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Abstract. A retrieval of total column water vapour (TCWV) from the new daytime, clear-sky near-infrared measurements of the

Flexible Combined Imager (FCI) on-board the geostationary satellite Meteosat Third Generation Imager (MTG-I, Meteosat-12)

is presented. The retrieval algorithm is based on the differential absorption technique, relating TCWV amounts to the radiance

ratio of a non-absorbing band at 0.865 µm and a nearby WV absorbing band at 0.914 µm. The sensitivity of the band ratio to

WV amount increases towards the surface, which means the whole atmospheric column down to the boundary layer moisture5

variability can be observed well.

The retrieval framework is based on an Optimal Estimation (OE) method providing pixel-based uncertainty estimates. It

builds on well-established algorithms successfully applied to other passive imagers with similar spectral band settings. Trans-

ferring knowledge gained in their development onto FCI required some new approaches. The absence of additional, adjacent

window bands to estimate the surface reflectance within FCI’s absorbing channel are mitigated using a Principal Component10

Regression (PCR) from the bands at 0.51, 0.64, 0.865, 1.61, and 2.25 µm.

We utilize synergistic observations from OLCI and SLSTR to generate "FCI-like" measurements. OLCI bands were com-

plemented with SLSTR observations, enabling evaluation of the retrieval’s robustness and global performance of the PCR.

Furthermore, this enables algorithm testing under realistic conditions using well-characterized data, at a time when a long-

term, fully calibrated FCI Level 1c dataset was not yet available. We build a forward model for two FCI equivalent NIR bands15

(0.865 and 0.9 µm) on the Sentinel-3 Ocean and Land Colour Instrument (OLCI). A long-term validation of OLCI against a

single Atmospheric Radiation Measurement (ARM) reference site without the PCR resulted in a bias of 1.85 kg/m2, cRMSD

of 1.26 kg/m2 and R2 of 0.995.

A first verification of the OLCI/SLSTR "FCI-like" TCWV against well-established ground-based TCWV products concludes

with a wet bias between 0.33 – 2.84 kg/m2, a cRMSD between 1.46 – 2.21 kg/m2 and R2 between 0.98 – 0.99. In this set of20

comparisons, only land pixels were considered. Furthermore, a dataset of FCI Level 1c observations with a preliminary cali-

bration was processed. The TCWV processed for these FCI measurements aligns well with reanalysis TCWV and collocated
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OLCI/SLSTR TCWV but show a dry bias. A more rigorous validation and assessment will be done once a longer record of

FCI data is available.

TCWV observations derived from geostationary satellite measurements enhance monitoring of WV distributions and asso-25

ciated meteorological phenomena from synoptic scales down to local scales. Such observations are of special interest for the

advancement of nowcasting techniques and Numerical Weather Prediction (NWP) accuracy as well as process-studies.

1 Introduction

Water vapour (WV) is the fundamental ingredient in the formation of clouds and precipitation. Spatio-temporal WV distri-

butions and fluxes impact the intensity and duration of precipitation. The presence of sufficient low-level moisture in the30

atmospheric boundary layer facilitates the formation of convective development through enhancement of atmospheric instabil-

ity and also contributes to storm severity by acting as a source of energy, once a storm has initiated (e.g., Johns and Doswell,

1992; Doswell et al., 1996; Fabry, 2006; Púčik et al., 2015; Peters et al., 2017). On a global, climatological scale, WV is a

major contributor to global energy fluxes and, due to its abundance and absorption over a wide range of the solar and terrestrial

spectrum, acts as the strongest greenhouse gas (e.g. Trenberth et al., 2003; Schmidt et al., 2010). Within a changing climate,35

a warmer atmosphere will contain more WV which may form a positive feedback loop and further enhance global warming.

Moreover, a moister atmosphere is predicted to produce more severe weather (e.g., Allen and Ingram, 2002; Neelin et al., 2022;

Chen and Dai, 2023). Apart from that, WV is considered an inconvenient atmospheric component for several remote sensing

applications for which precise information on WV amounts in the atmosphere are needed for atmospheric correction methods

(e.g. Gao et al., 2009; Wiegner and Gasteiger, 2015; Valdés et al., 2021).40

Observations of total column water vapour (TCWV) from satellite-based passive imagers operating in the visible (VIS),

near-infrared (NIR) and thermal infrared (TIR) spectral range play a key role in monitoring its distribution at regional to global

scales. WV retrievals using TIR measurements have a long heritage and are widely used, particularly from geostationary

satellite platforms. On the one hand, a split-window technique using weakly absorbing WV measurements can be employed to

retrieve TCWV or boundary layer WV with relatively high uncertainties (e.g., Kleespies and McMillin, 1990; Casadio et al.,45

2016; Hu et al., 2019; Dostalek et al., 2021; El Kassar et al., 2021). Lindsey et al. (2014) and Lindsey et al. (2018) showed

that the split-window difference by itself may already provide valuable insight on the WV content in the boundary layer or

lowest layers of the troposphere. On the other hand, measurements from strongly absorbing WV bands serve to retrieve WV

amounts limited to upper tropospheric levels and/or layered WV products (e.g., Koenig and De Coning, 2009; Martinez et al.,

2022). However, due to the absorption and re-emission of radiation by WV in the IR, such approaches rely on knowledge of the50

atmospheric temperature profile in addition to the atmospheric WV profile. Using observations in the VIS/NIR largely avoids

these temperature-related complications.

The use of the so-called ρστ WV absorption region in the NIR (0.9 to 1.0 µm) is not new. This designation stems from

first observations of atmospheric absorption of solar radiation in the 19th century (Langley, 1902). There, light is more likely

to be absorbed by WV molecules compared to spectral regions outside these absorption features (window regions). These55
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NIR measurements exhibit the greatest sensitivity to WV amounts near the surface. Consequently, this allows for the retrieval

of accurate clear-sky TCWV fields as well as providing information on changes of WV amounts in the lower troposphere.

For several decades, the ρστ region has been researched using radiative transfer models and exploited in TCWV retrieval

schemes (e.g., Fischer, 1988; Gao and J., 1992; Bennartz and Fischer, 2001; Albert et al., 2005; Lindstrot et al., 2012; Diedrich

et al., 2015; Preusker et al., 2021). The focus first lay on ground-based radiometers and soon shifted to airborne and space-60

borne imagers. The first satellites that carried instruments with dedicated NIR WV bands were almost exclusively on satellite

platforms with sun-synchronous, polar orbits and could deliver global daily coverage at a km to hm resolution on a daily basis.

Even at a km resolution, NIR TCWV can resolve convective phenomena such as horizontal convective rolls or gravity waves

(Carbajal Henken et al., 2015; Lyapustin et al., 2014). Current NIR TCWV products, only available on polar orbits, provide

accurate, highly-resolved TCWV but lack temporal resolution and may introduce observation biases in climatologies (Diedrich65

et al., 2016; Carbajal Henken et al., 2020).

The new Meteosat Third Generation Imager (MTG-I, hereinafter referred to as MTG) carries the Flexible Combined Imager

(FCI) (Holmlund et al., 2021; Martin et al., 2021). The European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT) commissions this third generation of European geostationary meteorological satellites for monitoring weather

and climate. FCI is the successor to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Schmetz et al., 2002)70

and will enhance the temporal and spatial resolution of geostationary remote sensing observations. Also, an expanded set of

spectral channels compared to SEVIRI allows for more comprehensive observations of atmospheric and surface properties.

FCI includes a new NIR WV absorption band not available on any other instrument onboard a geostationary platform to date.

This band is located within the ρστ WV absorption region at 0.914 µm.

The introduction of MTG and its new FCI NIR band will expand our ability to quantify and characterize local to global-75

scale WV distributions and monitor their changes. This has important implications for both weather and climate research and

applications. Particularly in the domain of nowcasting, FCI’s fine-scale observation of TCWV could substantially advance the

field (e.g., Benevides et al., 2015; Van Baelen et al., 2011; Dostalek et al., 2021). The Satellite Application Facility on Support

to Nowcasting and Very Short Range Forecasting (NWCSAF) is an organisation funded by EUMETSAT and aims to support

meteorological services with satellite data critical for the prediction of high-impact weather (e.g., storms, fog). They com-80

mission, develop and maintain software which utilises many weather satellite instruments, including MTG-FCI/Meteosat-12

(García-Pereda et al., 2019). A NIR TCWV product in the portfolio of NWCSAF’s software will greatly benefit the nowcasting

and meteorological community at large.

