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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics 11 

and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-12 

oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical 13 

model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, tailored for integration 14 

within DGVMs. Using monthly burnt area (BA) data form the latest global burned area product from GFED5 as our response 15 

variable, we developed Generalized Linear Models (GLMs) to capture the relationships between potential predictor variables 16 

(biophysical and socio-economic) that are simulated by DGVMs and/or available in future scenarios. We used predictors that 17 

represent aspects of fire weather, vegetation structure and activity, human land use and behavior and topography. Based on an 18 

iterative process of choosing various variable combinations that represent potential key drivers of wildfires, we chose a model 19 

with minimum collinearity and maximum model performance in terms of reproducing observations. Our results show that the  20 

best performing (deviance explained 56.8%) and yet parsimonious model includes eight socio-economic and biophysical 21 

predictor variables encompassing the Fire Weather Index (FWI), a Monthly Ecosystem Productivity Index (MEPI), Human 22 

Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover (PNTC), 23 

Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When keeping the other variables constant (partial 24 

residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively 25 

related to BA. While the model effectively predicted the spatial distribution of BA (Normalized Mean Error [NME] = 0.72), 26 

its standout performance lay in capturing the seasonal variability, especially in regions often characterized by distinct wet and 27 

dry seasons, notably southern Africa (R2 = 0.72 to 0.99), Australia (R2 68) and South America (R2 = 0.75 to 0.90). Our model 28 

reveals the robust predictive power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal 29 

global fire patterns. Finally, simulations with and without dynamically changing HDI revealed HDI as an important driver of 30 

the observed global decline in BA. The model presented should be compatible with most, if not all, DGVMs used to develop 31 

future scenarios. 32 
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1 Introduction 35 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 36 

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires 37 

have recently occurred in Australia and Canada, burning more than 15 million and 7 million ha (Jain et al., 2024; MacCarthy 38 

et al., 2024).  Even though the effects of fires may be positive through contributing to selected natural ecosystem processes, 39 

large and frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic 40 

value, and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The 41 

negative role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However, 42 

climate change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial 43 

drivers as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25% 44 

reduction in burnt area extent over the past two decades, explicitly attributing this decline to human activities (Andela et al., 45 

2017). Wu et al. (2021) argue that future demographic and climate patterns will cause an increase in burnt areas, particularly 46 

in high latitude warming and tropical regions. However, Knorr et al. (2016) concluded that, under a moderate emissions 47 

scenario, global burnt areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse 48 

gas emissions. Cunningham et al. (2024), on the other hand reported that although total burnt area is declining globally, extreme 49 

fire events are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global 50 

fire dynamics are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance 51 

and management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide 52 

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) 53 

(Koubi, 2019; Robinne et al., 2018). 54 

 55 

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 56 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 57 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 58 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 59 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 60 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 61 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of 62 

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and 63 
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difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 64 

2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather 65 

and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and 66 

evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data 67 

from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for 68 

ecosystems other than the ones used in their derivation is often not reliable (e.g Perry, 1998). This is mainly because statistical 69 

models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical 70 

of fires that are stochastic in nature.  Integration of mechanistic process-based techniques and statistical methods remains one 71 

common way forward to advance our understanding of fire dynamics. 72 

 73 

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al., 74 

2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass, 75 

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help 76 

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results. 77 

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing 78 

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The 79 

strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual) 80 

that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification 81 

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in 82 

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al., 83 

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more 84 

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). 85 

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in  86 

ensuring sustainable management of vulnerable ecosystems.  87 

 88 

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively 89 

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics 90 

of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal 91 

outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona‐Moreno et al., 92 

2005). Incorporating monthly data in global fire modelling helps researchers to accurately capture seasonal variations in fire 93 

activity. Hence, global models developed using monthly data are necessary.  94 

 95 
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Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN)(Bergado et al., 2021), 96 

Random Forest (RF) and generalized additive models (GAM)(Chuvieco et al., 2021) which are currently not  easily  integrated 97 

into DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced 98 

recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the 99 

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion 100 

of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that 101 

are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables. 102 

Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for 103 

seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. Generally, most earlier fire 104 

modules in DGVMs such as the LPJ-LMfire(v1) were informally parameterized to predict seasonal fire cycles and do not 105 

consider the fuller range of predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al., 106 

2013). Nurrohman, et al., (2024) produced monthly fire predictions from downscaling of annual model outputs without 107 

building a statistical approach that is calibrated based on monthly inputs. This left an opportunity to improve burnt area models 108 

in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a 109 

simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also 110 

being easily integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on 111 

variables pertinent to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance 112 

our comprehension of inadequately understood factors while leveraging the potential of finely detailed temporal resolution 113 

burnt area datasets.  114 

 115 

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integrated 116 

into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics, 117 

2) to leverage a GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate the interannual 118 

and seasonal cycles of burnt area extent, both globally and regionally. 119 

2 Data and Methods 120 

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation, 121 

weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also 122 

evaluated. Fig. 1 provides an overview of the steps that were followed during modelling.  123 

