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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics 11 

and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-12 

oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical 13 

model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, within a DGVM-14 

compatible framework. Using monthly burnt area (BA) data from the latest global burned area product from GFED5 as our 15 

response variable, we developed Generalized Linear Models to capture the relationships between potential predictor variables 16 

(biophysical and socio-economic) that are simulated by DGVMs and/or available in future scenarios. We used predictors that 17 

represent aspects of fire weather, vegetation structure and activity, human land use and behavior and topography. Based on an 18 

iterative process of choosing various variable combinations that represent potential key drivers of wildfires, we chose a model 19 

with minimum collinearity and maximum model performance in terms of reproducing observations. Our results show that the 20 

best performing (deviance explained 56.8%) and yet parsimonious model includes eight socio-economic and biophysical 21 

predictor variables encompassing the Fire Weather Index (FWI), Monthly Ecosystem Productivity Index (MEPI), Human 22 

Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover (PNTC), 23 

Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When keeping the other variables constant (partial 24 

residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively 25 

related to BA. While the model effectively predicted the spatial distribution of BA (Normalized Mean Error = 0.72), its 26 

standout performance lay in capturing the seasonal variability, especially in regions often characterized by distinct wet and dry 27 

seasons, notably southern Africa (R2 = 0.72 to 0.99), Australia (R2 = 0.68) and South America (R2 = 0.75 to 0.90). Our model 28 

reveals the robust predictive power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal 29 

global fire patterns. Finally, simulations with and without dynamically changing HDI revealed HDI as an important driver of 30 

the observed global decline in BA.  31 

 32 
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1 Introduction 33 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 34 

(Clarke et al., 2019). In Australia, the mean annual burned area in forested regions was about 1.8 million ha per year between 35 

1988–2001, increasing to 3.5 million ha per year between 2002–2018, before the 2019–2020 “Black Summer” fires burned 36 

over 15 million ha nationally (Australian Government, 2020; Canadell et al., 2021). Similarly, in Canada, the 1986–2022 mean 37 

annual burned area was about 2.1 million ha, compared with the record-breaking 15 million ha burned in 2023 (Curasi et al., 38 

2024; Jain et al., 2024; MacCarthy et al., 2024). These multi-decadal increases in burned area in both countries are consistent 39 

with evidence that climate change has intensified fire-conducive weather over time. Even though the effects of fires may be 40 

positive through contributing to selected natural ecosystem processes, large and frequent fires are often destructive and hav e 41 

far-reaching effects through loss of life, biodiversity, landscape aesthetic value, and increase in forest fragmentation and soil 42 

erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative role of climate change in driving large and 43 

frequent burning has been well documented (Brown et al., 2023). However, climate change by itself does not fully account for 44 

the recent changes in global wildfire patterns as human activities are crucial drivers as well (Pausas and Keeley, 2021). For 45 

instance, recent empirical investigations have highlighted a notable 25% reduction in burnt area extent over the past two 46 

decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et al. (2021) argue that future 47 

demographic and climate patterns will cause an increase in burnt areas, particularly in high latitude warming and tropical 48 

regions. However, Knorr et al. (2016) concluded that, under a moderate emissions scenario, global burnt areas will continue 49 

to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. Cunningham et al. (2024), 50 

on the other hand reported that although total burnt area is declining globally, extreme fire events are increasing as consequence 51 

of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics are clearly driven by the 52 

overarching interaction between human activities (altered ignition patterns, surveillance and management) and climate 53 

(Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide prescribing solutions that will 54 

ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) (Koubi, 2019; Robinne et al., 55 

2018). 56 

  57 

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 58 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 59 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 60 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 61 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 62 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 63 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of 64 

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and 65 

difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 66 

2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather 67 
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and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and 68 

evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data 69 

from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for 70 

ecosystems other than the ones used in their derivation is often not reliable (e.g. Perry, 1998). This is mainly because statistical 71 

models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical 72 

of fires that are stochastic in nature. Integration of mechanistic process-based techniques and statistical methods remains one 73 

common way forward to advance our understanding of fire dynamics. 74 

  75 

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al., 76 

2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass, 77 

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help 78 

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results. 79 

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing 80 

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The 81 

strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual) 82 

that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification 83 

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in 84 

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al., 85 

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more 86 

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). 87 

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in 88 

ensuring sustainable management of vulnerable ecosystems. 89 

  90 

There is a growing recognition of the significance of exploring both interannual and seasonal variations to comprehensively 91 

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics 92 

of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal 93 

outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona‐Moreno et al., 94 

2005). Incorporating monthly data in global fire modelling helps researchers to accurately capture seasonal variations in fire 95 

activity. Hence, global models developed using monthly data are necessary. 96 

  97 

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN: Bergado et al., 2021), Random 98 

Forest (RF) and Generalized Additive Models (GAM) (Chuvieco et al., 2021) which are currently not easily integrated into 99 

DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced 100 

recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the 101 

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion 102 

of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that  103 
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are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables. 104 

Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for 105 

seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. Generally, most earlier fire 106 

modules in DGVMs such as the LPJ-Lmfire (v1) were informally parameterized to predict seasonal fire cycles and do not 107 

consider the fuller range of predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al., 108 

2013). Nurrohman et al. (2024) produced monthly fire predictions from downscaling of annual model outputs without building 109 

a statistical approach that is trained based on monthly inputs. This left an opportunity to improve burnt area models in DGVMs 110 

to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a simpler and 111 

more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also being easily 112 

integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on variables pertinent 113 

to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance our comprehension 114 

of inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets.  115 

  116 

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integr ated 117 

into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics, 118 

2) to leverage a GLM for predicting global burnt areas using DGVM-compatible predictors and 3) to evaluate the interannual 119 

and seasonal cycles of burnt area extent, both globally and regionally. 120 

2 Data and Methods 121 

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation, 122 

weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also 123 

evaluated. Fig. 1 provides an overview of the steps that were followed during modelling. 124 

