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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics 11 

and biogeochemical cycles amid climate change. Modeling wildfires has been challenging in process-based biophysics-12 

oriented DGVMs, as human behaviour plays a crucial role. This study aims to reveal a global statistical model for the 13 

relationships between biophysical and socioeconomic drivers of wildfire dynamics and monthly burned area (BA) that can be 14 

integrated into DGVMs. We developed Generalised Linear Models (GLMs) to capture the relationships between potential 15 

predictor variables that are simulated by DGVMs and/or available in future scenarios and the latest global burned area product 16 

from GFED5. Predictor variables were chosen to represent aspects of fire weather, vegetation structure and activity, human 17 

land use and behaviour and topography. The final model was chosen by minimizing collinearity and by maximizing model 18 

performance in terms of reproducing observations. The final model included eight predictor variables encompassing the Fire 19 

Weather Index (FWI), a novel Gross Primary Productivity Index (GPPI), Human Development Index (HDI), Population 20 

Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover (PNTC), Number of Dry Days (NDD), and 21 

Topographic Positioning Index (TPI). Given its simplicity, our model demonstrated a remarkable capability, explaining 56.8% 22 

of the burnt area variability, comparable to other state-of-the-art global fire models. FWI, PTC, TPI and PNTC were positively 23 

related to BA, while GPPI, HDI, PPN, and NDD were negatively related to wildfire. While the model effectively predicted the 24 

spatial distribution of burned areas (NME = 0.72), its standout performance lay in capturing the seasonal variability, especially 25 

in regions often characterized by distinct wet and dry seasons, notably southern Africa, Australia and parts of South America 26 

(R2 > 0.50). Our model reveals the robust predictive power of fire weather and vegetation dynamics emerging as reliable 27 

predictors of seasonal global fire patterns. The presented model should be compatible with most, if not all, DGVMs used to 28 

develop future scenarios. 29 

 30 

 31 

 32 
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1 Introduction 33 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 34 

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires 35 

have recently occurred in Australia and Canada, each burning more than 15 million ha (Barnes et al., 2023; Jain et al., 2024).  36 

Even though the effects of fires may be positive through contributing to selected natural ecosystem processes, large and 37 

frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic value, 38 

and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative 39 

role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However, climate 40 

change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial drivers 41 

as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25% reduction in 42 

burnt area extent over the past two decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et 43 

al. (2021) argue that future demographic and climate patterns will cause an increase in burned areas, particularly in high latitude 44 

warming and tropical regions. However, Knorr et al. (2016) concludes that under a moderate emissions scenario, global burned 45 

areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. 46 

Cunningham et al. (2024), on the other hand reported that although total burned area is declining globally, extreme fire events 47 

are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics 48 

are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance and 49 

management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modeling could guide 50 

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) 51 

(Koubi, 2019; Robinne et al., 2018). 52 

 53 

Modeling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 54 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 55 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 56 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 57 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 58 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 59 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). One of their greatest 60 

limitations lies in representing the often-dominating effects of humans on fire ignitions, fire spread, and fire suppression in a 61 

mechanistic process-based way as this might be elusive (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 2022). 62 

Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather and 63 

vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Besides, some authors reported that the application of 64 

statistical models for ecosystems other than the ones used in their derivation is often not reliable (e.g Perry, 1998). Integration 65 
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of mechanistic process-based techniques and statistical methods remains a lasting solution to advance our understanding of 66 

fire dynamics.  67 

 68 

Global wildfire modeling offers a macroscopic perspective, allowing researchers to analyze large-scale patterns across diverse 69 

ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The strength of modeling fires at a global scale lies in its ability 70 

to capture overarching patterns (spatial, seasonal and inter-annual) that might provide valuable insights for strategic wildfire 71 

control. While one can argue about the potential oversimplification of local factors and the challenges in representing fine-72 

scale heterogeneity, global models do, on the other hand, excel in capturing and understanding the effect of climate change, 73 

partly because they capture large climatic gradients (Robinne et al., 2018). The ability to capture the interconnectedness of 74 

ecosystems and fire regimes on a planetary scale contributes to a more holistic approach to understand global vegetation 75 

dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). As such, studies on evaluating drivers of burnt areas 76 

at a global scale in the face of ongoing climatic shifts are crucial in ensuring sustainable management of vulnerable ecosystems.  77 

 78 

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively 79 

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics 80 

of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal 81 

outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona‐Moreno et al., 82 

2005). Incorporating monthly data in global fire modeling helps researchers to accurately capture seasonal variations in fire 83 

activity. Hence, global models developed using monthly data are necessary.  84 

 85 

Recent efforts have seen global burned area models based on diverse datasets and statistical approaches such as Convolution 86 

Neural Network (CNN)(Bergado et al., 2021), Random Forest (RF) and generalized additive models (GAM) (Chuvieco et al., 87 

