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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics
and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-
oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical
model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, tailored for integration
within DGVMs. Using monthly burnt area (BA) data form the latest global burned area product from GFED5 as our response
variable, we developed Generalized Linear Models (GLMSs) to capture the relationships between potential predictor variables
(biophysical and socio-economic) that are simulated by DGVMs and/or available in future scenarios. We used predictors that
represent aspects of fire weather, vegetation structure and activity, human land use and behavior and topography. Based on an
iterative process of choosing various variable combinations that represent potential key drivers of wildfires, we chose a model
with minimum collinearity and maximum model performance in terms of reproducing observations. Our results show that the
best performing (deviance explained 56.8%) and yet parsimonious model includes eight socio-economic and biophysical
predictor variables encompassing the Fire Weather Index (FWI), a Monthly Ecosystem Productivity Index (MEPI), Human
Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover (PNTC),
Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When keeping the other variables constant (partial
residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively
related to BA. While the model effectively predicted the spatial distribution of BA (Normalized Mean Error [NME] = 0.72),
its standout performance lay in capturing the seasonal variability, especially in regions often characterized by distinct wet and
dry seasons, notably southern Africa (R? = 0.72 to 0.99), Australia (R? 68) and South America (R? = 0.75 to 0.90). Our model
reveals the robust predictive power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal
global fire patterns. Finally, simulations with and without dynamically changing HDI revealed HDI as an important driver of
the observed global decline in BA. The model presented should be compatible with most, if not all, DGVMs used to develop

future scenarios.
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1 Introduction

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns
(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires
have recently occurred in Australia and Canada, burning more than 15 million and 7 million ha (Jain et al., 2024; MacCarthy
et al., 2024). Even though the effects of fires may be positive through contributing to selected natural ecosystem processes,
large and frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic
value, and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The
negative role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However,
climate change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial
drivers as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25%
reduction in burnt area extent over the past two decades, explicitly attributing this decline to human activities (Andela et al.,
2017). Wu et al. (2021) argue that future demographic and climate patterns will cause an increase in burnt areas, particularly
in high latitude warming and tropical regions. However, Knorr et al. (2016) concluded that, under a moderate emissions
scenario, global burnt areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse
gas emissions. Cunningham et al. (2024), on the other hand reported that although total burnt area is declining globally, extreme
fire events are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global
fire dynamics are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance
and management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide
prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs)
(Koubi, 2019; Robinne et al., 2018).

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate
interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire
can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and
vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to
predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out
in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016;
Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and
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difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al.,
2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather
and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and
evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data
from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for
ecosystems other than the ones used in their derivation is often not reliable (e.g Perry, 1998). This is mainly because statistical
models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical
of fires that are stochastic in nature. Integration of mechanistic process-based techniques and statistical methods remains one

common way forward to advance our understanding of fire dynamics.

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al.,
2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass,
which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help
correct biases in DGV M outputs and enhance predictions by combining empirical relationships with mechanistic model results.
This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing
researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santin, 2016; Flannigan et al., 2009). The
strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual)
that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification
of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in
capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al.,
2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more
holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023).
As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in

ensuring sustainable management of vulnerable ecosystems.

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively
understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics
of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal
outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona-Moreno et al.,
2005). Incorporating monthly data in global fire modelling helps researchers to accurately capture seasonal variations in fire

activity. Hence, global models developed using monthly data are necessary.
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Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN)(Bergado et al., 2021),
Random Forest (RF) and generalized additive models (GAM)(Chuvieco et al., 2021) which are currently not easily integrated
into DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced
recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the
relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion
of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that
are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables.
Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for
seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. Generally, most earlier fire
modules in DGVMs such as the LPJ-LMfire(v1l) were informally parameterized to predict seasonal fire cycles and do not
consider the fuller range of predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al.,
2013). Nurrohman, et al., (2024) produced monthly fire predictions from downscaling of annual model outputs without
building a statistical approach that is calibrated based on monthly inputs. This left an opportunity to improve burnt area models
in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a
simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also
being easily integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on
variables pertinent to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance
our comprehension of inadequately understood factors while leveraging the potential of finely detailed temporal resolution

burnt area datasets.

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integrated
into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics,
2) to leverage a GLM for predicting global burnt areas using DGV M-integrable predictors and 3) to evaluate the interannual

and seasonal cycles of burnt area extent, both globally and regionally.

