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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics
and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-
oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical
model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, within a DGVM-
compatible framework. Using monthly burnt area (BA) data from the latest global burned area product from GFED5 as our
response variable, we developed Generalized Linear Models to capture the relationships between potential predictor variables
(biophysical and socio-economic) that are simulated by DGVMs and/or available in future scenarios. We used predictors that
represent aspects of fire weather, vegetation structure and activity, human land use and behavior and topography. Based on an
iterative process of choosing various variable combinations that represent potential key drivers of wildfires, we chose a model
with minimum collinearity and maximum model performance in terms of reproducing observations. Our results show that the
best performing (deviance explained 56.8%) and yet parsimonious model includes eight socio-economic and biophysical
predictor variables encompassing the Fire Weather Index (FWI), Monthly Ecosystem Productivity Index (MEPI), Human
Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover (PNTC),
Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When keeping the other variables constant (partial
residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively
related to BA. While the model effectively predicted the spatial distribution of BA (Normalized Mean Error = 0.72), its
standout performance lay in capturing the seasonal variability, especially in regions often characterized by distinct wet and dry
seasons, notably southern Africa (R? = 0.72 to 0.99), Australia (R? = 0.68) and South America (R? = 0.75 to 0.90). Our model
reveals the robust predictive power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal
global fire patterns. Finally, simulations with and without dynamically changing HDI revealed HDI as an important driver of

the observed global decline in BA.



mailto:kavhublessing@gmail.com

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

1 Introduction

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns
(Clarke et al., 2019). In Australia, the mean annual burned area in forested regions was about 1.8 million ha per year between
1988-2001, increasing to 3.5 million ha per year between 2002-2018, before the 2019-2020 “Black Summer” fires burned
over 15 million ha nationally (Australian Government, 2020; Canadell et al., 2021). Similarly, in Canada, the 1986-2022 mean
annual burned area was about 2.1 million ha, compared with the record-breaking 15 million ha burned in 2023 (Curasi et al.,
2024; Jain et al., 2024; MacCarthy et al., 2024). These multi-decadal increases in burned area in both countries are consistent
with evidence that climate change has intensified fire-conducive weather over time. Even though the effects of fires may be
positive through contributing to selected natural ecosystem processes, large and frequent fires are often destructive and have
far-reaching effects through loss of life, biodiversity, landscape aesthetic value, and increase in forest fragmentation and soil
erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative role of climate change in driving large and
frequent burning has been well documented (Brown et al., 2023). However, climate change by itself does not fully account for
the recent changes in global wildfire patterns as human activities are crucial drivers as well (Pausas and Keeley, 2021). For
instance, recent empirical investigations have highlighted a notable 25% reduction in burnt area extent over the past two
decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et al. (2021) argue that future
demographic and climate patterns will cause an increase in burnt areas, particularly in high latitude warming and tropical
regions. However, Knorr et al. (2016) concluded that, under a moderate emissions scenario, global burnt areas will continue
to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. Cunningham et al. (2024),
on the other hand reported that although total burnt area is declining globally, extreme fire events are increasing as consequence
of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics are clearly driven by the
overarching interaction between human activities (altered ignition patterns, surveillance and management) and climate
(Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide prescribing solutions that will
ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) (Koubi, 2019; Robinne et al.,
2018).

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate
interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire
can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and
vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to
predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out
in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016;
Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of
process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and
difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al.,
2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather
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and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and
evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data
from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for
ecosystems other than the ones used in their derivation is often not reliable (e.g. Perry, 1998). This is mainly because statistical
models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical
of fires that are stochastic in nature. Integration of mechanistic process-based techniques and statistical methods remains one
common way forward to advance our understanding of fire dynamics.

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al.,
2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass,
which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help
correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results.
This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing
researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santin, 2016; Flannigan et al., 2009). The
strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual)
that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification
of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in
capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al.,
2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more
holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023).
As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in
ensuring sustainable management of vulnerable ecosystems.

There is a growing recognition of the significance of exploring both interannual and seasonal variations to comprehensively
understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics
of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal
outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona-Moreno et al.,
2005). Incorporating monthly data in global fire modelling helps researchers to accurately capture seasonal variations in fire
activity. Hence, global models developed using monthly data are necessary.

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN: Bergado et al., 2021), Random
Forest (RF) and Generalized Additive Models (GAM) (Chuvieco et al., 2021) which are currently not easily integrated into
DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced
recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the
relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion
of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that
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are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables.
Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for
seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. Generally, most earlier fire
modules in DGVMs such as the LPJ-Lmfire (v1) were informally parameterized to predict seasonal fire cycles and do not
consider the fuller range of predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al.,
2013). Nurrohman et al. (2024) produced monthly fire predictions from downscaling of annual model outputs without building
a statistical approach that is trained based on monthly inputs. This left an opportunity to improve burnt area models in DGVMs
to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a simpler and
more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also being easily
integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on variables pertinent
to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance our comprehension
of inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets.

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integrated
into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics,
2) to leverage a GLM for predicting global burnt areas using DGVM-compatible predictors and 3) to evaluate the interannual
and seasonal cycles of burnt area extent, both globally and regionally.

2 Data and Methods

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation,
weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also
evaluated. Fig. 1 provides an overview of the steps that were followed during modelling.
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Figure 1: Study workflow showing an overview of steps followed in model training, testing, prediction and evaluation
together with the outputs and time periods.

