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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics 13 

and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-14 

oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical 15 

model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, tailored for integration 16 

within DGVMs.a DGVM-compatible framework. Using monthly burnt area (BA) data formfrom the latest global burned area 17 

product from GFED5 as our response variable, we developed Generalized Linear Models (GLMs) to capture the relationships 18 

between potential predictor variables (biophysical and socio-economic) that are simulated by DGVMs and/or available in 19 

future scenarios. We used predictors that represent aspects of fire weather, vegetation structure and activity, human land use 20 

and behavior and topography. Based on an iterative process of choosing various variable combinations that represent  potential 21 

key drivers of wildfires, we chose a model with minimum collinearity and maximum model performance in terms of 22 

reproducing observations. Our results show that the  best performing (deviance explained 56.8%) and yet parsimonious model 23 

includes eight socio-economic and biophysical predictor variables encompassing the Fire Weather Index (FWI), a Monthly 24 

Ecosystem Productivity Index (MEPI), Human Development Index (HDI), Population Density (PPN), Percentage Tree Cover 25 

(PTC), Percentage Non-Tree Cover (PNTC), Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When 26 

keeping the other variables constant (partial residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while 27 

MEPI, HDI, PPN, and NDD were negatively related to BA. While the model effectively predicted the spatial distribution of 28 

BA (Normalized Mean Error [NME] = 0.72), its standout performance lay in capturing the seasonal variability, especially in 29 

regions often characterized by distinct wet and dry seasons, notably southern Africa (R2 = 0.72 to 0.99), Australia (R2 = 0.68) 30 

and South America (R2 = 0.75 to 0.90). Our model reveals the robust predictive power of fire weather and vegetation dynamics 31 

emerging as reliable predictors of these seasonal global fire patterns. Finally, simulations with and without dynamically 32 
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changing HDI revealed HDI as an important driver of the observed global decline in BA. The model presented should be 33 

compatible with most, if not all, DGVMs used to develop future scenarios. 34 

 35 

 36 

1 Introduction 37 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 38 

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fir es 39 

have recently occurred in Australia and Canada, burning more than 15 million and 7 million ha (Jain et al., 2024; MacCarthy 40 

et al., 2024).  Even though the effects of fires may be positive through contributing to selected natural ecosystem processes , 41 

large and frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic 42 

value, and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The 43 

negative role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However, 44 

climate change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial 45 

drivers as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25% 46 

reduction in burnt area extent over the past two decades, explicitly attributing this decline to human activities  (Andela et al., 47 

2017). Wu et al. (2021) argue that future demographic and climate patterns will cause an increase in burnt areas, particularly 48 

in high latitude warming and tropical regions. However, Knorr et al. (2016) concluded that, under a moderate emissions 49 

scenario, global burnt areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse 50 

gas emissions. Cunningham et al. (2024), on the other hand reported that although total burnt area is declining globally, ext reme 51 

fire events are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global 52 

fire dynamics are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance 53 

and management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide 54 

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) 55 

(Koubi, 2019; Robinne et al., 2018). 56 

 57 

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 58 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 59 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 60 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 61 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 62 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 63 



 

3 

 
 

 

Formatted: Header

Formatted Table

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of 64 

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and 65 

difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 66 

2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather 67 

and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and 68 

evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data 69 

from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for 70 

ecosystems other than the ones used in their derivation is often not reliable (e.g Perry, 1998). This is mainly because stati stical 71 

models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical 72 

of fires that are stochastic in nature.  Integration of mechanistic process-based techniques and statistical methods remains one 73 

common way forward to advance our understanding of fire dynamics. 74 

 75 

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al., 76 

2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass, 77 

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help 78 

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results. 79 

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing 80 

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The 81 

strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual) 82 

that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification 83 

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in 84 

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al., 85 

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more 86 

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). 87 

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in  88 

ensuring sustainable management of vulnerable ecosystems.  89 

 90 

 91 

1 Introduction 92 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 93 

(Clarke et al., 2019). In Australia, the mean annual burned area in forested regions was about 1.8 million ha per year between 94 
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1988–2001, increasing to 3.5 million ha per year between 2002–2018, before the 2019–2020 “Black Summer” fires burned 95 

over 15 million ha nationally (Australian Government, 2020; Canadell et al., 2021). Similarly, in Canada, the 1986–2022 mean 96 

annual burned area was about 2.1 million ha, compared with the record-breaking 15 million ha burned in 2023 (Curasi et al., 97 

2024; Jain et al., 2024; MacCarthy et al., 2024). These multi-decadal increases in burned area in both countries are consistent 98 

with evidence that climate change has intensified fire-conducive weather over time. Even though the effects of fires may be 99 

positive through contributing to selected natural ecosystem processes, large and frequent fires are often destructive and have 100 

far-reaching effects through loss of life, biodiversity, landscape aesthetic value, and increase in forest fragmentation and soil  101 

erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative role of climate change in driving large and 102 

frequent burning has been well documented (Brown et al., 2023). However, climate change by itself does not fully account for 103 

the recent changes in global wildfire patterns as human activities are crucial drivers as well (Pausas and Keeley, 2021). For 104 

instance, recent empirical investigations have highlighted a notable 25% reduction in burnt area extent over the past two 105 

decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et al. (2021) argue that future 106 

demographic and climate patterns will cause an increase in burnt areas, particularly in high latitude warming and tropical 107 

regions. However, Knorr et al. (2016) concluded that, under a moderate emissions scenario, global burnt areas will continue 108 

to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. Cunningham et al. (2024), 109 

on the other hand reported that although total burnt area is declining globally, extreme fire events are increasing as consequence 110 

of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics are clearly driven by the 111 

overarching interaction between human activities (altered ignition patterns, surveillance and management) and climate 112 

(Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide prescribing solutions that will 113 

ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) (Koubi, 2019; Robinne et al., 114 

2018). 115 

  116 

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 117 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 118 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 119 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 120 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 121 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 122 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of 123 

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and 124 

difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 125 

2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather 126 

and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and 127 

evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data 128 

from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for 129 

ecosystems other than the ones used in their derivation is often not reliable (e.g. Perry, 1998). This is mainly because statistical 130 
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models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical 131 

of fires that are stochastic in nature. Integration of mechanistic process-based techniques and statistical methods remains one 132 

common way forward to advance our understanding of fire dynamics. 133 

  134 

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al., 135 

2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass, 136 

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help 137 

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results. 138 

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing 139 

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The 140 

strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual) 141 

that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification 142 

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in 143 

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al., 144 

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more 145 

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). 146 

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in 147 

ensuring sustainable management of vulnerable ecosystems. 148 

  149 

There is a growing recognition of the significance of exploring both inter-annualinterannual and seasonal variations to 150 

comprehensively understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000),(Dwyer et al., 2000), partly 151 

because of the strong seasonal dynamics of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire 152 

seasons, regions prone to seasonal outbreaks, potential shifts in fire regimes over time and facilitating adaptive management  153 

strategies (Carmona‐Moreno et al., 2005).(Carmona‐Moreno et al., 2005). Incorporating monthly data in global fire modelling 154 

helps researchers to accurately capture seasonal variations in fire activity. Hence, global models developed using monthly data 155 

are necessary.  156 

 157 

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN)(Bergado et al., 2021), 158 