  125 

 126 

  127 

 128 
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 129 

Figure 1: Study workflow showing an overview of steps followed in model training, testing, prediction and evaluation 130 

together with the outputs and time periods. 131 

2.1 Fire data 132 

Monthly BA data for the period 2002 – 2018 were derived from monthly mean fractional BA from the GFED5. We selected 133 

this data because of their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified 134 

according to 17 major land cover types using the MODIS classification scheme. We used this land cover information to remove 135 

burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of 136 

cropland residue burning which we suppose is likely to have different drivers from burning in non-arable lands. The BA data 137 

comes at a resolution of 0.25° × 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for 138 
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ease of processing at a global scale and at the same time to ensure that our outputs are DGVM integrable since they are 139 

commonly applied at 0.5° globally. 140 

2.2 Predictor variables 141 

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many 142 

possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our 143 

selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic 144 

variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables 145 

that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019), 146 

vegetation optical depth (Forkel et al., 2019), lightning (Rabin et al., 2017), soil moisture (Mukunga et al., 2023), soil fertility 147 

(Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM integration to train 148 

the model effectively. The chosen predictor variables were categorized based on their representational nature and their roles 149 

in fire modelling (See Table 1). 150 

  151 

Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Source 

Percentage Grass 

cover 

 PGC Vegetation 300m Annual 2002-2018 ESA Climate 

Change 

Initiative 

landcover(UC

Louvain, 

2017) 

Percentage non-

tree vegetation 

cover 

 PNTC Vegetation 250m Annual 2002-2018 MODIS - 

MOD44B 

(DiMiceli et 

al., 2011) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Source 

Topographic 

positioning index 

 TPI Topography 90m Static 2010 

(product of 

the global 

GMTED20

10) 

Digital 

elevation 

model 

products of 

global 250 m 

GMTED2010 

(GMTE data 

2010) and 

near-global 90 

m SRTM v4 

(Jarvis et al., 

2008) 

Human 

Development 

Index 

 HDI Ignition/suppression/f

ragmentation 

subnational Annual 2002-2018 Global data 

lab (Smits and 

Permanyer, 

2019) 

Road density  RD Ignition/suppression/f

ragmentation 

0.5° × 0.5° Static Average of 

the period 

1979-2015 

Global Roads 

Inventory 

Project (GRIP) 

database 

(Meijer et al., 

2018) 

Population density  PPN Ignition/suppression/f

ragmentation 

2.5 arc 

minutes 

5-year 

intervals 

2000, 

2005, 

2010,2015 

Socioeconomi

c data and 

applications 

centre 

(SEDAC) 

(Klein 

Goldewijk et 

al., 2017) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Source 

Percentage crop 

cover 

 PCC Fragmentation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 

Percentage pasture 

cover 

 PPS Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 

Precipitation 

seasonality 

 PS Climate 0.5° × 0.5° Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Fire weather index  FWI Climate 0.5° × 0.5° Monthly 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service, 2021) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Source 

Precipitation of the 

driest quarter 

 PPNQ Climate 0.5° × 0.5°  Annual 2002-2018 Copernicus 

climate data 

store  

(Copernicus 

Climate 

Change 

Service, 2021) 

Number of dry 

days 

NDD Climate 0.5° × 0.5° Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Percentage 

grazeland cover 

 PGZC Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 3.3) 

(Klein 

Goldewijk et 

al., 2017) 

Percentage 

rangeland cover 

 PRC Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Source 

Annual average 

precipitation 

 AAP Climate 5 arc minutes Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Gross primary 

productivity 

 GPP Vegetation 500m Monthly 

(originally 

8 days) 

2002-2018 MOD17A2H

GF(Running 

and Zhao, 

2021) 

Aboveground 

biomass 

 AGB Vegetation 0.5° × 0.5° Longterm 

average 

2010  ESA Biomass 

Climate 

Change 

Initiative v4 

(Santoro and 

Cartus, 2023) 

Percentage Tree 

cover 

 PTC Vegetation 250m  Annual 2002-2018 MODIS - 

MOD44B 

(DiMiceli et 

al., 2011) 

Fraction of 

Absorbed 

Photosynthetically 

Active Radiation 

 FAPAR Vegetation 500m Monthly 

(originally 

8 days) 

2002-2018 MODIS - 

MOD15A2H 

(Running and 

Zhao, 2021) 

  152 

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial 153 

& temporal) and the respective data sources. 154 

2.2.1 Vegetation-related predictors 155 

We used nine vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables 156 

encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage 157 

Graze Cover (PGZC), Percentage Rangeland Cover (PRC), Percentage Tree Cover (PTC), Fraction of Absorbed 158 
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Photosynthetically Active Radiation (FAPAR), Aboveground Biomass (ABG), and Gross primary productivity (GPP). 159 

Previous work emphasizes the important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010), 160 

discussed the crucial role of vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered 161 

by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to 162 

overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to suppress fire occurrence as they 163 

fragment the landscape acting and so act as a barrier to fire spread (Haas et al., 2022).  164 

 165 

PGZC, PRC, PTNC and PTC were used to evaluate the relationship between landcover and burnt area distribution. Previous 166 

studies reported that land use/cover type has made a significant contribution to wildfire distribution (Gallardo et al., 2016; 167 

Villarreal and Vargas, 2021). GPP, AGB, and FAPAR were proxies for vegetation productivity and type, and fuel load. Also, 168 

some studies emphasized the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et 169 

al., 2021). 170 

 171 

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem 172 

Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was 173 

originally defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation 174 

growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire 175 

dynamics. 176 

  177 

MEPI = 
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
       (1) 178 

  179 

  180 

  181 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 182 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 183 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 184 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 185 

accumulation. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as a key driver for global 186 

fires. 187 

2.2.2 Topographic-related predictors 188 

To evaluate how topography can influence the occurrence and spread of fires, we incorporated Topographic Positioning Index 189 