 124 
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 125 

  126 

Figure 1: Study workflow showing an overview of steps followed in model calibration and evaluation together with the 127 

outputs. 128 

 129 

2.1 Fire data 130 

Monthly BA data for the periods 2002 and 2018 were derived from monthly mean fractional BA from the GFED5. We selected 131 

this data because of their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified 132 

according to 17 major land cover types using the MODIS classification scheme. We used this land cover information to remove 133 
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burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of 134 

cropland residue burning which we suppose is likely to have different drivers from burning in non-arable lands. We used data 135 

for the period 2002 to 2010 for model training and data for 2011 to 2018 for model testing. BA data comes at a resolution of 136 

0.25° × 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for ease of processing at a 137 

global scale and at the same time to ensure that our outputs are DGVM integrable since they are commonly applied at 0.5° 138 

globally.  139 

2.2 Predictor variables  140 

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many 141 

possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our 142 

selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic 143 

variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables 144 

that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a), 145 

Vegetation optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture (Mukunga et al., 2023), soil 146 

fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM integration 147 

to calibrate the model effectively. The chosen predictor variables were categorized based on their representational nature and 148 

their roles in fire modelling (See Table 1).  149 

 150 

 151 

Predictor Abbreviations 

Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  

resolution 
Source 

Percentage 

Grass cover 
 PGC Vegetation 300m Annual ESA CCI landcover 

Percentage 

non-tree 

vegetation 

cover 

 PNTC Vegetation 250m Annual 
MODIS - MOD44B 

(DiMiceli et al., 2011) 

Topographic 

positioning 

index 

 TPI Topography 90m Static 

Digital elevation model 

products of global 250 

m GMTED2010 

(GMTE data 2010) and 

near-global 90 m SRTM 

v4 (Jarvis et al., 2008) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, 

landscape 

fragmentation, 

ignition, 

suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  Predictor 

Human 

Development 

Index 

 HDI 
Ignition/suppression/

fragmentation 
subnational Annual 

Global data lab (Smits 

and Permanyer, 2019) 

Road density  RD 
Ignition/suppression/

fragmentation 
0.5° × 0.5° Static 

Global Roads Inventory 

Project (GRIP) database 

(Meijer et al., 2018) 

Population 

density 
 PPN 

Ignition/suppression/

fragmentation 
2.5 arc minutes 

5-year 

intervals 

Socioeconomic data and 

applications centre 

(SEDAC) (Klein 

Goldewijk et al., 2017) 

Percentage 

crop cover 
 PCC Fragmentation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) (Klein 

Goldewijk et al., 2017) 

Percentage 

pasture cover 
 PPS Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3)(Klein 

Goldewijk et al., 2017) 

Precipitation 

seasonality 
 PS Climate 0.5° × 0.5° Annual 

Copernicus climate data 

store (Copernicus 

Climate Change Service 

2018) 

Fire weather 

index 
 FWI Climate 0.5° × 0.5° Monthly 

Copernicus climate data 

store (Copernicus 

Climate Change Service 

2018) 

Precipitation 

of the driest 

quarter 

 PPNQ Climate 0.5° × 0.5°  Annual 

Copernicus climate data 

store (Copernicus 

Climate Change Service 

2018) 

Number of 

dry days 
NDD Climate 0.5° × 0.5° Annual 

Copernicus climate data 

store (Copernicus 

Climate Change Service 

2018) 

Percentage 

grazeland 

cover  

 PGZC Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) (Klein 

Goldewijk et al., 2017) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, 

landscape 

fragmentation, 

ignition, 

suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  Predictor 

Percentage 

rangeland 

cover 

 PRC Vegetation 5 arc minutes Annual 

HistorY Database of the 

Global Environment 

(HYDE 3.3) (Klein 

Goldewijk et al., 2017) 

Annual 

average 

precipitation 

 AAP Climate 5 arc minutes Annual 

Copernicus climate data 

store (Copernicus 

Climate Change Service 

2018) 

Gross 

primary 

productivity 

 GPP Vegetation 0.5° × 0.5° Monthly 
MOD17A1 (Running 

and Zhao, 2019) 

Aboveground 

biomass 
 AGB Vegetation 0.5° × 0.5° 

Longterm 

average 
 

Percentage 

Tree cover 
 PTC Vegetation 250m  Annual 

MODIS - MOD44B 

(DiMiceli et al., 2011) 