Random Forest (RF) and generalized additive models (GAM)(Chuvieco et al., 2021) which are currently not  easily  integrated 159 

into DGVMs, although we note that recent work from Son et al. (2024)  160 

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN: Bergado et al., 2021), Random 161 

Forest (RF) and Generalized Additive Models (GAM) (Chuvieco et al., 2021) which are currently not easily integrated into 162 

DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced 163 

recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the 164 

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion 165 

of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that  166 
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are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables. 167 

Accordingly, Haas et al. (2022)Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill 168 

but without accounting for seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. 169 

Generally, most earlier fire modules in DGVMs such as the LPJ-LMfireLmfire (v1) were informally parameterized to predict 170 

seasonal fire cycles and do not consider the fuller range of predictors available in a more rigorous statistical framework 171 

(Fosberg et al., 1999; Pfeiffer et al., 2013). Nurrohman, et al., (2024)(Fosberg et al., 1999; Pfeiffer et al., 2013). Nurrohman 172 

et al. (2024) produced monthly fire predictions from downscaling of annual model outputs without building a statistical 173 

approach that is calibratedtrained based on monthly inputs. This left an opportunity to improve burnt area models in DGVMs 174 

to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a simpler and 175 

more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also being easily 176 

integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on variables pertinent 177 

to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance our comprehension 178 

of inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets.  179 

  180 

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integr ated 181 

into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics, 182 

2) to leverage a GLM for predicting global burnt areas using DGVM-integrablecompatible predictors and 3) to evaluate the 183 

interannual and seasonal cycles of burnt area extent, both globally and regionally. 184 

2 Data and Methods 185 

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation, 186 

weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also 187 

evaluated. Fig. 1 provides an overview of the steps that were followed during modelling.  188 

 189 
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 196 

Figure 1: Study workflow showing an overview of steps followed in model calibrationtraining, testing, prediction and 197 

evaluation together with the outputs and time periods. 198 

 199 

2.1 Fire data 200 

Monthly BA data for the periodsperiod 2002 and– 2018 were derived from monthly mean fractional BA from the GFED5. We 201 

selected this data because of their improved ability to detect burnt area scars (Chen et al., 2023).(Chen et al., 2023). GFED5 202 

BA data are classified according to 17 major land cover types using the MODIS classification scheme. We used this land cover 203 

information to remove burnt area in cropland land cover type (type croplands and croplands/natural vegetation mosaic), to 204 

exclude the effect of cropland residue burning which we suppose is likely to have different drivers from burning in non-arable 205 
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lands. We used data for the period 2002 to 2010 for model training and data for 2011 to 2018 for model testing.The BA data 206 

comes at a resolution of 0.25° × 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done fo r 207 

ease of processing at a global scale and at the same time to ensure that our outputs are DGVM integrable since they are 208 

commonly applied at 0.5° globally.  209 

2.2 Predictor variables  210 

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many 211 

possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our 212 

selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic 213 

variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables 214 

that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a), 215 

Vegetation optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture (Mukunga et al., 2023), soil 216 

fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM integration 217 

to calibrate2019), vegetation optical depth (Forkel et al., 2019), lightning (Rabin et al., 2017), soil moisture (Mukunga et al., 218 

2023), soil fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM 219 

integration to train the model effectively. The chosen predictor variables were categorized based on their representational 220 

nature and their roles in fire modelling (See Table 1).  221 

 222 

 223 

  224 

Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal  

resolution 

Temporal 

coverage 

Source 

Percentage Grass 

cover 

 PGC Vegetation 300m Annual 2002-2018 ESA CCI 

landcoverESA 

Climate 

Change 

Initiative 

landcover(UC

Louvain, 

2017) 
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Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original 

spatial 

resolution 

Temporal  

resolution 

Temporal 

coverage 

Source 

Percentage non-

tree vegetation 

cover 

 PNTC Vegetation 250m Annual 2002-2018 MODIS - 

MOD44B 

(DiMiceli et 

al., 2011) 

Topographic 

positioning index 

 TPI Topography 90m Static 2010 

(product of 

the global 

GMTED20

10) 

Digital 

elevation 

model 

products of 

global 250 m 

GMTED2010 

(GMTE data 

2010) and 

near-global 90 

m SRTM v4 

(Jarvis et al., 

2008) 

Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, 

landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  Predictor 

Human 

Development 

Index 

 HDI Ignition/suppression/f

ragmentation 

subnational Annual 2002-2018 Global data 

lab (Smits and 

Permanyer, 

2019) 

Road density  RD Ignition/suppression/f

ragmentation 

0.5° × 0.5° Static Average of 

the period 

1979-2015 

Global Roads 

Inventory 

Project (GRIP) 

database 

(Meijer et al., 

2018) 

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Font: Not Bold, Italic

Inserted Cells

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Swedish (Sweden)

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Inserted Cells

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li



 

11 

 
 

 

Formatted: Header

Formatted Table

Population density  PPN Ignition/suppression/f

ragmentation 

2.5 arc 

minutes 

5-year 

intervals 

2000, 

2005, 

2010,2015 

Socioeconomi

c data and 

applications 

centre 

(SEDAC) 

(Klein 

Goldewijk et 

al., 2017) 

Percentage crop 

cover 

 PCC Fragmentation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 3.3) 

(Klein 

Goldewijk et 

al., 

2017)HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 

Percentage pasture 

cover 

 PPS Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 

2017)HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 
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Precipitation 

seasonality 

 PS Climate 0.5° × 0.5° Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service 

2018)Coperni

cus climate 

data store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Fire weather index  FWI Climate 0.5° × 0.5° Monthly 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service 

2018)Coperni

cus climate 

data store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Precipitation of the 

driest quarter 

 PPNQ Climate 0.5° × 0.5°  Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service 2018) 

(Copernicus 

Climate 

Change 

Service, 2021) 

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,15 li



 

13 

 
 

 

Formatted: Header

Formatted Table

Number of dry 

days 

NDD Climate 0.5° × 0.5° Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service 

2018)Coperni

cus climate 

data store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Percentage 

grazeland cover  

 PGZC Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 3.3) 

(Klein 

Goldewijk et 

al., 

2017)HistorY 

Database of 

the Global 

Environment 

(HYDE 3.3) 

(Klein 

Goldewijk et 

al., 2017) 