2 Data and Methods

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation,
weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also

evaluated. Fig. 1 provides an overview of the steps that were followed during modelling.
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Figure 1: Study workflow showing an overview of steps followed in model calibration and evaluation together with the

outputs.

2.1 Fire data

Monthly BA data for the periods 2002 and 2018 were derived from monthly mean fractional BA from the GFED5. We selected
this data because of their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified

according to 17 major land cover types using the MODIS classification scheme. We used this land cover information to remove
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burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of
cropland residue burning which we suppose is likely to have different drivers from burning in non-arable lands. We used data
for the period 2002 to 2010 for model training and data for 2011 to 2018 for model testing. BA data comes at a resolution of
0.25° x 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for ease of processing at a
global scale and at the same time to ensure that our outputs are DGVM integrable since they are commonly applied at 0.5°

globally.

2.2 Predictor variables

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many
possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our
selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic
variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables
that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a),
Vegetation optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture (Mukunga et al., 2023), soil
fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM integration
to calibrate the model effectively. The chosen predictor variables were categorized based on their representational nature and

their roles in fire modelling (See Table 1).

Classification
category  (Climate,
. _ vegetation, Original spatial | Temporal
Predictor Abbreviations | landcover, landscape : . Source
. resolution resolution
fragmentation,
ignition, suppression
topographic effect)
gercentage PGC Vegetation 300m Annual ESA CCI landcover
rass cover
Percentage
non-tree . MODIS - MOD44B
vegetation PNTC Vegetation 250m Annual (DiMiceli et al., 2011)
cover
Digital elevation model
Topographic products of global 250
positioning TPI Topography 90m Static m GMTED2010
index (GMTE data 2010) and
near-global 90 m SRTM
v4 (Jarvis et al., 2008)




Predictor Abbreviations | Classification Original spatial | Temporal | Predictor
category (Climate, | resolution
vegetation,
landcover,
landscape
fragmentation,
ignition,
suppression
topographic effect)
Human . . .
Development | HDI Ignltlon/suppressmn/ subnational Annual Glgbal data lab (Smits
Index fragmentation and Permanyer, 2019)
Ignition/suppression/ Global Roads Inventory
Road density RD f?a mentat?c?n 0.5° x 0.5° Static Project (GRIP) database
9 (Meijer et al., 2018)
Socioeconomic data and
Population Ignition/suppression/ . 5-year applications centre
density PPN fragmentation 2.5 arc minutes intervals (SEDAC) (Klein
Goldewijk et al., 2017)
HistorY Database of the
Percentage . . Global Environment
crop cover PCC Fragmentation 5 arc minutes Annual (HYDE 33) (Klein
Goldewijk et al., 2017)
HistorY Database of the
Percentage . . Global Environment
pasture cover PPS Vegetation 5 arc minutes Annual (HYDE 3.3)(Klein
Goldewijk et al., 2017)
Copernicus climate data
PreC|p|ta_t|on PS Climate 0.5° x 0.5° Annual sto_re (Copermqus
seasonality Climate Change Service
2018)
Copernicus climate data
Fire weather . o o store (Copernicus
index FWI Climate 0.57x0.5 Monthly Climate Change Service
2018)
Precipitati Copernicus climate data
recipitation store (Copernicus
of the driest | PPNQ Climate 0.5° x 0.5° Annual . P ;
Climate Change Service
quarter 2018)
Copernicus climate data
Number  of . o R store (Copernicus
dry days NDD Climate 0.57x05 Annual Climate Change Service
2018)
Percentage HistorY Database of the
grazeland PGzC Vegetation 5 arc minutes Annual ?Ij(\)(bSIE E g;”roag:g?;
cover ;

Goldewijk et al., 2017)
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Predictor Abbreviations | Classification Original spatial | Temporal | Predictor
category (Climate, | resolution
vegetation,
landcover,
landscape
fragmentation,
ignition,
suppression
topographic effect)

HistorY Database of the

Percentage . . Global  Environment
rangeland PRC Vegetation 5 arc minutes Annual (HYDE 33) (Klein
cover Goldewijk et al., 2017)
Annual Copernicus climate data
average AAP Climate 5 arc minutes Annual Séﬁ:ﬁate Chafr?%psegr]\llcigz
precipitation 2018) g

Gross .
primary GPP Vegetation 0.5° x 0.5° Monthly x]gtz)gﬁlzmg&unnmg
productivity '
Aboveground AGB Vegetation 0.5°x 0.5° Longterm

biomass average

Percentage . MODIS - MOD44B
Tree cover PTC Vegetation 250m Annual (DiMiceli et al., 2011)
Fraction of

Absorbed Monthly MODIS - MOD15A2H
Photosyntheti | FAPAR Vegetation 500m (originally | (Running and Zhao,
cally Active 8 days) 2019)

Radiation

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial
& temporal) and the respective data sources.