Fraction of 

Absorbed 

Photosyntheti

cally Active 

Radiation 

 FAPAR Vegetation 500m 

Monthly 

(originally 

8 days) 

MODIS - MOD15A2H  

(Running and Zhao, 

2019) 

 152 

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial 153 

& temporal) and the respective data sources. 154 

 155 

2.2.1 Vegetation-related predictors  156 

We used eight vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables 157 

encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage 158 

Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree Cover (PTC). Previous work emphasizes the 159 

important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010), discussed the crucial role of 160 

vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered by grass, influencing fuel 161 

availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to overall fuel dynamics. PCC 162 

reflects the presence of cultivated crops which have been found to suppress fire occurrence as they fragment the landscape 163 

acting and so act as a barrier to fire spread (Haas et al., 2022). 164 



9 

 
 

 

 165 

We used PGZC, PRC, PTNC and PTC to evaluate the relationship between landcover and burnt area distribution. Previous 166 

studies reported that landcover change has made a significant contribution to wildfire distribution (Gallardo et al., 2016; 167 

Villarreal and Vargas, 2021).  168 

 169 

We used Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed Photosynthetically 170 

Active Radiation (FAPAR) as proxies for vegetation health and productivity. Previous studies emphasized the varying effects 171 

of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et al., 2021).  172 

2.2.2 Topographic-related predictors  173 

We used topographic positioning index (TPI) to evaluate how topography can influence the occurrence and spread of fires. 174 

Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions (Blouin et 175 

al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio (Parisien 176 

et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent studies 177 

reported some significant contributions of topography to global burnt area distribution when using the TPI (Haas et al., 2022). 178 

TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on the 179 

distribution of burnt areas. Thus, TPI goes beyond simplistic representations of landscapes and offers a more nuanced 180 

perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire 181 

behavior and propagation patterns, the inclusion of TPI in this study allows for a comprehensive examination of wildfire 182 

distribution.  183 

2.2.3 Anthropogenic Influence Predictors 184 

We used the Human Development Index (HDI), Population Density (PPN), and Road Density (RD) to capture the impact of 185 

anthropogenic factors on both fire ignition and suppression. The inclusion of HDI aims to encapsulate human influence on 186 

ecological landscapes, thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index 187 

developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of 188 

human development, including health (life expectancy at birth), education (mean years of schooling and expected years of 189 

schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from 0 to 1, with higher 190 

values indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands 191 

as a valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross 192 

Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address the limitations of using GDP as 193 

a proxy for human development in predicting global fires, we opted for HDI. Previous research has utilized GDP for this 194 

purpose (Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast, 195 
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HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as investments and 196 

advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness. HDI evaluates 197 

a country or other administrative region's development status based on the critical factors of life expectancy, education, and 198 

income, providing a nuanced understanding of the socio-economic context shaping fire behavior (Teixeira et al., 2023). To 199 

evaluate model sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and 200 

holding HDI constant. 201 

2.2.4 Weather-Related Predictors 202 

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires. 203 

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire 204 

behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed 205 

decisions on fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate well 206 

with burnt areas across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production 207 

limitations. While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how 208 

moisture availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal 209 

and annual weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation 210 

(AAP). The selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco 211 

et al., 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from 212 

seminal works such as that by Pechony and Shindell, (2010). 213 

2.3 Data Processing 214 

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had 215 

a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation, 216 

resampling, and consolidation. For instance, while the native temporal resolution of FAPAR was 8 days, we transformed it 217 

into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an annual temporal 218 

resolution, except for FWI, GPP, and FAPAR, which were also available every month. For annual predictors, we replicated 219 

the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize 220 

with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented 221 

5-year span. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as key driver for global fires. 222 

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem 223 

Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was 224 

originally defined in the work by Forrest et al. (2024).  This index allowed us to quantify the relationship between vegetation 225 
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growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire 226 

dynamics. 227 

 228 

MEPI =  
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚 ,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
       (1) 229 

 230 

 231 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 232 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 233 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 234 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 235 

accumulation. 236 

2.4 Statistical modelling and final predictor choice 237 

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical 238 

package (CoreTeam, 2014). Following established guidelines by Dormann et al. (2013) , we applied the conventional threshold 239 

of R > 0.5 to enhance the model's efficiency. Moreover, we employed the Variance Inflation Factor (VIF) to evaluate 240 

collinearity among predictor variables, removing those with VIF values surpassing 5, as recommended by O’brien, (2007). 241 

Post collinearity tests, an additional 3 parameters were adopted to progressively select the best model, namely: 1) a simple (~ 242 

parsimonious) model which comprise of a full suite of categories of covariate combinations (i.e vegetation, climate, 243 

topography, ignitions), 2) the deviance explained value and 3) the normalised mean square error value as illustrated in the 244 

making of Burnt Area Simulator For Europe (BASE) (Forrest et al., 2024). The variables include the MEPI, FWI, PNTC, HDI, 245 

