) (1)235

The aerosol mixtures and their optical properties have been calculated using the OPAC software package (Optical Properties

of Aerosols and Clouds, Hess et al. (1998)). Within their documentation, one can find details on the used aerosol mixtures
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Variable Name Increments and units

TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m2

ALB 0, 0.1, 0.3, 0.6, 1

T2M standard atmospheric profiles 1 to 5∗

SP 500, 650, 750, 850, 950, 1050 hPa

SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90◦

SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85◦

RAZI 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180◦

Table 1. Land Surface Setup for MOMo. ∗ Standard profiles from

Anderson et al. (1986).

Variable name Range and units

TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m2

AOT 0.001, 0.1, 0.3, 0.5, 0.7, 1.2 at 700 to 1000 m height

WSP 2, 3, 5, 10, 15 m/s

T2M standard atmospheric profiles 1 to 5∗

SP 950, 1000, 1050 hPa

SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90◦

SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85◦

RAZI 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180◦

Table 2. Water Surface Setup for MOMo. ∗ Standard profiles from

Anderson et al. (1986).

for the two types selected for the land and water surface simulations. Over land, we used the aerosol mixture “continental

average”, over ocean we used the aerosol mixture “maritime clean”. In both cases, we simulated a homogenous aerosol layer

between 700 and 1000 m height above ground with the specified AOT. An overview of the inputs and increments used for the240

simulations is shown in Tables 1 and 2.

The observations we simulate are the normalised radiance in the window channel (nLTOA(0.865µm)) and the pseudo

optical thickness in the absorption channel (τpTOA(0.914µm)). The normalised radiance is calculated as follows:

nLTOA(λ) =
LTOA(λ)

F0(λ)
(2)

where F0 is the spectral solar irradiance.245

The pseudo optical thickness τpTOA is calculated as follows:

τpTOA(λ) =−a−
log( nLTOA(λ)

nLTOA
∗(λ) )√

AMF
· b (3)

where AMF is the air mass factor, nLTOA
∗ is the normalised radiance corrected for the influence of WV absorption, a and

b are the so-called correction coefficients which may correct for a systematic bias discovered in a validation against reference

TCWV observations.250

The AMF is calculated as follows:

AMF =
1

cos(SUNZ)
+

1

cos(SATZ)
(4)

Dividing through
√
AMF , the relationship between TCWV and τpTOA becomes more linear, reducing the number of

necessary iterations in the inversion later on. nLTOA
∗ needs to be approximated using other available information (e.g., a

climatology atlas, neighbouring window channels). Here, we use a more elaborate technique, described in Subsection 3.4.255

Preusker et al. (2021) have obtained the correction coefficients a and b by minimizing the differences between simulated

and measured OLCI observations using ARM-SGP.C1-MWR TCWV as an input (see Preusker et al. (2021) for details). For
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OLCI’s version of this algorithm, a and b for band 19 (at 0.9 µm) were estimated to be -0.008 and 0.984, respectively, from the

results shown in Section 4.1. For FCI, other MWR TCWV references will be necessary. We intend to use reference sites such

as Meteorological Observatory Lindenberg – Richard Assmann Observatory (MOL–RAO) (Knist et al., 2022), the Cabauw260

Experimental Site for Atmospheric Research (CESAR) (Van Ulden and Wieringa, 1996) or ARM — Eastern North Atlantic

(ENA) (Mather and Voyles, 2013).

The set of simulations is sorted into a multidimensional look-up table (LUT). This LUT can then be used to simulate a

measurement (y) for a given set of states (x) and parameters (p) using an interpolator. This is referred to as the forward model

F . With this forward model, we can estimate a sensor’s observation for a given set of states as follows:265

y = F (x,p)+ ϵ (5)

ϵ denotes the measurement and forward model error. The state vector of land consists of TCWV and ALB(0.865 µm), over

water surfaces it consists of TCWV, WSP, and AOT. The parameter vector is composed of T2M, SP, SUNZ, SATZ and RAZI.

3.3 Inversion Using Optimal Estimation

Eq. 5 can be inverted to retrieve a state associated with an observation. There are various ways of performing this inversion.270

We chose to follow the optimal estimation (OE) approach for atmospheric inverse problems described by Rodgers (2000). In

essence, this inversion is based on the principle of minimizing the cost function J by iteratively changing the initial first guess

of a state or the state of the prior iteration step.

The iterative process is stopped if either the maximum number of allowed steps is reached or the following criterion is met

by the retrieved state xi+1:275

(xi −xi+1)
T Ŝ−1

i (xi −xi+1)≤ n · ϵ (6)

where Ŝ is the retrieval error-covariance, n is the number of state variables. More details on the process of OE within a TCWV

retrieval framework can be found in Preusker et al. (2021) and El Kassar et al. (2021). One crucial advantage of OE is the

simultaneous retrieval of the associated uncertainty, the so-called retrieval error covariance matrix Ŝ.