Predictor Abbreviations Classification 

category (Climate, 

vegetation, 

landcover, 

landscape 

fragmentation, 

ignition, suppression 

topographic effect) 

Original spatial 

resolution 

Temporal  Predictor 
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Percentage 

rangeland cover 

 PRC Vegetation 5 arc minutes Annual 2002-2018 HistorY 

Database of 

the Global 

Environment 

(HYDE 3.3) 

(Klein 

Goldewijk et 

al., 

2017)HistorY 

Database of 

the Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et 

al., 2017) 

Annual average 

precipitation 

 AAP Climate 5 arc minutes Annual 2002-2018 Copernicus 

climate data 

store 

(Copernicus 

Climate 

Change 

Service 

2018)Coperni

cus climate 

data store 

(Copernicus 

Climate 

Change 

Service, 2021) 

Gross primary 

productivity 

 GPP Vegetation 0.5° × 

0.5°500m 

Monthly 

(originally 

8 days) 

MOD17A1 

(Running 

and Zhao, 

2019)2002-

2018 

MOD17A2H

GF(Running 

and Zhao, 

2021) 

Aboveground 

biomass 

 AGB Vegetation 0.5° × 0.5° Longterm 

average 

2010  ESA Biomass 

Climate 

Change 

Initiative v4 

(Santoro and 

Cartus, 2023) 
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Percentage Tree 

cover 

 PTC Vegetation 250m  Annual 2002-2018 MODIS - 

MOD44B 

(DiMiceli et 

al., 

2011)MODIS 

- MOD44B 

(DiMiceli et 

al., 2011) 

Fraction of 

Absorbed 

Photosynthetically 

Active Radiation 

 FAPAR Vegetation 500m Monthly 

(originally 

8 days) 

2002-2018 MODIS - 

MOD15A2H  

(Running and 

Zhao, 

2019)MODIS 

- MOD15A2H 

(Running and 

Zhao, 2021) 

  225 

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial 226 

& temporal) and the respective data sources. 227 

 228 

2.2.1 Vegetation-related predictors  229 

We used eightnine vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These 230 

variables encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), 231 

Percentage Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree Cover (PTC). Previous work 232 

emphasizes the important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010),Percentage Tree 233 

Cover (PTC), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Aboveground Biomass (ABG), and Gross 234 

primary productivity (GPP). Previous work emphasizes the important role of vegetation on burnt area dynamics. For example, 235 

Thonicke et al. (2010), discussed the crucial role of vegetation structure in shaping fire occurrence, spread and intensity. PGC 236 

defines the land covered by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass and 237 

shrubs, contributing to overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to suppress 238 

fire occurrence as they fragment the landscape acting and so act as a barrier to fire spread (Haas et al., 2022).(Haas et al., 239 

2022).  240 

 241 

PGZC, PRC, PTNC and PTC were used to evaluate the relationship between landcover and burnt area distribution. Previous 242 

studies reported that land use/cover type has made a significant contribution to wildfire distribution (Gallardo et al., 2016; 243 

Villarreal and Vargas, 2021). GPP, AGB, and FAPAR were proxies for vegetation productivity and type, and fuel load. Also, 244 
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some studies emphasized the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et 245 

al., 2021). 246 

 247 

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem 248 

Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was 249 

originally defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation 250 

growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire 251 

dynamics. 252 

  253 

MEPI = 
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
       (1) 254 

  255 

  256 

  257 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 258 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 259 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 260 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 261 

accumulation.We used PGZC, PRC, PTNC and PTC to evaluate the relationship between landcover and burnt area distribution. 262 

Previous studies reported that landcover change has made a significant contribution to wildfire distribution (Gallardo et al. , 263 

2016; Villarreal and Vargas, 2021).  264 

 265 

We used Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed Photosynthetically 266 

Active Radiation (FAPAR) as proxies for vegetation health and productivity. Previous studies emphasized the varying effects 267 

of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et al., 2021).  268 

 Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as a key driver for global fires. 269 

2.2.2 Topographic-related predictors  270 

We used topographic positioning index (TPI) toTo evaluate how topography can influence the occurrence and spread of fires., 271 

we incorporated Topographic Positioning Index (TPI). Topography has been reported to be more influential in regions with 272 

complex terrain and microclimatic conditions (Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 2014).(Blouin et al., 2016; 273 

Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006)(Cary et al., 2006) and surface area ratio 274 

(Parisien et al., 2011)(Parisien et al., 2011) in their models and reported topography to marginally contribute to wildfire 275 

dynamics. However, recent studies reported some significant contributions of topography to global burnt area distribution 276 

when using the TPI (Haas et al., 2022).(Haas et al., 2022). TPI is designed to encompass and evaluate the complex influence 277 
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of terrain features, such as elevation and slope, on the distribution of burnt areas. Thus, TPI goes beyond simplistic 278 

representations of landscapes and offers a more nuanced perspective on how terrain characteristics contribute to the occurrence 279 

and extent of wildfires. Given the role of terrain on fire behavior and propagation patterns, the inclusion of TPI in this st udy 280 

allows for a comprehensive examination of wildfire distribution.  281 

2.2.3 Anthropogenic Influence Predictorsinfluence predictors 282 

We usedTo capture the impact of anthropogenic factors on both fire ignition and suppression, we adopted the Human 283 

Development Index (HDI), Population Density (PPN), and Road Density (RD) to capture the impact of anthropogenic factors 284 

on both fire ignition and suppression.). The inclusion of HDI aims to encapsulate human influence on ecological landscapes, 285 

thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index developed by the United 286 

Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of human development, 287 

including health (life expectancy at birth), education (mean years of schooling and expected years of schooling), and standard 288 

of living (gross national income per capita) (Uddin, 2023).(Uddin, 2023). HDI values range from 0 to 1, with higher values 289 

indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands as a  290 

valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross 291 

Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022).(Perkins et al., 2022). To address the 292 

limitations of using GDP as a proxy for human development in predicting global fires, we opted for HDI. Previous research 293 

has utilized GDP for this purpose (Zhang et al., 2023), however, GDP is an indicator of a country's economic performance 294 

(Callen, 2008). In contrast, HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as 295 

investments and advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness. 296 