(TPI). Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions 190 

(Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio 191 

(Parisien et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent 192 
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studies reported some significant contributions of topography to global burnt area distribution when using the TPI  (Haas et al., 193 

2022). TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on 194 

the distribution of burnt areas. Thus, TPI goes beyond simplistic representations of landscapes and offers a more nuanced 195 

perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire 196 

behavior and propagation patterns, the inclusion of TPI in this study allows for a comprehensive examination of wildfire 197 

distribution. 198 

2.2.3 Anthropogenic influence predictors 199 

To capture the impact of anthropogenic factors on both fire ignition and suppression, we adopted the Human Development 200 

Index (HDI), Population Density (PPN), and Road Density (RD). The inclusion of HDI aims to encapsulate human influence 201 

on ecological landscapes, thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index 202 

developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of 203 

human development, including health (life expectancy at birth), education (mean years of schooling and expected years of 204 

schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from 0 to 1, with higher 205 

values indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands 206 

as a valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross 207 

Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address the limitations of using GDP as 208 

a proxy for human development in predicting global fires, we opted for HDI. Previous research has utilized GDP for this 209 

purpose (Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast, 210 

HDI is a broader socioeconomic indicator which evaluates a country or other administrative region's development status based 211 

on the critical factors of life expectancy, education, and income. We assume it acts as a proxy for factors such as investments 212 

and advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness, thus 213 

providing a more nuanced understanding of the socio-economic context shaping fire behavior than GDP. To evaluate model 214 

sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and holding HDI 215 

constant. 216 

2.2.4 Weather-related predictors 217 

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires. 218 

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire 219 

behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed 220 

decisions on fire prevention, preparedness, and suppression strategies. It has been shown to correlate well with burnt areas 221 

across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations. 222 

While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture 223 

availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual 224 

weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The 225 
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selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco et al., 226 

2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal 227 

works such as that by Pechony and Shindell (2010). 228 

 229 

2.3 Data processing 230 

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had 231 

a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation, 232 

resampling, and consolidation. For instance, while the native temporal resolution of FAPAR and GPP were 8 days, we 233 

transformed it into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an 234 

annual temporal resolution, except for FWI which was also available every month. For annual predictors, we replicated the 235 

same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize 236 

with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented 237 

5-year span.  238 

 239 

2.4 Variable selection 240 

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical 241 

package (CoreTeam, 2014). Following established guidelines by Dormann et al. (2013), we applied the conventional threshold 242 

of R > 0.5 to enhance the model's efficiency. Moreover, we employed the Variance Inflation Factor (VIF) to evaluate 243 

collinearity among predictor variables, removing those with VIF values surpassing 5, as recommended by O’brien, (2007). 244 

Post collinearity tests, an additional 3 parameters were adopted to progressively select the best model, namely: 1) a simple (~ 245 

parsimonious) model which comprise of a full suite of categories of covariate combinations (i.e. vegetation, climate, 246 

topography, ignitions), 2) the deviance explained value and 3) the Normalised Mean Square Error (NME) value as illustrated 247 

in the making of Burnt Area Simulator for Europe (BASE: Forrest et al., 2024).  248 

 249 

2.5 Model training and testing 250 

 A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, ease 251 

of transference to other modelling framework’s ability to generate partial residual plots, i.e., the effect of each predictor in the 252 

model while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Residual plots were 253 

utilized to examine the magnitude and nature of each predictor's relationship with wildfire burnt area distribution. We used 254 

data from the period 2002–2010 for model training, the period 2011–2018 for model testing, and the full period 2002–2018 255 

dataset for predictions and model evaluation. These time periods were chosen to ensure that the testing data remained 256 

independent from the training data while also allowing predictions to span a sufficiently long timeframe to enhance the 257 

robustness of the analysis and evaluation. The essence of splitting training vs testing is to train the model on training data, and 258 
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then check that the results are similarly good on the testing data (for example, no overfitting to the training data) before making 259 

predictions on the full dataset. Hence, Dduring model testing we compared the performance of the model on training data vs 260 

testing data to assess model robustness. 261 

 262 

2.6 Model selection 263 

We employed a sequential model-building approach, beginning with additive structures (M1–M12) to estimate the independent 264 

contribution of climate, vegetation, and human variables on burned area (Table 2). This approach aligns with established fire 265 

risk modelling practices (e.g., Forrest et al., 2024). Additional predictors were introduced if they represented ecologically 266 

meaningful processes (e.g., drought severity, vegetation productivity) and improved model fit (deviance explained and 267 

Normalised Mean Error). Multiplicative interaction terms (M13 onward) were added only when fire ecology theory suggested 268 

synergistic effects (e.g., human ignitions under extreme weather, vegetation dryness and temperature) and retained if deviance 269 

explained improved. This stepwise approach ensures both statistical rigor and ecological interpretability rather than ad hoc 270 

formula selection. 271 

 272 

 273 

 274 
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Model(s) Formula type Deviance 

explained 

(range) 

NME (range) Rationale for additive / interaction terms 

M1–M2 Additive, 

baseline 

predictors 

(FWI, GPP, 

HDI, PTC, RD 

± PGC) 

0.35–0.37 0.74–0.75 Start with core fire-weather, vegetation, and human 

variables widely used in fire risk modelling (e.g., FWI, 

HDI). Summation quantifies independent effects and 

provides a baseline for deviance explained. 

M3–M9 Additive, 

extended 

predictors (e.g., 

PNTC, 

FAPAR, PCC) 

0.52–0.54 0.72–0.71 Additional vegetation productivity and phenology 

metrics tested to capture fuel continuity and biomass 

effects. Additive inclusion based on ecological theory 

(fuel load → fire extent) and retained if deviance ↑ > 1–

2%. 