PTC, TPI, NDD and PPN.  246 

 247 

A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, 248 

seamless integration into DGVMs and ability to generate partial residual plots, i.e. the effect of each predictor in the model 249 

while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Calibration of the model 250 

utilized data from 2002 to 2010 while testing utilized data from 2011 to 2018. Residual plots were utilized to examine the 251 

magnitude and nature of each predictor's relationship with wildfire burnt area distribution.  252 

 253 

Model performance was assessed using the Normalized Mean Error (NME) following Kelley et al. (2013). NME serves as a 254 

standardized metric for evaluating global fire model performance, facilitating direct comparison between predictions and 255 

observations. The NME was calculated following Eq. (2). 256 
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 257 

𝑁𝑀𝐸 =
 ∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖  𝛪

∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠 𝛪
      (2) 258 

 259 

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all 260 

cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the 261 

observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment 262 

between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-263 

binomial distribution. We applied the logit link function based on the methodology outlined by Haas et al. (2022). After 264 

conducting a collinearity test, the models were systematically evaluated using various combinations of predictor variables. A 265 

total of 25 model runs were conducted, each incorporating different sets of variables while iteratively excluding some, to 266 

discern the extent to which each predictor explained variance when others were not included (see Table A1). We followed the 267 

stepwise approach of variable inclusion, exclusion, interaction terms, log transformations, and polynomial transformations as 268 

described by Forrest et al. (2024). While their analysis focused on Europe, our objective was to replicate and apply the method 269 

at a global scale. To evaluate the reliability of the predicted interannual variability and seasonal cycles, we applied a regression 270 

function to determine the relationship (R2) between the observed and predicted trends. An R2 of 1 shows good performance in 271 

our predictions and an R2 of 0 shows poor performance in our predictions. To assess the trend in predicted interannual 272 

variability, we used the Mann-Kendall test (Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends 273 

in environmental data. Being non-parametric, it works for all distributions, does not require normality, but assumes no serial 274 

correlation.   275 

3 Results 276 

3.1 Correlation between variables 277 

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12, 278 

FAPAR6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however 279 

some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and 280 

model performance. For example, NDD was strongly correlated to PTC ( ~ -0.68), but both increased the variance explained 281 

by the full model. 282 

 283 
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 285 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation. 286 

 287 
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3.1 Optimal model selection and GLM results 288 

The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump in deviance 289 

explained when PNTC is added (Model 3: 0,5298). Models 4 to 8 involve adding vegetation (FAPAR) and various land use 290 

types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, indicating these factors 291 

provide some additional predictive power but are not as impactful as existing vegetation covariates (such as GPP). Models 10 292 

to 12 introduce polynomial terms for PTC. This results in an increase in deviance explained, peaking at around 0.558836 in 293 

Model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in marginal 294 

increase in deviance explained with the highest recorded in Model 15(~ 0.5664789). Models 19 to 25 fine-tune the overall 295 

performance by incorporating various variables and their interactions. Model 24, which includes a comprehensive set of 296 

climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest deviance explained 297 

(~0.5720048). The marginal improvements observed in subsequent models indicate that while additional variables contribute 298 

to the model, the primary influencing factors were already identified by Model 19, however it was not the simplest model (~ 299 

parsimonious), and consisted of other variables that we don’t have future projections for (e.g RD). We removed some of the 300 

redundant variables till Model 24 (~11 variables), however, it was not as parsimonious as Model 25 (~8 variables). Therefore, 301 

Model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected as the best 302 

model in this analysis. 303 

 304 

Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of 305 

wildfires (p < 0.05), as outlined in Table 2. 306 

  Estimate Std.Error T value Pr(>|t|) 

(Intercept) - 6.159e+00 2.349x10^-02 -262.17 <0.00001 

FWI 9.296e-01 1.948x10^-03 477.28 <0.00001 

MEPI -2.270e+00 8.974x10^-03 -252.96 <0.00001 

HDI -1.680e+00 1.235x10^-02 -135.99 <0.00001 

PNTC 5.170e-02 2.270x10^-04 227.78 <0.00001 

poly(PTC,2)1 2.135e+03 1.114x10^01 191.55 <0.00001 

poly(PTC,2)2 -9.783e+02 6.975 -140.27 <0.00001 

TPI 2.225e-01 3.946x10^-03 56.39 <0.00001 

NDD -9.550e-03 4.757x10^-05 -200.78 <0.00001 
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PPN -1.075e-03 1.808x10^-05 -59.48 <0.00001 