Ŝ = (Sa
−1 +Ki

T ·Sϵ
−1 ·Ki)

−1 (7)280

Where, Sa is the a priori error covariance matrix associated with xa, Sϵ is the measurement error covariance matrix asso-

ciated with y and K is the Jacobian which contains the partial derivatives of each measurement to each state at step i (i.e.,

Ki = ∂F (xi)/∂xi). The covariances may either be set to values that correspond to the actual covariances within a given

variable. However, the covariances may also be used as tuning parameters in order to make the algorithm lean more towards

the measurement or more towards the prior knowledge (Rodgers, 2000). Over land surfaces we set the a priori uncertainty285

of TCWV very high (16 kg/m2) since the information content of the absorption band is high over bright surfaces. Over the

ocean, the TCWV a priori uncertainty was set much lower (2.5 kg/m2). The ALB a priori uncertainty is set to 0.5, the WSP a
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priori uncertainty is set to 5 m/s, the AOT a priori uncertainty is set to 0.55. The corresponding covariances are the squared

uncertainties.

The error covariance of τpTOA is estimated using the signal-to-noise-ratio (SNR), the interpolation-error from the uncertainty290

in estimating nLTOA
∗ (ϵintp) and the AMF:

Sϵ(τpTOA) =

(
1

SNR2
+

1

SNR2 + ϵintp

)
· 1

AMF
(8)

In Eq. 8, the two SNR-terms refer to the uncertainty of nLTOA(0.914) and nLTOA
∗(0.914). For nLTOA(0.865µm) the error

covariance is simply 1
SNR2 .

An additional metric this inversion technique provides is the so-called averaging kernel A:295

A=G ·K =
∂x̂

∂x
(9)

where G is the Gain matrix, which contains the partial derivative of the true state ∂x̂ in relation to the partial derivative of the

measurement ∂y. While the true state x̂ is unknown, the relative changes at each step quantify the sensitivity of x̂ towards

changes in y.

The entries along the diagonal of A correspond to the state variables and show a range of values between 0 and 1. At 0,300

the proportion of the retrieved state to x̂ is lowest; the measurement did not contribute to the retrieval. At 1, the proportion of

the retrieved state to the true state is highest. Everything inbetween indicates that some improvement of the prior information

about the state could be made using the measurement. The trace of AVK gives the degrees of freedom of the measurements.

3.4 Estimation of nLTOA
∗ with Principal Component Regression

For some surfaces (e.g., calm, clear water), the difference in spectral albedo between the window and absorption channel is305

small. Over most other surfaces, however, this is not the case. Simply using nLTOA(0.865µm) for nLTOA
∗ would yield an

unreliable estimate of the pseudo optical depth τpTOA. Thus, in order to calculate τpTOA we need an accurate estimate of

the spectral slope between the window and the absorption channel. For satellite sensors such as MODIS or OLCI, the WV

absorption bands have at least two accompanying window bands (i.e. at 0.865, 0.885, 1.02 or 1.2 µm). FCI and other future

instruments do not have such additional window channels close by. Hence, another technique to estimate the spectral slope is310

needed.

The principal component regression (PCR) facilitates the reconstruction of a continuous set of observations from few discrete

data points. This approach is already used with reasonable success in the estimation of BRDFs and reflectance spectra within

RTTOV (Vidot and Borbás, 2014). Their approach was used as a blueprint for our spectral slope estimation.

The ECOSTRESS spectral library version 1.0 provided by the United States of America Geological Service (USGS) is a315

collection of spectral reflectances for individual materials and/or mixtures at a high spectral resolution (Meerdink et al., 2019).

The library consists of spectra for a wide range of material groups: human-made, rock, soil, mineral, photosynthetic vegetation,

non-photosynthetic vegetation, water (which includes fresh-water, ice, and snow). A small selection of these spectra is depicted

in the upper part of Fig. 2. In the lower two panels of Fig. 2, the SRFs of a selection of sensors are shown.
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Figure 2. Upper panel: overview of a selection of surface reflectance spectra from Meerdink et al. (2019), the labels are representative and

not the actual spectra designations. Central panel: the SRFs of OLCI (blue) and SLSTR (orange). Lower panel: the SRFs of FCI (red).

Only spectra between 0.4 and 2.35 µm were taken into account and linearly interpolated to a spectral resolution of 0.001320

µm. To avoid a sampling bias towards a specific group of spectra, we used similarly sized subsets of each category. From this

database, the principal components (the Eigenvectors, PCs) are calculated and sorted by their associated Eigenvalue. Instead of

reconstructing spectrally high-resolution reflectances, we use the PCs to reconstruct the reflectance of two channels: at 0.865

µm and at 0.914 µm, referred to as the target. Following the nomenclature of Vidot and Borbás (2014), Rtarget is the vector

of reflectance spectra folded to the target SRFs, cwin is the regression coefficient vector (also referred to as weights) from325

the window bands and U target is the matrix of the selected PCs of the high-resolution reflectance spectra, folded to the target

SRFs.