2.1 Fire data

Monthly BA data for the period 2002 — 2018 were derived from monthly mean fractional BA from the GFED5. We selected
this data because of their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified
according to 17 major land cover types using the MODIS classification scheme. We used this land cover information to remove
burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of
cropland residue burning which we suppose is likely to have different drivers from burning in non-arable lands. The BA data
comes at a resolution of 0.25° x 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for
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ease of processing at a global scale and at the same time to ensure that our outputs are DGVM integrable since they are
commonly applied at 0.5° globally.

2.2 Predictor variables

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many
possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our
selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic
variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables
that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019),
vegetation optical depth (Forkel et al., 2019), lightning (Rabin et al., 2017), soil moisture (Mukunga et al., 2023), soil fertility
(Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM integration to train
the model effectively. The chosen predictor variables were categorized based on their representational nature and their roles
in fire modelling (See Table 1).

Predictor Abbreviations | Classification Original Temporal | Temporal | Source
category  (Climate, | spatial resolution | coverage
vegetation, resolution

landcover, landscape
fragmentation,
ignition, suppression
topographic effect)

Percentage Grass | PGC Vegetation 300m Annual 2002-2018 | ESA Climate
cover Change
Initiative
landcover(UC
Louvain,
2017)
Percentage non- | PNTC Vegetation 250m Annual 2002-2018 | MODIS -
tree vegetation MOD44B
cover (DiMiceli et
al., 2011)




Predictor Abbreviations | Classification Original Temporal | Temporal | Source
category (Climate, | spatial resolution | coverage
vegetation, resolution
landcover, landscape
fragmentation,
ignition, suppression
topographic effect)
Topographic TPI Topography 90m Static 2010 Digital
positioning index (product of | elevation
the global | model
GMTED20 | products  of
10) global 250 m
GMTED2010
(GMTE data
2010) and
near-global 90
m SRTM v4
(Jarvis et al.,
2008)
Human HDI Ignition/suppression/f | subnational Annual 2002-2018 | Global  data
Development ragmentation lab (Smits and
Index Permanyer,
2019)
Road density RD Ignition/suppression/f | 0.5° x 0.5° Static Average of | Global Roads
ragmentation the period | Inventory
1979-2015 | Project (GRIP)
database
(Meijer et al.,
2018)
Population density | PPN Ignition/suppression/f | 2.5 arc | 5-year 2000, Socioeconomi
ragmentation minutes intervals 2005, ¢ data and
2010,2015 | applications
centre
(SEDAC)
(Klein
Goldewijk et
al., 2017)




Predictor

Abbreviations

Classification
category  (Climate,
vegetation,
landcover, landscape
fragmentation,
ignition, suppression
topographic effect)

Original
spatial
resolution

Temporal
resolution

Temporal
coverage

Source

Percentage
cover

crop

PCC

Fragmentation

5 arc minutes

Annual

2002-2018

HistorY
Database  of
the Global
Environment
(HYDE
3.3)(Klein
Goldewijk et
al., 2017)

Percentage pasture
cover

PPS

Vegetation

5 arc minutes

Annual

2002-2018

HistorY
Database  of
the Global
Environment
(HYDE
3.3)(Klein
Goldewijk et
al., 2017)

Precipitation
seasonality

PS

Climate

0.5°x 0.5°

Annual

2002-2018

Copernicus
climate data
store
(Copernicus
Climate
Change
Service, 2021)

Fire weather index

FWI

Climate

0.5°x0.5°

Monthly

2002-2018

Copernicus
climate data
store
(Copernicus
Climate
Change
Service, 2021)




Predictor

Abbreviations

Classification
category  (Climate,
vegetation,
landcover, landscape
fragmentation,
ignition, suppression
topographic effect)

Original
spatial
resolution

Temporal
resolution

Temporal
coverage

Source

Precipitation of the

driest quarter

PPNQ

Climate

0.5°x 0.5°

Annual

2002-2018

Copernicus
climate data
store
(Copernicus
Climate
Change
Service, 2021)

Number
days

of dry

NDD

Climate

0.5°x 0.5°

Annual

2002-2018

Copernicus
climate data
store
(Copernicus
Climate
Change
Service, 2021)

Percentage
grazeland cover

PGZC

Vegetation

5 arc minutes

Annual

2002-2018

HistorY
Database  of
the Global
Environment
(HYDE 3.3)
(Klein
Goldewijk et
al., 2017)

Percentage
rangeland cover

PRC

Vegetation

5 arc minutes

Annual

2002-2018

HistorY
Database  of
the Global
Environment
(HYDE
3.3)(Klein
Goldewijk et
al., 2017)
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Predictor Abbreviations | Classification Original Temporal | Temporal | Source
category (Climate, | spatial resolution | coverage
vegetation, resolution
landcover, landscape
fragmentation,
ignition, suppression
topographic effect)

Annual  average | AAP Climate 5 arc minutes | Annual 2002-2018 | Copernicus
precipitation climate data
store
(Copernicus
Climate
Change
Service, 2021)

Gross primary | GPP Vegetation 500m Monthly 2002-2018 | MOD17A2H
productivity (originally GF(Running

8 days) and Zhao,
2021)

Aboveground AGB Vegetation 0.5° x 0.5° Longterm | 2010 ESA Biomass
biomass average Climate
Change
Initiative  v4
(Santoro and
Cartus, 2023)

Percentage Tree | PTC Vegetation 250m Annual 2002-2018 | MODIS -
cover MOD44B
(DiMiceli et
al., 2011)
Fraction of | FAPAR Vegetation 500m Monthly 2002-2018 | MODIS -
Absorbed (originally MOD15A2H
Photosynthetically 8 days) (Running and
Active Radiation Zhao, 2021)

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial
& temporal) and the respective data sources.