2021). However, the integration of these techniques into DGVM is yet to be realized.  Haas et al. (2022)) developed a statistical 88 

global model for burned area using a GLM, however, their model does only simulate annual dynamics, not seasonal patterns. 89 

Generally, most earlier fire modules in DGVMs were informally parameterised models and do not consider the fuller range of 90 

predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al., 2013). This left an opportunity 91 

to improve burned area models in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there 92 

haven't been any reports on a simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of 93 

global burned areas, while also being easily integrated into DGVMs. Closing this gap can best be facilitated by using up-to-94 

date remote sensing datasets pertinent to fire modeling. This integration can efficiently enhance our comprehension of 95 

inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets using 96 

a DVGM-integrable statistical model. 97 

 98 
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The main aim of this research is to build a parsimonious statistical model for global seasonal burned areas that can be integrated 99 

into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burned area dynamics, 100 

2) to leverage a GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate the interannual 101 

and seasonal cycles of burnt area extent, both globally and regionally. 102 

 103 

2 Data and Methods 104 

In this study, we used a GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation, 105 

weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also 106 

evaluated. Fig. 1 provides an overview of the steps that were followed during modeling.  107 

 108 

 109 

  110 

Figure 1: Study workflow showing an overview of steps followed in model calibration and evaluation together with the 111 

outputs. 112 

 113 
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2.1 Fire data 114 

Monthly BA data for the period 2002 and 2018 were derived from monthly mean fractional BA from the GFEDv5. GFED 5 115 

data are selected because of their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified 116 

according to 17 major land cover types using the MODIS classification scheme. We used this land cover information to remove 117 

burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of 118 

cropland residue burning which we suppose likely has different drivers from burning in non-arable lands. BA data comes at a 119 

resolution of 0.25° × 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for ease of 120 

processing at a global scale and at the same time to ensure that our outputs are DGVM integrable since they are commonly 121 

applied at 0.5° globally.  122 

2.2 Predictor variables  123 

Whilst there are many possible variables that could be tried as predictors of fire, especially in terms of socioeconomics 124 

predictors, we here only use variables which don't prohibit the use of the model for future projections.  These variables are: 125 

climate and vegetation variables typically available in a DGVM framework; socioeconomic variables with future scenario 126 

projections; and time-invariant topographic variables. Previous studies used several variables that we couldn’t include due to 127 

lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a), Vegetation optical depth 128 

(Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture (Mukunga et al., 2023), soil fertility (Aldersley et al. , 129 

2011). Consequently, we considered predictor variables that are compatible with DGVM integration to calibrate the model 130 

effectively. The chosen predictor variables were categorized based on their representational nature and their roles in fire 131 

modeling. Table 1 provides a comprehensive overview of each variable category, including their sources and spatio-temporal 132 

resolutions. 133 

 134 

 135 

Predictor Abbreviations 

Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  

resolution 
Source 

Percentage 

Grass cover 
 PGC Vegetation 300m Annual ESA CCI landcover 

Percentage 

non-tree 

vegetation 

cover 

 PNTC Vegetation 250m Annual MODIS 

Topographic 

positioning 

index 

 TPI Topography 90m Static 

digital elevation model 

products of global 250 

m GMTED2010 and 
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near-global 90 m 

SRTM4.1dev.  

Human 

Development 

Index 

 HDI 
Ignition/suppression/

fragmentation 
subnational Annual Global data lab 

Road density  RD 
Ignition/suppression/

fragmentation 
0.5° × 0.5° Static 

Global Roads Inventory 

Project (GRIP) database 

Population 

density 
 PPN 

Ignition/suppression/

fragmentation 
2.5 arc minutes 

5-year 

intervals 

Socioeconomic data and 

applications centre 

(SEDAC) 

Percentage 

crop cover 
 PCC Fragmentation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3 

Percentage 

pasture cover 
 PPS Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) 

Precipitation 

seasonality 
 PS Climate 0.5° × 0.5° Annual 

Copernicus climate data 

store 

Fire weather 

index 
 FWI Climate 0.5° × 0.5° Monthly 

Copernicus climate data 

store 

Precipitation 

of the driest 

quarter 

 PPNQ Climate 0.5° × 0.5°  Annual 
Copernicus climate data 

store 

Number of 

dry days 
NDD Climate 0.5° × 0.5° Annual 

Copernicus climate data 

store 

Percentage 

grazeland 

cover  

 PGZC Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) 

Percentage 

rangeland 

cover 

 PRC Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) 

Annual 

average 

precipitation 

 AAP Climate 5 arc minutes Annual 
Copernicus climate data 

store 

Gross 

primary 

productivity 

 GPP Vegetation 0.5° × 0.5° Monthly MOD17A1 

Aboveground 

biomass 
 AGB Vegetation 0.5° × 0.5° 

Longterm 

average 
 

Percentage 

Tree cover 
 PTC Vegetation 250m  Annual MODIS 

Fraction of 

Absorbed 

Photosyntheti

cally Active 

Radiation 

 FAPAR Vegetation 500m 

Monthly 

(originally 

8 days) 