HDI(Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast, HDI 297 

is a broader socioeconomic indicator which evaluates a country or other administrative region's development status based on 298 

the critical factors of life expectancy, education, and income,. We assume it acts as a proxy for factors such as investments and 299 

advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness, thus providing 300 

a more nuanced understanding of the socio-economic context shaping fire behavior (Teixeira et al., 2023).than GDP. To 301 

evaluate model sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and 302 

holding HDI constant. 303 

2.2.4 Weather-Related Predictorsrelated predictors 304 

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires. 305 

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire 306 

behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed 307 

decisions on fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate well 308 

with burnt areas across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production 309 
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limitations. While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how 310 

moisture availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal 311 

and annual weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation 312 

(AAP). The selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco 313 

et al., 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from 314 

seminal works such as that by Pechony and Shindell, (2010). 315 

We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires. 316 

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire 317 

behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed 318 

decisions on fire prevention, preparedness, and suppression strategies. It has been shown to correlate well with burnt areas 319 

across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations. 320 

While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture 321 

availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual 322 

weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The 323 

selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco et al., 324 

2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal 325 

works such as that by Pechony and Shindell (2010). 326 

 327 

2.3 Data Processingprocessing 328 

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had 329 

a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation, 330 

resampling, and consolidation. For instance, while the native temporal resolution of FAPAR wasand GPP were 8 days, we 331 

transformed it into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an 332 

annual temporal resolution, except for FWI, GPP, and FAPAR, which werewas also available every month. For annual 333 

predictors, we replicated the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized 334 

every month to synchronize with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used 335 

monthly over the represented 5-year span. Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation 336 

as key driver for global fires. To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived 337 

the Monthly Ecosystem Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. 338 

(1). MEPI was originally defined in the work by Forrest et al. (2024).  This index allowed us to quantify the relationship 339 

between vegetation growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the 340 

factors influencing fire dynamics. 341 

 342 
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MEPI =  
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
       (1) 343 

 344 

 345 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 346 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 347 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 348 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 349 

accumulation. 350 

2.4 Statistical modelling and final predictor choice 351 

2.4 Variable selection 352 

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical 353 

package (CoreTeam, 2014).(CoreTeam, 2014). Following established guidelines by Dormann et al. (2013) ,Dormann et al. 354 

(2013), we applied the conventional threshold of R > 0.5 to enhance the model's efficiency. Moreover, we employed the 355 

Variance Inflation Factor (VIF) to evaluate collinearity among predictor variables, removing those with VIF values surpassing 356 

5, as recommended by O’brien, (2007).O’brien, (2007). Post collinearity tests, an additional 3 parameters were adopted to 357 

progressively select the best model, namely: 1) a simple (~ parsimonious) model which comprise of a full suite of categories 358 

of covariate combinations (i.e. vegetation, climate, topography, ignitions), 2) the deviance explained value and 3) the 359 

normalised mean square error Normalised Mean Square Error (NME) value as illustrated in the making of Burnt Area 360 

Simulator Forfor Europe (BASE) (Forrest et al., 2024). The variables include the MEPI, FWI, PNTC, HDI, PTC, TPI, NDD: 361 

Forrest et al., 2024).  362 

 363 

2.5 Model training and PPN. testing 364 

 A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, ease 365 

of transference to other modelling framework’s ability to generate partial residual plots, i.e., the effect of each predictor in the 366 

model while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Residual plots were 367 

utilized to examine the magnitude and nature of each predictor's relationship with wildfire burnt area distribution.  368 

A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, 369 

seamless integration into DGVMs and ability to generate partial residual plots, i.e. the effect of each predictor in the model 370 

while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016). Calibration of the model 371 

utilized data from 2002 to We used data from the period 2002–2010 for model training, the period 2011–2018 for model 372 

testing, and the full period 2002–2018 dataset for predictions and model evaluation. These time periods were chosen to ensure 373 

that the testing data remained independent from the training data while also allowing predictions to span a sufficiently long 374 
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timeframe to enhance the robustness of the analysis and evaluation. The essence of splitting training vs testing is to train the 375 

model on training data, and then check that the results are similarly good on the testing data (for example, no overfitting to the 376 

training data) before making predictions on the full dataset. Hence, during model testing we compared the performance of the 377 

model on training data vs testing data to assess model robustness. 378 

 379 

2.6 Model selection 380 

We employed a sequential model-building approach, beginning with additive structures (M1–M12) to estimate the independent 381 

contribution of climate, vegetation, and human variables on burned area (Table 2). This approach aligns with established fire 382 

risk modelling practices (e.g., Forrest et al., 2024). Additional predictors were introduced if they represented ecologically 383 

meaningful processes (e.g., drought severity, vegetation productivity) and improved model fit (deviance explained and 384 

Normalised Mean Error). Multiplicative interaction terms (M13 onward) were added only when fire ecology theory suggested 385 

synergistic effects (e.g., human ignitions under extreme weather, vegetation dryness and temperature) and re tained if deviance 386 

explained improved. This stepwise approach ensures both statistical rigor and ecological interpretability rather than ad hoc 387 

formula selection. 388 

 389 

 390 

 391 
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Model(s) Formula type Deviance 

explained 

(range) 

NME (range) Rationale for additive / interaction terms 

M1–M2 Additive, 

baseline 

predictors 

(FWI, GPP, 

HDI, PTC, RD 

± PGC) 

0.35–0.37 0.74–0.75 Start with core fire-weather, vegetation, and human 

variables widely used in fire risk modelling (e.g., FWI, 

HDI). Summation quantifies independent effects and 

provides a baseline for deviance explained. 

M3–M9 Additive, 

extended 

predictors (e.g., 

PNTC, 

FAPAR, PCC) 

0.52–0.54 0.72–0.71 Additional vegetation productivity and phenology 

metrics tested to capture fuel continuity and biomass 

effects. Additive inclusion based on ecological theory 

(fuel load → fire extent) and retained if deviance ↑ > 1–

2%. 

M10–M12 Additive, 

polynomial + 

seasonal 

predictors 

0.52–0.55 0.71–0.72 Added nonlinear terms (e.g., poly(PTC,2)) to test 

curvilinear effects of vegetation productivity on fire 

risk, seasonal indices (e.g., FAPAR12) reflect lagged 

vegetation–fire relationships. 

M13–M20 Additive + 

interaction 

terms 

(HDI×PCC, 

MEPI×PNTC, 

etc.) 

0.55–0.57 0.71–0.72 Interaction terms introduced where ecological or 

anthropogenic synergies are expected (e.g., human 

density × vegetation affects ignition; drought × fuel load 

affects spread). Retained if deviance > 2 and NME 

improves 2%. 