2.2.1 Vegetation-related predictors

We used nine vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables
encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage
Graze Cover (PGZC), Percentage Rangeland Cover (PRC), Percentage Tree Cover (PTC), Fraction of Absorbed
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Photosynthetically Active Radiation (FAPAR), Aboveground Biomass (ABG), and Gross primary productivity (GPP).
Previous work emphasizes the important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010),
discussed the crucial role of vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered
by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to
overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to suppress fire occurrence as they
fragment the landscape acting and so act as a barrier to fire spread (Haas et al., 2022).

PGZC, PRC, PTNC and PTC were used to evaluate the relationship between landcover and burnt area distribution. Previous
studies reported that land use/cover type has made a significant contribution to wildfire distribution (Gallardo et al., 2016;
Villarreal and Vargas, 2021). GPP, AGB, and FAPAR were proxies for vegetation productivity and type, and fuel load. Also,
some studies emphasized the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et
al., 2021).

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem
Productivity Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was originally
defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation growth, fuel
accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire dynamics.

GPPm,
mMax(GPPy,GPPpy—1 ,,GPPp—_13)

MEPI =

1)

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated
additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the
mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPARG (the mean FAPAR over
the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel
accumulation. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as a key driver for global
fires.

2.2.2 Topographic-related predictors

To evaluate how topography can influence the occurrence and spread of fires, we incorporated Topographic Positioning Index

(TPI). Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions

(Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio

(Parisien et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent

studies reported some significant contributions of topography to global burnt area distribution when using the TPI (Haas et al.,
11
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2022). TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on
the distribution of burnt areas. Thus, TPI goes beyond simplistic representations of landscapes and offers a more nuanced
perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire
behavior and propagation patterns, the inclusion of TPI in this study allows for a comprehensive examination of wildfire
distribution.

2.2.3 Anthropogenic influence predictors

To capture the impact of anthropogenic factors on both fire ignition and suppression, we adopted the Human Development
Index (HDI), Population Density (PPN), and Road Density (RD). The inclusion of HDI aims to encapsulate human influence
on ecological landscapes, thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index
developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of
human development, including health (life expectancy at birth), education (mean years of schooling and expected years of
schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from 0 to 1, with higher
values indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands
as a valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross
Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address the limitations of using GDP as
a proxy for human development in predicting global fires, we opted for HDI. Previous research has utilized GDP for this
purpose (Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast,
HDI is a broader socioeconomic indicator which evaluates a country or other administrative region's development status based
on the critical factors of life expectancy, education, and income. We assume it acts as a proxy for factors such as investments
and advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness, thus
providing a more nuanced understanding of the socio-economic context shaping fire behavior than GDP. To evaluate model
sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and holding HDI
constant.

2.2.4 Weather-related predictors

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires.
FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire
behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed
decisions on fire prevention, preparedness, and suppression strategies. It has been shown to correlate well with burnt areas
across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations.
While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture
availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual
weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The

selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco et al.,
12
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2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal
works such as that by Pechony and Shindell (2010).

2.3 Data processing

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had
a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation,
resampling, and consolidation. For instance, while the native temporal resolution of FAPAR and GPP were 8 days, we
transformed it into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an
annual temporal resolution, except for FWI which was also available every month. For annual predictors, we replicated the
same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize
with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented
S5-year span.

2.4 Variable selection

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical
package (CoreTeam, 2014). Following established guidelines by Dormann et al. (2013), we applied the conventional threshold
of R > 0.5 to enhance the model's efficiency. Moreover, we employed the Variance Inflation Factor (VIF) to evaluate
collinearity among predictor variables, removing those with VIF values surpassing 5, as recommended by O’brien, (2007).
Post collinearity tests, an additional 3 parameters were adopted to progressively select the best model, namely: 1) a simple (~
parsimonious) model which comprise of a full suite of categories of covariate combinations (i.e. vegetation, climate,
topography, ignitions), 2) the deviance explained value and 3) the Normalised Mean Square Error (NME) value as illustrated
in the making of Burnt Area Simulator for Europe (BASE: Forrest et al., 2024).

2.5 Model training and testing

A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, ease
of transference to other modelling framework’s ability to generate partial residual plots, i.e., the effect of each predictor in the
model while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Residual plots were
utilized to examine the magnitude and nature of each predictor's relationship with wildfire burnt area distribution. We used
data from the period 2002-2010 for model training, the period 2011-2018 for model testing, and the full period 2002-2018
dataset for predictions and model evaluation. During model testing we compared the performance of the model on training
data vs testing data to assess model robustness.

2.6 Model selection
13
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We employed a sequential model-building approach, beginning with additive structures (M1-M12) to estimate the independent
contribution of climate, vegetation, and human variables on burned area (Table 2). This approach aligns with established fire
risk modelling practices (e.g., Forrest et al., 2024). Additional predictors were introduced if they represented ecologically
meaningful processes (e.g., drought severity, vegetation productivity) and improved model fit (deviance explained and
Normalised Mean Error). Multiplicative interaction terms (M13 onward) were added only when fire ecology theory suggested
synergistic effects (e.g., human ignitions under extreme weather, vegetation dryness and temperature) and retained if deviance
explained improved. This stepwise approach ensures both statistical rigor and ecological interpretability rather than ad hoc
formula selection.
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Model(s) Formula type | Deviance NME (range) Rationale for additive / interaction terms

explained
(range)

M1-M2 Additive, 0.35-0.37 0.74-0.75 Start with core fire-weather, vegetation, and human
baseline variables widely used in fire risk modelling (e.g., FWI,
predictors HDI). Summation quantifies independent effects and
(FWI, GPP, provides a baseline for deviance explained.