Rtarget = cwinU target (10)

Using the Moore-Penrose Pseudo inverse, the regression coefficient cwin follows:

cwin =RwinU
T
win(UwinU

T
win)

−1 (11)330

An optimal configuration of the number of PCs and bands was then found by comparing different band combinations with

several numbers of PCs. In order to do this, we reconstructed all available spectra at the target bands which were used in the

PCR from the folded spectra at the window bands. Using this approach, the optimal configuration for FCI was found with the

use of five window bands (i.e., negligible WV attenuation) in the VIS to SWIR (0.51, 0.64, 0.865, 1.61, 2.25 µm) and only the

first four PCs. We are able to reproduce the actual surface reflectance at the absorption and window band with a bias of 0.0045335
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and 0.0038 and a RMSD of 0.016 and 0.02, respectively. Folding the PCs to the SRFs of other sensors would make this matrix

applicable to other instruments with similar bands, as shown in Fig. 2. In order to estimate the spectral slope in the PCR, FCI’s

normalised radiances at the window channels need to be transformed into irradiance reflectances:

ρTOA(λ) =
nLTOA(λ) ·π
cos(SUNZ)

(12)

From the reconstructed surface reflectances, we calculate the slope r:340

r =
ρ(0.914)

ρ(0.865)
(13)

This ratio is then multiplied with the nLTOA(0.865µm) in order to yield a more accurate estimate of nLTOA
∗ at the absorption

band. The underlying assumption is that between 0.865 and 0.914 µm, atmospheric scattering and attenuation other than WV

are nearly identical. Thus, ALB(0.914)
ALB(0.865) ≈

ρ0TOA(0.914)
ρ0TOA(0.865) holds true. Given a sufficiently bright surface and outside the influence

of thick, scattering layers (e.g., clouds, aerosols) or very slant viewing geometries (SATZ > 82◦), this is the case. Over water345

surfaces, the influence of scattering processes in the atmosphere is much stronger. Hence, the uncertainties over water pixels

are higher. Furthermore, the influence of water constituents (e.g., sediment, pigments) on the water reflectance spectrum in the

NIR has not been taken into consideration. The PCA training dataset almost exclusively consisted of terrestrial reflectances

and only a few fresh water reflectances.

(a) Relative differences in nLTOA
∗ over land surfaces. (b) Relative differences in nLTOA

∗ over ocean surfaces.

Figure 3. Relative differences between two proposed nLTOA
∗ against the extrapolated nLTOA

∗ext as used in the COWa algorithm over

land and water surfaces, respectively.nLTOA
∗PCR from the PCR in blue and the relative difference between extrapolated nLTOA

∗ext and

nLTOA(0.865µm) in orange. The associated metrics in the corresponding colours are found in the top corners. The solid black line indicates

0% relative deviation.
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Using the OLCI/SLSTR synergy allows us to assess the performance of the PCR to estimate τpTOA rather than directly350

using the window (nLTOA(0.865 µm)) against a common reference. In the Copernicus Sentinel-3 OLCI Water Vapour product

(COWa) algorithm, nLTOA
∗(0.9 µm) is extrapolated from the two adjacent window bands at 0.865 and 0.885 µm (Preusker

et al., 2021). For τpTOA(0.94µm), nLTOA
∗(0.94 µm) is interpolated from the two window bands 0.885 µm and 1.020µm.

This is substantially closer to the “real” surface reflectance than using the PCR. Hence, we compare nLTOA
∗PCA(0.9 µm)

against nLTOA
∗ext(0.9 µm) from the extrapolation using the two adjacent window channels. For this and other comparisons,355

we calculated the relative difference in % by dividing the absolute difference (observation minus reference) by the reference

multiplied by the factor 100. Fig. 3a and 3b reveal that the vast majority of points lie close to 0 % line for both land and water

pixels, albeit with a positive bias. In contrast, using the 0.865 µm normalised radiance by itself would yield much worse results,

i.e., a strong bi-modal distribution over land and a weaker bi-modal distribution with a wide spread over water (see Fig. 3a and

3b).360

On average, there is a small positive bias in nLTOA
∗PCA(0.9 µm), both over land (+0.3%) and water (+0.8%). Over land

pixels, the 98th percentile of the relative percentage deviation is 1.7% against the 2.6% when using nLTOA(0.865 µm) as

nLTOA
∗. Over water pixels, the 98th percentile of the relative percentage deviation lies at 2.2%, whereas this value is 4%

when using nLTOA(0.865m) as nLTOA
∗. On average, an increase of 1% in nLTOA

∗(0.9 µm) roughly translates to a 1.6%

increase (approx. 0.9 kg/m2) of TCWV estimate. A correction of this bias may be possible, but since such an analysis cannot365

be carried out using FCI, we decided against it. Because the PCR performed better than the window channel by itself, we

decided to use nLTOA
∗PCR(0.9 µm) to calculate τpTOA over both land and water surfaces. Despite the slight deviations, the

PCR approach remains a good technique in order to reduce the impact of the spectral slope as much as possible.

This can also be demonstrated using a TCWV processed from a single day of OLCI/SLSTR observations. Here, we compared

the retrievals from using each nLTOA
∗ext, nLTOA

∗PCR, and nLTOA(0.865 µm) to calculate τpTOA as input to the algorithm.370

In order to only see the influence on precision of TCWV, both datasets have been bias-corrected. The results are shown in Fig.