In this work, we present our TCWV retrieval framework utilizing the novel NIR measurements obtained from MTG-FCI.

Our approach builds on established TCWV retrieval frameworks successfully applied to other passive imagers sharing similar85

spectral band configurations. The differential absorption technique, using the ratio of measurements in the ρστ -absorption

band and nearby window bands, was previously employed in measurements of the Medium Resolution Imaging Spectrometer

(MERIS) onboard Envisat (Bennartz and Fischer, 2001; Lindstrot et al., 2012). With the launch of the Copernicus Sentinel-3A

and Sentinel-3B satellites (Donlon et al., 2012) and onboard Ocean and Land Colour Imager (OLCI), the retrieval framework

has been extended to fully exploit OLCI’s extended spectral capabilities by using multiple bands sensitive to WV absorption90
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(Preusker et al., 2021). Operational and calibrated FCI Level 1c data only became available at the end of 2024. Due to the

unique technical characteristics of FCI as well as the limited availability of a well-calibrated FCI data record at the time this

work was conducted, new strategies are imperative for our methodology and its assessment. One key element is the surface

reflectance approximation method for the absorption band, which can be assessed with the use of OLCI-SLSTR "FCI-like"

data. In particular, we applied the same forward model and inversion principles to OLCI band 17 (0.865 µm) and band 19 (0.995

µm) as were used for FCI. The use of the OLCI/SLSTR synergy provides us with a formidable opportunity to establish an

adapted retrieval framework and enables a robust testbed to explore algorithm performance accordingly. Additionally, OLCI

Level 1b has well-known radiometric characterization and worldwide coverage, allowing for a practical and reliable basis to

assess and refine the retrieval framework under a wide range of realistic atmospheric and surface conditions.

The structure of this paper is as follows. Section 2 introduces the MTG-FCI data, OLCI-SLSTR data, auxiliary data, and100

the TCWV reference datasets, along with the associated matchup method. Section 3 details the MTG-FCI TCWV retrieval

framework, covering the physical background, forward model, inversion method, albedo approximation method integral to the

algorithm, and the finalized retrieval framework. Section 4 presents the results of the matchup assessments conducted on both

local and global scales, along with initial analyses using a preliminary calibrated MTG-FCI dataset and a representative case

study. Section 5 provides a discussion and outlook, and Sect. 6 concludes the paper.105

2 Data

2.1 MTG-FCI Data

MTG is an operational EUMETSAT satellite mission which currently consists of one satellite in geosynchronous orbit at 0◦

longitude. It carries the Lightning Imager (LI) and the FCI which is a multispectral instrument that scans with a fast east-west

and a slow north-south motion. It has 16 bands which range from the VIS (0.44 µm) to the TIR (13.3 µm). The full-disk110

scan service covers approximately one-fourth of the Earth’s surface within 10 minutes, covering Europe, Africa, and parts of

the Atlantic and Indian oceans (Durand et al., 2015; Holmlund et al., 2021). In the future, a second MTG-FCI will provide

a rapid scan service, which covers the northern third of the full-disk within 2.5 minutes, covering parts of Europe and the

Mediterranean. The spatial resolution at sub-satellite point (SSP) of one VIS band at 0.64 µm and one SWIR band at 2.25 µm

is 0.5 km. The spatial resolution of the other VIS to SWIR bands and the TIR bands at 3.8 µm and 10.5 µm is 1.0 km at SSP.115

The remaining TIR bands have an SSP resolution of 2.0 km. Due to the curvature of the Earth, the actual spatial resolution

outside the SSP is slightly lower. E.g., the 1 km SSP resolution (VIS, NIR and 10.5 µm) in Northern Europe is closer to 2.0 to

3.0 km.

MTG1 was launched successfully into orbit on 13th of December 2022, and currently the mission is still in the commis-

sioning phase. Because of that, we use the latest release of preliminary MTG-FCI Level 1c data provided by EUMETSAT in120

February 2024 (EUMETSAT, 2024b). They consist of one full-disk scene from 13th January 2024 between 11:50 and 12:00

UTC. They were downloaded from EUMETSAT’s sftp server at https://user.eumetsat.int/news-events/news/new-mtg-fci-t

est-dataset-mtgtd-505 and more details on this dataset can be found in EUMETSAT (2024a). At the time of publication, no
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cloud mask is readily available for the FCI test data. Therefore, we built a simple cloud mask algorithm. The cloud masking

algorithm is largely based on the work presented in Hünerbein et al. (2023). In this publication,n the authors adapted and125

extended cloud masking and typing algorithms developed for NASA’s Aqua/Terra Moderate Imaging Spectrometer (MODIS)

(Ackerman et al., 2002) to ESA’s Cloud Aerosol and Radiation Explorer Mission (EarthCARE) Multi Spectral Imager (MSI).

We adapted a subset of their tests to the FCI bands and estimated new coefficients and thresholds. Eventually, the cloud mask

consists of two tests: threshold tests for reflectances, a reflectance ratio or the Global Environmental Monitoring Index (GEMI)

Pinty and Verstraete (1992).130

2.2 S3-OLCI/SLSTR Data

Sentinel-3 is an operational COPERNICUS satellite mission of the European Commission, managed by EUMETSAT. It con-

sists of two sister satellites (Sentinel-3A: S3A; Sentinel-3B: S3B) which orbit the Earth at an altitude of 814.5 km, an in-

clination of 98.65 ◦ and a local equator crossing time of 10:00 AM. S3B is phase-shifted to S3A by 140 ◦. This way, the

imaging instruments onboard the two satellites achieve global coverage almost daily. The payloads consist of the Synthetic135

Aperture Radar Altimeter (SRAL), supported by the Microwave Radiometer (MWR), the Sea and Land Surface Temperature

Radiometer (SLSTR), and OLCI.

OLCI is a push-broom multispectral imaging spectrometer that consists of five cameras. It measures at 21 bands ranging

from the VIS (0.4 µm) to the NIR (1.02 µm). The swath-width of OLCI is 1215 km at a full SSP resolution of 0.3 km per pixel,

which is referred to as "Full Resolution". In the "Reduced Resolution", 4 by 4 pixels are aggregated into 1.2 km pixels. This is140

the resolution used in this study. A characteristic of OLCI is an across-track spectral shift due to the five discrete cameras. This

can be corrected for by taking into account the actual central wavelength at each of the across-track pixels (Preusker et al., in

prep.).

SLSTR is a conical scanning multispectral, multi-angle radiometer. It measures at eight discrete bands ranging from the mid

VIS (0.55 µm) to the TIR (12.02 µm). The nadir-viewing swath width is 1400 km, and the oblique/rear-viewing swath width is145

740 km. In the VIS to SWIR bands, SLSTR has a spatial resolution of 0.5 km at SSP, in the TIR (3 µm to 12.02 µm), the spatial

resolution is 1 km at SSP. In the current two-satellite constellation, nadir-view global coverage is achieved within one day.

In order to mimic the capabilities of FCI at a similar spatial resolution and with similar spectral characteristics, we collocated

SLSTR observations to the OLCI grid using nearest-neighbour sampling. The used SLSTR bands are S5 (1.612 µm, 0.5 km)

and S6 (2.25 µm, 0.5 km). They have been mapped to OLCI’s reduced resolution at 1.2 km. Using Sentinel-3A and B, a150

representative set of swaths was created for every month of the year 2021 which amounts to a total of 1800 swaths across 80

days. The Identification of Pixel features (IdePIX) cloud detection algorithm was used to create cloud masks (Iannone et al.,

2017; Wevers et al., 2021; Skakun et al., 2022).

2.3 ECMWF ERA5 Forecast and Reanalysis Data

Our TCWV retrieval is based on an inversion technique (Sec. 3) which uses a first guess, as well as a priori and ancillary155

parameter data. These may come from a climatology or could be set to a global climatological value. However, retrieval
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performance can be greatly increased and sped up if the a priori data are already slightly closer to the solution. This is why

we chose to provide the algorithm with Numerical Weather Prediction (NWP) forecast fields. These were acquired from the

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 forecasts initialised at 6 UTC and 18 UTC of each

day (Hersbach et al., 2020). The ERA5 forecasts are a by-product of the reanalysis and more readily available for past time steps160

than the operational forecasts. They are different from ECMWF’s Integrated Forecasting System (IFS) operational forecasts

since they use more assimilated data in the initialisation time step. The forecasts are at a resolution of 0.25◦ and in 3 h steps.