HDI, PTC, RD
+ PGC)

M3-M9 Additive, 0.52-0.54 0.72-0.71 Additional vegetation productivity and phenology
extended metrics tested to capture fuel continuity and biomass
predictors (e.g., effects. Additive inclusion based on ecological theory
PNTC, (fuel load — fire extent) and retained if deviance 1 > 1—
FAPAR, PCC) 2%.

M10-M12 | Additive, 0.52-0.55 0.71-0.72 Added nonlinear terms (e.g., poly(PTC,2)) to test
polynomial + curvilinear effects of vegetation productivity on fire
seasonal risk, seasonal indices (e.g., FAPAR12) reflect lagged
predictors vegetation—fire relationships.

M13-M20 | Additive + | 0.55-0.57 0.71-0.72 Interaction terms introduced where ecological or
interaction anthropogenic synergies are expected (e.g., human
terms density x vegetation affects ignition; drought x fuel load
(HDIxPCC, affects spread). Retained if deviance > 2 and NME
MEPIxPNTC, improves 2%.
etc.)

M21-M26 | Full 0.56-0.57 0.71-0.72 Topography (TPI) and drought indices (NDD) interact

interactions,
topographic  +
climate
covariates

with vegetation to capture compound effects on fire
behavior; final models balance explanatory power with
ecological plausibility and parsimony.
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Table 2: Summary of models (M1-M26) with corresponding formulas, performance metrics, and rationale for
predictor inclusion or interaction terms. Predictor additions were guided by ecological theory (e.g., fuel load, climate
extremes, anthropogenic factors) and retained based on statistical improvements.

2.7 Model performance evaluation

Model performance was assessed using the NME following Kelley et al. (2013). NME serves as a standardized metric for
evaluating global model performance, facilitating direct comparison between predictions and observations. The NME was
calculated following Eg. (2).

» Ai I obs; — sim; I
NME = il Sl
Y  Ailobs;—obs I

)

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all
cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the
observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment
between observed and simulated values. After conducting a collinearity test, the models were systematically evaluated using
various combinations of predictor variables. A total of 26 model runs were conducted, each incorporating different sets of
variables while iteratively excluding some, to discern the extent to which each predictor explained variance when others were
not included (see Table Al). We followed the stepwise approach of variable inclusion, exclusion, interaction terms, log
transformations, and polynomial transformations as described by Forrest et al. (2024). While their analysis focused on Europe,
our objective was to replicate and test the method at a global scale. To evaluate the reliability of the predicted interannual
variability and seasonal cycles, we applied a regression function to determine the relationship (R?) between the observed and
predicted trends using annual average data for the period 2002-2018. An R? of 1 shows good performance in our predictions
and an R? of 0 shows poor performance in our predictions. To assess the trend in predicted interannual variability, we used the
Mann-Kendall test (Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends in environmental data.
Being non-parametric, it works for all distributions, does not require normality, but assumes no serial correlation.

3 Results

3.1 Correlation between variables

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12,
FAPARG, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however
some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and
model performance. For example, NDD was strongly correlated to PTC (~ -0.68), but both increased the variance explained
by the full model.
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Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation.

3.2 Optimal model selection and GLM results.

The initial models (model 1 to model 3) progressively include more variables and substantial improvement is observed in
model 3 which explained 52.98% following the inclusion of PNTC. Models 4 to 8 involve adding vegetation (FAPAR) and
various land use types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained,
indicating these factors provide some additional predictive power but are not as impactful as existing vegetation covariates
(such as GPP). Models 10 to 12 introduce polynomial terms for PTC. This results in an increase in performance explaining
55.88% in model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting
in marginal improvement in performance with the highest recorded in model 15 which explained 56.65%. Models 19 to 26
fine-tune the overall performance by incorporating various variables and their interactions. Model 24, which includes a
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comprehensive set of climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest
performance as it explained 57.20%. The marginal improvements observed in subsequent models indicate that while additional
variables contribute to the model, the primary influencing factors were already identified by model 19, however it was not the
simplest model (~ parsimonious), and included variables for which future projections are currently unavailable (e.g., RD), due
to the lack of established projection models or datasets. Since the main objective of the study was to produce a DGVM-
compatible model, availability of future projections for these datasets was indispensable to model building. We removed some
of the redundant variables till model 24 (~11 variables), however, it was not as parsimonious as model 25 (~8 variables).
Therefore, model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected
as the best model in this analysis. Our results reveal that each predictor variable incorporated in the final analysis significantly
predicted the distribution of wildfires (p < 0.05), as outlined in Table 3.

Estimate Std.Error T value Pr(>|t])
(Intercept) - 6.159e+00 2.349x107-02 | -262.17 <0.00001
W 9.296¢-01 1.948x10-03 | 477.28 <0.00001
MEPI 2.270e+00 8.974x107-03 | -252.96 <0.00001
HDI -1.680e+00 1235x10n02 | -135.99 <0.00001
PNTC 5.170e-02 2270x10M-04 | 227.78 <0.00001
poly(PTC,2)1 2.135¢+03 1114x10°01 | 191.55 <0.00001
poly(PTC.2)2 -9.783e+02 6.975 -140.27 <0.00001
s 2225601 3.946x10°-03 | 56.39 <0.00001
NDD -9.550e-03 4.757x107-05 | -200.78 <0.00001
PPN -1.0756-03 1.808x10~05 | -50.48 <0.00001

Table 3. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results
indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05).