4. Over land surfaces, the bi-modal distribution in using nLTOA(0.865 µm) persists with large spread and systematic over-

and under-estimations. Over the ocean, the difference between the two approaches is even more pronounced. Both MAPD

and RMSD indicate that using nLTOA
∗PCR instead of nLTOA(0.865 µm) for the calculation of τpTOA improves the retrieval

substantially.375
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(a) TCWV using nLTOA
∗PCRfrom the PCR against the extrapolated

nLTOA
∗(0.9 µm) over land pixels for a random subset of data in June

2021.

(b) Relative difference against nLTOA
∗(0.9 µm) from the PCR against

the extrapolated nLTOA
∗(0.9 µm) over water pixels for a random subset

of all data in June 2021.

Figure 4. Relative difference between TCWV retrieved with τpTOA calculated from extrapolated nLTOA
∗ext and nLTOA

∗PCR from the

PCR in blue and τpTOA calculated from nLTOA(0.865 µm) in orange. The TCWV has been bias-corrected against the reference (TCWV

using nLTOA
∗ext). The data are for a random subset of one day in June 2021. The associated metrics in the corresponding colours are found

in the top corners. The solid black line indicates 0% relative deviation.

In very rare cases (<0.1%), there are large deviations (>5%). Upon visual inspection, these extreme deviations mostly occur

along rivers, coasts, in high elevations or at the poles. We explain these cases by 1) unidentified clouds, 2) coastal and inland

water pixels with mixed contributions by land and water, 3) water-constituents changing the NIR reflectance of the water

surface substantially, 4) adjacency effects, the brightening effect of dark pixels by diffuse radiation from neighbouring bright

pixels and 5) geolocation and unphysical spectral matches between OLCI and SLSTR. Yet, these rare deviations are still lower380

than the extreme deviations found by using the window band at 0.865 µm itself.

3.5 Finalised Retrieval Framework

The retrieval procedure is as follows. FCI (or OLCI/SLSTR) radiometric and ancillary data are read and the necessary auxiliary

fields (ECMWF forecast, AOT) are interpolated to satellite resolution. In the next step, the cloud mask and the measurements

(e.g., reflectances, τpTOA, etc.) are calculated. A land and water processing mask is produced. Pixels which are marked as385

cloudy or where SUNZ is too slant (> 80◦) are filtered out.

The inversion is run up until the pre-defined convergence criterion. Once this is reached, this state is passed out of the

algorithm and these pixels are marked as converged. If the algorithm exceeds the maximum allowed number of iterations (6
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over land, 8 over ocean), the inversion stops, and these pixels are marked as not-converged. Furthermore, the algorithm’s output

includes the associated retrieval error covariance of the final state.390

After the processing has finished for all pixels, data are only marked as valid if their cost is below a threshold (currently

<1) and if the convergence criterion has been met. Such a check may filter out some cloudy pixels which have been missed by

the cloud mask or pixels which contain a thick and/or elevated aerosol layer. Here, an extremely high cost may be caused by

a substantial underestimation of TCWV with regard to the prior/first guess TCWV due the shielding effect. However, a higher

cost does not necessarily relate to a failed retrieval.395

4 Results

4.1 Sentinel3 OLCI and OLCI/SLSTR data

An initial test for our forward model and the inversion technique was the application to an existing matchup database used for

the validation and quality control of COWa. OLCI measurements were spatio-temporally collocated with the ARM network

site Southern Great Plains (SGP) positioned in the Midwest of the United States of America (USA). The dataset is limited to400

one location only and runs from 2016 to 2023. Since SLSTR measurements are missing from this dataset, the approximation

of nLTOA
∗PCR in the absorption band using the PCA regression could not be done. Instead, we chose the same approach as

COWa: extrapolate nLTOA from band 17 (0.865 µm) and band 18 (0.885 µm) to band 19 (0.9 µm).
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Figure 5. Comparison of S3OLCI “FCI-like” TCWV (using nLTOA
∗ext) against ARM TCWV at the SGP site, coloured with the relative

frequency of occurrence. The solid black line presents the 1:1 line, the red line marks the ODR curve.

The analysis of the two-band OLCI TCWV is shown in Fig. 5 and yields a strong correlation with a Pearson correlation

coefficient (r) of 0.995. The bias of 1.848 kg/m2, orthogonal distance regression (ODR) coefficients, i.e., offset (α) and slope405

(β) of 1.122 and 1.038, respectively, indicate a slight wet bias. The cRMSD of 1.256 kg/m2, RMSD of 2.235 kg/m2 and MAPD

of 13.433% still indicate slight spread.