The data fields are interpolated to the observation time and FCI coordinates.

The variables needed are: horizontal wind speed (WSP) calculated from u- and v-component of the horizontal wind speed

at 10 m above ground (U10, V10), TCWV, surface air temperature at 2 m above ground (T2M), and surface air pressure165

(SP). The data were accessed via the Copernicus Climate Change (C3S) data store (Copernicus Climate Change Service and

Climate Data Store, 2023). For testing and algorithm development, we used the ERA5 forecasts. In the later processing for the

NWCSAF GEO software package, the operational ECMWF IFS forecasts at a resolution of 0.5◦ and 1 h steps will be used.

2.4 Aerosol Optical Thickness Climatology

One key parameter for the retrieval of TCWV over water is the aerosol optical thickness (AOT). As a first guess for AOT, we170

use a climatology at a 1◦ spatial resolution. It was built from monthly means of the Oxford-RAL Aerosol and Cloud (ORAC,

Thomas et al. (2009)) aerosol optical properties data retrieved with Sentinel-3 Sea and Land Surface Temperature Radiometer

(SLSTR) and Environmental Satellite (ENVISAT) Advanced Along Track Scanning Radiometer (AATSR) between 2002 and

2022. These data were also accessed via the C3S data store (Copernicus Climate Change Service and Climate Data Store,

2019).175

2.5 Reference Datasets, Match-up Analysis and Performance Indicators

In order to verify the credibility of the retrieved TCWV we need reference data within the field of view of FCI. There are four

established sources of TCWV estimates: radiosondes, ground-based GNSS meteorology, ground-based MWR, and ground-

based direct sun-photometry. TCWV from NWP Reanalyses may also be used, but their coarse resolution cannot resolve the

fine variabilities found in the WV field at the satellite-pixel scale. Reanalyses may be used to assess the stability of the dataset180

later on. Unfortunately, until the completion of this work, no long-term record of FCI data was available in the final calibration.

Because of this, we processed the spectrally representative FCI data discussed above and compared these against TCWV from

the ERA5 reanalysis. The performance of our algorithm as well as the accuracy of our calculations, require testing on real data.

Hence, we processed a 7-year matchup database of OLCI Level 1b observations and MWR TCWV from the Southern Great

Plains site of the Atmospheric Radiation Measurement network (ARM) (Sisterson et al. (2016). Additionally, the set of 1800185

OLCI-SLSTR swaths was processed with our algorithm (including the surface reflectance approximation from Sec. 3.4). These

were compared against reference TCWV data retrieved at sites of 1) the Aerosol Robotic Network (AERONET) (Holben et al.

(1998)), 2) the ARM network (Turner et al. (2007); Cadeddu et al. (2013)) and 3) the SUOMINET network (Ware et al., 2000).
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Prior to the analysis, OLCI swaths and ground-based network sites were collocated within 1 km and 30 minutes of a satellite

overpass. A square of 11 by 11 pixels around the collocated center pixel was taken into account. Then, these pixels were190

screened for convergence, a cost-function below 1, and cloud-screened with a buffer of 3 pixels around the cloud mask,

minimizing the effect of cloud and cloud shadow contamination. Match-up cases with less than 95% valid pixels were rejected,

the central 3 by 3 pixels had to be completely cloud-free.

Both in the assessment of assumptions and the assessment of TCWV quality, we use metrics. Their abbreviations are as

follows: N is the number of matchups, MADP is the mean absolute percentage deviation, RMSD is the root mean square195

deviation, cRMSD is the centered RMSD (i.e., the observation is corrected for the bias against the reference), R2 is the

Pearson correlation coefficient. ODR α and β are the orthogonal distance regression coefficients for the intersect and slope,

respectively, with equal weights for all data points.

3 Algorithm Description

3.1 Physical Background200

The ρστ WV absorption bands are due to the vibrational reaction in a gaseous water molecule hit by a photon within a specific

range of wavelengths, see Fig. 1. The absorption of WV in this spectral region is weak compared to the TIR at, e.g., 6.7 or 7.3

µm (traditionally referred to as WV bands). Because of that, the whole column’s content of atmospheric WV can be probed

using the ρστ . While the signal within the absorption band decreases with WV content, an adjacent window band will be

virtually unaffected by any change in WV amount along the line-of-sight (LOS). FCI features a "window" band with a nominal205

center wavelength of 0.865 µm and an "absorption" band with a nominal center wavelength of 0.914 µm. The spectral response

functions (SRF) are also shown in Fig. 1.

The overall strongest influence factor on the signal measured at the satellite sensor is the surface reflectance. This is also

referred to as the surface spectral albedo (ALB) and is the ratio of outgoing irradiance against incoming irradiance at one

specific wavelength. This depends on the type of surface covering (e.g., vegetation, sand, snow, etc.) and to some degree on210

the sun and viewing angles. For land cases the spectral albedo in the NIR is well above 0.3 and thus provides a strong signal

relative to the absorption by WV. Over the majority of water surfaces, however, the surface reflectance is often well below 0.03.

There is no direct way to measure this spectral albedo, hence an approximation is necessary.

A slightly less important effect comes from scattering aerosol layers below a certain level of aerosol optical thickness (AOT).

In that case, the effective LOS is shortened by the higher aerosol layer, and since the humidity content on average is much lower215

in the higher troposphere, the absorption is decreased substantially. Over bright surfaces, this effect is much less important than

over dark surfaces (Lindstrot et al., 2012). Since most natural surfaces over land are bright in the NIR, the shielding effect of

an average aerosol layer is small (Diedrich et al., 2015).

Under most circumstances, this assumption is not valid for water surfaces, though. Due to the low albedo, already slightly

scattering layers of aerosol may create the effect described above. To a certain degree, this effect can be corrected for by220

simulating an aerosol layer with a specific AOT in the algorithm. However, for this, the effective height of the aerosol layer
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Figure 1. Upper panel: The WV attenuation spectrum for an atmosphere with a low TCWV amount in orange (7.4 kg/m2) and high TCWV

amount in blue (57.6 kg/m2) with data obtained from the Correlated K-Distribution Model Intercomparison Project (CKDMIP, Hogan and

Matricardi (2020)). Center panel: The SRFs in the NIR part of the spectrum for the satellite instruments OLCI (blue) and SLSTR (orange).

Lower panel: the SRFs in the NIR for FCI (red).

needs to be estimated which is a challenge in and of itself. Another important aspect over water surfaces is sunglint, i.e.,

the reflectance’s dependency on wind-speed and viewing/solar geometry. High wind speeds create a rough surface with low

reflectance peaks spread out over a range of observation geometry angles. At lower wind speeds, a calm surface results in

a higher reflectance peak over a limited range of observation angles, similar to a mirror. In regions with strong sunglint, the225

relative influence of aerosol scattering is reduced.

Over both land and water surfaces, the atmospheric temperature profile and surface pressure play a lesser role due to

temperature- and pressure-dependent line broadening (Rothman et al., 1998). For more detail, see In contrast to TCWV re-

trievals in the TIR, the impact of the temperature profile is substantially lower but not negligible. The uncertainties due to a

mis-characterised temperature profile are approximately 0.6 kg/m2 and surface pressure at about 0.9 kg/m2 (Lindstrot et al.,230

2012).

3.2 Forward Model

The first step in our framework is to run radiative transfer simulations (RTS) for a set of complete and comprehensive at-

mospheric, surface and geometric conditions as described in the previous section and summarised in Table 1 and 2. For the

simulation of top-of-atmosphere (TOA) reflectances we used the Matrix Operator Model (MOMo, Fell and Fischer (2001);235
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Variable Name Increments and units

TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m2

ALB 0, 0.1, 0.3, 0.6, 1

T2M standard atmospheric profiles 1 to 5∗

SP 500, 650, 750, 850, 950, 1050 hPa

SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90◦

SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85◦

RAZI 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180◦

Table 1. Land Surface Setup for MOMo. ∗Standard profiles from

Anderson et al. (1986).