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among
the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and
PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the
expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the
MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.
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Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate
conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential
relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving
wildfire dynamics.

Monthly Ecosystem Fire Weather Index Percentage Non Tree Cover ‘| Human Development Index
Productivity Index 5
i .

o8

MEPI

Percentage Tree Cover Number of Dry Days
4

Al
4 60 80 0 100 200 300 0 1000 2000 3000 4000 5000 6000 r} - 2
oly Percentage Tree Cover Number of ary days Poputation density Topographic pos®on index

Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor
variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972).

Predictor variables were Monthly Ecosystem Productivity Index (MEPI), Fire Weather Index (FWI), Percentage Non-
Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index
(TPI), Population Density (PPN) and Number of Dry Days (NDD).

3.3 Performance evaluation

The model demonstrated comparable performance across the training and testing datasets. Specifically, the training data
yielded a deviance explained of 0.57 and an NME of 0.73, while the testing data yielded a deviance explained of 0.56 and an
NME of 0.70. The close agreement between training and testing performance supports the robustness of the model and justifies
its application to the full dataset, which we subsequently evaluated with respect to both spatial and temporal predictive

capability.

The full dataset model demonstrated strong performance in predicting BA, as it explained 56.83% of the variability in burnt
area. Our model's performance, based on eight predictors and operating at a finer temporal resolution (monthly), is considered
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satisfactory and parsimonious. Overall, the model accuracy yielded an NME of 0.718, indicating a generally close
correspondence between observed and predicted burnt area patterns.

The correlation analysis further shows significant variation in the strength of relationship between observed and predicted
burnt area extent across the 14 GFED regions annually (Fig. 4a) and seasonally (Fig. 4b). These include: Boreal North America
(BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA),
Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF),
Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia
(EQAS) and Australia and New Zealand (AUST).

Our model overall performed poorly in predicting interannual variability as exhibited by a poor strength of relationship between
the predicted trend when compared to the observed (R?= 0.24). This poor relationship was exhibited across most of the GFED
regions (R? < 0.50, Fig. 4a), except for the NHSA which showed strong similarities between the predicted trend and observed
trend (R? = 0.55). This observation suggests that the combination of covariates that we incorporated in this model has limited
strength in capturing global interannual variability in burnt areas.

Unlike the global interannual trends, there was a strong strength of similarity between observed and predicted seasonal cycles
in most GFED regions (refer to Fig. 4b and Fig. A4). The model predicted better in GFED regions that are situated in Southern
Africa, South America, Australia and Asia (R? > 0.50). However, a few poor seasonal predictions were recorded in GFED
regions situated in North America, North Africa and Europe as indicated by a poor relationship between observed burnt area
and predicted burnt area (R? < 0.50).
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Figure 4: Evaluation of the selected model using observed burned area data from GFEDS5 predicted data (2011-2018).
The maps show r-square values highlighting the model’s performance for interannual (a) and seasonal variability (b)
per GFED region.

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating
notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 5). However, in
extratropical regions, particularly in the northern hemisphere, instances of overprediction were observed. This discrepancy is
evident in the inconsistencies between observed annual distribution patterns and those predicted by the model.
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3.4 Interannual distribution

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to
2018, with the peak decline observed in 2004 (see Fig. 6). This downtrend was reproduced by the model, but the model
underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with
the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant
in the model made the projected trend remain steady, suggesting the role of anthropogenic developments (increasing HDI over
time) driving a downward trend in wildfire distribution.
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Figure 6: Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates
detection for the period 2002-2018 and model projections of the respective period under different HDI treatments:
when HDI was excluded, included and held constant from the value of the first year in the model.

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area
extent across the 14 GFED regions (refer to Fig. 7 and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a
significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA,
SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in
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415 GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and
416 Europe demonstrated no significant trend, as illustrated in Fig. 7.

417
GFED Regi
i
Trend
B No trend
[ Positive trend
418

419 Figure 7: Variation in the direction of trend of interannual variability for burnt areas across different GFED regions.
420

421 3.5 Seasonal distribution

422 Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and
423 August (see Fig. 8). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the
424 observed trend (R? = 0.54).
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Figure 8: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent.

4 Discussion

4.1 Main drivers of global burned area

We found that our candidate variables, namely FWI, PNTC, PTC, TPI, MEPI, HDI, PPN and NDD, had strong influence on
burnt areas. FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring the importance of
conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High PNTC is most likely
related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings that fire weather (~FWI) and fuel
availability (~PNTC) influence burnt area extent align with previous studies (Andela et al., 2017; Bistinas et al., 2014; Forkel
etal., 2019; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnt area, not the seasonal cycle,
which is also crucial to adapt to changes in fire risk.

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower PNTC show lower burnt
area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with low PNTC are
often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees (Juli et al., 2017; Wragg
et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, leading to fewer fires. Though
our findings support previous literature indicating that regions with abundant combustible vegetation and favorable fire-
weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative
relationship between NDD and burnt area. Previous studies found a positive relationship between NDD and burnt area fractions
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(Haas et al., 2022), like our single-factor plots of NDD and burnt area in Fig A3. This result most probably shows that
relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal fire
predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities in Mediterranean
ecosystems (Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating the complex
relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an interaction
term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further exploring
the complex relationship between dryness and vegetation at a global scale, particularly the effect of incorporating polynomial
terms on correlated predictors in a linear model.