M21–M26 Full 

interactions, 

topographic + 

climate 

covariates 

0.56–0.57 0.71–0.72 Topography (TPI) and drought indices (NDD) interact 

with vegetation to capture compound effects on fire 

behavior; final models balance explanatory power with 

ecological plausibility and parsimony. 
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Table 2: Summary of models (M1–M26) with corresponding formulas, performance metrics, and rationale for 392 

predictor inclusion or interaction terms. Predictor additions were guided by ecological theory (e.g., fuel load, climate 393 

extremes, anthropogenic factors) and retained based on statistical improvements. 394 

  395 

2.7 Model performance evaluation  396 

2010 while testing utilized data from 2011 to 2018. Residual plots were utilized to examine the magnitude and nature of each 397 

predictor's relationship with wildfire burnt area distribution.  398 

 399 

Model performance was assessed using the Normalized Mean Error (NME) following Kelley et al. (2013).Kelley et al. (2013). 400 

NME serves as a standardized metric for evaluating global fire model performance, facilitating direct comparison between 401 

predictions and observations. The NME was calculated following Eq. (2). 402 

  403 

𝑁𝑀𝐸 =
 ∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖 𝛪

∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠 𝛪
                                                                       404 

 (2) 405 

  406 

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all 407 

cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the 408 

observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment 409 

between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-410 

binomial distribution. We applied the logit link function based on the methodology outlined by Haas et al. (2022). After 411 

conducting a collinearity test, the models were systematically evaluated using various combinations of predictor variables. A 412 

total of 2526 model runs were conducted, each incorporating different sets of variables while iteratively excluding some, to 413 

discern the extent to which each predictor explained variance when others were not included (see Table A1). We followed the 414 

stepwise approach of variable inclusion, exclusion, interaction terms, log transformations, and polynomial transformations as 415 

described by Forrest et al. (2024). While their analysis focused on Europe, our objective was to replicate and applyForrest et 416 

al. (2024). While their analysis focused on Europe, our objective was to replicate and test the method at a global scale. To 417 

evaluate the reliability of the predicted interannual variability and seasonal cycles, we applied a regression function to 418 

determine the relationship (R2) between the observed and predicted trends. using annual average data for the period 2002-419 

2018. An R2 of 1 shows good performance in our predictions and an R2 of 0 shows poor performance in our predictions. To 420 

assess the trend in predicted interannual variability, we used the Mann-Kendall test (Kendall, 1975; Mann, 1945).(Kendall, 421 

1975; Mann, 1945). This widely used method detects monotonic trends in environmental data. Being non-parametric, it works 422 

for all distributions, does not require normality, but assumes no serial correlation.   423 

3 Results 424 
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3.1 Correlation between variables 425 

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12, 426 

FAPAR6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however 427 

some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and 428 

model performance. For example, NDD was strongly correlated to PTC ( ~(~ -0.68), but both increased the variance explained 429 

by the full model. 430 

 431 
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 433 

  434 
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  435 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation. 436 

  437 

3.12 Optimal model selection and GLM results.  438 

The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump and substantial 439 

improvement is observed in deviancemodel 3 which explained when52.98% following the inclusion of PNTC is added (Model 440 

3: 0,5298).. Models 4 to 8 involve adding vegetation (FAPAR) and various land use types (PCC, PPS, PRC, PGC). This is 441 

accompanied by marginal improvement in deviance explained, indicating these factors provide some additional predictive 442 

power but are not as impactful as existing vegetation covariates (such as GPP). Models 10 to 12 introduce polynomial terms 443 

for PTC. This results in an increase in deviance explained, peaking at around 0.558836performance explaining 55.88% in 444 

Modelmodel 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in 445 

Formatted: Line spacing:  Multiple 1,15 li

Formatted: Line spacing:  Multiple 1,36 li



 

26 

 
 

 

Formatted: Header

Formatted Table

marginal increaseimprovement in deviance explained performance with the highest recorded in Modelmodel 15(~ 0.5664789). 446 

which explained 56.65%. Models 19 to 2526 fine-tune the overall performance by incorporating various variables and their 447 

interactions. Model 24, which includes a comprehensive set of climatic, vegetation, human, and topographic variables along 448 

with their interactions, achieves the highest devianceperformance as it explained (~0.5720048).57.20%. The marginal 449 

improvements observed in subsequent models indicate that while additional variables contribute to the model, the primary 450 

influencing factors were already identified by Modelmodel 19, however it was not the simplest model (~ parsimonious), and 451 

consisted of otherincluded variables that we don’t havefor which future projections for are currently unavailable (e.g., RD).), 452 

due to the lack of established projection models or datasets. Since the main objective of the study was to produce a DGVM-453 

compatible model, availability of future projections for these datasets was indispensable to model building. We removed some 454 

of the redundant variables till Modelmodel 24 (~11 variables), however, it was not as parsimonious as Modelmodel 25 (~8 455 

variables). Therefore, Modelmodel 25, which offers a balance of parsimony, simplicity, high deviance explained, and low 456 

NME, was selected as the best model in this analysis. 457 

 458 

 Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of 459 

wildfires (p < 0.05), as outlined in Table 23. 460 

 461 

   
Estimate Std.Error T value Pr(>|t|) 

(Intercept) 
- 6.159e+00 2.349x10^-02 -262.17 <0.00001 

FWI 
9.296e-01 1.948x10^-03 477.28 <0.00001 

MEPI 
-2.270e+00 8.974x10^-03 -252.96 <0.00001 

HDI 
-1.680e+00 1.235x10^-02 -135.99 <0.00001 

PNTC 
5.170e-02 2.270x10^-04 227.78 <0.00001 

poly(PTC,2)1 
2.135e+03 1.114x10^01 191.55 <0.00001 

poly(PTC,2)2 
-9.783e+02 6.975 -140.27 <0.00001 

TPI 
2.225e-01 3.946x10^-03 56.39 <0.00001 

NDD 
-9.550e-03 4.757x10^-05 -200.78 <0.00001 

PPN 
-1.075e-03 1.808x10^-05 -59.48 <0.00001 

  462 

Table 23. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results 463 

indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05). 464 
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  465 

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among 466 

the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and 467 

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the 468 

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the 469 

MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.  470 

  471 

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate 472 

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential 473 

relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving 474 

wildfire dynamics. 475 

 476 

 477 

  478 
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 479 

Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor 480 

variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972). 481 

Predictor variables were Gross Primary ProductionMonthly Ecosystem Productivity Index (GPPMEPI), Fire Weather 482 

Index (FWI), Percentage Non-Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), 483 

Topographic Position Index (TPI), Population Density (PPN) and Number of Dry Days (NDD). 484 

 485 

  486 

3.3 Performance evaluation 487 

The model demonstrated comparable performance across the training and testing datasets. Specifically, the training data 488 

yielded a deviance explained of 0.57 and an NME of 0.73, while the testing data yielded a deviance explained of 0.56 and an 489 

NME of 0.70. The close agreement between training and testing performance supports the robustness of the model and justifies 490 

its application to the full dataset, which we subsequently evaluated with respect to both spatial and temporal predictive 491 

capability. 492 

The full dataset model demonstrated strong performance in predicting BA, accounting for over 50as it explained 56.83% of 493 

the variability in burnt areas (Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution 494 

model by Haas et al. (2022), who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader 495 

array of variables (16 predictors) and operated at a coarser temporal resolution (annual).area. Our model's performance, based 496 

on eight predictors and operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious.  497 