Variable name Range and units

TCWV 0.1, 1.0, 5.0, 10., 25., 50., 75.0 kg/m2

AOT 0.001, 0.1, 0.3, 0.5, 0.7, 1.2 at 700 to 1000 m height

WSP 2, 3, 5, 10, 15 m/s

T2M standard atmospheric profiles 1 to 5∗

SP 950, 1000, 1050 hPa

SUNZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90◦

SATZ 0, 10, 20, 30, 40, 50, 60, 70, 80, 85◦

RAZI 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180◦

Table 2. Water Surface Setup for MOMo. ∗Standard profiles from

Anderson et al. (1986).

Hollstein and Fischer (2012); Doppler et al. (2014)). These simulations are finally sorted into two land look-up-tables (LUT)

for land surfaces and water surfaces, respectively.

Over land surfaces, the surface albedo (ALB) is defined as isotropic. Over water surfaces, the surface reflectance is estimated

from the 10 m wind speed (WSP) using Cox and Munk (1954). Standard atmospheric profiles were taken and adapted from

Anderson et al. (1986) to provide the vertical distribution of temperature and humidity. The numbers refer to: 1. mid-latitude240

summer, 2. mid-latitude winter, 3. sub-Arctic summer, 4. sub-Arctic winter, 5. tropical. Based on the forecast surface air

temperature (T2M) and surface pressure (SP) the associated atmospheric profile group is chosen. The humidity profiles are

scaled with TCWV. All simulations are done for a set of satellite zenith angles (SATZ), sun zenith angles (SUNZ) and relative

azimuth (RAZI). RAZI is calculated from the satellite azimuth angle (SATA) and sun azimuth angle (SUNA) following:

RAZI = arccos(cos(SUNA) ∗ cos(SATA)+ sin(SUNA) ∗ sin(SATA)) (1)245

The aerosol mixtures and their optical properties have been calculated using the OPAC software package (Optical Properties

of Aerosols and Clouds, Hess et al. (1998)). Within their documentation you can find details on the used aerosol mixtures for

the two types chosen for the land and water surface simulations. Over land we used the aerosol mixture "continental average",

over ocean we used the aerosol mixture "maritime clean". In both cases, we simulated a homogenous aerosol layer between

700 to 1000 m height above ground with the specified AOT. An overview of the inputs and increments used for the simulations250

is shown in Tables 1 and 2.

The observations we simulate are the normalised radiance in the window channel (nLTOA(0.865µm)) and the pseudo

optical thickness in the absorption channel (τpTOA(0.914µm)). The normalised radiance is calculated as follows:

nLTOA(λ) =
LTOA(λ)

F0(λ)
(2)

where F0 is the spectral solar irradiance.255
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The pseudo optical thickness τpTOA is calculated as follows:

τpTOA(λ) =−a−
log( nLTOA(λ)

nLTOA
∗(λ) )√

AMF
· b (3)

where AMF is the air mass factor, nLTOA
∗ is the normalised radiance corrected for the influence of WV absorption, a and

b are the so-called correction coefficients which may correct for a systematic bias discovered in a validation against reference

TCWV observations.260

The AMF is calculated as follows:

AMF =
1

cos(SUNZ)
+

1

cos(SATZ)
(4)

Dividing through
√
AMF , the relationship between TCWV and τpTOA becomes more linear, reducing the number of

necessary iterations in the inversion later on. nLTOA
∗ needs to be approximated using other available information (e.g., a

climatology atlas, neighbouring window channels). Here, we use a more elaborate technique, described in Subsection 3.4.265

Preusker et al. (2021) have obtained the correction coefficients a and b by minimizing the differences between simulated

and measured OLCI observations using ARM-SGP.C1-MWR TCWV as an input (see Preusker et al. (2021) for details). For

OLCI’s version of this algorithm, a and b for band 19 (at 0.9 µm) were estimated to be -0.008 and 0.984, respectively, from

the results shown in Sec. 4.1. For FCI, other MWR TCWV references will be necessary. We intend to use reference sites such

as Meteorological Observatory Lindenberg – Richard Assmann Observatory (MOL–RAO) (Knist et al., 2022), the Cabauw270

Experimental Site for Atmospheric Research (CESAR) (Van Ulden and Wieringa, 1996) or ARM — Eastern North Atlantic

(ENA) (Mather and Voyles, 2013).

The set of simulations is sorted into a multi-dimensional look-up table (LUT). This LUT can then be used to simulate a

measurement (y) for a given set of states (x) and parameters (p) using an interpolator. This is referred to as the forward model

F . With this forward model, we can estimate a sensor’s observation for a given set of states as follows:275

y = F (x,p)+ ϵ (5)

ϵ denotes the measurement and forward model error. The state vector of land consists of TCWV and ALB(0.865 µm), over

water surfaces it consists of TCWV, WSP, and AOT. The parameter vector is composed of T2M, SP, SUNZ, SATZ and RAZI.

3.3 Inversion Using Optimal Estimation

Eq. 5 can be inverted to retrieve a state associated with an observation. There are various ways of performing this inversion.280

We chose to follow the optimal estimation (OE) approach for atmospheric inverse problems described by Rodgers (2000). In

essence, this inversion is based on the principle of minimizing the cost function J by iteratively changing the initial first guess

of a state or the state of the prior iteration step.

The iterative process is stopped if either the maximum number of allowed steps is reached or the following criterion is met

by the retrieved state xi+1:285

(xi −xi+1)
T Ŝ−1

i (xi −xi+1)≤ n · ϵ (6)
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where Ŝ is the retrieval error-covariance, n is the number of state variables. More details on the process of OE within a TCWV

retrieval framework can be found in Preusker et al. (2021) and El Kassar et al. (2021). One crucial advantage of OE is the

simultaneous retrieval of the associated uncertainty, the so-called retrieval error covariance matrix Ŝ.

Ŝ = (Sa
−1 +Ki

T ·Sϵ
−1 ·Ki)

−1 (7)290

Where, Sa is the a priori error covariance matrix associated with xa, Sϵ is the measurement error covariance matrix asso-

ciated with y and K is the Jacobian which contains the partial derivatives of each measurement to each state at step i (i.e.,

Ki = ∂F (xi)/∂xi). The covariances may either be set to values that correspond to the actual covariances within a given

variable. However, the covariances may also be used as tuning parameters in order to make the algorithm lean more towards

the measurement or more towards the prior knowledge Rodgers (2000). Over land surfaces we set the a priori uncertainty295

of TCWV very high (16 kg/m2) since the information content of the absorption band is high over bright surfaces. Over the

ocean, the TCWV a priori uncertainty was set much lower (2.5 kg/m2). The ALB a priori uncertainty is set to 0.5, the WSP a

priori uncertainty is set to 5 m/s, the AOT a priori uncertainty is set to 0.55. The corresponding covariances are the squared

uncertainties.

The error covariance of τpTOA is estimated using the signal-to-noise-ratio (SNR), an interpolation-error (ϵintp),from the300

uncertainty in estimating nLTOA
∗) and AMF:

Sϵ(τpTOA) =

(
1

SNR2
+

1

SNR2 + ϵintp

)
· 1

AMF
(8)

In 8, the two SNR-terms refer to the uncertainty of nLTOA(0.914) and nLTOA
∗(0.914). For nLTOA(0.865µm) the error

covariance is simply 1
SNR2 .

An additional metric this inversion technique provides is the so-called averaging kernel A:305

A=G ·K =
∂x̂

∂x
(9)

where G is the Gain matrix, which contains the partial derivative of the true state ∂x̂ in relation to the partial derivative of the

measurement ∂y. While the true state x̂ is unknown, the relative changes at each step quantify the sensitivity of x̂ towards

changes in y.

The entries along the diagonal of A correspond to the state variables and show a range of values between 0 and 1. At 0,310

the proportion of the retrieved state to x̂ is lowest; the measurement did not contribute to the retrieval. At 1, the proportion of

the retrieved state to the true state is highest. Everything in between indicates that some improvement of the prior information

about the state could be made using the measurement. The trace of AVK gives the degrees of freedom of the measurements.