M10–M12 Additive, 

polynomial + 

seasonal 

predictors 

0.52–0.55 0.71–0.72 Added nonlinear terms (e.g., poly(PTC,2)) to test 

curvilinear effects of vegetation productivity on fire 

risk, seasonal indices (e.g., FAPAR12) reflect lagged 

vegetation–fire relationships. 

M13–M20 Additive + 

interaction 

terms 

(HDI×PCC, 

MEPI×PNTC, 

etc.) 

0.55–0.57 0.71–0.72 Interaction terms introduced where ecological or 

anthropogenic synergies are expected (e.g., human 

density × vegetation affects ignition; drought × fuel load 

affects spread). Retained if deviance > 2 and NME 

improves 2%. 

M21–M26 Full 

interactions, 

topographic + 

climate 

covariates 

0.56–0.57 0.71–0.72 Topography (TPI) and drought indices (NDD) interact 

with vegetation to capture compound effects on fire 

behavior; final models balance explanatory power with 

ecological plausibility and parsimony. 
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Table 2: Summary of models (M1–M26) with corresponding formulas, performance metrics, and rationale for 275 

predictor inclusion or interaction terms. Predictor additions were guided by ecological theory (e.g., fuel load, climate 276 

extremes, anthropogenic factors) and retained based on statistical improvements. 277 

  278 

2.7 Model performance evaluation  279 

Model performance was assessed using the NME following Kelley et al. (2013). NME serves as a standardized metric for 280 

evaluating global model performance, facilitating direct comparison between predictions and observations. The NME was 281 

calculated following Eq. (2). 282 

  283 

𝑁𝑀𝐸 =
 ∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖 𝛪

∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠 𝛪
                                                                   (2) 284 

  285 

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all 286 

cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the 287 

observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment 288 

between observed and simulated values. After conducting a collinearity test, the models were systematically evaluated using 289 

various combinations of predictor variables. A total of 26 model runs were conducted, each incorporating different sets of 290 

variables while iteratively excluding some, to discern the extent to which each predictor explained variance when others were 291 

not included (see Table A1). We followed the stepwise approach of variable inclusion, exclusion, interaction terms, log 292 

transformations, and polynomial transformations as described by Forrest et al. (2024). While their analysis focused on Europe, 293 

our objective was to replicate and test the method at a global scale. To evaluate the reliability of the predicted interannual 294 

variability and seasonal cycles, we applied a regression function to determine the relationship (R2) between the observed and 295 

predicted trends using annual average data for the period 2002-2018. An R2 of 1 shows good performance in our predictions 296 

and an R2 of 0 shows poor performance in our predictions. To assess the trend in predicted interannual variability, we used the 297 

Mann-Kendall test (Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends in environmental data. 298 

Being non-parametric, it works for all distributions, does not require normality, but assumes no serial correlation.   299 

3 Results 300 

3.1 Correlation between variables 301 

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12, 302 

FAPAR6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however 303 

some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and 304 

model performance. For example, NDD was strongly correlated to PTC (~ -0.68), but both increased the variance explained 305 

by the full model. 306 

  307 
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  308 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation. 309 

  310 

3.2 Optimal model selection and GLM results.  311 

The initial models (model 1 to model 3) progressively include more variables and substantial improvement is observed in 312 

model 3 which explained 52.98% following the inclusion of PNTC. Models 4 to 8 involve adding vegetation (FAPAR) and 313 

various land use types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, 314 

indicating these factors provide some additional predictive power but are not as impactful as existing vegetation covariates 315 

(such as GPP). Models 10 to 12 introduce polynomial terms for PTC. This results in an increase in performance explaining 316 

55.88% in model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting 317 

in marginal improvement in performance with the highest recorded in model 15 which explained 56.65%. Models 19 to 26 318 

fine-tune the overall performance by incorporating various variables and their interactions. Model 24, which includes a 319 
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comprehensive set of climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest 320 

performance as it explained 57.20%. The marginal improvements observed in subsequent models indicate that while additional 321 

variables contribute to the model, the primary influencing factors were already identified by model 19, however it was not the 322 

simplest model (~ parsimonious), and included variables for which future projections are currently unavailable (e.g., RD), due 323 

to the lack of established projection models or datasets. Since the main objective of the study was to produce a DGVM-324 

compatible model, availability of future projections for these datasets was indispensable to model building. We removed some 325 

of the redundant variables till model 24 (~11 variables), however, it was not as parsimonious as model 25 (~8 variables). 326 

Therefore, model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected 327 

as the best model in this analysis. Our results reveal that each predictor variable incorporated in the final analysis significantly 328 

predicted the distribution of wildfires (p < 0.05), as outlined in Table 3. 329 

 330 

  
Estimate Std.Error T value Pr(>|t|) 

(Intercept) 
- 6.159e+00 2.349x10^-02 -262.17 <0.00001 

FWI 
9.296e-01 1.948x10^-03 477.28 <0.00001 

MEPI 
-2.270e+00 8.974x10^-03 -252.96 <0.00001 

HDI 
-1.680e+00 1.235x10^-02 -135.99 <0.00001 

PNTC 
5.170e-02 2.270x10^-04 227.78 <0.00001 

poly(PTC,2)1 
2.135e+03 1.114x10^01 191.55 <0.00001 

poly(PTC,2)2 
-9.783e+02 6.975 -140.27 <0.00001 

TPI 
2.225e-01 3.946x10^-03 56.39 <0.00001 

NDD 
-9.550e-03 4.757x10^-05 -200.78 <0.00001 

PPN 
-1.075e-03 1.808x10^-05 -59.48 <0.00001 

  331 

Table 3. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results 332 

indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05). 333 

  334 

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among 335 

the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and 336 

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the 337 

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the 338 

MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction. 339 
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  340 