In a next step, we processed the global dataset of the OLCI/SLSTR synergy. This has been done in order to assess the quality

of the two-band approach and the LUT-inversion in combination with the PCR approach to estimate τpTOA(0.9 µm). This

TCWV was compared against three different reference networks. For this matchup analysis, we followed the same matchup410

procedure as before. The results of the comparisons are depicted in Fig. 6a to 6d. Fig. 6a shows the positions of the ground-

based reference sites with at least one valid matchup according to their network. For the ARM network, only 3 stations in North

America were available for 2021. With AERONET and SUOMINET, a wider range of different climate zones and atmospheric

conditions can be covered. The comparison of 714 valid matchups against 80 AERONET stations in Fig. 6b reveals a wet bias

of 2.84 kg/m2, a MAPD of 18.36%, a RMSD of 3.6 kg/m2, cRMSD of 2.21 kg/m2, r of 0.98, and ODR offset and slope of415

0.56 and 1.13, respectively. The analysis results for 45 valid matchups against ARM MWR observations can be seen in Fig. 6c

and show a slight wet bias of 0.33 kg/m2, a MAPD of 6.64 %, a RMSD of 1.49 kg/m2, a cRMSD of 1.46 kg/m2, r of 0.99, and
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ODR offset and slope of 0.33 and 1, respectively. In the comparison of 5439 matchups against 368 SUOMINET stations, we

find a wet bias of 1.38 kg/m2, a MAPD of 16.03 %, a RMSD of 2.22 kg/m2, a cRMSD of 1.75 kg/m2, a r of 0.98, and ODR

offset and slope of 0.65 and 1.04, respectively. Most SUOMINET stations are positioned in Central and North America.420

(a) Geographical distribution and their sum of all ref-

erence sites from which reference TCWV datasets are

used in the matchup analysis.

(b) Comparison of OLCI/SLSTR “FCI-like” TCWV

against AERONET TCWV, coloured with the relative

frequency of occurrence.

(c) Comparison of OLCI/SLSTR “FCI-like” TCWV

against ARM at SGP.C1 TCWV.

(d) Comparison of OLCI/SLSTR “FCI-like” TCWV

against SUOMINET TCWV, coloured with the relative

frequency of occurrence.

Figure 6. Matchup Analysis of OLCI/SLSTR “FCI-like” TCWV against globally distributed reference sites. This TCWV uses the PCR

approach to estimate τpTOA. The solid black lines present the 1:1 line, and the red lines mark the respective ODR curves.

4.2 MTG-FCI Data

In order to test our algorithm with regard to future nominal FCI data, we applied the first prototype on test data provided by

EUMETSAT. Since this dataset is still preliminary, this is neither a definitive nor quantitative assessment. Rather, it serves to

check the processor’s performance with real data and check the product for any unexpected behaviour and/or defects. The data
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were gathered on the 13th of January 2024 at 11:50 UTC. The full-disk true colour RGB and processed TCWV are depicted in425

Fig. 7a and 7b, respectively.

(a) FCI true colour composite. (b) Retrieved FCI TCWV field.

(c) Relative difference between FCI TCWV and ERA5 reanalysis TCWV. (d) AVK corresponding to the retrieved TCWV.

Figure 7. Full disk visualisation of TCWV and related products, processed from FCI data acquired on 13 January 2024. Dark grey marks

land surfaces, light grey marks water surfaces.

In parallel processing, the running time of one full disk scene on a workstation with 64 GBs of RAM and a 12 core CPU

is below 5 minutes. In single processing, the running time of a single chunk takes about 30 to 50 seconds. This includes

input/output operations, cloud-masking, PCR, and inversion.
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Arid regions such as the Sahara or the Arabian Peninsula are clearly visible. Europe also exhibits low TCWV. Synoptic430

features such as bands of elevated moisture are visible. Despite the wide range of viewing zenith and solar zenith angles and

their implications for the line of sight, there appears to be no influence on the TCWV product. Over Central Africa, some

clouds that are visible in the RGB have not been detected by the cloud mask. Such areas are also distinguishable by their

decreased TCWV values compared to the surrounding areas. This underestimation due to clouds as well as the finer details

can be seen in a close-up of the scene in Fig. 8b. Because of the 1 km resolution of FCI’s NIR channels, we can also detect435

meso- to mini-scale features such as smaller pockets of high moisture over the ITCZ or the mixing between dry and moist air

masses. Closer to the shore, the TCWV field shows slight discontinuities between the water and land surface. The water-pixels

close to the shoreline often show values which deviate a few percent from the adjacent land-pixels; in most cases, there is an

over-estimation.

At this stage, a rigorous quantitative validation of the TCWV product is not feasible, and our comparison against TCWV440

from the ERA5 reanalysis is not intended as such. As a preliminary way to check the TCWV field for consistency, we plotted

the relative difference between the FCI TCWV and a collocated ECMWF ERA5 reanalysis TCWV, shown in Fig. 7c. This

gives us a first impression whether any artifacts or defects appear or whether the algorithm works as intended. The image in

Fig. 7c is dominated by negative differences, which translates to a dry bias against the reanalysis TCWV. On average, FCI

TCWV is approximately 10% drier than the reanalysis over land surfaces and 5% drier over water surfaces. Furthermore, there445

are areas with positive and negative differences close to one another, often resembling a line, e.g., over Northern Africa or over

the South Atlantic. Fig. 7d depicts the AVK at each pixel. Over land, the value is close to 1 for most pixels since the forward

model is very sensitive to changes in the measurements. Over water, this value lies between 0 and 0.7. In areas of sunglint, the