 498 
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Assessment of Overall, the model accuracy yielded an NME of 0.718, indicating a generally close correspondence between 499 

observed and predicted burnt area patterns (see Fig. 4). This level of accuracy is comparable to that reported by previous global 500 

fire models, such as Haas et al. (2022) and Hantson et al. (2016) which reported NMEs ranging from 0.60 to 1.10..  501 

 502 

The correlation analysis further shows significant variation in the strength of relationship between observed and predicted 503 

burnt area extent across the 14 GFED regions annually (Fig. 4a) and seasonally (Fig. 4b). These include: Boreal North America 504 

(BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), 505 

Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), 506 

Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia 507 

(EQAS) and Australia and New Zealand (AUST).  508 

 509 

Our model overall performed poorly in predicting interannual variability as exhibited by a poor strength of relationship between 510 

the predicted trend when compared to the observed (R2= 0.24). This poor relationship was exhibited across most of the GFED 511 

regions (R2 < 0.50, Fig. 4a), except for the NHSA which showed strong similarities between the predicted trend and observed 512 

trend (R2 = 0.55). This observation suggests that the combination of covariates that we incorporated in this model has limited 513 

strength in capturing global interannual variability in burnt areas.  514 

 515 

Unlike the global interannual trends, there was a strong strength of similarity between observed and predicted seasonal cycles 516 

in most GFED regions (refer to Fig. 4b and Fig. A4). The model predicted better in GFED regions that are situated in Southern 517 

Africa, South America, Australia and Asia (R2 > 0.50). However, a few poor seasonal predictions were recorded in GFED 518 

regions situated in North America, North Africa and Europe as indicated by a poor relationship between observed burnt area 519 

and predicted burnt area (R2 < 0.50). 520 

 521 
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   522 

Figure 4: Evaluation of the selected model using observed burned area data from GFED5 predicted data (2011-2018). 523 

The maps show r-square values highlighting the model’s performance for interannual (a) and seasonal variability (b) 524 

per GFED region. 525 

 526 

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating 527 

notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 45). However, in 528 

extratropical regions, particularly in the northern hemisphere, instances of over-predictionoverprediction were observed. This 529 

discrepancy is evident in the inconsistencies between observed annual distribution patterns and those predicted by the model.  530 

 531 
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  533 

 534 

 535 
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 536 

 537 

Figure 45: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area  538 

(bottom). 539 

  540 

 541 

 542 
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3.24 Interannual variabilitydistribution 543 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to 544 

2018, with the peak decline observed in 2004 (see Fig. 56). This downtrend was reproduced by the model, but the model 545 

underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with 546 

the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022).(Andela et al., 2017; Jones et al., 547 

2022). Excluding and holding HDI constant in the model made the projected trend remain steady, suggesting the role of 548 

anthropogenic developments (increasing HDI over time) driving a downward trend in wildfire distribution.  549 

 550 

 551 
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 552 

Figure 56: Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates 553 

detection for the period 2002-2018 and model projections of the respective period under different HDI treatments: 554 

when HDI was excluded, included and held constant from the value of the first year in the model.   555 

 556 

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area 557 

extent across the 14 GFED regions (refer to Fig. 6a7 and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a 558 

significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA, 559 

SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in 560 

GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and 561 

Europe demonstrated no significant trend, as illustrated in Fig. 6a7. 562 

 563 
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 568 

  569 

Figure 67: Variation in the direction of trend of interannual variability for burnt areas across different GFED regions. 570 

Where (a) shows the direction of the trend and (b) shows the spatial  571 

 572 

3.5 Seasonal distribution of the strength of relationship (r-square values) between observed and predicted interannual 573 

variability per GFED region. 574 

 575 

Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship 576 

between the predicted trend when compared to the observed (R2= 0.24) (See Fig 6b and Fig A1). This poor relationship was 577 

exhibited across most of the GFED regions (R2 < 0.50), except for the NHSA which showed strong similarities between the 578 

predicted trend and observed trend (R2 = 0.55). This observation suggests that the combination of covariates that we 579 

incorporated in this model has limited strength in capturing global interannual variability in burnt area. However, the predicted 580 

global trend is in sync with previously reported global trends (Jones et al., 2022). 581 

3.3 Seasonal Cycle 582 

Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and 583 

August (see Fig. 78). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the 584 

observed trend (R2 = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted 585 

seasonal cycles varies according to the GFED region with R2 ranging between 0.06 to 0.99 (refer to Fig. 8). The model 586 

predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R2 > 0.50) (see Fig. 587 
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8 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa 588 

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R2 < 0.50).  589 

 590 

 591 
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 592 

Figure 78: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent. 593 

 594 

 595 

Figure 8: Spatial distribution of r-square values for the relationship between observed and predicted seasonal 596 

variability per GFED region. 597 

  598 

4 Discussion  599 
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4.1 Main drivers of global burned area 600 

We found a DGVM compatible parsimonious global statistical model made ofthat our candidate variables, namely FWI, 601 

PNTC, PTC, TPI, MEPI, HDI, PPN and NDD. Of all the key variables,, had strong influence on burnt areas. FWI and PNTC 602 

exhibited a strong positive relationship with fire occurrence, underscoring the importance of conducive fire-weather conditions 603 

and combustible fuel in driving wildfire occurrence and spread. High PNTC is most likely related to high amounts o f 604 

flammable vegetation, such as grasses and shrubs. Our findings show that fire weather (~FWI) and fuel availability (~PNTC) 605 

influence burnt area extent align with previous studies (Andela et al., 2017; Bistinas et al., 2014; Forkel et al., 2019b; Kuhn-606 

Régnier et al., 2021).(Andela et al., 2017; Bistinas et al., 2014; Forkel et al., 2019; Kuhn-Régnier et al., 2021). The other 607 

studies, however, did focus on the annual burnt area, not the seasonal cycle, which is also crucial to adapt to changes in fi re 608 

risk. 609 

  610 

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree coverPNTC 611 

show lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas 612 

with low PNTC are often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees 613 

(Juli et al., 2017; Wragg et al., 2018).(Juli et al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, 614 

which is often less flammable, leading to fewer fires. Though our findings support previous literature indicating that region s 615 

with abundant combustible vegetation and favorable fire-weather conditions are prone to frequent burning (Kraaij et al., 2018; 616 

Thonicke et al., 2010),(Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative relationship between NDD 617 

and burnt area. Previous studies found a positive relationship between NDD and burnt area fractions (Haas et al., 2022), like 618 

our single (Haas et al., 2022), like our single-factor plots of NDD and burnt area in Fig A3. This result most probably shows 619 

that relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal 620 

fire predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities in 621 

Mediterranean ecosystems (Cardil et al., 2019). Stott (2000)(Cardil et al., 2019). Stott (2000) echoed similar sentiments for 622 

tropical environments, indicating the complex relationship between vegetation, dryness and fire. Our efforts to investigate this 623 

complex relationship through an interaction term did not significantly improve our model accuracy (~ model 26). Hence, future 624 

studies may benefit from further exploring the complex relationship between dryness and vegetation at a global scale, 625 

particularly the effect of incorporating polynomial terms on correlated predictors in a linear model. 626 