3.4 Estimation of nLTOA
∗ with Principle Component Regression

For some surfaces (e.g., calm, clear water), the difference in spectral albedo between the window and absorption channel is315

small. Over most other surfaces, however, this is not the case. Simply using nLTOA(0.865µm) for nLTOA
∗ would yield an

unreliable estimate of the pseudo optical depth τpTOA. Thus, in order to calculate τpTOA we need an accurate estimate of
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the spectral slope between the window and the absorption channel. For satellite sensors such as MODIS or OLCI, the WV

absorption bands have at least two accompanying window bands (i.e. at 0.865, 0.885, 1.02 or 1.2 µm). FCI and other future

instruments do not have such additional window channels close by. Hence, another technique to estimate the spectral slope is320

needed.The principal component regression (PCR) facilitates the reconstruction of a continuous set of observations from few

discrete data points. This approach is already used with reasonable success in the estimation of BRDFs and reflectance spectra

within RTTOV (Vidot and Borbás, 2014). Their approach was used as a blueprint for our spectral slope estimation.

The ECOSTRESS spectral library version 1.0 provided by the United States of America Geological Service (USGS) is a

collection of spectral reflectances for individual materials and/or mixtures at a high spectral resolution (Meerdink et al., 2019).325

The library consists of spectra for a wide range of material groups: human-made, rock, soil, mineral, photosynthetic vegetation,

non-photosynthetic vegetation, water (which includes fresh-water, ice, and snow). A small selection of these spectra is depicted

in the upper part of Fig. 2, below, the SRFs of a selection of sensors are shown.

Figure 2. Upper panel: overview of a selection of surface reflectance spectra from Meerdink et al. (2019), the labels are representative and

not the actual spectra designations. Central panel: the SRFs of OLCI (blue) and SLSTR (orange). Lower panel: the SRFs of FCI (red).

Only spectra between 0.4 and 2.35 µm were taken into account and linearly interpolated to a spectral resolution of 0.001

µm. To avoid a sampling bias towards a specific group of spectra, we used similarly sized subsets of each category. From this330

database, the principal components (the Eigenvectors, PCs) are calculated and sorted by their associated Eigenvalue. Instead

of reconstructing spectrally high-resolved reflectances, we use the PCs to reconstruct the reflectance of two channels: at 0.865

µm and at 0.914 µm referred to as the target. Following the nomenclature of Vidot and Borbás (2014), Rtarget is the vector

of reflectance spectra folded to the target SRFs, cwin is the regression coefficient vector (also referred to as weights) from
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the window bands and U target is the matrix of the selected PCs of the high-resolution reflectance spectra, folded to the target335

SRFs.

Rtarget = cwinU target (10)

Using the Moore-Penrose Pseudo inverse, the regression coefficient cwin follows:

cwin =RwinU
T
win(UwinU

T
win)

−1 (11)

An optimal configuration of the number of PCs and bands was then found by comparing different band combinations with340

several numbers of PCs. For this, we reconstructed all available spectra (which were used in the PCR) at the target bands from

the folded spectra at the window bands. Using this approach, the optimal configuration for FCI was found with the use of five

window bands (i.e., negligible WV attenuation) in the VIS to SWIR (0.51, 0.64, 0.865, 1.61, 2.25 µm) and only the first four

PCs. We are able to reproduce the actual surface reflectance at the absorption and window band with a bias of 0.0045 and

0.0038 and a RMSD of 0.016 and 0.02, respectively. Folding the PCs to the SRFs of other sensors would make this matrix345

applicable to other instruments with similar bands, as shown in Fig. 2. In order to estimate the spectral slope in the PCR, FCI’s

normalised radiances at the window channels need to be transformed into irradiance reflectances:

ρTOA(λ) =
nLTOA(λ) ·π
cos(SUNZ)

(12)

From the reconstructed surface reflectances we calculate the slope r:

r =
ρ(0.914)

ρ(0.865)
(13)350

This ratio is then multiplied with the nLTOA(0.865µm) in order to yield a more accurate estimate of nLTOA
∗ at the absorption

band. The underlying assumption is that between 0.865 and 0.914 µm, atmospheric scattering and attenuation other than WV

are nearly identical. Thus ALB(0.914)
ALB(0.865) ≈

ρ0TOA(0.914)
ρ0TOA(0.865) holds true. Given a sufficiently bright surface and outside of the influence

of thick, scattering layers (e.g., clouds, aerosols) or outside of very slant viewing geometries (SATZ > 82◦), this is the case.

Over water surfaces, the influence of scattering processes in the atmosphere is much stronger. Hence, the uncertainties over355

water pixels are higher. Furthermore, the influence of water constituents (e.g., sediment, pigments) on the water reflectance

spectrum in the NIR has not been taken into consideration. The PCA training dataset almost exclusively consisted of terrestrial

reflectances and only a few fresh water reflectances.
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(a) Relative differences in nLTOA
∗ over land surfaces. (b) Relative differences in nLTOA

∗ over ocean surfaces.

Figure 3. Relative differences between two proposed nLTOA
∗ against the extrapolated nLTOA

∗ext as used in the COWa algorithm over

land and water surfaces, respectively. The associated metrics in the corresponding colours are found in the top corners. The solid black line

indicates 0% relative deviation.

Using the OLCI/SLSTR synergy allows us to assess the performance of the PCR to estimate τpTOA in comparison to directly

using the window (nLTOA(0.865 µm)) against a common reference. In the Copernicus Sentinel-3 OLCI Water Vapour product360

(COWa) algorithm, nLTOA
∗(0.9 µm) is extrapolated from the two adjacent window bands at 0.865 and 0.885 µm (Preusker

et al., 2021). For τpTOA(0.94µm), nLTOA
∗(0.94 µm) is interpolated from the two window bands 0.885 µm and 1.020µm.

This is substantially closer to the "real" surface reflectance than using the PCR. Hence, we compare nLTOA
∗PCA(0.9 µm)

against nLTOA
∗ext(0.9 µm) from the extrapolation using the two adjacent window channels. For this and other comparisons,

we calculated the relative difference in % by dividing the absolute difference (observation minus reference) by the reference365

multiplied by the factor 100. Fig. 3a and 3b reveal that the vast majority of points lie close to 0 % line for both land and water

pixels, albeit with a positive bias. In contrast, using the 0.865 µm normalised radiance by itself would yield much worse results.

I.e., a strong bi-modal distribution over land and a weaker bi-modal distribution with a wide spread over water (see Fig. 3a and

3b).

On average, there is a small positive bias in nLTOA
∗PCA(0.9 µm) both over land (+0.3%) and water (+0.8%). Over land370

pixels, the 98th percentile of the relative percentage deviation is 1.7% against the 2.6% when using nLTOA(0.865 µm) as

nLTOA
∗. Over water pixels, the 98th percentile of the relative percentage deviation lies at 2.2%, whereas this value is 4%

when using nLTOA(0.865m) as nLTOA
∗. On average, an increase of 1% in nLTOA

∗(0.9 µm) roughly translates to a 1.6%

increase (approx. 0.9 kg/m2) of TCWV estimate. A correction of this bias may be possible, but since such an analysis cannot

be carried out using FCI, we decided against it. Because the PCR performed better than the window channel by itself, we375
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decided to use nLTOA
∗PCR(0.9 µm) to calculate τpTOA over both land and water surfaces. Despite the slight deviations, the

PCR approach remains a good technique in order to reduce the impact of the spectral slope as much as possible.

This can also be demonstrated using a TCWV processed from a single day of OLCI/SLSTR observations. Here, we compared

the retrievals from using each nLTOA
∗ext, nLTOA

∗PCR, and nLTOA(0.865 µm) to calculate τpTOA as input to the algorithm.

In order to only see the influence on precision of TCWV, both datasets have been bias-corrected. The results are shown in Fig.380

4. Over land surfaces, the bi-modal distribution in using nLTOA(0.865 µm) persists with large spread and systematic over-

and under-estimations. Over the ocean, the difference between the two approaches is even more pronounced. Both MAPD

and RMSD indicate that using nLTOA
∗PCR instead of nLTOA(0.865 µm) for the calculation of τpTOA improves the retrieval

substantially.

(a) TCWV using nLTOA
∗PCRfrom the PCR against the extrapolated

nLTOA
∗(0.9 µm) over land pixels for a random subset of data in June

2021.

(b) Relative difference against nLTOA
∗(0.9 µm) from the PCR against

the extrapolated nLTOA
∗(0.9 µm) over water pixels for a random subset

of all data in June 2021.