MODIS 

 136 

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial 137 

& temporal) and the respective data sources. 138 
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 139 

2.3 Vegetation-related predictors  140 

Thonicke et al. (2010), for example, discussed the crucial role of vegetation structure in shaping fire occurrence, spread and 141 

intensity. Consequently, our study considered eight vegetation predictor variables to comprehensively evaluate their role on 142 

global fire distribution. These variables encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), 143 

Percentage Crop Cover (PCC), Percentage Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree 144 

Cover (PTC). 145 

PGC defines the land covered by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass 146 

and shrubs, contributing to overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to 147 

suppress fire occurrence as they fragment the landscape acting and so act as a barrier to fire spread (Haas et al., 2022). Previous 148 

studies reported that landcover change has a significant contribution to wildfire distribution (Gallardo et al., 2016; Vilar et al., 149 

2021). To understand the relationship between landcover and burnt area distribution, we incorporate PGZC, PRC, PTNC and 150 

PTC.  151 

Numerous studies discussed the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier 152 

et al., 2021). Accordingly, Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed 153 

Photosynthetically Active Radiation (FAPAR) were considered in this study as proxies for vegetation health and productivity. 154 

2.4 Vegetation-related predictors  155 

Topography can influence the occurrence and spread of fires especially in regions with complex terrain and microclimatic 156 

conditions (Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 2014). To capture the impact of topography, some studies 157 

used slope (Cary et al., 2006) and surface area ratio (Parisien et al., 2011) in their models and reported topography to marginally 158 

contribute to wildfire dynamics. However, recent studies reported some significant contributions of topography to global burnt 159 

area distribution when using the topographic positioning index (TPI) (Haas et al., 2022). TPI is designed to encompass and 160 

evaluate the complex influence of terrain features, such as elevation and slope, on the distribution of burned areas. Thus, TPI 161 

goes beyond simplistic representations of landscapes and offers a more nuanced perspective on how terrain characteristics 162 

contribute to the occurrence and extent of wildfires. Given the role of terrain on fire behavior and propagation patterns, the 163 

inclusion of TPI in this study allows for a comprehensive examination of wildfire distribution.  164 

2.5 Anthropogenic Influence Predictors 165 

To comprehensively capture the impact of anthropogenic factors on both fire ignition and suppression, our study integrates 166 

three key predictors: Human Development Index (HDI), Population Density (PPN), and Road Density (RD). The inclusion of 167 

HDI aims to encapsulate human influence on ecological landscapes, thereby affecting the dynamics of both ignition and 168 

suppression processes. Although HDI itself may not directly relate to fire occurrence, it stands as a valuable socio-economic 169 
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indicator that significantly influences overall fire dynamics and management, like how Gross Domestic Product (GDP) has 170 

been used in other fire models (Perkins et al., 2022). To address the limitations of using GDP as a proxy for human development 171 

in predicting global fires, we opted for HDI. Previous research has utilized GDP for this purpose (Zhang et al., 2023), however, 172 

GDP is an indicator of a country's economic performance (Callen, 2008). In contrast, HDI data is much broader as it captures 173 

the country’s social and economic development levels, making it a more suitable and consistent measure for our analysis. HDI 174 

evaluates a country or other administrative region's development status based on the critical factors of life expectancy, 175 

education, and income, providing a nuanced understanding of the socio-economic context shaping fire behavior (Teixeira et 176 

al., 2023). 177 

2.6 Weather-Related Predictors 178 

To capture the impact of fire weather on the distribution of wildfires, we employed the Canadian Fire Weather Index (FWI), 179 

renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire behavior 180 

and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed decisions on 181 

fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate well with burned area 182 

across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations. 183 

While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture 184 

availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual 185 

weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The 186 

selection of these predictors was informed by their significance in previous global fire modeling studies (Chuvieco et al., 2021; 187 

Joshi and Sukumar, 2021; Le Page et al., 2008; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal 188 

works such as that by (Pechony and Shindell, 2010). 189 

2.7 Data Processsing 190 

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had 191 

a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation, 192 

resampling, and consolidation. For instance, while the native temporal resolution of FAPAR was 8 days, we transformed it 193 

into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an annual temporal 194 

resolution, except for FWI, GPP, and FAPAR, which were also available every month. For annual predictors, we replicated 195 

the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize 196 

with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented 197 

5-year span. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as key driver for global fires. 198 

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Gross Primary Productivity 199 

Index (GPPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). GPPI was originally defined as Monthly 200 

Ecosystem Productivity Index (MEPI) in the work by Forrest et al. (2024).  This index allowed us to quantify the relationship 201 
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between vegetation growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the 202 

factors influencing fire dynamics. 203 

 204 

GPP index =  
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
       (1) 205 

 206 

 207 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 208 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 209 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 210 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 211 

accumulation. 212 

2.8 Statistical modeling and final predictor choice 213 

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical 214 

package (CoreTeam, 2014). Following established guidelines (Dormann et al., 2013), we applied the conventional threshold 215 

of R > 0.5 to enhance the model's efficiency. This helped us identify and exclude correlated variables from the analysis. 216 