2.2.1 Vegetation-related predictors

We used eight vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables
encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage
Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree Cover (PTC). Previous work emphasizes the
important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010), discussed the crucial role of
vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered by grass, influencing fuel
availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to overall fuel dynamics. PCC
reflects the presence of cultivated crops which have been found to suppress fire occurrence as they fragment the landscape

acting and so act as a barrier to fire spread (Haas et al., 2022).
8
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We used PGZC, PRC, PTNC and PTC to evaluate the relationship between landcover and burnt area distribution. Previous
studies reported that landcover change has made a significant contribution to wildfire distribution (Gallardo et al., 2016;
Villarreal and Vargas, 2021).

We used Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) as proxies for vegetation health and productivity. Previous studies emphasized the varying effects

of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et al., 2021).

2.2.2 Topographic-related predictors

We used topographic positioning index (TPI) to evaluate how topography can influence the occurrence and spread of fires.
Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions (Blouin et
al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio (Parisien
et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent studies
reported some significant contributions of topography to global burnt area distribution when using the TPI (Haas et al., 2022).
TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on the
distribution of burnt areas. Thus, TPl goes beyond simplistic representations of landscapes and offers a more nuanced
perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire
behavior and propagation patterns, the inclusion of TPI in this study allows for a comprehensive examination of wildfire

distribution.

2.2.3 Anthropogenic Influence Predictors

We used the Human Development Index (HDI), Population Density (PPN), and Road Density (RD) to capture the impact of
anthropogenic factors on both fire ignition and suppression. The inclusion of HDI aims to encapsulate human influence on
ecological landscapes, thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index
developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of
human development, including health (life expectancy at birth), education (mean years of schooling and expected years of
schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from 0 to 1, with higher
values indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands
as a valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross
Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address the limitations of using GDP as
a proxy for human development in predicting global fires, we opted for HDI. Previous research has utilized GDP for this

purpose (Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast,
9
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HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as investments and
advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness. HDI evaluates
a country or other administrative region's development status based on the critical factors of life expectancy, education, and
income, providing a nuanced understanding of the socio-economic context shaping fire behavior (Teixeira et al., 2023). To
evaluate model sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and
holding HDI constant.

2.2.4 Weather-Related Predictors

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires.
FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire
behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed
decisions on fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate well
with burnt areas across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production
limitations. While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how
moisture availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal
and annual weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation
(AAP). The selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco
et al., 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from
seminal works such as that by Pechony and Shindell, (2010).

2.3 Data Processing

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had
a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation,
resampling, and consolidation. For instance, while the native temporal resolution of FAPAR was 8 days, we transformed it
into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an annual temporal
resolution, except for FWI, GPP, and FAPAR, which were also available every month. For annual predictors, we replicated
the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize
with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented
5-year span. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as key driver for global fires.
To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem
Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was

originally defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation
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growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire

dynamics.

GPPy,
max(GPPy,GPPy—q,,...GPPym—13,)

MEPI =

)

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated
additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the
mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPARG (the mean FAPAR over
the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel

accumulation.

2.4 Statistical modelling and final predictor choice

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical
package (CoreTeam, 2014). Following established guidelines by Dormann et al. (2013) , we applied the conventional threshold
of R > 0.5 to enhance the model's efficiency. Moreover, we employed the Variance Inflation Factor (VIF) to evaluate
collinearity among predictor variables, removing those with VIF values surpassing 5, as recommended by O’brien, (2007).
Post collinearity tests, an additional 3 parameters were adopted to progressively select the best model, namely: 1) a simple (~
parsimonious) model which comprise of a full suite of categories of covariate combinations (i.e vegetation, climate,
topography, ignitions), 2) the deviance explained value and 3) the normalised mean square error value as illustrated in the
making of Burnt Area Simulator For Europe (BASE) (Forrest et al., 2024). The variables include the MEPI, FWI, PNTC, HDI,
PTC, TPI, NDD and PPN.