Figure 4. Relative difference between TCWV retrieved with τpTOA calculated from extrapolated nLTOA
∗ext and nLTOA

∗PCR from the

PCR in blue and τpTOA calculated from nLTOA(0.865 µm) in orange. The TCWV has been bias-corrected against the reference (TCWV

using nLTOA
∗ext). The data are for a random subset of one day in June 2021. The associated metrics in the corresponding colours are found

in the top corners. The solid black line indicates 0% relative deviation.

In very rare cases (<0.1%), there are large deviations (>5%). Upon visual inspection, these extreme deviations mostly occur385

along rivers, coasts, in high elevations or at the poles. We assign these cases to 1) unidentified clouds, 2) coastal and inland

water pixels with mixed contributions by land and water, 3) water-constituents changing the NIR reflectance of the water

surface substantially, 4) adjacency effects, the brightening effect of dark pixels by diffuse radiation from neighbouring bright

pixels and 5) geolocation and unphysical spectral matches between OLCI and SLSTR. Yet, these rare deviations are still lower

than the extreme deviations found by using the window band at 0.865 µm itself.390
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3.5 Finalised Retrieval Framework

The retrieval procedure is as follows. FCI (or OLCI/SLSTR) radiometric and ancillary data are read and the necessary auxiliary

fields (ECMWF forecast, AOT) are interpolated to satellite resolution. In the next step, the cloud mask and the measurements

(e.g. reflectances, τpTOA, etc.) are calculated. A land and water processing mask is made. Pixels which are marked as cloudy

or where SUNZ is too slant (> 80◦) are filtered out.395

The inversion is run up until a pre-defined convergence criterion. Once this is reached, this state is passed out of the algorithm

and these pixels are marked as converged. If the maximum allowed number of iterations is exceeded (6 over land, 8 over ocean),

the algorithm stops, and these pixels are marked as not-converged. Furthermore, the estimate of the associated uncertainty in

the retrieved state is provided as part of the algorithm’s output.

After the processing has finished for all pixels, data are only marked as valid if their cost is below a threshold (currently <1)400

and if the convergence criterion has been met. With this, some cloudy pixels which have been missed by the cloud mask or

pixels containing a thick and/or elevated aerosol layer may be filtered out. This is due to the fact that NIR-TCWV retrievals in

the presence of elevated cloud or aerosol layers often lead to a substantial underestimation of TCWV, compared to the TCWV

found in the prior/first guess. This leads to the cost function becoming extremely high.

4 Results405

4.1 Sentinel3 OLCI and OLCI/SLSTR data

An initial test for our forward model as well as the inversion technique, was the application to an existing matchup database

used for the validation and quality control of COWa. OLCI measurements were spatio-temporally collocated with the ARM

network site Southern Great Plains (SGP) positioned in the Midwest of the United States of America (USA). The dataset

is limited to one location only and runs from 2016 to 2023. Since SLSTR measurements are missing from this dataset, the410

approximation of nLTOA
∗PCR in the absorption band using the PCA regression could not be done. Instead, we choose the

same approach as COWa: extrapolate nLTOA from band 17 (0.865 µm) and band 18 (0.885 µm) to band 19 (0.9 µm).
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Figure 5. Comparison of S3OLCI "FCI-like" TCWV (using nLTOA
∗ext) against ARM TCWV at the SGP site, coloured with the relative

frequency of occurrence. The solid black line presents the 1:1 line, the red line marks the ODR curve.

The analysis of the two-band OLCI TCWV yields a strong correlation with a Pearson correlation coefficient of 0.995. The

bias of 1.848 kg/m2, orthogonal distance regression (ODR) coefficients, i.e., offset (α) and slope (β) of 1.122 and 1.038,

respectively, indicate a slight wet bias. The cRMSD of 1.256 kg/m2, RMSD of 2.235 kg/m2 and MAPD of 13.433% still415

indicate slight spread.

In a next step, we processed the global dataset of the OLCI-SLSTR synergy. This has been done in order to assess the quality

of the two-band approach and the LUT-inversion in combination with the PCR approach to estimate τpTOA(0.9 µm).

This TCWV was compared against three different reference networks. For this matchup analysis, we followed the same

matchup procedure as before. The results of the comparisons are depicted in Fig. 6a to 6d. Fig. 6a shows the positions of420

the ground-based reference sites with at least one valid matchup according to their network. For the ARM network, only 3

stations in North America were available for 2021. With AERONET and SUOMINET, a wider range of different climate zones

and atmospheric conditions can be covered. The comparison of 714 valid matchups against 80 AERONET stations in Fig. 6b

reveals a wet bias of 2.84 kg/m2, a MAPD of 18.36%, a RMSD of 3.6 kg/m2, cRMSD of 2.21 kg/m2, R2 of 0.98, and ODR

offset and slope of 0.56 and 1.13, respectively. The analysis results for 45 valid matchups against ARM MWR observations425

can be seen in Fig. 6c and show a slight wet bias of 0.33 kg/m2, a MAPD of 6.64 %, a RMSD of 1.49 kg/m2, a cRMSD of
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1.46 kg/m2, R2 of 0.99, and ODR offset and slope of 0.33 and 1, respectively. In the comparison of 5439 matchups against

368 SUOMNINET stations, we find a wet bias of 1.38 kg/m2, a MAPD of 16.03 %, a RMSD of 2.22 kg/m2, a cRMSD of 1.75

kg/m2, a R2 of 0.98, and ODR offset and slope of 0.65 and 1.04, respectively. Most SUOMINET stations are positioned in

Central and North America.430

(a) Geographical distribution and their sum of all ref-

erence sites from which reference TCWV datasets are

used in the matchup analysis.

(b) Comparison of OLCI/SLSTR "FCI-like" TCWV

against AERONET TCWV, coloured with the relative

frequency of occurrence.

(c) Comparison of OLCI/SLSTR "FCI-like" TCWV

against ARM at SGP.C1 TCWV.

(d) Comparison of OLCI/SLSTR "FCI-like" TCWV

against SUOMINET TCWV, coloured with the relative

frequency of occurrence.

Figure 6. Matchup Analysis of OLCI/SLSTR "FCI-like" TCWV against globally distributed reference sites. This TCWV uses the PCR

approach to estimate τpTOA. The solid black lines present the 1:1 line, and the red lines mark the respective ODR curves.

4.2 MTG-FCI Data

In order to test our algorithm with regard to future nominal FCI data, we applied the first prototype on test data provided by

EUMETSAT. Since this dataset is still preliminary, this is neither a definitive nor quantitative assessment. Rather, it serves to
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check the processor’s performance with real data and check the product for any unexpected behaviour and/or defects. The data

were gathered on the 13th of January 2024 at 11:50 UTC. The full-disk true colour RGB and processed TCWV are depicted in435

Fig. 7a and 7b, respectively.

(a) FCI true colour composite. (b) Retrieved FCI TCWV field.

(c) Relative difference between FCI TCWV and ERA5 reanalysis TCWV. (d) AVK corresponding to the retrieved TCWV.

Figure 7. Fulldisk visualisation of TCWV and related products, processed from FCI data acquired on 13 January 2024. Dark grey marks

land surfaces, light grey marks water surfaces.

In parallel processing, the running time of one full-disk scene on a workstation with 64 GBs of RAM and a 12 core CPU

lies below 5 minutes. In single processing, the running time of a single chunk takes about 30 to 50 seconds. This includes

input/output operations, cloud-masking, PCR, and inversion.
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We can see lower TCWV values over mid to high latitudes and higher TCWV amounts all around the ITCZ in Fig. 7b. Arid440

regions such as the Sahara or the Arabian Peninsula are clearly visible. Europe also exhibits low TCWV. Synoptic features

such as bands of elevated moisture are visible. Despite the wide range of viewing zenith and solar zenith angles and their

implications for the line of sight, there appears to be no influence on the TCWV product. Over Central Africa, some clouds

that are visible in the RGB have not been detected by the cloud mask. Such areas are also distinguishable by their decreased

TCWV values compared to the surrounding areas. This underestimation due to clouds as well as the finer details can be seen in445

a close-up of the scene in Fig. 8b. Because of the 1 km resolution of FCI’s NIR channels, we can also detect meso- to mini-scale

features such as smaller pockets of high moisture over the ITCZ or the mixing between dry and moist air masses. Closer to the

shore, the TCWV field shows slight discontinuities between the water and land surface. The water-pixels close to the shoreline

often show values which deviate a few percent from the adjacent land-pixels; in most cases, there is an over-estimation.