Specifically, variables such as AGB, FAPAR12, FAPAR6, AAP, and RD were excluded due to their strong correlations with 217 

other variables (see Fig. 2). There were some correlated variables that were however returned in the model due to their 218 

significant contribution to fire modelling and model performance. For example NDD was strongly correlated to PTC ( ~ -219 

0.68), but keeping both increased the variance explained by the full model. 220 

 221 
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 222 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation 223 

 224 

Moreover, we employed the Variance Inflation Factor (VIF) to evaluate collinearity among predictor variables, removing those 225 

with VIF values surpassing 5, as recommended by O’brien. (2007). Post collinearity tests, an additional 3 parameters were 226 

adopted to progressively select the best model, namely: 1) a model which comprise of a full suite of categories of covariate 227 

combinations (i.e vegetation, climate, topography, ignitions), 2) the deviance explained value and 3) the normalised mean 228 
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square error value as illustrated in the making of Burnt Area Simulator For Europe (BASE) (Forrest et al., 2024). Fig A3 shows 229 

ten scatter plots of the final variable selection based on the optimum model, each depicting the relationship between the burnt 230 

area fraction and different environmental or socio-economic variables. The variables include the GPPI, FWI, PNTC, HDI, 231 

PTC, TPI, NDD and PPN.  232 

 233 

A quasi-binomial GLM was selected for modeling BA due to its capability to handle non-Gaussian error distributions, seamless 234 

integration into DGVMs and ability to generate partial residual plots (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 235 

2016). Calibration of the model utilized data from 2002 to 2010 while testing utilized data from 2011 to 2018. Residual plots 236 

were utilized to examine the magnitude and nature of each predictor's relationship with wildfire burnt area distribution.  237 

 238 

Model performance was assessed using the Normalized Mean Error (NME) following Kelley et al., (2013). NME serves as a 239 

standardized metric for evaluating global fire model performance, facilitating direct comparison between predictions and 240 

observations. The NME was calculated following Eq. (2). 241 

 242 

𝑁𝑀𝐸 =
 ∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖  𝛪

∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠 𝛪
      (2) 243 

 244 

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all 245 

cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the 246 

observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment 247 

between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-248 

binomial distribution. We applied the logit link function based on the methodology outlined by Haas et al. (2022). After 249 

conducting a collinearity test, the models were systematically evaluated using various combinations of predictor variables. A 250 

total of 25 model runs were conducted, each incorporating different sets of variables while iteratively excluding some, to 251 

discern the extent to which each predictor explained variance when others were not included (see Table 2). To evaluate the 252 

reliability of the predicted interannual variability and seasonal cycles, we applied a regression function to determine the 253 

relationship (R2) between the observed and predicted trends. An R2 of 1 shows good performance in our predictions and an R2 254 

of 0 shows poor performance in our predictions. To assess the trend in predicted interannual variability, we used the Mann-255 

Kendall test (Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends in environmental data. Being 256 

non-parametric, it works for all distributions, does not require normality, but assumes no serial correlation. We extracted the 257 

trend test results and plotted a map of trend distributions across different GFED regions to identify areas with significant 258 

predicted trends (P<0.05) from those with non-significant trends. 259 
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3 Results 260 

3.1 Optimal model selection and GLM results 261 

Table 2 provides a list of results from our progressive inclusion of model covariates as we aimed to identify the optimum 262 

model. The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump in deviance 263 

explained when PNTC is added (Model 3: 0,5298). Models 4 to 8 involve adding vegetation (FAPAR) and various land use 264 

types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, indicating these factors 265 

provide some additional predictive power but are not as impactful as existing vegetation covariates (such as GPP). Models 10 266 

to 12 introduce polynomial terms for PTC. This results in an increase in deviance explained, peaking at around 0.558836 in 267 

Model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in marginal 268 

increase in deviance explained with the highest recorded in Model 15(~ 0.5664789). Models 19 to 25 fine-tune the overall 269 

performance by incorporating various variables and their interactions. Model 24, which includes a comprehensive set of 270 

climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest deviance explained 271 

(~0.5720048). The marginal improvements observed in subsequent models indicate that while additional variables contribute 272 

to the model, the primary influencing factors were already identified by Model 19, however it was not the simplest model, and 273 

comprised of other variables that we don’t have future projections for (e.g RD). Therefore, Model 25, which offers a balance 274 

of parsimony, simplicity, high deviance explained, and low NME, was selected as the best model in this analysis. 275 

 276 

 277 

Model Formulae 
Deviance 

explained 
NME 

model 

1 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 0.7472088 

model 

2 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 0.7495652 

model 

3 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 0.7208771 

model 

4  
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 0.7188448 

model 

5 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 0.7191269 

model 

6 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 0.7195616 

model 

7  
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PRC) 0.5313813 0.7193946 
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model 