A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions,
seamless integration into DGVMs and ability to generate partial residual plots, i.e. the effect of each predictor in the model
while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Calibration of the model
utilized data from 2002 to 2010 while testing utilized data from 2011 to 2018. Residual plots were utilized to examine the

magnitude and nature of each predictor's relationship with wildfire burnt area distribution.

Model performance was assessed using the Normalized Mean Error (NME) following Kelley et al. (2013). NME serves as a
standardized metric for evaluating global fire model performance, facilitating direct comparison between predictions and

observations. The NME was calculated following Eq. (2).

11
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The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all
cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the
observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment
between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-
binomial distribution. We applied the logit link function based on the methodology outlined by Haas et al. (2022). After
conducting a collinearity test, the models were systematically evaluated using various combinations of predictor variables. A
total of 25 model runs were conducted, each incorporating different sets of variables while iteratively excluding some, to
discern the extent to which each predictor explained variance when others were not included (see Table Al). We followed the
stepwise approach of variable inclusion, exclusion, interaction terms, log transformations, and polynomial transformations as
described by Forrest et al. (2024). While their analysis focused on Europe, our objective was to replicate and apply the method
ata global scale. To evaluate the reliability of the predicted interannual variability and seasonal cycles, we applied a regression
function to determine the relationship (R?) between the observed and predicted trends. An R? of 1 shows good performance in
our predictions and an R? of 0 shows poor performance in our predictions. To assess the trend in predicted interannual
variability, we used the Mann-Kendall test (Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends
in environmental data. Being non-parametric, it works for all distributions, does not require normality, but assumes no serial

correlation.

3 Results

3.1 Correlation between variables

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12,
FAPARG, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however
some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and
model performance. For example, NDD was strongly correlated to PTC ( ~ -0.68), but both increased the variance explained

by the full model.
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3.1 Optimal model selection and GLM results

The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump in deviance
explained when PNTC is added (Model 3: 0,5298). Models 4 to 8 involve adding vegetation (FAPAR) and various land use
types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, indicating these factors
provide some additional predictive power but are not as impactful as existing vegetation covariates (such as GPP). Models 10
to 12 introduce polynomial terms for PTC. This results in an increase in deviance explained, peaking at around 0.558836 in
Model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in marginal
increase in deviance explained with the highest recorded in Model 15(~ 0.5664789). Models 19 to 25 fine-tune the overall
performance by incorporating various variables and their interactions. Model 24, which includes a comprehensive set of
climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest deviance explained
(~0.5720048). The marginal improvements observed in subsequent models indicate that while additional variables contribute
to the model, the primary influencing factors were already identified by Model 19, however it was not the simplest model (~
parsimonious), and consisted of other variables that we don’t have future projections for (e.g RD). We removed some of the
redundant variables till Model 24 (~11 variables), however, it was not as parsimonious as Model 25 (~8 variables). Therefore,
Model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected as the best

model in this analysis.

Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of
wildfires (p < 0.05), as outlined in Table 2.

Estimate Std.Error T value Pr(>[t))
(Intercept) - 6.159e+00 2.349x107-02 | -262.17 <0.00001
FWI 9.296e-01 1.948x10"-03 | 477.28 <0.00001
MEPI -2.270e+00 8.974x107-03 | -252.96 <0.00001
HDI -1.680e+00 1.235x10"-02 | -135.99 <0.00001
PNTC 5.170e-02 2.270x107-04 | 227.78 <0.00001
poly(PTC,2)1 2.135e+03 1.114x10°01 | 191.55 <0.00001
poly(PTC,2)2 -9.783e+02 6.975 -140.27 <0.00001
TPI 2.225e-01 3.946x107-03 | 56.39 <0.00001
NDD -9.550e-03 4.757x10"-05 | -200.78 <0.00001
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307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323

324

PPN

1.808x10"-05 | -59.48

<0.00001

Table 2. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results

indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05).

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among
the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the

MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential

relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving

wildfire dynamics.
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Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor

variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972).
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Predictor variables were Gross Primary Production Index (GPP), Fire Weather Index (FWI), Percentage Non-Tree
Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index (TPI),
Population Density (PPN) and Number of Dry Days (NDD).

The model demonstrated strong performance in predicting BA, accounting for over 50% of the variability in burnt areas
(Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution model by Haas et al. (2022),
who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader array of variables (16
predictors) and operated at a coarser temporal resolution (annual). Our model's performance, based on eight predictors and

operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious.