AVK ranges from 0.4 to 0.7. In areas with low water-surface reflectance, the AVK approaches 0. Areas with increased AMF

and/or TCWV exhibit a slightly higher AVK between 0.1 and 0.3.450

To showcase FCI’s spatial resolution, we compare a TCWV field from Sentinel3-A OLCI/SLSTR with real preliminary

calibrated FCI from the 27th June 2023 in Fig. 8. Both are processed with the algorithm described above. The temporal

difference between the two fields is approximately 5 minutes. The scene is situated in northern Mali in West Africa. The

differences in viewing geometry are visible between FCI and OLCI. In the true colour RGB of FCI, longer cloud shadows

are visible, which are much smaller in the S3A-OLCI image, or their positions are shifted. The TCWV fields reveal a moist455

air mass in the South-East, while a drier air mass is positioned in the North-West. Consistent with the comparison against the

ERA5 analysis, FCI TCWV is about 10% lower than OLCI TCWV. Hence, another colourmap-range is used in the FCI TCWV

image(8b).
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(a) FCI true colour composite. (b) Retrieved FCI TCWV field.

(c) OLCI true colour composite. (d) Retrieved OLCI TCWV field.

Figure 8. Comparison of FCI TCWV and OLCI/SLSTR “FCI-like” TCWV for a close-up on 27 June 2023 over Northern Mali.

FCI is capable of reproducing the amount of detail found in the OLCI TCWV field: e.g., a dry line in the western half of the

image (i.e., strong gradients in moisture between the air masses) or gravity waves in the southern half or north-eastern corner460

(local, wave-like peaks and troughs in TCWV). The positioning of features appears to be coherent between the two sensors.
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Furthermore, we can see slight indications of FCI’s scan-lines in Fig. 8b. These are noisy pixels that follow lines that run from

East to West. The effect is more pronounced over water surfaces. In both figures, the effect of unidentified cloud pixels on the

TCWV is visible as decreased TCWV at cloud edges. In contrast, there are some thin dust layers visible in the North-Western

and Central-Eastern parts of the RGBs, which do not show in either of the TCWV products.465

(a) (b) (c)

Figure 9. Time sequence of FCI TCWV shown in Fig. 8b with 1 hour between each frame.

To further highlight the potential of FCI TCWV observations for convective nowcasting purposes, we showcase the TCWV

field from Fig. 8b again in 9 with the TCWV from two time steps later in Fig. 9a to 9c. The sequence demonstrates how one

can track the propagation of the gravity waves and the north-western movement of the moist air mass along the moisture-front.

The formation of what appear to be small updrafts or thermals is indicated by stark increases in TCWV from Fig. 9b to 9c.

This results in a pattern similar to convective rolls shown in Carbajal Henken et al. (2015). In the lower centre, first clouds are470

forming at around 11:40 UTC.

5 Discussion and Outlook

In the multiannual validation against the reference ARM SGP TCWV dataset (2016 – 2023), the OLCI 2-band TCWV shows

a good performance with a bias of 1.848 kg/m2, RMSD of 2.235 kg/m2, cRMSD of 1.256 kg/m2, and high r of 0.99. The

wet bias may be corrected following the procedure described in Preusker et al. (2021). In a comparison against their COWa475

algorithm applied to the same matchup dataset, they have a similar R2 of 0.99 but a lower RMSD of 1.3 kg/m2, which may well

be attributed to both the use of an additional absorption band at 940 nm and initial τpTOA-correction. Such a good performance

against the reference TCWV is promising. However, for this comparison, τpTOA has been estimated from two adjacent window

bands (i.e., the same way COWa estimates τpTOA).

For FCI, the accuracy of τpTOA and subsequently TCWV mostly hinges on the PCR’s ability to estimate the spectral slope.480

As shown in Figs. 3a and 3b, the approximation shows a good performance against the next-best estimate, i.e., extrapolation
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from two adjacent window bands using OLCI measurements, and exceeds the performance of just using the window band at

0.865 µm. Approximated nLTOA
∗ may deviate from the reference nLTOA

∗ on average by 1.5 % over land and 3.5 % over

water. In rare cases the PCR failed. We assume that there may be several processes at play that require deeper investigations.

Mis-characterisations of the surface reflectance translate to an additional uncertainty of about 1 to 2 kg/m2. Nevertheless, these485

initial results demonstrate that our approach is effective and advancing well towards an operational TCWV retrieval framework

for FCI.

The global comparison against the reference networks returned slightly lower performance indicators with r between 0.98

to 0.99, bias between 0.33 to 2.84 kg/m2, MAPD between 6.64 and 18.36 %, RMSD between 1.49 to 3.6 kg/m2, and cRMSD

between 1.46 to 2.21 kg/m2. The highest RMSD and bias are found in the comparison against AERONET, which is most likely490

due to AERONET’s dry bias (Pérez-Ramírez et al., 2014). The OLCI/SLSTR matchup analysis shows a decreased performance

against the multi-year matchup of only OLCI over ARM SGP. This is due to a reduced number of matchups over a shorter time

span and a higher geographic spread. A more rigorous validation would require a longer time period. However, the aim of this

assessment is to show that the PCR does not drastically reduce the algorithm’s performance. The actual performance of FCI

TCWV may deviate from these verification results since the spectral characteristics and calibration are different from OLCI.495

Future validation studies have to be conducted for further characterization, which may also lead to a more elaborate correction

for initial τpTOA estimation.