At this stage, a rigorous quantitative validation of the TCWV product is not feasible, and our comparison against TCWV450

from the ERA5 reanalysis is not meant as such. As a preliminary way to check the TCWV field for consistency, we plotted the

relative difference between the FCI TCWV and a collocated ECMWF ERA5 reanalysis TCWV, shown in Fig. 7c. This gives

us a first impression if any artifacts or defects appear or if the algorithm works as intended. The image in Fig. 7c is dominated

by negative differences, which translates to a dry bias against the reanalysis TCWV. On average, FCI TCWV is approximately

10% drier than the reanalysis over land surfaces and 5% drier over water surfaces. Furthermore, there are areas with positive455

and negative differences close to one another, often resembling a line, e.g., over Northern Africa or over the South Atlantic. Fig.

7d depicts the AVK at each pixel. Over land, the value is close to 1 for most pixels since the forward model is very sensitive

towards changes in the measurements. Over water, this value lies between 0 and 0.7. In areas of sunglint, the AVK ranges

between 0.4 to 0.7. In areas with low water-surface reflectance, the AVK approaches 0. In areas with increased AMF and/or

TCWV, the AVK is slightly higher between 0.1 to 0.3.460

To showcase FCI’s spatial resolution, we compare a TCWV field from Sentinel3-A OLCI/SLSTR with real preliminary

calibrated FCI from the 27th June 2023 in Fig. 8. Both are processed with the algorithm described above. The temporal

difference between the two fields is approximately 5 minutes. The scene is situated in northern Mali in West Africa. The

differences in viewing geometry are visible between FCI and OLCI. In the true colour RGB of FCI, longer cloud shadows

are visible, which are much smaller in the S3A-OLCI image, or their positions are shifted. The TCWV fields reveal a moist465

air mass in the South-East, while a drier air mass is positioned in the North-West. Consistent with the comparison against the

ERA5 analysis, FCI TCWV is about 10% lower than OLCI TCWV. Hence, another colourmap-range is used in the FCI TCWV

image(8b).
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(a) FCI true colour composite. (b) Retrieved FCI TCWV field.

(c) OLCI true colour composite. (d) Retrieved OLCI TCWV field.

Figure 8. Comparison of FCI TCWV and OLCI/SLSTR "FCI-like" TCWV for a close-up on 27 June 2023 over Northern Mali.

FCI is capable of reproducing the amount of detail found in the OLCI TCWV field: e.g., a dry line in the western half of the

image (i.e., strong gradients in moisture between the air masses) or gravity waves in the southern half or north-eastern corner470

(local, wave-like peaks and trougths in TCWV). The positioning of features appears to be coherent between the two sensors.
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Furthermore, we can see slight indications of FCI’s scan-lines in Fig. 8b. These are noisy pixels that follow lines that run

from East to West. The effect is more pronounced over water surfaces. In both figures, the effect of unidentified cloud pixels

on the TCWV is visible through decreased TCWV at cloud edges. In contrast, there are some thin dust layers visible in the

North-Western and Central-Eastern parts of the RGBs, which do not show through in either of the TCWV products.475

(a) (b) (c)

Figure 9. Time sequence of FCI TCWV shown in Fig. 8b with 1 hour between each frame.

To further highlight the potential of FCI TCWV observations for convective nowcasting purposes, we showcase the TCWV

field from Fig. 8b again in 9 with the TCWV from two time steps later in Fig. 9a to 9c. The sequence demonstrates how one

can track the propagation of the gravity waves and the north-western movement of the moist airmass along the moisture-front.

The formation of what appear to be small updrafts or thermals is indicated by stark increases in TCWV from Fig. 9b to 9c.

This results in a pattern similar to convective rolls shown in Carbajal Henken et al. (2015). There, in the lower center, at around480

11:40 UTC first clouds are forming.

5 Discussion and Outlook

In the multi-annual validation against the reference ARM SGP TCWV dataset (2016 – 2023), the OLCI 2-band TCWV shows

a good performance with a bias of 1.848 kg/m2, RMSD of 2.235 kg/m2, cRMSD of 1.256 kg/m2, and high R2 of 0.99. The

wet bias could be corrected following the procedure described in Preusker et al. (2021). In a comparison against their COWa485

algorithm applied to the same matchup dataset, they have a similar R2 of 0.99 but a lower RMSD of 1.3 kg/m2, which may well

be attributed to both the use of an additional absorption band at 940 nm and initial τpTOA-correction. Such a good performance

against the reference TCWV is promising, however, for this comparison, τpTOA has been estimated from two window bands

(i.e., the same way COWa estimates τpTOA).

For FCI, the accuracy of τpTOA and subsequently TCWV mostly hinges on the PCR’s ability to estimate the spectral slope.490

As shown in Figs. 3a and 3b, the approximation shows a good performance against the next-best estimate, i.e., extrapolation
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from two adjacent window bands using OLCI measurements, and exceeds the performance of just using the window band at

0.865 µm. Approximated nLTOA
∗ may deviate from the reference nLTOA

∗ on average by 1.5 % over land and 3.5 % over

water. In rare cases the PCR failed. We assume that there may be several processes at play that require deeper investigations.

Miss-characterisations of the surface reflectance translate to an additional uncertainty of about 1 to 2 kg/m2. Nevertheless, these495

initial results demonstrate that our approach is effective and advancing well towards an operational TCWV retrieval framework

for FCI.

The global comparison against the reference networks returned slightly lower performance indicators with R2 between 0.98

to 0.99, bias between 0.33 to 2.84 kg/m2, MAPD between 6.64 and 18.36 %, RMSD between 1.49 to 3.6 kg/m2, and cRMSD

between 1.46 to 2.21 kg/m2. The highest RMSD and bias are found in the comparison against AERONET, which is most likely500

due to AERONET’s dry bias (Pérez-Ramírez et al., 2014). The OLCI/SLSTR matchup analysis shows a decreased performance

against the multi-year matchup of only OLCI over ARM SGP. This is due to a reduced number of matchups over a shorter time

span and a higher geographic spread. A more rigorous validation would require a longer time period. However, the aim of this

assessment is to show that the PCR does not drastically reduce the algorithm’s performance. The actual performance of FCI

TCWV may deviate from these verification results, since the spectral characteristics and calibration are different from OLCI.505

Future validation studies have to be conducted for further characterization, which may also lead to a more elaborate correction

for initial τpTOA estimation.

To assess the functionality of the current algorithm prototype, we applied it to the mtgt505 FCI Level 1c test dataset provided

by EUMETSAT. Conceptually, everything is in working order. The running times are close to or below the 5-minute mark

(FCI’s nominal temporal resolution on a 2024 computer) and allow for a near-real-time and operational application of our510

TCWV algorithm. Full-disk comparisons show that the algorithm produces a sensible TCWV field. The relative difference

between collocated ECMWF ERA5 reanalysis TCWV at 12 UTC and FCI TCWV product reveals a systematic dry bias of

approximately 8%. We see three probable reasons for this systematic dry bias: 1) the bias might be related to the preliminary

calibration of the FCI data, 2) the PCR systematically over-estimates the surface reflectance at 0.914 µm and thus τ is too low

and 3) undetected deficits in our LUTs. If this systematic bias persists and no underlying reason can be found, we may mitigate515

it using the empirical correction method described in Preusker et al. (2021). Furthermore, there are large-scale patterns of

positive and negative deviations close to one another. Such patterns are to be expected in a comparison against model data and

indicate that the model struggles with accurately capturing the advection of air masses in both space and time. The observed

TCWV fields might be closer to the actual state. FCI’s TCWV AVK of almost 1 indicates a high sensitivity to the measurement

and only a small contribution of prior knowledge. This is also referred to as the algorithm being independent from the NWP520

input. This is a key advantage of NIR-TCWV in contrast to other satellite-retrieved TCWV. The decreased TCWV AVK over

water surfaces is caused by the much lower water surface reflectance in the NIR. In cases where the reflectance is close to 0,

the retrieval is challenging. However, the OE may still provide an update of the a priori TCWV field. Over sunglint, the AVKs

above 0.4 indicate that the retrieval is much more independent from the a priori and much more reliable.