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate 341 

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential 342 

relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving 343 

wildfire dynamics. 344 

  345 

 346 

Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor 347 

variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972). 348 

Predictor variables were Monthly Ecosystem Productivity Index (MEPI), Fire Weather Index (FWI), Percentage Non-349 

Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index 350 

(TPI), Population Density (PPN) and Number of Dry Days (NDD). 351 

  352 

3.3 Performance evaluation 353 

The model demonstrated comparable performance across the training and testing datasets. Specifically, the training data 354 

yielded a deviance explained of 0.57 and an NME of 0.73, while the testing data yielded a deviance explained of 0.56 and an 355 

NME of 0.70. The close agreement between training and testing performance supports the robustness of the model and justifies 356 

its application to the full dataset, which we subsequently evaluated with respect to both spatial and temporal predictive 357 

capability. 358 

The full dataset model demonstrated strong performance in predicting BA, as it explained 56.83% of the variability in burnt 359 

area. Our model's performance, based on eight predictors and operating at a finer temporal resolution (monthly), is considered 360 
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satisfactory and parsimonious. Overall, the model accuracy yielded an NME of 0.718, indicating a generally close 361 

correspondence between observed and predicted burnt area patterns.  362 

 363 

The correlation analysis further shows significant variation in the strength of relationship between observed and predicted 364 

burnt area extent across the 14 GFED regions annually (Fig. 4a) and seasonally (Fig. 4b). These include: Boreal North America 365 

(BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), 366 

Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), 367 

Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia 368 

(EQAS) and Australia and New Zealand (AUST).  369 

 370 

Our model overall performed poorly in predicting interannual variability as exhibited by a poor strength of relationship between 371 

the predicted trend when compared to the observed (R2= 0.24). This poor relationship was exhibited across most of the GFED 372 

regions (R2 < 0.50, Fig. 4a), except for the NHSA which showed strong similarities between the predicted trend and observed 373 

trend (R2 = 0.55). This observation suggests that the combination of covariates that we incorporated in this model has limited 374 

strength in capturing global interannual variability in burnt areas.  375 

 376 

Unlike the global interannual trends, there was a strong strength of similarity between observed and predicted seasonal cycles 377 

in most GFED regions (refer to Fig. 4b and Fig. A4). The model predicted better in GFED regions that are situated in Southern 378 

Africa, South America, Australia and Asia (R2 > 0.50). However, a few poor seasonal predictions were recorded in GFED 379 

regions situated in North America, North Africa and Europe as indicated by a poor relationship between observed burnt area 380 

and predicted burnt area (R2 < 0.50). 381 

 382 
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   383 

Figure 4: Evaluation of the selected model using observed burned area data from GFED5 predicted data (2011-2018). 384 

The maps show r-square values highlighting the model’s performance for interannual (a) and seasonal variability (b) 385 

per GFED region. 386 

 387 

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating 388 

notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 5). However, in 389 

extratropical regions, particularly in the northern hemisphere, instances of overprediction were observed. This discrepancy is 390 

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model. 391 

  392 

 393 

 394 
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 395 

 396 

Figure 5: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area 397 

(bottom). 398 

  399 

 400 

 401 



23 

 
 

 

3.4 Interannual distribution 402 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to 403 

2018, with the peak decline observed in 2004 (see Fig. 6). This downtrend was reproduced by the model, but the model 404 

underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with 405 

the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant 406 

in the model made the projected trend remain steady, suggesting the role of anthropogenic developments (increasing HDI over 407 

time) driving a downward trend in wildfire distribution. 408 

 409 

 410 
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 411 

Figure 6: Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates 412 

detection for the period 2002-2018 and model projections of the respective period under different HDI treatments: 413 

when HDI was excluded, included and held constant from the value of the first year in the model.   414 

 415 

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area 416 

extent across the 14 GFED regions (refer to Fig. 7 and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a 417 

significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA, 418 

SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in 419 

GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and 420 

Europe demonstrated no significant trend, as illustrated in Fig. 7. 421 

  422 
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  424 

 425 

 426 

Figure 7: Variation in the direction of trend of interannual variability for burnt areas across different GFED regions.  427 

 428 

3.5 Seasonal distribution 429 

Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and 430 

August (see Fig. 8). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the 431 

observed trend (R2 = 0.54).   432 
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 433 

Figure 8: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent. 434 

  435 

4 Discussion 436 

4.1 Main drivers of global burned area 437 

We found that our candidate variables, namely FWI, PNTC, PTC, TPI, MEPI, HDI, PPN and NDD, had strong influence on 438 

burnt areas. FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring the importance of 439 

conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High PNTC is most likely 440 

related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings that fire weather (~FWI) and fuel 441 

availability (~PNTC) influence burnt area extent align with previous studies (Andela et al., 2017; Bistinas et al., 2014; Forkel 442 

et al., 2019; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnt area, not the seasonal cycle, 443 

which is also crucial to adapt to changes in fire risk. 444 

  445 

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower PNTC show lower burnt 446 

area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with low PNTC are 447 

often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees (Juli et al., 2017; Wragg 448 

et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, leading to fewer fires. Though 449 

our findings support previous literature indicating that regions with abundant combustible vegetation and favorable fire-450 

weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative 451 

relationship between NDD and burnt area. Previous studies found a positive relationship between NDD and burnt area fractions 452 

Field Code Changed
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(Haas et al., 2022), like our single-factor plots of NDD and burnt area in Fig A3. This result most probably shows that 453 

relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal fire 454 

predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities in Mediterranean 455 

ecosystems (Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating the complex 456 

relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an interaction 457 

term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further exploring 458 

the complex relationship between dryness and vegetation at a global scale, particularly the effect of incorporating polynomial 459 

terms on correlated predictors in a linear model. 460 

  461 

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our 462 

findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a 463 

significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas et al. (2022), PPN, which should 464 

correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower 465 

PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape fragmentation through road 466 

construction, and measures to suppress fires in human inhabited spaces to protect properties (Kloster et al., 2010). Saunders et 467 

al. (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase in population 468 

leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires. They further 469 

highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both spatial and 470 

temporal) of analysis may influence nature and extent to which PPN affects burnt area extent. Our results for the effect of PPN 471 

have important implications for DGVMs and land surface models. These models differ widely in the assumed effect of PPN, 472 

often using a unimodal response simulating BA annually, in some cases distributing the wildfires across seasons in a second 473 

step, using rather simplified assumptions (Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between 474 

MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative 475 

relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt areas. Our 476 

findings are in line with those of Forrest et al. (2024) who initially investigated the effect of this index on burnt areas in Europe. 477 

Unlike previous global studies that utilized annual GPP, our research employed a more refined measure, MEPI. Future research 478 

could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions and temporal scales.  479 

  480 

4.2 Spatial variation in model performance 481 

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South 482 

America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and 483 

predictable fire regimes in these regions. Since fire activity here is strongly governed by distinct wet-dry seasonal cycles, 484 

which align closely with fire weather, enabling our model to capture these patterns effectively using linear functions (See Fig. 485 

A5), hence better model generalization. 486 
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  487 

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as 488 

well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical 489 

and anthropogenic factors (Chuvieco et al., 2021; Forkel et al., 2019). High interannual variability in burnt areas in these 490 

regions is due to irregular droughts, land use change, and fire suppression policies that make prediction more challenging for 491 

linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied ignition sources in temperate and 492 

boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). Chuvieco et al. (2021) reported about 493 

this challenge when building global models. Thus, our findings build upon existing models on global burnt area distribution. 494 

What sets our model apart from previous models is its ability to reliably identify global seasonal fire distribution patterns . This 495 

simplicity offers a notable advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared 496 

to annual models. 497 

4.3 Attribution of global trends 498 

Previous studies have improved our understanding of drivers of fire but differ in approach and attributional focus for fire 499 

trends. For instance, Joshi and Sukumar (2021) employed region-specific multilayer neural networks to reveal spatially varying 500 

sensitivities between fire and socio-environmental drivers, providing strong spatial diagnostics but limited transparency on 501 

attributions of burnt area trends. Kraaij et al. (2018) provided detailed biome-level attribution of destructive fires by linking 502 

drought, fuel state and vegetation context in case studies (e.g., fynbos/plantation complexes), emphasizing vegetation and 503 

weather controls at local scales. Mukunga et al. (2023) used random-forest analyses to quantify the added value of human 504 

predictors for ignition probability, focusing on anthropogenic controls of ignitions rather than burnt area extent. Building on 505 

these approaches, our study contributes novel attributional insight because it explicitly integrates a compact set of DGVM 506 

compatible fire-weather and fuel indices (FWI, PTC, TPI, PNTC) with a socio-economic indicator (HDI) within a 507 

parsimonious statistical framework for burnt area trends. This allows direct attribution of directional effects (for example,  the 508 

negative association between HDI and burnt area) across regions. Work by Andela et al. (2017), primarily attributed the decline 509 

in global burnt areas to agricultural expansion and intensification. Earl and Simmonds, (2018) supported this view, adding that 510 

increased net primary productivity in Northern Africa also played a significant role. However, our results suggest that human 511 

development is a more important driver than agricultural expansion alone. Despite the conventional emphasis on agricultural 512 

factors, our attempt to incorporate cropland and rangeland fractions as predictor variables did not substantially enhance our 513 

understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis revealed that excluding the HDI from our model 514 

and holding it constant to the value of the first year predicted a steady trend that deviates from the observed negative trend in 515 

global fire extent and including HDI is partly followed by a decreasing trend. (Fig. 5). This highlights the significant influence 516 

of HDI in projecting the purported negative global fire trend. Importantly, HDI is not uniform worldwide but varies 517 

substantially across regions and levels of socioeconomic development. For instance, in high-HDI countries, greater financial 518 

resources, infrastructure, and institutional capacity often translate into stronger investments in fire control technologies,  519 

improved surveillance systems, and more effective prevention campaigns. By contrast, in low and middle HDI countries, 520 
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limited resources and weaker institutional frameworks may constrain fire management capabilities, resulting in greater reliance 521 

on natural fire dynamics or less formalized suppression efforts. As many countries continue to develop, it translates 522 

improvements in HDI and fire management strategies. Although strategies are often implemented independently and on a 523 

smaller scale, their cumulative impact on global fire trends is substantial. Thus, HDI serves as a broad socioeconomic indicator 524 

that we assume acts as a proxy for the combined effects of investments, advancements in fire control methods, surveillance, 525 

technology, and outreach strategies that increase awareness (Teixeira et al., 2023). Therefore, our model underscores the 526 

necessity for global initiatives aimed at enhancing fire control measures through comprehensive awareness campaigns, 527 

capacity-building efforts, resource mobilization, and the development and deployment of reliable surveillance technologies. 528 

By addressing these factors collectively, we can effectively mitigate the extent and severity of global wildfires, thereby 529 

safeguarding ecosystems and human livelihoods. 530 

  531 

4.4 Interannual variability 532 

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high 533 

precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. A1). 534 

Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated 535 

FAPAR12 in models 9 to 12 (Table A1) and MEPI in models 11 to 26 (Table A1). Unfortunately, these adjustments did not 536 

enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased 537 

precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa (Shekede 538 

et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons using GPP12 in model 539 

10, respectively. While this approach did not improve global interannual predictions, it showed a slight enhancement in 540 

deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of the fire-aerosol 541 

positive feedback mechanism in Africa (Zhang et al., 2023) and periodic El Niño conditions, which can affect rainfall patterns 542 

and lead to drier vegetation conditions, reducing the predictability of fire occurrence, especially with linear models 543 