8  
glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 0.5349288 0.7190611 

model 

9  

 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + FAPAR12 + 

PGC) 
0.5359802 0.7181930 

model 

10  

 glm(burnt ~ FWI + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + FAPAR12 

+ PGC + PPN ) 
0.5295939 0.7172668 

model 

11  
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PGC + PS) 0.5579946 0.7193546 

model 

12  
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 0.7192122 

model 

13  
 glm(burnt ~ FWI + GPPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC + PS) 0.5569187 0.7214560 

model 

14  
 glm(burnt ~ FWI + GPPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15  
 glm(burnt ~ FWI + GPPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16  
glm(burnt ~ FWI + GPPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17  
 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 
 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + TPI) 0.5711503 0.7167015 

model 

19  

 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + PGC + 

FAPAR12) 
0.5709692 0.7175149 

Model 

20 
 glm(burnt ~ FWI + GPPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12) 0.5677209 0.7182814 

Model 

21 
glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN 0.5714474 0.7170576 

Model 

22 
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN  0.5705348 0.7177887 

Model 

23 
glm(burnt ~ FWI + GPPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN 0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN + 

AAP 
0.5720048 0.7173093 

Model 

25 
glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TPI 0.5682776 0.7186160 
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Model 

26 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI 
0.5687439 0.7194855 

 278 

Table 2: Results of modeling attempts using different combinations of predictor variables using a progressive inclusion 279 

of covariates approach. 280 

 281 

 282 

Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of 283 

wildfires (p < 0.05), as outlined in Table 3. 284 

 285 

Table 3. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results indicate 286 

that all predictors in the final model were statistically significant about wildfire distribution (p < 0.05). 287 

  Estimate Std.Error T value Pr(>|t|) 

(Intercept) - 6.159e+00 2.349e-02 -262.17 <0.00001 

FWI 9.296e-01 1.948e-03 477.28 <0.00001 

GPPI -2.270e+00 8.974e-03 -252.96 <0.00001 

HDI -1.680e+00 1.235e-02 -135.99 <0.00001 

PNTC 5.170e-02 2.270e-04 227.78 <0.00001 

poly(PTC,2)1 2.135e+03 1.114e+01 191.55 <0.00001 

poly(PTC,2)2 -9.783e+02 6.975e+00 -140.27 <0.00001 

TPI 2.225e-01 3.946e-03 56.39 <0.00001 

NDD -9.550e-03 4.757e-05 -200.78 <0.00001 

PPN -1.075e-03 1.808e-05 -59.48 <0.00001 

 288 

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among 289 

the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and 290 

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the 291 

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the 292 

GPPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.  293 

 294 

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate 295 

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential 296 
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relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving 297 

wildfire dynamics. 298 

 299 

 300 

Figure 3: Partial Residual Plots illustrating the relationship between Burned Areas (BA) and the eight final predictor 301 

variables. These plots show the effect of each predictor while the others are held constant (Larson and McCleary 1972)  302 

Predictor variables were Gross Primary Production Index (GPP), Fire Weather Index (FWI), Percentage Non-Tree 303 

Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index (TPI), 304 

Population Density (PPN) and Number of Dry Days (NDD). 305 

 306 

The model demonstrated strong performance in predicting BA, accounting for over 50% of the variability in burnt areas 307 

(Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution model by Haas et al. (2022), 308 

who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader array of variables (16 309 

predictors) and operated at a coarser temporal resolution (annual). Our model's performance, based on eight predictors and 310 

operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious. 311 

 312 

Assessment of model accuracy yielded an NME of 0.718, indicating a generally close correspondence between observed and 313 

predicted burnt area patterns (see Fig. 4). This level of accuracy is comparable to that reported by previous global fire models, 314 

such as (Haas et al., 2022) and (Hantson et al., 2016), which reported NMEs ranging from 0.60 to 1.10. 315 

 316 

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating 317 

notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 4). However, in 318 
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extratropical regions, particularly in the northern hemisphere, instances of over-prediction were observed. This discrepancy is 319 

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model. 320 

 321 

Figure 4: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area 322 

(bottom). 323 

 324 
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3.2 Interannual variability 325 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to 326 

2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was consistently observed in both the actual and 327 

predicted extent. Notably, the projected trend exhibited a steeper decline compared to the observed trend, indicating a potential 328 

underestimation of inter-annual variability by the model. However, it aligns with the decreasing patterns reported in earlier 329 

studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant in the model made the projected trend 330 

remain steady, suggesting the role of anthropogenic developments driving a downward trend in wildfire distribution. 331 

 332 

Figure 5: Interannual variability in burnt area extent showing the observed trend (based on GFED detections) and 333 

predicted trends. Included are interannual trends when HDI was excluded and held constant from the value of the first 334 

year in the model. 335 

 336 

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area 337 

extent across the 14 GFED regions (refer to Fig. 6 and Table A1). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a 338 

significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA, 339 

SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in 340 

GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and 341 

Europe demonstrated no significant trend, as illustrated in Fig. 6. 342 
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 343 