To assess the functionality of the current algorithm prototype, we applied it to the FCI Level 1c test dataset provided

by EUMETSAT. Conceptually, everything is in working order. The running times are close to or below the 5-minute mark

(FCI’s nominal temporal resolution on a 2024 computer) and allow for a near-real-time and operational application of our500

TCWV algorithm. Full disk comparisons show that the algorithm produces a sensible TCWV field. The relative difference

between collocated ECMWF ERA5 reanalysis TCWV at 12 UTC and FCI TCWV product reveals a systematic dry bias of

approximately 8%. We suspect three probable reasons for this systematic dry bias: 1) the bias might be related to the preliminary

calibration of the FCI data, 2) the PCR systematically over-estimates the surface reflectance at 0.914 µm and thus τ is too low

and 3) undetected deficits in our LUTs. If this systematic bias persists and no underlying reason can be found, we may mitigate505

it using the empirical correction method described in Preusker et al. (2021). Furthermore, there are large-scale patterns of

positive and negative deviations close to one another. Such patterns are to be expected in a comparison against model data and

indicate that the model struggles with accurately capturing the advection of air masses in both space and time. The observed

TCWV fields might be closer to the actual state.

FCI’s TCWV AVK of almost 1 indicates a high sensitivity to the measurement and only a small contribution of prior510

knowledge. This can be interpreted as the algorithm being independent of the NWP input. This is a key advantage of NIR

TCWV in contrast to other satellite-retrieved TCWV. The decreased TCWV AVK over water surfaces is caused by the much

lower water surface reflectance in the NIR. In cases in which the reflectance is close to 0, the retrieval is challenging. However,

the OE may still provide an update of the a priori TCWV field. Over sunglint, the AVKs above 0.4 indicate that the retrieval is

much more independent of the a priori and much more reliable.515
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Comparing OLCI and FCI TCWV up close, we can easily see that FCI TCWV matches the level of detail found in the

OLCI TCWV product. For scenes over Europe, FCI’s resolution will be slightly lower compared to OLCI’s reduced resolution.

Yet, FCI’s resolution will be significantly higher than SEVIRI’s. The stripes of enhanced noise that run across the FCI TCWV

image are caused by scan-lines of FCI. Similar scan-line artifacts are found in whisk-broom sensors such as MODIS or the

Visible Infrared Imaging Radiometer Suite (VIIRS), too. Over land this is barely noticeable. However, over dark water pixels520

it is pronounced. This may change in future Level 1c processing versions. The assessment exercises discussed above helped

us identify several limitations and challenges regarding TCWV retrievals from FCI measurements. The presence of clouds is

visible as pixels with considerably lower TCWV than their surrounding. A robust cloud mask is needed to filter out such pixels.

At a later stage, such retrieved pixels may be used for an “above cloud” water vapour product. Such a product may then be

used for the detection of WV entrainment into the stratosphere, e.g., in the presence of overshooting tops (Setvák et al., 2008;525

Dauhut et al., 2018; Khordakova et al., 2022).

While the PCR yields reliable nLTOA
∗ over the vast majority of surface types, in some cases it deviates far from the

reference. This may be addressed by extending the training dataset the PCs are calculated from.

So far, we use a fixed aerosol type, height, and thickness. Under conditions violating these assumptions (e.g., a strong dust

outbreak), retrieval quality would be decreased. We are considering simulating for additional aerosol mixtures and aerosol530

layer heights. Furthermore, using AOT forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) could improve

the retrieval. Another issue is that over water surfaces, the inversion framework is under-determined: a measurement vector

with only two elements (nLTOA(0.865 µm), τpTOA(0.914 µm)) is opposed by a state vector with three elements (TCWV, AOT,

WSP). Outside sunglint, the influence of the wind speed is marginal, and AOT mainly increases the TOA signal (and thus the

forward model is not sensitive to changes of the wind speed), and inside sunglint the influence of a thin layer of aerosol is535

reduced. Because of that, the information content is relatively balanced, and the impact is slightly reduced. Nevertheless, over

water surfaces, adding a third channel to the measurement vector (e.g., 0.51 or 1.61 µm) may also improve the performance.

With FCI, we are able to monitor the temporal evolution of these small-scale patterns at a resolution similar to OLCI’s. This

allows for the tracking of large- and small-scale dynamics before, during, and after convective development. Such features

and their changes (e.g., convergence zones, convective rolls, deepening boundary layers) contain potential information for540

nowcasting purposes. Furthermore, the patterns observed in FCI TCWV may also be tracked and used to retrieve lower level

atmospheric motion vectors (AMV).