(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model Intercomparison 544 

Project (FireMIP) project (Hantson et al., 2020), all models did a poorer job of matching the interannual variability than the 545 

spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all 546 

data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our 547 

modelling efforts highlight the complexity of accurately predicting wildfire trends and underscore the need for future research 548 

to identify covariates that more effectively capture the interannual variability of fires at a global scale. 549 

4.5 Fire seasonality 550 

Globally, our model predicts a notable peak in burnt areas during February and August (Fig. 8). The February peak corresponds 551 

to dry conditions and fuel accumulation in northern hemisphere regions such as NHSA, NHAF, and MIDE (Fig. A2), with the 552 

complementary August peak occurring in regions such as SHSA, SHAF, and AUST. Our model predicts this with only two 553 

sub annual predictors - the logarithm of FWI and MEPI as already demonstrated for Europe by Forrest et al. (2024). This 554 
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underscores the enduring influence of fire weather and vegetation growth and phenology as principal drivers of seasonal burnt 555 

area cycles, with factors such as moisture content in vegetation and soil, as well as humidity, playing pivotal roles in modulating 556 

ignition and fire extent within ecosystems. The seasonal forecasts generated by our model hold significant implications for 557 

guiding adaptive strategies, fire management and prevention at both regional and global scale. 558 

  559 

The findings of this study exhibit robustness in capturing the global seasonal cycle (R2 = 0.536, See Fig.7), but notable 560 

exceptions were observed in North America, the Middle East and Mediterranean North Africa, and Europe (R2 <0.50, See 561 

Fig.8). This discrepancy could be attributed to the intricate climatic conditions inherent to these regions, which influence fires 562 

in a manner that eludes simple linear modelling. For instance, tropical regions with clear-cut wet and dry seasons tend to 563 

exhibit more regular fire cycles, largely governed by seasonal shifts in precipitation, temperature, and vegetation growth. These 564 

predictable patterns make them well-suited to linear modelling approaches (Van Der Werf et al., 2017). In contrast, extra-565 

tropical areas experience more irregular and less seasonally driven fire activity. Here, the interaction of drought events, l and 566 

management, and socio-economic drivers introduces variability that weakens model performance (Chuvieco et al., 2021; 567 

Forkel et al., 2019). Additionally, varied ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns 568 

(Flannigan et al., 2009). Given the parsimonious design of our model, with only eight predictors and only two of those on a 569 

monthly time step, we think that the model’s performance is acceptable. Furthermore, this acceptable seasonal performance 570 

fills a gap in the available global fire models. To our knowledge there are no such models which are strongly data-constrained 571 

(i.e statistically fitted as opposed to empirical or processes-based) and which predict the seasonal cycle. The closest is 572 

SIMFIRE, which is fitted to observed data but which calculates annual burnt area and then distributes throughout the year 573 

using a prescribed seasonal cycle based on observed data (Rabin et al., 2017). So, whilst the work presented is not yet integrated 574 

into a DGVM, it represents a significant advance in this direction. This is particularly important given the comparatively poor 575 

performance of global fire models in predicting the seasonal concentration of burnt area (Hantson et al., 2020, Table 3). 576 

However, for certain regions, it might be possible to increase model performance by implementing further region-specific 577 

predictors and relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions can facilitate the 578 

identification of temporal windows when fires are prevalent, thereby furnishing valuable insights for simulating carbon 579 

emissions in DGVMs.   580 

4.6 Model limitations and excluding drivers of burnt area 581 

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and 582 

socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous 583 

studies (Forkel et al., 2019; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The 584 

differences in our findings are related to differences in the statistical or modelling approach and the fact that most of these 585 

studies addressed annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important 586 

for understanding fire dynamics, e.g., influencing fuel availability, landscape structure, and ignition sources. For instance, 587 

grazing lands can significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing poten tially 588 
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reducing fuel loads (Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity, 589 

affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013). However, these factors are apparently indirectly 590 

represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, for example, is 591 

generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire suppression 592 

capabilities (Forkel et al., 2019). However, it was excluded here because its contributions were already effectively represented 593 

by HDI and PPN, which capture broader socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al. 594 

(2022) observed a shift in the direction of contribution for covariates when PPN and RD are used together. Considering that 595 

we may not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in 596 

our model. Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table A1) yielded marginal improvements, 597 

which were not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was 598 

aimed at reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By 599 

focusing on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power. 600 

However, the often-small differences in the deviance explained and the NME between different models imply that vegetation-601 

fire modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power.  602 

  603 

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal 604 

variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the 605 

statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially 606 

omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling 607 

techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel et al., 2019; Joshi and Sukumar, 608 

2021; Mukunga et al., 2023; Zhang et al., 2023). This might contribute to observed shortcomings in our model's ability to 609 

predict spatial fire distribution in certain regions and to capture interannual variability across many parts of the world. Future 610 

investigations should aim to explore the inclusion of other established predictors and methodologies in global fire modelling  611 

once they become easily compatible with DGVM integration. Despite these challenges, our study possesses intrinsic value, 612 

and the developed model stands as a relatively simple tool for informing global seasonal fire predictions. 613 

  614 

4.7 Next steps for DGVM integration, future directions and model improvements 615 

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation 616 

state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM. DGVMs include GPP and the 617 

cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and 618 

universal coupling strategy to capture the effect of vegetation on burnt areas. However, all model results are imperfect and 619 

biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model 620 

training. This error will propagate to the burnt area calculation and so this discrepancy should be investigated. In the likely 621 

event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account 622 

for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture 623 

certain dynamics and states. However, we note that our comparatively restricted variable set and simple GLM approach will 624 
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be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches 625 

with larger suites of predictor variables. For example Son et al. (2024) achieved excellent correspondence with observed data 626 

using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the fuel 627 

predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors 628 

(including plant functional type cover fractions and both absolute values and anomalies of LAI and water content of four soil 629 

layers) are all determined from fixed input data - remotely sensed of climate reanalysis. Thus, in this case, the quality of the 630 

results from hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables 631 

correctly. The model presented here is tailored for integration into a DGVM by using only a few variables which can be 632 

robustly predicted, and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting 633 

and relying on correlations in the data which may not hold in the DGVM predicted state. Furthermore, the new model includes 634 

seasonal variations in burned area, which are not captured by all existing fire modules within DGVMs (Hantson et al., 2020). 635 