  627 

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our 628 

findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a 629 

significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas et al. (2022),Haas et al. (2022), 630 

PPN, which should correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we 631 

observed that lower PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape 632 

fragmentation through road construction, and measures to suppress fires in human inhabited spaces to protect properties  633 

(Kloster et al., 2010). Saunders et al., (1991)(Kloster et al., 2010). Saunders et al. (1991) observed that the response of fire to 634 

changes in PPN is governed by two opposing processes, an increase in population leads to more ignition sources, while 635 
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simultaneously prompting greater fire management efforts to suppress fires. They further highlighted that fire suppression 636 

rates are highest in densely populated areas. This suggests that the scale (both spatial and temporal) of analysis may influence 637 

nature and extent to which PPN affects burnt area extent. Our results for the effect of PPN have important implications for 638 

DGVMs and land surface models. These models differ widely in the assumed effect of PPN, often using a unimodal response 639 

simulating BA annually, in some cases distributing the wildfires across seasons in a second step, using rather simplified 640 

assumptions (Teckentrup et al., 2019).(Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between 641 

MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative 642 

relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt areas. Our 643 

findings are in line with those of Forrest et al. (2024)Forrest et al. (2024) who initially investigated the effect of this index on 644 

burnt areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed a more refined measure, 645 

MEPI. Future research could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions 646 

and temporal scales. 647 

  648 

4.12 Spatial variation in model performance 649 

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South 650 

America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and 651 

predictable fire regimes in these regions. Since fire activity here is strongly governed by distinct wet-dry seasonal cycles, 652 

which align closely with climate variables such as precipitation, temperature, and vegetation productivity, factors thatfire 653 

weather, enabling our model to capture these patterns effectively using linear functions (Archibald, 2016; Van Der Werf et al., 654 

2017). These regions typically exhibit lower interannual variability in fire occurrence, facilitatingSee Fig. A5), hence better 655 

model generalization. 656 

  657 

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as 658 

well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical 659 

and anthropogenic factors (Chuvieco et al., 2021; Forkel et al., 2019b).(Chuvieco et al., 2021; Forkel et al., 2019). High 660 

interannual variability in burnt areas in these regions is due to irregular droughts, land use change, and fire suppression policies 661 

that make prediction more challenging for linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and 662 

varied ignition sources in temperate and boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). 663 

Chuvieco et al., (2021)(Flannigan et al., 2009). Chuvieco et al. (2021) reported about this challenge when building global 664 

models. Thus, our findings build upon existing models on global burnt area distribution. What sets our model apart from 665 

previous models is its ability to reliably identify global seasonal fire distribution patterns. This simplicity offers a notable 666 

advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared to annual models. 667 

4.3 Attribution of global trends 668 
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Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends (Joshi and 669 

Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017),Previous 670 

studies have improved our understanding of drivers of fire but differ in approach and attributional focus for fire trends. For 671 

instance, Joshi and Sukumar (2021) employed region-specific multilayer neural networks to reveal spatially varying 672 

sensitivities between fire and socio-environmental drivers, providing strong spatial diagnostics but limited transparency on 673 

attributions of burnt area trends. Kraaij et al. (2018) provided detailed biome-level attribution of destructive fires by linking 674 

drought, fuel state and vegetation context in case studies (e.g., fynbos/plantation complexes), emphasizing vegetation and 675 

weather controls at local scales. Mukunga et al. (2023) used random-forest analyses to quantify the added value of human 676 

predictors for ignition probability, focusing on anthropogenic controls of ignitions rather than burnt area extent. Building on 677 

these approaches, our study contributes novel attributional insight because it explicitly integrates a compact set of DGVM 678 

compatible fire-weather and fuel indices (FWI, PTC, TPI, PNTC) with a socio-economic indicator (HDI) within a 679 

parsimonious statistical framework for burnt area trends. This allows direct attribution of directional effects (for example, the 680 

negative association between HDI and burnt area) across regions. Work by Andela et al. (2017), primarily attributed the decline 681 

in global burnt areas to agricultural expansion and intensification. Earl and Simmonds (2018)Earl and Simmonds, (2018) 682 

supported this view, adding that increased net primary productivity in Northern Africa also played a significant role. However, 683 

our results suggest that human development is a more important driver than agricultural expansion alone. Despite the 684 

conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland fractions as predictor 685 

variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis 686 

revealed that excluding the HDI from our model and holding it constant to the value of the first year predicted a steady trend 687 

that deviates from the observed negative trend in global fire extent and including HDI followsis partly followed by a decreasing 688 

trend that aligns with the observed trend. (Fig. 5). This highlights the significant influence of HDI in projecting the purported 689 

negative global fire trend. HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor such as 690 

investments and advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness 691 

(Teixeira et al., 2023). Although theseImportantly, HDI is not uniform worldwide but varies substantially across regions and 692 

levels of socioeconomic development. For instance, in high-HDI countries, greater financial resources, infrastructure, and 693 

institutional capacity often translate into stronger investments in fire control technologies, improved surveillance systems,  and 694 

more effective prevention campaigns. By contrast, in low and middle HDI countries, limited resources and weaker institutional 695 

frameworks may constrain fire management capabilities, resulting in greater reliance on natural fire dynamics or less 696 

formalized suppression efforts. As many countries continue to develop, it translates improvements in HDI and fire management 697 

strategies. Although strategies are often implemented independently and on a smaller scale, their cumulative impact on global 698 

fire trends is substantial. Thus, HDI serves as a broad socioeconomic indicator that we assume acts as a proxy for the combined 699 

effects of investments, advancements in fire control methods, surveillance, technology, and outreach strategies that increase  700 

awareness (Teixeira et al., 2023). Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire 701 

control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the 702 

development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively 703 

mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods. 704 
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  705 

4.4 Interannual variability 706 

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high 707 

precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1A1). 708 

Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated 709 

FAPAR12 in models 9 to 12 (Table A1) and MEPI in models 11 to 26 (Table A1). Unfortunately, these adjustments did not 710 

enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased 711 

precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa  (Shekede 712 

et al., 2024).(Shekede et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons 713 

using GPP12 in model 10, respectively. While this approach did not improve global interannual predictions, it showed a slight  714 

enhancement in deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of 715 

the fire-aerosol positive feedback mechanism in Africa (Zhang et al., 2023)(Zhang et al., 2023) and periodic El Niño 716 

conditions, which can affect rainfall patterns and lead to drier vegetation conditions, reducing the predictability of fire 717 

occurrence, especially with linear models (Shikwambana et al., 2022).(Shikwambana et al., 2022). We note that in the recent 718 

comparison of fire-enabled DGVMs in the Fire Model Intercomparison Project (FireMIP) project (Hantson et al. 719 