 307 

Table 2. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results 308 

indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05). 309 

 310 

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among 311 

the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and 312 

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the 313 

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the 314 

MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.  315 

 316 

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate 317 

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential 318 

relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving 319 

wildfire dynamics. 320 

 321 

 322 

Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor 323 

variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972). 324 
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Predictor variables were Gross Primary Production Index (GPP), Fire Weather Index (FWI), Percentage Non-Tree 325 

Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index (TPI), 326 

Population Density (PPN) and Number of Dry Days (NDD). 327 

 328 

The model demonstrated strong performance in predicting BA, accounting for over 50% of the variability in burnt areas 329 

(Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution model by Haas et al. (2022), 330 

who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader array of variables (16 331 

predictors) and operated at a coarser temporal resolution (annual). Our model's performance, based on eight predictors and 332 

operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious. 333 

 334 

Assessment of model accuracy yielded an NME of 0.718, indicating a generally close correspondence between observed and 335 

predicted burnt area patterns (see Fig. 4). This level of accuracy is comparable to that reported by previous global fire models, 336 

such as Haas et al. (2022) and Hantson et al. (2016) which reported NMEs ranging from 0.60 to 1.10. 337 

 338 

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating 339 

notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 4). However, in 340 

extratropical regions, particularly in the northern hemisphere, instances of over-prediction were observed. This discrepancy is 341 

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model. 342 

 343 
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 344 

Figure 4: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area  345 

(bottom). 346 

 347 
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3.2 Interannual variability 348 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to 349 

2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was reproduced by the model, but the model 350 

underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with 351 

the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant 352 

in the model made the projected trend remain steady, suggesting the role of anthropogenic developments (increasing HDI over 353 

time) driving a downward trend in wildfire distribution.  354 

 355 

Figure 5: Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates 356 

detection and model projections under different HDI treatments: when HDI was excluded, included and held constant 357 

from the value of the first year in the model. 358 

 359 

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area 360 

extent across the 14 GFED regions (refer to Fig. 6a and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a 361 

significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA, 362 
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SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in 363 

GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and 364 

Europe demonstrated no significant trend, as illustrated in Fig. 6a. 365 

 366 

 367 

 368 

 369 
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Figure 6: Variation in the trend of interannual variability for burnt areas across different GFED regions. Where (a) 370 

shows the direction of the trend and (b) shows the spatial distribution of the strength of relationship (r-square values) 371 

between observed and predicted interannual variability per GFED region. 372 

 373 

Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship 374 

between the predicted trend when compared to the observed (R2= 0.24) (See Fig 6b and Fig A1). This poor relationship was 375 

exhibited across most of the GFED regions (R2 < 0.50), except for the NHSA which showed strong similarities between the 376 

predicted trend and observed trend (R2 = 0.55). This observation suggests that the combination of covariates that we 377 

incorporated in this model has limited strength in capturing global interannual variability in burnt area. However, the predicted 378 

global trend is in sync with previously reported global trends (Jones et al., 2022). 379 

3.3 Seasonal Cycle 380 

Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and 381 

August (see Fig. 7). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the 382 

observed trend (R2 = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted 383 

seasonal cycles varies according to the GFED region with R2 ranging between 0.06 to 0.99 (refer to Fig. 8). The model 384 

predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R2 > 0.50) (see Fig. 385 

8 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa 386 

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R2 < 0.50). 387 

 388 
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 389 

Figure 7: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent. 390 

 391 

 392 
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Figure 8: Spatial distribution of r-square values for the relationship between observed and predicted seasonal 393 

variability per GFED region. 394 

4 Discussion  395 

We found a DGVM compatible parsimonious global statistical model made of FWI, PNTC, PTC, TPI, MEPI, HDI, PPN and 396 

NDD. Of all the key variables, FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring the 397 

importance of conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High PNTC 398 

is most likely related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings show that fire weather 399 

(~FWI) and fuel availability (~PNTC) influence burnt area extent align with previous studies (Andela et al., 2017; Bistinas et 400 

al., 2014; Forkel et al., 2019b; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnt area, not 401 

the seasonal cycle, which is also crucial to adapt to changes in fire risk. 402 

 403 

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree cover show 404 

lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with 405 

low PNTC are often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees (Juli et 406 

al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, leading to 407 

fewer fires. Though our findings support previous literature indicating that regions with abundant combustible vegetation and 408 

favorable fire-weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 2010), we observed a 409 

surprising negative relationship between NDD and burnt area. Previous studies found a positive relationship between NDD 410 

and burnt area fractions (Haas et al., 2022), like our single factor plots of NDD and burnt area in Fig A3. This result most 411 

probably shows that relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred 412 

to seasonal fire predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities 413 

in Mediterranean ecosystems (Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating 414 

the complex relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an 415 

interaction term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further 416 

exploring the complex relationship between dryness and vegetation at a global scale, particularly the effect of incorporating 417 