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our
findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a
significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas et al. (2022), PPN, which should
correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower
PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape fragmentation through road
construction, and measures to suppress fires in human inhabited spaces to protect properties (Kloster et al., 2010). Saunders et
al. (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase in population
leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires. They further
highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both spatial and
temporal) of analysis may influence nature and extent to which PPN affects burnt area extent. Our results for the effect of PPN
have important implications for DGVMs and land surface models. These models differ widely in the assumed effect of PPN,
often using a unimodal response simulating BA annually, in some cases distributing the wildfires across seasons in a second
step, using rather simplified assumptions (Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between
MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative
relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt areas. Our
findings are in line with those of Forrest et al. (2024) who initially investigated the effect of this index on burnt areas in Europe.
Unlike previous global studies that utilized annual GPP, our research employed a more refined measure, MEPI. Future research
could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions and temporal scales.

4.2 Spatial variation in model performance

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South
America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and
predictable fire regimes in these regions. Since fire activity here is strongly governed by distinct wet-dry seasonal cycles,
which align closely with fire weather, enabling our model to capture these patterns effectively using linear functions (See Fig.
Ab), hence better model generalization.
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Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as
well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical
and anthropogenic factors (Chuvieco et al., 2021; Forkel et al., 2019). High interannual variability in burnt areas in these
regions is due to irregular droughts, land use change, and fire suppression policies that make prediction more challenging for
linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied ignition sources in temperate and
boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). Chuvieco et al. (2021) reported about
this challenge when building global models. Thus, our findings build upon existing models on global burnt area distribution.
What sets our model apart from previous models is its ability to reliably identify global seasonal fire distribution patterns. This
simplicity offers a notable advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared
to annual models.

4.3 Attribution of global trends

Previous studies have improved our understanding of drivers of fire but differ in approach and attributional focus for fire
trends. For instance, Joshi and Sukumar (2021) employed region-specific multilayer neural networks to reveal spatially varying
sensitivities between fire and socio-environmental drivers, providing strong spatial diagnostics but limited transparency on
attributions of burnt area trends. Kraaij et al. (2018) provided detailed biome-level attribution of destructive fires by linking
drought, fuel state and vegetation context in case studies (e.g., fynbos/plantation complexes), emphasizing vegetation and
weather controls at local scales. Mukunga et al. (2023) used random-forest analyses to quantify the added value of human
predictors for ignition probability, focusing on anthropogenic controls of ignitions rather than burnt area extent. Building on
these approaches, our study contributes novel attributional insight because it explicitly integrates a compact set of DGVM
compatible fire-weather and fuel indices (FWI, PTC, TPI, PNTC) with a socio-economic indicator (HDI) within a
parsimonious statistical framework for burnt area trends. This allows direct attribution of directional effects (for example, the
negative association between HDI and burnt area) across regions. Work by Andela et al. (2017), primarily attributed the decline
in global burnt areas to agricultural expansion and intensification. Earl and Simmonds, (2018) supported this view, adding that
increased net primary productivity in Northern Africa also played a significant role. However, our results suggest that human
development is a more important driver than agricultural expansion alone. Despite the conventional emphasis on agricultural
factors, our attempt to incorporate cropland and rangeland fractions as predictor variables did not substantially enhance our
understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis revealed that excluding the HDI from our model
and holding it constant to the value of the first year predicted a steady trend that deviates from the observed negative trend in
global fire extent and including HDI is partly followed by a decreasing trend. (Fig. 5). This highlights the significant influence
of HDI in projecting the purported negative global fire trend. Importantly, HDI is not uniform worldwide but varies
substantially across regions and levels of socioeconomic development. For instance, in high-HDI countries, greater financial
resources, infrastructure, and institutional capacity often translate into stronger investments in fire control technologies,
improved surveillance systems, and more effective prevention campaigns. By contrast, in low and middle HDI countries,
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limited resources and weaker institutional frameworks may constrain fire management capabilities, resulting in greater reliance
on natural fire dynamics or less formalized suppression efforts. As many countries continue to develop, it translates
improvements in HDI and fire management strategies. Although strategies are often implemented independently and on a
smaller scale, their cumulative impact on global fire trends is substantial. Thus, HDI serves as a broad socioeconomic indicator
that we assume acts as a proxy for the combined effects of investments, advancements in fire control methods, surveillance,
technology, and outreach strategies that increase awareness (Teixeira et al., 2023). Therefore, our model underscores the
necessity for global initiatives aimed at enhancing fire control measures through comprehensive awareness campaigns,
capacity-building efforts, resource mobilization, and the development and deployment of reliable surveillance technologies.
By addressing these factors collectively, we can effectively mitigate the extent and severity of global wildfires, thereby
safeguarding ecosystems and human livelihoods.

4.4 Interannual variability

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high
precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. Al).
Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated
FAPAR12 in models 9 to 12 (Table Al) and MEPI in models 11 to 26 (Table Al). Unfortunately, these adjustments did not
enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased
precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa (Shekede
etal., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons using GPP12 in model
10, respectively. While this approach did not improve global interannual predictions, it showed a slight enhancement in
deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of the fire-aerosol
positive feedback mechanism in Africa (Zhang et al., 2023) and periodic El Nifio conditions, which can affect rainfall patterns
and lead to drier vegetation conditions, reducing the predictability of fire occurrence, especially with linear models
(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model Intercomparison
Project (FireMIP) project (Hantson et al., 2020), all models did a poorer job of matching the interannual variability than the
spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all
data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our
modelling efforts highlight the complexity of accurately predicting wildfire trends and underscore the need for future research
to identify covariates that more effectively capture the interannual variability of fires at a global scale.