Our framework may be adapted to provide accurate TCWV retrievals for other sensors featuring at least two channels in

and around the ρστ band. The National Oceanic and Atmospheric Administration (NOAA) is commissioning GeoXO Imager

(GXI), the successor to the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite - 3rd545

generation (GOES), which will include a WV absorption band in the ρστ region (Lindsey et al., 2024). Another future instru-

ment soon to be launched into a polar orbit is METImage, flying onboard EUMETSAT’s Meteorological Operational satellite

second generation A (METOP-SG-A) (Phillips et al., 2016). METImage will enable NIR TCWV with a spatial resolution

of 500 m and global coverage every day. METImage will also provide O2A band measurements (around 0.76 µm), which

can be used to reduce ambiguity due to shielding of cirrus or elevated aerosol layers. A NIR TCWV product from METImage550
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may then be used in advanced synergies with sounders such as Infrared Atmospheric Sounder Interferometer - New Generation

(IASI-NG), which will also be flying on METOP-SG-A. IASI-NG is the successor of IASI, which provides all-sky temperature

and humidity profiles with a slightly lower accuracy in the presence of clouds (Müller, 2017).

Furthermore, the Infrared Sounder (IRS) will be operating on MTG-S1, MTG-I1’s sister satellite, and will cover the same

field of view as FCI. This will enable a synergy between TCWV from FCI and the IRS humidity profile product. NIR TCWV555

could very well complement profile soundings for both IASI-NG and IRS: one shortcoming of these retrievals is their low or

missing sensitivity to the lowest layers of the troposphere (below 1-2 km). Furthermore, their spatial resolution is in the order

of tens of km, often insufficient for assessing small-scale weather patterns. A high-spatial resolution NIR TCWV product,

sensitive to the whole column of air, could complement such sounding products perfectly, albeit in the absence of clouds. A

synergy could consist in an updated layer product or a product that provides the moisture content of the lowest levels of the560

troposphere. Such synergy products could provide crucial insights into meteorological conditions, such as the atmospheric

instability, and improve the potential for the prediction of severe weather.

6 Conclusions

Leveraging our expertise in total column water vapour (TCWV) retrievals from Near-Infrared (NIR) measurements for various

satellite-based passive imagers, we developed a new retrieval framework for the new Meteosat Third Generation Flexible Com-565

bined Imager (MTG-FCI) measurements. The use of OLCI/SLSTR synergy “FCI-like” data proved valuable for establishing

and validating an adapted TCWV retrieval framework for MTG-FCI. It offers a realistic and reliable test bed that supports

algorithm development ahead of the availability of a sufficiently long and calibrated FCI data record. Key challenges, such as

the surface reflectance treatment in the WV absorption band, can be addressed in preparation for the large-scale application of

the retrieval to FCI data.570

The evaluation exercises highlight the robustness of the retrieval framework and have helped identifying specific challenges

and limitations related to the MTG-FCI instrument, which can be further addressed with fully calibrated FCI data in the near

future.

As the successor to MSG-SEVIRI, MTG-FCI boasts extended observational and spectral capabilities that promise significant

advancements in weather and climate research and applications, particularly in the monitoring and study of atmospheric TCWV575

amounts and dynamics. Notably, FCI is the first geostationary satellite instrument with measurements in the NIR ρστ WV

absorption band. While SEVIRI TIR measurements allowed to derive information on WV amounts mainly in higher parts of

the troposphere, the FCI NIR WV absorption measurements exhibit the greatest sensitivity to WV amounts near the surface.

This enables accurate and high temporal resolution observations of changes in moisture content in the lower troposphere.

Consequently, these novel and comprehensive TCWV observations will enhance the (real-time) monitoring of atmospheric580

moisture distributions in the boundary layer, their evolution, and associated meteorological phenomena across regional to

continental scales, with the potential to significantly advance nowcasting techniques.
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Variable Definition/ Explanation

A averaging kernel matrix

a τpTOA correction offset

b τpTOA correction slope

ALB surface albedo, i.e., surface irradiance reflectance

AMF air mass factor

AVK averaging kernel

cwin regression coefficient vector

ϵ forward model uncertainty

ϵintp nLTOA
∗ approximation uncertainty

F forward model

F0 spectral solar irradiance

G gain matrix

K jacobian matrix

λ wavelength

LTOA top-of-atmosphere radiance

nLTOA normalised top-of-atmosphere radiance

nLTOA
∗ normalised top-of-atmosphere radiance corrected for WV attenuation

nLTOA
∗ext nLTOA

∗estimated from extrapolation of window bands

nLTOA
∗PCR nLTOA

∗estimated from principle component regression

p parameter vector

r Pearson correlation coefficient

r spectral slope

Rtarget reflectance vector of target

Rwin reflectance vector of window channels (source)

ρ irradiance ratio reflectance

ρTOA irradiance ratio reflectance at top-of-atmosphere

Ŝ retrieval error covariance matrix

Sa a priori state error covariance matrix

Sϵ measurement error covariances matrix

SATA satellite azimuth angle

SATZ satellite zenith angle

SNR signal to noise ratio

SUNA sun azimuth angle

SUNZ sun zenith angle

τpTOA pseudo optical thickness

Utarget principle components folded to target band spectral response functions

Uwin principle components folded to window band spectral response functions

RAZI relative azimuth angle

RAZI relative azimuth angle

x state vector

x̂ true state vector

xa a priori state vector

x state vector

y measurement vector

Table A1. List of variables and their respective explanations.
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