polynomial terms on correlated predictors in a linear model. 418 

 419 

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our 420 

findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a 421 

significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas et al. (2022), PPN, which should 422 

correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower 423 
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PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape fragmentation through road 424 

construction, and measures to suppress fires in human inhabited spaces to protect properties (Kloster et al., 2010). Saunders et 425 

al., (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase in 426 

population leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires. 427 

They further highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both 428 

spatial and temporal) of analysis may influence nature and extent to which PPN affects burnt area extent. Our results for the 429 

effect of PPN have important implications for DGVMs and land surface models. These models differ widely in the assumed 430 

effect of PPN, often using a unimodal response simulating BA annually, in some cases distributing the wildfires across seasons 431 

in a second step, using rather simplified assumptions (Teckentrup et al., 2019). Similarly, we anticipated a positive relationship 432 

between MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed 433 

a negative relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt 434 

areas. Our findings are in line with those of Forrest et al. (2024) who initially investigated the effect of this index on burnt 435 

areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed a more refined measure, 436 

MEPI. Future research could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions 437 

and temporal scales. 438 

 439 

4.1 Spatial variation in model performance 440 

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South 441 

America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and 442 

predictable fire regimes in these regions. Since fire activity here is strongly governed by distinct wet-dry seasonal cycles, 443 

which align closely with climate variables such as precipitation, temperature, and vegetation productivity, factors that our 444 

model capture effectively using linear functions (Archibald, 2016; Van Der Werf et al., 2017). These regions typically exhibit 445 

lower interannual variability in fire occurrence, facilitating better model generalization. 446 

 447 

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as 448 

well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical 449 

and anthropogenic factors (Chuvieco et al., 2021; Forkel et al., 2019b). High interannual variability in burnt areas in these 450 

regions is due to irregular droughts, land use change, and fire suppression policies that make prediction more challenging for 451 

linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied ignition sources in temperate and 452 

boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). Chuvieco et al., (2021) reported about 453 

this challenge when building global models. Thus, our findings build upon existing models on global burnt area distribution. 454 

What sets our model apart from previous models is its ability to reliably identify global seasonal fire distribution patterns. This 455 
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simplicity offers a notable advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared 456 

to annual models. 457 

4.3 Attribution of global trends 458 

Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends (Joshi and 459 

Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017), 460 

primarily attributed the decline in global burnt areas to agricultural expansion and intensification. Earl and Simmonds (2018) 461 

supported this view, adding that increased net primary productivity in Northern Africa also played a significant role. However, 462 

our results suggest that human development is a more important driver than agricultural expansion alone. Despite the 463 

conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland fractions as predictor 464 

variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis 465 

revealed that excluding the HDI from our model and holding it constant to the value of the first year predicted a steady trend 466 

that deviates from the observed negative trend in global fire extent and including HDI follows a decreasing trend that aligns 467 

with the observed trend (Fig. 5). This highlights the significant influence of HDI in projecting the purported negative global 468 

fire trend. HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as investments and 469 

advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness (Teixeira et al., 470 

2023). Although these strategies are often implemented independently and on a smaller scale, their cumulative impact on 471 

global fire trends is substantial. Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire 472 

control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the 473 

development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively 474 

mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods. 475 

 476 

4.4 Interannual variability 477 

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high 478 

precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1). 479 

Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated 480 

FAPAR12 in models 9 to 12 (Table A1) and MEPI in models 11 to 26 (Table A1). Unfortunately, these adjustments did not 481 

enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased 482 

precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa (Shekede 483 

et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons using GPP12 in model 484 

10, respectively. While this approach did not improve global interannual predictions, it showed a slight enhancement in 485 

deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of the fire-aerosol 486 

positive feedback mechanism in Africa (Zhang et al., 2023) and periodic El Niño conditions, which can affect rainfall patterns 487 
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and lead to drier vegetation conditions, reducing the predictability of fire occurrence, especially with linear models 488 

(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model Intercomparison 489 

Project (FireMIP) project (Hantson et al. 2020), all models did a poorer job of matching the interannual variability than the 490 

spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all 491 

data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our 492 

modelling efforts highlight the complexity of accurately predicting wildfire trends and underscore the need for future research 493 

to identify covariates that more effectively capture the interannual variability of fires at a global scale. 494 