4.5 Fire seasonality

Globally, our model predicts a notable peak in burnt areas during February and August (Fig. 8). The February peak corresponds
to dry conditions and fuel accumulation in northern hemisphere regions such as NHSA, NHAF, and MIDE (Fig. A2), with the
complementary August peak occurring in regions such as SHSA, SHAF, and AUST. Our model predicts this with only two
sub annual predictors - the logarithm of FWI and MEPI as already demonstrated for Europe by Forrest et al. (2024). This
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underscores the enduring influence of fire weather and vegetation growth and phenology as principal drivers of seasonal burnt
area cycles, with factors such as moisture content in vegetation and soil, as well as humidity, playing pivotal roles in modulating
ignition and fire extent within ecosystems. The seasonal forecasts generated by our model hold significant implications for
guiding adaptive strategies, fire management and prevention at both regional and global scale.

The findings of this study exhibit robustness in capturing the global seasonal cycle (R? = 0.536, See Fig.7), but notable
exceptions were observed in North America, the Middle East and Mediterranean North Africa, and Europe (R? <0.50, See
Fig.8). This discrepancy could be attributed to the intricate climatic conditions inherent to these regions, which influence fires
in a manner that eludes simple linear modelling. For instance, tropical regions with clear-cut wet and dry seasons tend to
exhibit more regular fire cycles, largely governed by seasonal shifts in precipitation, temperature, and vegetation growth. These
predictable patterns make them well-suited to linear modelling approaches (Van Der Werf et al., 2017). In contrast, extra-
tropical areas experience more irregular and less seasonally driven fire activity. Here, the interaction of drought events, land
management, and socio-economic drivers introduces variability that weakens model performance (Chuvieco et al., 2021;
Forkel et al., 2019). Additionally, varied ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns
(Flannigan et al., 2009). Given the parsimonious design of our model, with only eight predictors and only two of those on a
monthly time step, we think that the model’s performance is acceptable. Furthermore, this acceptable seasonal performance
fills a gap in the available global fire models. To our knowledge there are no such models which are strongly data-constrained
(i.e statistically fitted as opposed to empirical or processes-based) and which predict the seasonal cycle. The closest is
SIMFIRE, which is fitted to observed data but which calculates annual burnt area and then distributes throughout the year
using a prescribed seasonal cycle based on observed data (Rabin et al., 2017). So, whilst the work presented is not yet integrated
into a DGVM, it represents a significant advance in this direction. This is particularly important given the comparatively poor
performance of global fire models in predicting the seasonal concentration of burnt area (Hantson et al., 2020, Table 3).
However, for certain regions, it might be possible to increase model performance by implementing further region-specific
predictors and relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions can facilitate the
identification of temporal windows when fires are prevalent, thereby furnishing valuable insights for simulating carbon
emissions in DGVMs.

4.6 Model limitations and excluding drivers of burnt area

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and
socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous
studies (Forkel et al., 2019; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The
differences in our findings are related to differences in the statistical or modelling approach and the fact that most of these
studies addressed annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important
for understanding fire dynamics, e.g., influencing fuel availability, landscape structure, and ignition sources. For instance,
grazing lands can significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing potentially
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reducing fuel loads (Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity,
affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013). However, these factors are apparently indirectly
represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, for example, is
generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire suppression
capabilities (Forkel et al., 2019). However, it was excluded here because its contributions were already effectively represented
by HDI and PPN, which capture broader socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al.
(2022) observed a shift in the direction of contribution for covariates when PPN and RD are used together. Considering that
we may not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in
our model. Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table Al) yielded marginal improvements,
which were not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was
aimed at reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By
focusing on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power.
However, the often-small differences in the deviance explained and the NME between different models imply that vegetation-
fire modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power.

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal
variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the
statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially
omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling
techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel et al., 2019; Joshi and Sukumar,
2021; Mukunga et al., 2023; Zhang et al., 2023). This might contribute to observed shortcomings in our model's ability to
predict spatial fire distribution in certain regions and to capture interannual variability across many parts of the world. Future
investigations should aim to explore the inclusion of other established predictors and methodologies in global fire modelling
once they become easily compatible with DGVM integration. Despite these challenges, our study possesses intrinsic value,
and the developed model stands as a relatively simple tool for informing global seasonal fire predictions.

4.7 Next steps for DGVM integration, future directions and model improvements

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation
state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM. DGVMs include GPP and the
cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and
universal coupling strategy to capture the effect of vegetation on burnt areas. However, all model results are imperfect and
biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model
training. This error will propagate to the burnt area calculation and so this discrepancy should be investigated. In the likely
event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account
for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture
certain dynamics and states. However, we note that our comparatively restricted variable set and simple GLM approach will
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be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches
with larger suites of predictor variables. For example Son et al. (2024) achieved excellent correspondence with observed data
using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the fuel
predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors
(including plant functional type cover fractions and both absolute values and anomalies of LAI and water content of four soil
layers) are all determined from fixed input data - remotely sensed of climate reanalysis. Thus, in this case, the quality of the
results from hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables
correctly. The model presented here is tailored for integration into a DGVM by using only a few variables which can be
robustly predicted, and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting
and relying on correlations in the data which may not hold in the DGVM predicted state. Furthermore, the new model includes
seasonal variations in burned area, which are not captured by all existing fire modules within DGVMs (Hantson et al., 2020).