 344 

Figure 6: Variation in the trend of interannual variability for burnt areas across different GFED regions. 345 

 346 

Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship 347 

between the predicted trend when compared to the observed (R2= 0.24) (See Fig 7 and Fig A1). This poor relationship was 348 

exhibited across most of the GFED regions (R2 < 0.50), except for the NHSA which showed strong similarities between the 349 

predicted trend and observed trend (R2 = 0.55). This observation suggests that the combination of covariates that we 350 

incorporated in this model has limited strength in capturing global interannual variability in burned area. However, the 351 

predicted global trend is in sync with previously reported global trends (Jones et al., 2022). 352 

 353 
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 354 

Figure 7: Spatial distribution of r-square values for the relationship between observed and predicted interannual 355 

variability per GFED region. 356 

3.3 Seasonal Cycle 357 

Our analysis results show that a global extent of BA shows an alternating seasonal cycle with strong peaks in February and 358 

August (see Fig. 8). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the 359 

observed trend (R2 = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted 360 

seasonal cycles varies according to the GFED region with R2 ranging between 0.06 to 0.99 (refer to Fig. 9). The model 361 

predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R2 > 0.50) (see Fig. 362 

9 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa 363 

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R2 < 0.50). 364 

 365 
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 366 

Figure 8: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent. 367 

 368 

Figure 9: Spatial distribution of r-square values for the relationship between observed and predicted seasonal 369 

variability per GFED region. 370 
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4 Discussion  371 

Wildfires are common phenomena whose dynamics may pose relevant impacts on the ecology of species and humans across 372 

different biomes. The evolving dynamics of wildfires are anticipated to undergo significant changes in the future due to global 373 

environmental shifts. In this study, we sought to tease apart statistical relationships between biophysical and socioeconomic 374 

drivers of wildfire dynamics and burned areas to facilitate DGVM integration and reliable prediction of future wildfire 375 

dynamics. 376 

4.1 Main drivers of global burned area 377 

We found a DGVM compatible parsimonious global statistical model made of FWI, PNTC, PTC, TPI, GPPI, HDI, PPN and 378 

NDD. Of all the key variables, FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring the 379 

importance of conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High PNTC 380 

is most likely related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings that fire weather 381 

(~FWI) and fuel availability (~PNTC) influence burned area extent align with previous studies (Andela et al., 2017; Bistinas 382 

et al., 2014; Forkel et al., 2019b; Kuhn-Régnier et al., 2021). The other studies, however, did focus on annual burned area, not 383 

the seasonal cycle, which is also crucial to adapt to changes in fire risk. 384 

 385 

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree cover show 386 

lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with 387 

low PNTC are often characterised by trees. Grasses and shrubs often encourage frequent burning much more than trees (Juli 388 

et al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, leading to 389 

fewer fires. Though our findings support previous literature indicating that regions with abundant combustible vegetation and 390 

favorable fire-weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 2010), we observed a 391 

surprising negative relationship between NDD and burnt area. Previous studies found a positive relationship between NDD 392 

and burnt area fractions (Haas et al., 2022), similar to our single factor plots of NDD and burnt area in Fig A3. This result most 393 

probably shows that relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred 394 

to seasonal fire predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities 395 

in Mediterranean ecosystems (Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating 396 

the complex relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an 397 

interaction term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further 398 

exploring the complex relationship between dryness, vegetation at a global scale, particularly the effect of incorporating 399 

polynomial terms on correlated predictors in a linear model. 400 

 401 
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Our findings revealed that HDI, GPPI and PPN are negatively associated with trends in global fire extent. Specifically, the 402 

negative relationship between HDI and burnt area implies that technological advancements, improved surveillance systems, 403 

and effective mitigation efforts play a significant role in limiting the extent of burned areas. Contrary to expectations based on 404 

Haas et al. (2022), PPN, which should correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 405 

3). In fact, we observed that lower PPN corresponded to larger burnt areas, likely due to the impact of human activities on 406 

landscape fragmentation through road construction, and measures to suppress fires in human inhabited spaces to protect 407 

properties (Kloster et al., 2010). Saunders et al. (1991) observed that the response of fire to changes in PPN is governed by 408 

two opposing processes, an increase in population leads to more ignition sources, while simultaneously prompting greater fire 409 

management efforts to suppress fires. They further highlighted that fire suppression rates are highest in densely populated 410 

areas. This suggests that the scale (both spatial and temporal) of analysis may influence the nature and extent to which PPN 411 

affects burnt area extent. Our results for the effect of PPN have important implications for DGVMs and land surface models. 412 