Assessment of model accuracy yielded an NME of 0.718, indicating a generally close correspondence between observed and
predicted burnt area patterns (see Fig. 4). This level of accuracy is comparable to that reported by previous global fire models,
such as Haas et al. (2022) and Hantson et al. (2016) which reported NMEs ranging from 0.60 to 1.10.

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating
notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 4). However, in
extratropical regions, particularly in the northern hemisphere, instances of over-prediction were observed. This discrepancy is

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model.
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Figure 4: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area
(bottom).
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3.2 Interannual variability

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to
2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was reproduced by the model, but the model
underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with
the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant
in the model made the projected trend remain steady, suggesting the role of anthropogenic developments (increasing HDI over

time) driving a downward trend in wildfire distribution.

7.10x10%6 T
» 6.90x10"6 T
o
B
° —Observed
£ 6.70x10%6 T =
g —Predicted (HDI included)
=
g 6.50 X 10°6 - Predicted (HDI excluded)
)
g —Predicted (HDI constant)
% 6.30x10"6 +
g ----- Linear (Observed)
e
® s10x106 + N/ e Linear (Predicted (HDI
t= included))
5 Linear (Predicted (HDI
0 590x10"6 | excluded) )
----- Linear (Predicted (HDI
constant))
5.70x10"6 = T t T t f
2002 2007 2012 2017

Year

Figure 5: Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates
detection and model projections under different HDI treatments: when HDI was excluded, included and held constant

from the value of the first year in the model.

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area
extent across the 14 GFED regions (refer to Fig. 6a and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a

significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA,
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363  SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in
364  GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and
365 Europe demonstrated no significant trend, as illustrated in Fig. 6a.
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Figure 6: Variation in the trend of interannual variability for burnt areas across different GFED regions. Where (a)
shows the direction of the trend and (b) shows the spatial distribution of the strength of relationship (r-square values)

between observed and predicted interannual variability per GFED region.

Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship
between the predicted trend when compared to the observed (R?= 0.24) (See Fig 6b and Fig Al). This poor relationship was
exhibited across most of the GFED regions (R? < 0.50), except for the NHSA which showed strong similarities between the
predicted trend and observed trend (R? = 0.55). This observation suggests that the combination of covariates that we
incorporated in this model has limited strength in capturing global interannual variability in burnt area. However, the predicted

global trend is in sync with previously reported global trends (Jones et al., 2022).

3.3 Seasonal Cycle

Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and
August (see Fig. 7). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the
observed trend (R% = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted
seasonal cycles varies according to the GFED region with R? ranging between 0.06 to 0.99 (refer to Fig. 8). The model
predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R? > 0.50) (see Fig.
8 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R? < 0.50).
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Figure 8: Spatial distribution of r-square values for the relationship between observed and predicted seasonal

variability per GFED region.

4 Discussion

We found a DGVM compatible parsimonious global statistical model made of FWI, PNTC, PTC, TPI, MEPI, HDI, PPN and
NDD. Of all the key variables, FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring the
importance of conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High PNTC
is most likely related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings show that fire weather
(~FWI) and fuel availability (~PNTC) influence burnt area extent align with previous studies (Andela et al., 2017; Bistinas et
al., 2014; Forkel et al., 2019b; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnt area, not

the seasonal cycle, which is also crucial to adapt to changes in fire risk.

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree cover show
lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with
low PNTC are often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees (Juli et
al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, leading to
fewer fires. Though our findings support previous literature indicating that regions with abundant combustible vegetation and
favorable fire-weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 2010), we observed a
surprising negative relationship between NDD and burnt area. Previous studies found a positive relationship between NDD
and burnt area fractions (Haas et al., 2022), like our single factor plots of NDD and burnt area in Fig A3. This result most
probably shows that relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred
to seasonal fire predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities
in Mediterranean ecosystems (Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating
the complex relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an
interaction term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further
exploring the complex relationship between dryness and vegetation at a global scale, particularly the effect of incorporating

polynomial terms on correlated predictors in a linear model.