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they
can either be prescribed input variables or can be calculated from the climate input. Finally, to build a fully coupled vegetation-
fire model, it is then necessary to include the effects of the simulated fire on the vegetation. For this step we can utilise the
mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE
model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may
need to be adjusted to account for the different simulated burnt areas.

5. Conclusions

We present a parsimonious statistical model to simulate global burnt area on a monthly timestep thus including seasonal
variations. This is an important advance as representation of the seasonal cycle is a weakness in global fire models, both in
and out of DGVMs, and across different model types. Notably, this representation of the seasonal cycle was achieved with
only two sub annual predictor variables. We found the drivers FWI, TPI, and PNTC are positively associated with BA, whereas
MEPI, HDI, PPN, and NDD exhibit negative relationships, and PTC showed a unimodal response with strongest effect at
intermediate tree cover. The diversity of these drivers underscores the multifaceted influence of both climatic and socio-
economic drivers on fire dynamics. Our model explicitly accommodates these drivers, capturing how variations in climate,
vegetation productivity, and human development interact to modulate fire occurrence and extent. Notably, the use of HDI to
represent societal development as a proxy for fire management capacity and the transition away from fire-dependent
agricultural practices provides a coarse but global socioeconomic driver beyond GDP and population density. Including this
in DGVMs can improve fire, vegetation and human feedbacks, particularly with respect to Shared Socioeconomic Pathways
(SSPs, O’Neill et al., 2017) or other scenarios.

Overall, the model developed in this study has demonstrated strong performance in simulating global burned area patterns. It

holds potential for integration into DGVMs to enhance the representation of fire dynamics, albeit it remains to be tested how
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well the model performs when remote-sensing-derived vegetation and land cover variables are replaced with those simulated
by a DGVM.
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Appendices

Table Al: Results of modelling attempts using different combinations of predictor variables using a progressive
inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer
colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest
error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better
performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated
by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model
performance.

Model Formulae Deviance NME
explained

model 1 | glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 0.7472088

model 2 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 0.7495652

model 3 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 0.7208771
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model 4 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 0.7188448

model 5 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 0.7191269

model 6 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 | 0.7195616

model 7 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 0.5313813 0.7193946
PRC)

model 8 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 0.5349288 | 0.7190611

model 9 | glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 0.5359802 | 0.7181930
FAPAR12 + PGC)

model glm(burnt ~ FWI + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + 0.5295939 | 0.7172668

10 FAPAR12 + PGC + PPN)

model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 0.5579946 | 0.7193546

11 PGC + PS)

model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 0.5571164 | 0.7192122

12 PS)

model glm(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD + poly(PTC, 2) + PNTC 0.5569187 | 0.7214560

13 + PS)

model glm(burnt ~ FWI + MEPI + HDI*PGC + RD + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061

14

model glm(burnt ~ FWI + MEPI + HDI*PRC + RD + poly(PTC, 2) + PNTC + PS) 0.5664789 | 0.7154708

15

model glm(burnt ~ FWI + MEPI*PNTC + HDI + RD + poly(PTC, 2) + PS) 0.5563012 | 0.7215202

16

model glm(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069

17

model glm(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC* PS + NDD + 0.5711503 | 0.7167015

18 TPI)

model glm(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC* PS + NDD + 0.5709692 | 0.7175149

19 PGC + FAPAR12)

Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC* PS + NDD + 0.5677209 0.7182814

20 FAPAR12)

Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 0.5714474 | 0.7170576

21 TPI + PPN

Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + 0.5705348 0.7177887

22 PPN

Model glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ 0.5714474 | 0.7170576

23 TPI+ PPN

Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 0.5720048 0.7173093

24 TPI + PPN + AAP
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Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + 0.5682776 0.7186160
25 TPI

Model glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC 0.5687439 0.7194855
26 + TPI

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. The GFED regions
include Boreal North America (BONA), Temperate North America (TENA), Central America (CEAM), Northern
Hemisphere South America (NHSA), Southern Hemisphere South America (SHSA), Europe (EURO), Middle East
(MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central
Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia (EQAS) and Australia and New Zealand (AUST). Regions with
significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends.

Region Sen's slope P-value

BONA 558.354 0.1082
TENA 895.8292 0.4338
CEAM -1963.035 0.1494
NHSA -1601.363 0.387
SHSA -9119.019 0.0529
EURO 189.2956 0.387
MIDE 202.3893 0.9016
NHAF -22329.83 0.0026
SHAF -28205.43 0.0001

BOAS -1560.25 0.1494
CEAS -8342.713 0.0011
SEAS -9671.238 0.0034
EQAS 69.04606 0.9671
AUST 1141.46 0.3434
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699 Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across

700 different GFED regions.
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Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental
and socio-economic variables: Monthly Ecosystem Productivity Index, Fire Weather Index, Percentage Non-Tree
Cover, Human Development Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road
Density, Precipitation Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the
negative correlation between percentage tree cover and burnt area fraction, and the positive correlation between
number of dry days and burnt area fraction.
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719  Figure A4: Scatter plots illustrating interannual comparison by GFED regional boundaries between observed burnt
720  areafraction (GFED5) and predicted burnt area fraction for the period between 2002 and 2018.
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723 Figure A5. Shows the seasonal comparison by GFEDS5 regional boundaries between observed burnt area (in red),
724 predicted burnt (in blue), fire weather index (in green).
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