  636 

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they 637 

can either be prescribed input variables or can be calculated from the climate input. Finally, to build a fully coupled vegetation-638 

fire model, it is then necessary to include the effects of the simulated fire on the vegetation. For this step we can utilise the 639 

mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE 640 

model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may 641 

need to be adjusted to account for the different simulated burnt areas.  642 

5. Conclusions 643 

We present a parsimonious statistical model to simulate global burnt area on a monthly timestep thus including seasonal 644 

variations. This is an important advance as representation of the seasonal cycle is a weakness in global fire models, both in 645 

and out of DGVMs, and across different model types. Notably, this representation of the seasonal cycle was achieved with 646 

only two sub annual predictor variables. We found the drivers FWI, TPI, and PNTC are positively associated with BA, whereas 647 

MEPI, HDI, PPN, and NDD exhibit negative relationships, and PTC showed a unimodal response with strongest effect at 648 

intermediate tree cover. The diversity of these drivers underscores the multifaceted influence of both climatic and socio-649 

economic drivers on fire dynamics. Our model explicitly accommodates these drivers, capturing how variations in climate, 650 

vegetation productivity, and human development interact to modulate fire occurrence and extent. Notably, the use of HDI to 651 

represent societal development as a proxy for fire management capacity and the transition away from fire-dependent 652 

agricultural practices provides a coarse but global socioeconomic driver beyond GDP and population density. Including th is 653 

in DGVMs can improve fire, vegetation and human feedbacks, particularly with respect to Shared Socioeconomic Pathways 654 

(SSPs, O’Neill et al., 2017) or other scenarios.   655 

 656 

Overall, the model developed in this study has demonstrated strong performance in simulating global burned area patterns. It 657 

holds potential for integration into DGVMs to enhance the representation of fire dynamics, albeit it remains to be tested how 658 
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well the model performs when remote-sensing-derived vegetation and land cover variables are replaced with those simulated 659 

by a DGVM. 660 
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Appendices 678 

  679 

Table A1: Results of modelling attempts using different combinations of predictor variables using a progressive 680 

inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer 681 

colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest 682 

error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better 683 

performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated 684 

by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model 685 

performance. 686 

  687 

Model Formulae Deviance 

explained 

NME 

model 1  glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 0.7472088 

model 2  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 0.7495652 

model 3  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 0.7208771 
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model 4  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 0.7188448 

model 5  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 0.7191269 

model 6  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 0.7195616 

model 7  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 

PRC) 

0.5313813 0.7193946 

model 8 glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 0.5349288 0.7190611 

model 9  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 

FAPAR12 + PGC) 

0.5359802 0.7181930 

model 

10 

 glm(burnt ~ FWI + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + 

FAPAR12 + PGC + PPN ) 

0.5295939 0.7172668 

model 

11 

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 

PGC + PS) 

0.5579946 0.7193546 

model 

12 

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 

PS) 

0.5571164 0.7192122 

model 

13 

 glm(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC 

+ PS) 

0.5569187 0.7214560 

model 

14 

 glm(burnt ~ FWI + MEPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15 

 glm(burnt ~ FWI + MEPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16 

glm(burnt ~ FWI + MEPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17 

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + 

TPI) 

0.5711503 0.7167015 

model 

19 

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + 

PGC + FAPAR12) 

0.5709692 0.7175149 

Model 

20 

 glm(burnt ~ FWI + MEPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + 

FAPAR12) 

0.5677209 0.7182814 

Model 

21 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 

TPI + PPN 

0.5714474 0.7170576 

Model 

22 

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + 

PPN 

0.5705348 0.7177887 

Model 

23 

glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ 

TPI+ PPN 

0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 

TPI + PPN + AAP 

0.5720048 0.7173093 
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Model 

25 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + 

TPI 

0.5682776 0.7186160 

Model 

26 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC 

+ TPI 

0.5687439 0.7194855 

  688 

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. The GFED regions 689 

include Boreal North America (BONA), Temperate North America (TENA), Central America (CEAM), Northern 690 

Hemisphere South America (NHSA), Southern Hemisphere South America (SHSA), Europe (EURO), Middle East 691 

(MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central 692 

Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia (EQAS) and Australia and New Zealand (AUST). Regions with 693 

significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends. 694 

Region Sen's slope P-value 

BONA 558.354 0.1082 

TENA 895.8292 0.4338 

CEAM -1963.035 0.1494 

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43 

                               

 0.0001 

BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

 695 
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 699 

Figure A1: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across 700 

different GFED regions. 701 

  702 
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 706 

Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across 707 

different GFED regions. 708 
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  711 

Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental 712 

and socio-economic variables: Monthly Ecosystem Productivity IndexGPP Index, Fire Weather Index, Percentage 713 

Non-Tree Cover, Human Development Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry 714 

Days, Road Density, Precipitation Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, 715 

such as the negative correlation between percentage tree cover and burnt area fraction, and the positive correlation 716 

between number of dry days and burnt area fraction.  717 

  718 
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 725 

 726 

Figure A4: Scatter plots illustrating interannual comparison by GFED regional boundaries the relationships between 727 

observed burnt area fraction (GFED5) and predicted burnt area fraction for the period between 2002 and 2018. 728 
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 729 

 730 

Figure A5. Shows the seasonal comparison by GFED5 regional boundaries between observed burnt area (in red), 731 

predicted burnt (in blue) seasonal variability in burnt area, fire weather index (in green).  across GFED regions that 732 

have distinct seasonal patterns.  733 
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