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our

findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a

significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas et al. (2022), PPN, which should

correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower
22
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PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape fragmentation through road
construction, and measures to suppress fires in human inhabited spaces to protect properties (Kloster et al., 2010). Saunders et
al., (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase in
population leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires.
They further highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both
spatial and temporal) of analysis may influence nature and extent to which PPN affects burnt area extent. Our results for the
effect of PPN have important implications for DGVMs and land surface models. These models differ widely in the assumed
effect of PPN, often using a unimodal response simulating BA annually, in some cases distributing the wildfires across seasons
in a second step, using rather simplified assumptions (Teckentrup et al., 2019). Similarly, we anticipated a positive relationship
between MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed
a negative relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt
areas. Our findings are in line with those of Forrest et al. (2024) who initially investigated the effect of this index on burnt
areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed a more refined measure,
MEPI. Future research could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions

and temporal scales.

4.1 Spatial variation in model performance

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South
America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and
predictable fire regimes in these regions. Since fire activity here is strongly governed by distinct wet-dry seasonal cycles,
which align closely with climate variables such as precipitation, temperature, and vegetation productivity, factors that our
model capture effectively using linear functions (Archibald, 2016; Van Der Werf et al., 2017). These regions typically exhibit

lower interannual variability in fire occurrence, facilitating better model generalization.

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as
well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical
and anthropogenic factors (Chuvieco et al., 2021; Forkel et al., 2019b). High interannual variability in burnt areas in these
regions is due to irregular droughts, land use change, and fire suppression policies that make prediction more challenging for
linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied ignition sources in temperate and
boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). Chuvieco et al., (2021) reported about
this challenge when building global models. Thus, our findings build upon existing models on global burnt area distribution.

What sets our model apart from previous models is its ability to reliably identify global seasonal fire distribution patterns. This
23
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simplicity offers a notable advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared

to annual models.

4.3 Attribution of global trends

Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends (Joshi and
Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017),
primarily attributed the decline in global burnt areas to agricultural expansion and intensification. Earl and Simmonds (2018)
supported this view, adding that increased net primary productivity in Northern Africa also played a significant role. However,
our results suggest that human development is a more important driver than agricultural expansion alone. Despite the
conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland fractions as predictor
variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis
revealed that excluding the HDI from our model and holding it constant to the value of the first year predicted a steady trend
that deviates from the observed negative trend in global fire extent and including HDI follows a decreasing trend that aligns
with the observed trend (Fig. 5). This highlights the significant influence of HDI in projecting the purported negative global
fire trend. HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as investments and
advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness (Teixeira et al.,
2023). Although these strategies are often implemented independently and on a smaller scale, their cumulative impact on
global fire trends is substantial. Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire
control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the
development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively

mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods.

4.4 Interannual variability

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high
precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1).
Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated
FAPAR12 in models 9 to 12 (Table A1) and MEPI in models 11 to 26 (Table Al). Unfortunately, these adjustments did not
enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased
precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa (Shekede
et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons using GPP12 in model
10, respectively. While this approach did not improve global interannual predictions, it showed a slight enhancement in
deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of the fire-aerosol

positive feedback mechanism in Africa (Zhang et al., 2023) and periodic EI Nifio conditions, which can affect rainfall patterns
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and lead to drier vegetation conditions, reducing the predictability of fire occurrence, especially with linear models
(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model Intercomparison
Project (FireMIP) project (Hantson et al. 2020), all models did a poorer job of matching the interannual variability than the
spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all
data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our
modelling efforts highlight the complexity of accurately predicting wildfire trends and underscore the need for future research

to identify covariates that more effectively capture the interannual variability of fires at a global scale.

4.5 Fire seasonality

Globally, our model predicts a notable peak in burnt areas during February and August. The February peak corresponds to dry
conditions and fuel accumulation in regions such as NHSA, NHAF, and MIDE. In contrast, the August peak primarily
emanates from tropical regions characterized by distinct seasonal patterns, particularly in SHSA, SHAF, and AUST. Here, the
dry season augments the combustibility of accumulated fuel from the preceding wet season, facilitating fire spread. This
observation corroborates earlier studies in the southern hemisphere, which underscore the prevalence of wildfires during
prolonged dry spells (Magadzire, 2013; Shekede et al., 2024; Strydom and Savage, 2017). Increased temperatures and
desiccated vegetation substantially enhance the likelihood and severity of wildfires during the dry season. Conversely, the
onset of the rainy season precipitates a marked reduction in the occurrence of wildfires in these regions. This underscores the
enduring influence of fire weather and vegetation dynamics as principal drivers of seasonal burnt area cycles, with factors such
as moisture content in vegetation and soil, as well as humidity, playing pivotal roles in modulating ignition and fire extent
within ecosystems. The seasonal forecasts generated by our model hold significant implications for guiding adaptive strategies,

fire management and prevention at both regional and global scale.