Comparing OLCI and FCI TCWV up close, we can easily see that FCI TCWV matches the level of detail found in the525

OLCI TCWV product. For scenes over Europe, FCI’s resolution will be slightly lower compared to OLCI’s reduced resolution.
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Yet, FCI’s resolution will be significantly higher than SEVIRI’s. The stripes of enhanced noise that run across the FCI TCWV

image are caused by scan-lines of FCI. Similar scan-line artifacts are found in whisk-broom sensors, too, such as MODIS or

VIIRS. Over land this is barely noticeable; however, over dark water pixels it is pronounced. This may change in future Level

1c processing versions.530

The assessment exercises discussed above helped us identify several limitations and challenges regarding TCWV retrievals

from FCI measurements. The presence of clouds is visible as pixels with considerably lower TCWV than their surrounding. A

robust cloud mask is needed to filter out such pixels. At a later stage, such retrieved pixels may be used for an "above cloud"

water vapour product. Such a product may then be used for the detection of WV entrainment into the stratosphere, e.g., in the

presence of overshooting tops (Setvák et al., 2008; Dauhut et al., 2018; Khordakova et al., 2022).535

While over the vast majority of surface types, the PCR yields reliable nLTOA
∗, in some cases it deviates far from the

reference. This may be addressed by extending the training dataset the PCs are calculated from.

Currently, we use a fixed aerosol type, height, and thickness. Under conditions violating these assumptions (e.g., a strong

dust outbreak), retrieval quality would be decreased. We consider to simulate for additional aerosol mixtures and aerosol layer

heights. Furthermore, using AOT forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) could improve the540

retrieval. Another issue is that over water surfaces, the inversion framework is under-determined: a measurement vector with

only two elements (nLTOA(0.865 µm), τpTOA(0.914 µm)) is opposed by a state vector with three elements (TCWV, AOT,

WSP). Outside of sunglint, the influence of the wind speed is marginal, and AOT mainly increases the TOA signal (and thus

the forward model is not sensitive to changes of the windspeed), and inside sunglint the influence of a thin layer of aerosol is

reduced. Because of that, the information content is relatively balanced, and the impact is slightly reduced. Nevertheless, over545

water surfaces, adding an additional third channel to the measurement vector (e.g., 0.51 or 1.61 µm) may also improve the

performance.

With FCI, we are able to monitor the temporal evolution of these small-scale patterns at a resolution similar to OLCI’s. This

allows for the tracking of large- and small-scale dynamics before, during, and after convective development. Such features

and their changes (e.g., convergence zones, convective rolls, deepening boundary layers) contain potential information for550

nowcasting purposes. Furthermore, the patterns observed in FCI TCWV may also be tracked and used to retrieve lower level

atmospheric motion vectors (AMV).

Our framework may be adapted to provide accurate TCWV retrievals for other sensors featuring at least two channels in

and around the ρστ band. The National Oceanic and Atmospheric Administration (NOAA) is commissioning GeoXO Imager

(GXI), the successor to the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite - 3rd555

generation (GOES), which will include a WV absorption band in the ρστ region (Lindsey et al., 2024). Another future instru-

ment soon to be launched into a polar orbit is METImage, flying onboard EUMETSAT’s Meteorological Operational satellite

second generation A (METOP-SG-A) (Phillips et al., 2016). METImage will enable NIR TCWV with a spatial resolution

of 500 m and global coverage every day. METImage will also provide O2A band measurements (around 0.76 µm), which

can be used to reduce ambiguity due to shielding of cirrus or elevated aerosol layers. A NIR TCWV product from METImage560

may then be used in advanced synergies with sounders such as Infrared Atmospheric Sounder Interferometer - New Generation
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(IASI-NG), which will also be flying on METOP-SG-A. IASI-NG is the successor of IASI, which provides all-sky temperature

and humidity profiles with a slightly lower accuracy in the presence of clouds (Müller, 2017).

Furthermore, the Infrared Sounder (IRS) will be operating on MTG-S1, MTG-I1’s sister satellite, and will cover the same

field of view as FCI. This will enable a synergy between TCWV from FCI and the IRS humidity profile product. NIR TCWV565

could very well complement profile soundings for both IASI-NG and IRS: one shortcoming of these retrievals is their low or

missing sensitivity to the lowest layers of the troposphere (below 1-2 km). Furthermore, their spatial resolution is in the order

of tens of km, often insufficient for assessing small-scale weather patterns. A high-spatial resolution NIR TCWV product,

sensitive to the whole column of air, could complement such sounding products perfectly, albeit in the absence of clouds. A

synergy could consist of an updated layer product or a product that provides the moisture content of the lowest levels of the570

troposphere. Such synergy products could provide crucial insights into the meteorological conditions, such as the atmospheric

instability, and improve the potential for the prediction of severe weather.

6 Conclusions

Leveraging our expertise in total column water vapour (TCWV) retrievals from Near-Infrared (NIR) measurements for vari-

ous satellite-based passive imagers, we developed a new retrieval framework for the new Meteosat Third Generation Flexible575

Combined Imager (MTG-FCI) measurements. The use of OLCI/SLSTR synergy "FCI-like" data proved valuable for establish-

ing and validating an adapted TCWV retrieval framework for MTG-FCI. It offers a realistic and reliable testbed that supports

algorithm development ahead of the availability of a sufficiently long and calibrated FCI data record. Key challenges, such as

the surface reflectance treatment in the WV absorption band, can be addressed in preparation for the large-scale application of

the retrieval to FCI data.580

The evaluation exercises highlight the robustness of the retrieval framework and helped identify specific challenges and

limitations related to the MTG-FCI instrument, which can be further addressed with fully calibrated FCI data in the near

future.

As the successor to MSG-SEVIRI, MTG-FCI boasts extended observational and spectral capabilities that promise significant

advancements in weather and climate research and applications, particularly in the monitoring and study of atmospheric TCWV585

amounts and dynamics. Notably, FCI is the first geostationary satellite instrument with measurements in the NIR ρστ WV

absorption band. While SEVIRI TIR measurements allowed for to derivation of information on WV amounts mainly in higher

parts of the troposphere, the FCI NIR WV absorption measurements exhibit the greatest sensitivity to WV amounts near

the surface. This enables accurate and high temporal resolution observations of changes in moisture content in the lower

troposphere. Consequently, these novel and comprehensive TCWV observations will enhance the (real-time) monitoring of590

atmospheric moisture distributions in the boundary layer, their evolution, and associated meteorological phenomena across

regional to continental scales, with the potential to significantly advance nowcasting techniques.
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Variable Definition/ Explanation

A averaging kernel matrix

a τpTOA correction offset

b τpTOA correction slope

ALB surface albedo, i.e., surface irradiance reflectance

AMF air mass factor

AVK averaging kernel

cwin regression coefficient vector

ϵ forward model uncertainty

ϵintp nLTOA
∗ approximation uncertainty

F forward model

F0 spectral solar irradiance

G gain matrix

K jacobian matrix

λ wavelength

LTOA top-of-atmosphere radiance

nLTOA normalised top-of-atmosphere radiance

nLTOA
∗ normalised top-of-atmosphere radiance corrected for WV attenuation

nLTOA
∗ext nLTOA

∗estimated from extrapolation of window bands

nLTOA
∗PCR nLTOA

∗estimated from principle component regression

p parameter vector

r spectral slope

Rtarget reflectance vector of target

Rwin reflectance vector of window channels (source)

ρ irradiance ratio reflectance

ρTOA irradiance ratio reflectance at top-of-atmosphere

Ŝ retrieval error covariance matrix

Sa a priori state error covariance matrix

Sϵ measurement error covariances matrix

SATA satellite azimuth angle

SATZ satellite zenith angle

SNR signal to noise ratio

SUNA sun azimuth angle

SUNZ sun zenith angle

τpTOA pseudo optical thickness

Utarget principle components folded to target band spectral response functions

Uwin principle components folded to window band spectral response functions

RAZI relative azimuth angle

RAZI relative azimuth angle

x state vector

x̂ true state vector

xa a priori state vector

x state vector

y measurement vector

Table A1. List of variables and their respective explanations.
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