4.5 Fire seasonality 495 

Globally, our model predicts a notable peak in burnt areas during February and August. The February peak corresponds to dry 496 

conditions and fuel accumulation in regions such as NHSA, NHAF, and MIDE. In contrast, the August peak primarily 497 

emanates from tropical regions characterized by distinct seasonal patterns, particularly in SHSA, SHAF, and AUST. Here, the 498 

dry season augments the combustibility of accumulated fuel from the preceding wet season, facilitating fire spread. This 499 

observation corroborates earlier studies in the southern hemisphere, which underscore the prevalence of wildfires during 500 

prolonged dry spells (Magadzire, 2013; Shekede et al., 2024; Strydom and Savage, 2017). Increased temperatures and 501 

desiccated vegetation substantially enhance the likelihood and severity of wildfires during the dry season. Conversely, the 502 

onset of the rainy season precipitates a marked reduction in the occurrence of wildfires in these regions. This underscores the 503 

enduring influence of fire weather and vegetation dynamics as principal drivers of seasonal burnt area cycles, with factors such 504 

as moisture content in vegetation and soil, as well as humidity, playing pivotal roles in modulating ignition and fire extent 505 

within ecosystems. The seasonal forecasts generated by our model hold significant implications for guiding adaptive strategies, 506 

fire management and prevention at both regional and global scale. 507 

 508 

The findings of this study exhibit robustness in capturing seasonal cycles (R2 = 0.536, See Fig.7), facilitated by the inclusion 509 

of monthly variables such as the MEPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While 510 

the seasonal predictions demonstrate reliability across most GFED regions globally, notable exceptions were observed in North 511 

America, North Africa, and Europe (R2 <0.50, See Fig.8). This discrepancy could be attributed to the intricate climatic 512 

conditions inherent to these regions, which influence fires in a manner that eludes simple linear modelling. For instance, 513 

regions with clear-cut wet and dry seasons tend to exhibit more regular fire cycles, largely governed by seasonal shifts in 514 

precipitation, temperature, and vegetation growth. These predictable patterns make them well-suited to linear modelling 515 

approaches (Van Der Werf et al., 2017). In contrast, areas in the northern hemisphere experience more irregular and less 516 

seasonally driven fire activity. Here, the interaction of drought events, land management, and socio-economic drivers 517 

introduces variability that weakens model performance (Chuvieco et al., 2021; Forkel et al., 2019b). Additionally, varied 518 

ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns (Flannigan et al., 2009). Given the 519 
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parsimonious design of our model, with only ~eight predictors, we think that the model’s performance is acceptable. For 520 

certain regions, it might be possible to increase model performance by implementing further region-specific predictors and 521 

relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions can facilitate the identification 522 

of temporal windows when fires are prevalent, thereby furnishing valuable insights for simulating carbon emissions in 523 

DGVMs. 524 

4.6 Model limitations and excluding drivers of burnt area 525 

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and 526 

socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous 527 

studies (Forkel et al., 2019b; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The 528 

differences in our findings are related to differences in the statistical or modelling approach and the fact that most of these 529 

studies addressed annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important 530 

for understanding fire dynamics, e.g. influencing fuel availability, landscape structure, and ignition sources. For instance, 531 

grazing lands can significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing potentially 532 

reducing fuel loads (Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity, 533 

affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013). However, these factors are apparently indirectly 534 

represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, for example, is 535 

generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire suppression 536 

capabilities (Forkel et al., 2019b). However, it was excluded here because its contributions were already effectively represented 537 

by HDI and PPN, which capture broader socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al., 538 

(2022) observed a shift in the direction of contribution for covariates when PPN and RD are used together.  Considering that 539 

we may not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in 540 

our model. Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table A1) yielded marginal improvements, 541 

which were not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was 542 

aimed at reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By 543 

focusing on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power. 544 

However, the often-small differences in the deviance explained and the NME between different models imply that vegetation-545 

fire modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power. 546 

 547 

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal 548 

variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the 549 

statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially 550 

omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling 551 
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techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel et al., 2019b; Joshi and Sukumar, 552 

2021; Mukunga et al., 2023; Zhang et al., 2023). This might contribute to observed shortcomings in our model's ability to 553 

predict spatial fire distribution in certain regions and to capture interannual variability across many parts of the world. Future 554 

investigations should aim to explore the inclusion of other established predictors and methodologies in global fire modelling 555 

once they become easily compatible with DGVM integration. Despite these challenges, our study possesses intrinsic value, 556 

and the developed model stands as a relatively simple tool for informing global seasonal fire predictions. 557 