The findings of this study exhibit robustness in capturing seasonal cycles (R? = 0.536, See Fig.7), facilitated by the inclusion
of monthly variables such as the MEPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While
the seasonal predictions demonstrate reliability across most GFED regions globally, notable exceptions were observed in North
America, North Africa, and Europe (R? <0.50, See Fig.8). This discrepancy could be attributed to the intricate climatic
conditions inherent to these regions, which influence fires in a manner that eludes simple linear modelling. For instance,
regions with clear-cut wet and dry seasons tend to exhibit more regular fire cycles, largely governed by seasonal shifts in
precipitation, temperature, and vegetation growth. These predictable patterns make them well-suited to linear modelling
approaches (Van Der Werf et al., 2017). In contrast, areas in the northern hemisphere experience more irregular and less
seasonally driven fire activity. Here, the interaction of drought events, land management, and socio-economic drivers
introduces variability that weakens model performance (Chuvieco et al., 2021; Forkel et al., 2019b). Additionally, varied

ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns (Flannigan et al., 2009). Given the
25




520
521
522
523
524

525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

parsimonious design of our model, with only ~eight predictors, we think that the model’s performance is acceptable. For
certain regions, it might be possible to increase model performance by implementing further region-specific predictors and
relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions can facilitate the identification
of temporal windows when fires are prevalent, thereby furnishing valuable insights for simulating carbon emissions in
DGVMs.

4.6 Model limitations and excluding drivers of burnt area

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and
socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous
studies (Forkel et al., 2019b; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The
differences in our findings are related to differences in the statistical or modelling approach and the fact that most of these
studies addressed annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important
for understanding fire dynamics, e.g. influencing fuel availability, landscape structure, and ignition sources. For instance,
grazing lands can significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing potentially
reducing fuel loads (Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity,
affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013). However, these factors are apparently indirectly
represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, for example, is
generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire suppression
capabilities (Forkel et al., 2019b). However, it was excluded here because its contributions were already effectively represented
by HDI and PPN, which capture broader socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al.,
(2022) observed a shift in the direction of contribution for covariates when PPN and RD are used together. Considering that
we may not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in
our model. Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table Al) yielded marginal improvements,
which were not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was
aimed at reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By
focusing on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power.
However, the often-small differences in the deviance explained and the NME between different models imply that vegetation-

fire modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power.

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal
variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the
statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potential ly

omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling
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techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel et al., 2019b; Joshi and Sukumar,
2021; Mukunga et al., 2023; Zhang et al., 2023). This might contribute to observed shortcomings in our model's ability to
predict spatial fire distribution in certain regions and to capture interannual variability across many parts of the world. Future
investigations should aim to explore the inclusion of other established predictors and methodologies in global fire modelling
once they become easily compatible with DGVM integration. Despite these challenges, our study possesses intrinsic value,

and the developed model stands as a relatively simple tool for informing global seasonal fire predictions.

4.7 Next steps for DGVM integration, future directions and model improvements

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation
state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM. DGVMs include GPP and the
cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and
universal coupling strategy to capture the effect of vegetation on burnt area. However, all model results are imperfect and
biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model
training. This error will propagate to the burnt area calculation and so this discrepancy should be investigated. In the likely
event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account
for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture
certain dynamics and states. However, we note that our comparatively restricted variable set and simple GLM approach will
be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches
with larger suites of predictor variables. For example Son et al., (2024) achieved excellent correspondence with observed data
using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the fuel
predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors
(including PFT cover fractions and both absolute values and anomalies of LAI and water content of four soil layers) are all
determined from fixed input data - remotely sensed of climate reanalysis. So, in this case, the quality of the results from
hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables correctly. The
model presented here is tailored for integration into a DGVM by using only a few variables which can be robustly predicted,
and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting and relying on
correlations in the data which may not hold in the DGVM predicted state.

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they
can either be prescribed input variables or can be calculated from the climate input. Finally, to build a fully coupled vegetation-
fire model, it is then necessary to include the effects of the simulated fire on the vegetation. For this step we can utilise the

mortality and combustion components of fire models already available and integrated into DGV Ms, for example the BLAZE
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model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may

need to be adjusted to account for the different simulated burnt area.