These models differ widely in the assumed effect of PPN, often using a unimodal response (Teckentrup et al., 2019). However, 413 

many DGVMs simulate BA annually, in some cases distributing the wildfires across seasons in a second step, using rather 414 

simplified assumptions (Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between GPPI and burnt 415 

areas, as GPPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative relationship, 416 

indicating that other factors may be influencing the connection between GPPI and the extent of burnt areas. Our findings are 417 

inline with that of Forrest et al. (2024) who initially investigated the effect of this index on burnt areas in Europe. Unlike 418 

previous global studies that utilized annual GPP, our research employed a more refined measure, GPPI. Future research could 419 

benefit from evaluating the relationships between GPPI and burnt areas in other GFED regions and temporal scales. 420 

 421 

4.2 Spatial variation in model performance 422 

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South 423 

America than in other world regions, potentially due to the seasonal patterns of key predictors in these regions, which can be 424 

effectively captured using linear functions. Conversely, our model tends to overpredict fires in the northern hemisphere, 425 

particularly in North and Central America, as well as Asia. Annual burned area variability is relatively high in Asia, Europe, 426 

and Central America, which might make it more difficult to predict it (Chuvieco et al., 2021). Thus, our findings build upon 427 

existing models on global burned area distribution. What sets our model apart from previous models is its ability to reliably 428 

identify global seasonal fire distribution patterns. This simplicity offers a notable advantage, as it facilitates more nuanced 429 

interpretation and implementation of DGVMs compared to annual models. 430 

4.3 Attribution of global trends 431 

Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends (Joshi and 432 

Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017), 433 
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primarily attributed the decline in global burnt areas to agricultural expansion and intensification. Earl and Simmonds (2018) 434 

supported this view, adding that increased net primary productivity in Northern Africa also played a significant role. However, 435 

our results suggest that human development is a more important driver than agricultural expansion alone. Despite the 436 

conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland fractions as predictor 437 

variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis 438 

revealed that excluding the HDI from our model and holding it constant to the value of the first year predicted a steady trend 439 

that deviates from the observed negative trend in global fire extent and including HDI follows a decreasing trend that aligns 440 

with the observed trend (Fig. 5). This highlights the significant influence of HDI in projecting the purported negative global 441 

fire trend. The HDI is related to factors like advancements in fire control methods, surveillance, technology, and outreach 442 

strategies increasing awareness, particularly in response to the growing human technological developments. Although these 443 

strategies are often implemented independently and on a smaller scale, their cumulative impact on global fire trends is 444 

substantial. Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire control measures 445 

through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the development and 446 

deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively mitigate the 447 

extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods. 448 

 449 

4.4 Interannual variability 450 

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high 451 

precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1). 452 

Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated 453 

FAPAR12 in models 9 to 12 (Table 2) and GPPI in models 11 to 26 (Table 2). Unfortunately, these adjustments did not enhance 454 

our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased precipitation 455 

in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa (Shekede et al., 2024). 456 

Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons using GPP12 in model 10, 457 

respectively. While this approach did not improve global interannual predictions, it showed a slight enhancement in deviance 458 

explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of the fire-aerosol positive 459 

feedback mechanism in Africa (Zhang et al., 2023) and periodic El Niño conditions, which can affect rainfall patterns and lead 460 

to drier vegetation conditions, reducing the predictability of fire occurrence, especially with linear models (Shikwambana et 461 

al., 2022). Other attempts at simulating global annual burned area changes, for example with fire-enabled DGVMs (Fire Model 462 

Intercomparison Project (FireMIP)), LPJ-GUESS-GlobFIRM yielded similarly poor model performance concerning 463 

interannual variability (Hantson et al., 2020). Our modeling efforts highlight the complexity of accurately predicting wildfire 464 

trends and underscore the need for future research to identify covariates that more effectively capture the interannual variability 465 

of fires at a global scale. 466 
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4.5 Fire seasonality 467 

The findings of this study exhibit robustness in capturing seasonal cycles (R2 = 0.536), facilitated by the inclusion of monthly 468 

variables such as the GPPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While the seasonal 469 

predictions demonstrated reliability across most GFED regions globally, notable exceptions were observed in North America, 470 

North Africa, and Europe (R2 <0.50). This discrepancy could be attributed to the intricate climatic conditions inherent to these 471 

regions, which influence fire weather in a manner that eludes simple linear modeling. Given the parsimonious design of our 472 

model, with only ~eight predictors, we think that the model performance is acceptable. For certain regions, it might be possible 473 

to increase model performance by implementing further region-specific predictors and relationships. Accurate predictions 474 

regarding the seasonal dynamics of diverse GFED regions can facilitate the identification of temporal windows when fires are 475 

prevalent, thereby furnishing valuable insights for simulating carbon emissions in DGVMs. 476 