 558 

4.7 Next steps for DGVM integration, future directions and model improvements  559 

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation 560 

state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM.  DGVMs include GPP and the 561 

cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and 562 

universal coupling strategy to capture the effect of vegetation on burnt area.  However, all model results are imperfect and 563 

biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model 564 

training.  This error will propagate to the burnt area calculation and so this discrepancy should be investigated.  In the likely 565 

event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account 566 

for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture 567 

certain dynamics and states.  However, we note that our comparatively restricted variable set and simple GLM approach will 568 

be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches 569 

with larger suites of predictor variables. For example Son et al., (2024) achieved excellent correspondence with observed data 570 

using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the fuel 571 

predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors 572 

(including PFT cover fractions and both absolute values and anomalies of LAI and water content of four soil layers) are all 573 

determined from fixed input data - remotely sensed of climate reanalysis.  So, in this case, the quality of the results from 574 

hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables correctly.   The 575 

model presented here is tailored for integration into a DGVM by using only a few variables which can be robustly predicted, 576 

and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting and relying on 577 

correlations in the data which may not hold in the DGVM predicted state. 578 

 579 

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they 580 

can either be prescribed input variables or can be calculated from the climate input.  Finally, to build a fully coupled vegetation-581 

fire model, it is then necessary to include the effects of the simulated fire on the vegetation.  For this step we can utilise the 582 

mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE 583 
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model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may 584 

need to be adjusted to account for the different simulated burnt area.   585 

5. Conclusions 586 

We sought to build a parsimonious statistical model for global seasonal burnt areas that can be integrated into a DGVM. The 587 

specific objectives were to 1) to improve our understanding of major drivers of global burnt area dynamics, 2) to leverage a 588 

GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate the interannual and seasonal 589 

cycles of burnt area extent, both globally and regionally. 590 

 591 

We present a parsimonious statistical model specifically tailored for global burnt areas, with the goal of integration into 592 

DGVMs. FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively related 593 

to BA. Our findings highlight the significance of socio-economic advancements, particularly those improving fire management 594 

strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-595 

economic predictor in our model. While our parsimonious model exhibited limitations in predicting the interannual variability 596 

of global fires, it demonstrated commendable accuracy in forecasting the spatial (NME = 0.72). The strength of similarity 597 

between observed and predicted seasonal cycles varied according to the GFED region with R2 ranging between 0.06 to 0.99. 598 

Its standout performance laid in capturing the seasonal variability, especially in regions often characterized by distinct wet and 599 

dry seasons, notably southern Africa (R2 = 0.72 to 0.99), Australia (R2 68) and South America (R2 = 0.75 to 0.90). Our predicted 600 

interannual variability exhibited poor strength of relationship between the predicted trend when compared to the observed (R2= 601 

0.24) 602 

 603 

We hope that our research outcomes will stimulate a more rigorous implementation of global fire models within DGVM 604 

frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of global fire patterns and 605 

enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in the face of ongoing 606 

global changes. 607 
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Appendices 626 

 627 

Table A1: Results of modelling attempts using different combinations of predictor variables using a progressive 628 

inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer 629 

colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest 630 

error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better 631 

performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated 632 

by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model 633 

performance. 634 

 635 

Model Formulae 
Deviance 

explained 
NME 

model 

1 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 0.7472088 

model 

2 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 0.7495652 

model 

3 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 0.7208771 

model 

4  
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 0.7188448 

model 

5 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 0.7191269 
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model 

6 
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 0.7195616 

model 

7  
 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PRC) 0.5313813 0.7193946 

model 

8  
glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 0.5349288 0.7190611 

model 

9  

 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + FAPAR12 + 

PGC) 
0.5359802 0.7181930 

model 

10  

 glm(burnt ~ FWI + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + FAPAR12 

+ PGC + PPN ) 
0.5295939 0.7172668 

model 

11  
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PGC + PS) 0.5579946 0.7193546 

model 

12  
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 0.7192122 

model 

13  
 glm(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC + PS) 0.5569187 0.7214560 

model 

14  
 glm(burnt ~ FWI + MEPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15  
 glm(burnt ~ FWI + MEPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16  
glm(burnt ~ FWI + MEPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17  
 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 
 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + TPI) 0.5711503 0.7167015 

model 

19  

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + PGC + 

FAPAR12) 
0.5709692 0.7175149 

Model 

20 
 glm(burnt ~ FWI + MEPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12) 0.5677209 0.7182814 

Model 

21 
glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN 0.5714474 0.7170576 

Model 

22 
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN  0.5705348 0.7177887 
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Model 

23 
glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN 0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN + 

AAP 
0.5720048 0.7173093 

Model 

25 
glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TPI 0.5682776 0.7186160 

Model 

26 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI 
0.5687439 0.7194855 

 636 

 637 

 638 

 639 

 640 
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 643 

Figure A1: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across 644 

different GFED regions. 645 
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 650 

Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across 651 

different GFED regions. 652 

 653 
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 654 

 655 

Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental 656 

and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development 657 

Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation 658 

Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation 659 

between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and 660 

burnt area fraction.   661 

 662 

 663 
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Region Sen's slope P-value 

BONA 558.354 0.1082 

TENA 895.8292 0.4338 

CEAM -1963.035 0.1494 

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43                                    0.0001 

BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with 664 

significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends. 665 
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