5. Conclusions

We sought to build a parsimonious statistical model for global seasonal burnt areas that can be integrated into a DGVM. The
specific objectives were to 1) to improve our understanding of major drivers of global burnt area dynamics, 2) to leverage a
GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate the interannual and seasonal

cycles of burnt area extent, both globally and regionally.

We present a parsimonious statistical model specifically tailored for global burnt areas, with the goal of integration into
DGVMs. FWI, PTC, TPl and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively related
to BA. Our findings highlight the significance of socio-economic advancements, particularly those improving fire management
strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-
economic predictor in our model. While our parsimonious model exhibited limitations in predicting the interannual variability
of global fires, it demonstrated commendable accuracy in forecasting the spatial (NME = 0.72). The strength of similarity
between observed and predicted seasonal cycles varied according to the GFED region with R? ranging between 0.06 to 0.99.
Its standout performance laid in capturing the seasonal variability, especially in regions often characterized by distinct wet and
dry seasons, notably southern Africa (R?>=0.72 to 0.99), Australia (R? 68) and South America (R?=0.75 t0 0.90). Our predicted
interannual variability exhibited poor strength of relationship between the predicted trend when compared to the observed (R?=
0.24)

We hope that our research outcomes will stimulate a more rigorous implementation of global fire models within DGVM
frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of global fire patterns and
enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in the face of ongoing

global changes.
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Appendices

Table Al: Results of modelling attempts using different combinations of predictor variables using a progressive
inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer
colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest
error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better
performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated
by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model
performance.

Deviance

Model | Formulae explained NME
model

1 glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 | 0.7472088
model | gim(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 | 0.7495652
model

3 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 | 0.7208771
Model | gim(purnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 | 0.7188448
5m°de' glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 | 0.7191269
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model

6 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 | 0.7195616
g“’de' glm(burnt ~ FWI1 + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PRC) 05313813 | 0.7193946
g“’de' glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 05349288 | 0.7190611
;nodel I%rg()burnt ~FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + FAPARI2 + oezes R
rlnoodel f"éné?;”i”ég NF\)M + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + FAPARIZ | o coocone | 0 2imoees
1m1°de' glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPARL2 + PGC + PS) | 0.5579946 | 0.7193546
1”‘200'9' glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 | 0.7192122
MOdel | gim(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD + poly(PTC, 2) + PNTC + PS) 0.5569187 | 0.7214560
r1n4odel glm(burnt ~ FWI + MEPI + HDI*PGC + RD + poly(PTC, 2) + PNTC+ PS) 0.5570586 | 0.7222061
1m5°de' glm(burnt ~ FWI + MEPI + HDI*PRC + RD + poly(PTC, 2) + PNTC + PS) 0.5664789 | 0.7154708
1m6°de' gm(burnt ~ FW1 + MEPI*PNTC + HDI + RD + poly(PTC, 2) + PS) 0.5563012 | 0.7215202
Model | gim(ournt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 | 0.7191069
Model | gim(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC* PS + NDD + TPI) 05711503 | 0.7167015
1m90de| Fg}i\rg/(ﬁt\)lgrlnzt)~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC* PS + NDD + PGC + 0.5709692 | 0.7175149
%Ode' glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12) 0.5677209 | 0.7182814
2"10‘19' gIm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPl + PPN | 0.5714474 | 0.7170576
Model | gim(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN 0.5705348 | 0.7177887
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2"3°de' glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN 0.7170576
Model | gim(ournt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPl + PPN + .
Model | gimd 7173003
'2\"5°de' gim(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TP 0.7186160
Model
26| gim(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI 0.7194855
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Figure Al: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across

different GFED regions.
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656 Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental
657  and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development
658 Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation
659  Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation
660 between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and
661 burnt area fraction.
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Region Sen's slope P-value

BONA 558.354 0.1082
TENA 895.8292 0.4338
CEAM -1963.035 0.1494
NHSA -1601.363 0.387
SHSA -9119.019 0.0529
EURO 189.2956 0.387
MIDE 202.3893 0.9016
NHAF -22329.83 0.0026
SHAF -28205.43 0.0001
BOAS -1560.25 0.1494
CEAS -8342.713 0.0011
SEAS -9671.238 0.0034
EQAS 69.04606 0.9671
AUST 1141.46 0.3434

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with
significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends.
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