 477 

Globally, our model predicts a notable peak in burned areas during February and August. The February peak corresponds to 478 

dry conditions and fuel accumulation in regions such as NHSA, NHAF, and MIDE. In contrast, the August peak primarily 479 

emanates from tropical regions characterized by distinct seasonal patterns, particularly in SHSA, SHAF, and AUST. Here, the 480 

dry season augments the combustibility of accumulated fuel from the preceding wet season, facilitating fire spread. This 481 

observation corroborates earlier studies in the southern hemisphere, which underscore the prevalence of wildfires during 482 

prolonged dry spells (Magadzire, 2013; Shekede et al., 2024; Strydom and Savage, 2017). Increased temperatures and 483 

desiccated vegetation substantially enhance the likelihood and severity of wildfires during the dry season. Conversely, the 484 

onset of the rainy season precipitates a marked reduction in the occurrence of wildfires in these regions. This underscores the 485 

enduring influence of fire weather and vegetation dynamics as principal drivers of seasonal burnt area cycles, with factors such 486 

as moisture content in vegetation and soil, as well as humidity, playing pivotal roles in modulating ignition and fire extent 487 

within ecosystems. The seasonal global forecasts generated by our model hold significant implications for guiding adaptive 488 

strategies, fire management and prevention. 489 

4.6 Excluded drivers of burned area 490 

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and 491 

socioeconomic (~RD), did not make it to the final model (See Table 2) despite their potential relevance identified in previous 492 

studies(Forkel et al., 2019b; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The 493 

differences to our findings are related to differences in the statistical or modelling approach and the fact that most of these 494 

studies addressed annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important 495 

for understanding fire dynamics, e.g. influencing fuel availability, landscape structure, and ignition sources. For instance, 496 

grazing lands can significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing potentially 497 

reducing fuel loads (Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity, 498 
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affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013). However, these factors are apparently indirectly 499 

represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, for example, is highly 500 

correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire suppression capabilities (Forkel et 501 

al., 2019b). However, it was excluded here because its contributions were already effectively represented by HDI and PPN, 502 

which capture broader socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al. (2022) observed a 503 

shift in the direction of contribution for covariates when PPN and RD are used together.  Considering that we may not have 504 

future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in our model. 505 

Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table 2) yielded marginal improvements which were 506 

not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was aimed at 507 

reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By focusing 508 

on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power. However, 509 

the often-small differences in the deviance explained and the NME between different models imply that vegetation-fire 510 

modellers might also pick a slightly different set of variables for DGVM integration without using much predictive power. 511 

4.7 Shortcomings and Recommendations 512 

The findings of this study offer valuable insights into the underlying drivers and patterns shaping global fire dynamics. While 513 

our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal variations 514 

in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the statistical model 515 

was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially omitting some 516 

previously identified key predictors (~lightning frequency, gridded livestock densities) and modeling techniques (~ Random 517 

Forest, Neural networks, XgBoost, CatBoost) for global fires(Forkel et al., 2019b; Joshi and Sukumar, 2021; Mukunga et al., 518 

2023; Zhang et al., 2023). This might contribute to observed shortcomings in our model's ability to predict spatial fire 519 

distribution in certain regions and to capture interannual variability across many parts of the world. Future investigations 520 

should aim to explore the inclusion of other established predictors and methodologies in global fire modeling once they become 521 

easily compatible with DGVM integration. Despite these challenges, our study possesses intrinsic value, and the developed 522 

model stands as a relatively simple tool for informing global seasonal fire predictions. 523 

5. Conclusions 524 

Global fire patterns undergo constant changes influenced by fluctuations in vegetation, weather conditions, topography, and 525 

anthropogenic factors. Despite numerous attempts in previous studies to describe global fire distribution, the development of 526 

a concise model capable of explaining and predicting global fire patterns, particularly one that seamlessly integrates with 527 

DGVMs, is essential for a reliable assessment of the impacts of global change. In this study, we present a parsimonious 528 

statistical model specifically tailored for global seasonal burned areas, with the goal of integration into DGVMs.  529 
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 530 

Our findings highlight the significance of socio-economic advancements, particularly those improving fire management 531 

strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-532 

economic predictor in our model. Additionally, fire weather and vegetation dynamics, specifically the FWI and the novel GPP 533 

index, emerged as robust predictors of seasonal global fire patterns. While our parsimonious model exhibited limitations in 534 

predicting the interannual variability of global fires, it demonstrated commendable accuracy in forecasting the spatial and 535 

seasonal distribution of wildfires. We hope that our research outcomes will stimulate a more rigorous implementation of global 536 

fire models within DGVM frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of 537 

global fire patterns and enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in 538 

the face of ongoing global changes. 539 

 540 
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The code used in this analysis model fitting, and plotting is available at https://doi.org/10.5281/zenodo.14177016. Data used 542 
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 567 

Figure A1: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across 568 

different GFED regions. 569 

 570 
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 574 

Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across 575 

different GFED regions. 576 

 577 
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 579 

Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental 580 

and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development 581 

Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation 582 

Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation 583 

between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and 584 

burnt area fraction.   585 

 586 

 587 

Region Sen's slope P-value 

BONA 558.354 0.1082 

TENA 895.8292 0.4338 
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CEAM -1963.035 0.1494 

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43                                    0.0001 

BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

Table A1: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with 588 

significant trends are in bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends. 589 
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