2020),(Hantson et al., 2020), all models did a poorer job of matching the interannual variability than the spatial patterns by a 720 

considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all data and model 721 

comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our modelling efforts 722 

highlight the complexity of accurately predicting wildfire trends and underscore the need for future research to identify 723 

covariates that more effectively capture the interannual variability of fires at a global scale. 724 

4.5 Fire seasonality 725 

Globally, our model predicts a notable peak in burnt areas during February and August. (Fig. 8). The February peak 726 

corresponds to dry conditions and fuel accumulation in northern hemisphere regions such as NHSA, NHAF, and MIDE. In 727 

contrast, (Fig. A2), with the complementary August peak primarily emanates from tropical occurring in regions characterized 728 

by distinct seasonal patterns, particularly in such as SHSA, SHAF, and AUST. Here,Our model predicts this with only two 729 

sub annual predictors - the dry season augments the combustibilitylogarithm of accumulated fuel from the preceding wet 730 

season, facilitating fire spread. This observation corroborates earlier studies in the southern hemisphere, which underscore the 731 

prevalence of wildfires during prolonged dry spells (Magadzire, 2013; ShekedeFWI and MEPI as already demonstrated for 732 

Europe by Forrest et al., . (2024; Strydom and Savage, 2017). Increased temperatures and desiccated vegetation substantially 733 

enhance the likelihood and severity of wildfires during the dry season. Conversely, the onset of the rainy season precipitates a 734 

marked reduction in the occurrence of wildfires in these regions.). This underscores the enduring influence of fire weather and 735 

vegetation dynamicsgrowth and phenology as principal drivers of seasonal burnt area cycles, with factors such as moisture 736 

content in vegetation and soil, as well as humidity, playing pivotal roles in modulating ignition and fire extent within 737 
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ecosystems. The seasonal forecasts generated by our model hold significant implications for guiding adaptive strategies, fire  738 

management and prevention at both regional and global scale. 739 

  740 

The findings of this study exhibit robustness in capturing the global seasonal cyclescycle (R2 = 0.536, See Fig.7), facilitated 741 

by the inclusion of monthly variables such as the MEPI and the logarithm of FWI, which are pivotal in del ineating seasonal 742 

fire patterns. While the seasonal predictions demonstrate reliability across most GFED regions globally,but notable exceptions 743 

were observed in North America, the Middle East and Mediterranean North Africa, and Europe (R2 <0.50, See Fig.8). This 744 

discrepancy could be attributed to the intricate climatic conditions inherent to these regions, which influence fires in a manner 745 

that eludes simple linear modelling. For instance, tropical regions with clear-cut wet and dry seasons tend to exhibit more 746 

regular fire cycles, largely governed by seasonal shifts in precipitation, temperature, and vegetation growth. These predictable 747 

patterns make them well-suited to linear modelling approaches (Van Der Werf et al., 2017).(Van Der Werf et al., 2017). In 748 

contrast, extra-tropical areas in the northern hemisphere experience more irregular and less seasonally driven fire activity. 749 

Here, the interaction of drought events, land management, and socio-economic drivers introduces variability that weakens 750 

model performance (Chuvieco et al., 2021; Forkel et al., 2019b).(Chuvieco et al., 2021; Forkel et al., 2019). Additionally, 751 

varied ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns (Flannigan et al., 752 

2009).(Flannigan et al., 2009). Given the parsimonious design of our model, with only ~eight predictors and only two of those 753 

on a monthly time step, we think that the model’s performance is acceptable. ForFurthermore, this acceptable seasonal 754 

performance fills a gap in the available global fire models. To our knowledge there are no such models which are strongly 755 

data-constrained (i.e statistically fitted as opposed to empirical or processes-based) and which predict the seasonal cycle. The 756 

closest is SIMFIRE, which is fitted to observed data but which calculates annual burnt area and then distributes throughout the 757 

year using a prescribed seasonal cycle based on observed data (Rabin et al., 2017). So, whilst the work presented is not yet 758 

integrated into a DGVM, it represents a significant advance in this direction. This is particularly important given the 759 

comparatively poor performance of global fire models in predicting the seasonal concentration of burnt area (Hantson et al., 760 

2020, Table 3). However, for certain regions, it might be possible to increase model performance by implementing further 761 

region-specific predictors and relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions 762 

can facilitate the identification of temporal windows when fires are prevalent, thereby furnishing valuable insights for 763 

simulating carbon emissions in DGVMs.   764 

4.6 Model limitations and excluding drivers of burnt area 765 

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and 766 

socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous 767 

studies (Forkel et al., 2019b; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022).(Forkel 768 

et al., 2019; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The differences in our 769 

findings are related to differences in the statistical or modelling approach and the fact that most of these studies addressed 770 

annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important for understanding 771 
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fire dynamics, e.g.., influencing fuel availability, landscape structure, and ignition sources. For instance, grazing lands can 772 

significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing poten tially reducing fuel 773 

loads (Davies et al., 2010; Strand et al., 2014).(Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation 774 

health and productivity, affecting fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013).(Pausas and Ribeiro, 775 

2013). However, these factors are apparently indirectly represented by the final model, as they are correlated to the driver 776 

variables in the final model. FAPAR, for example, is generally highly correlated with GPP. Furthermore, RD is associated 777 

with human-caused ignitions and fire suppression capabilities (Forkel et al., 2019b).(Forkel et al., 2019). However, it was 778 

excluded here because its contributions were already effectively represented by HDI and PPN, which capture broader 779 

socioeconomic conditions and infrastructure impacts. Apart from that, Haas et al., (2022)Apart from that, Haas et al. (2022) 780 

observed a shift in the direction of contribution for covariates when PPN and RD are used together.  Considering that we may 781 

not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in our model. 782 

Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table A1) yielded marginal improvements, which were 783 

not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was aimed at 784 

reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By focusing 785 

on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power. However, 786 

the often-small differences in the deviance explained and the NME between different models imply that vegetation-fire 787 

modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power.  788 

  789 

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal 790 

variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the 791 

statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially 792 

omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling 793 

techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel et al., 2019b; Joshi and Sukumar, 794 

2021; Mukunga et al., 2023; Zhang et al., 2023).(Forkel et al., 2019; Joshi and Sukumar, 2021; Mukunga et al., 2023; Zhang 795 

et al., 2023). This might contribute to observed shortcomings in our model's ability to predict spatial fire distribution in certain 796 

regions and to capture interannual variability across many parts of the world. Future investigations should aim to explore th e 797 

inclusion of other established predictors and methodologies in global fire modelling once they become easily compatible with 798 

DGVM integration. Despite these challenges, our study possesses intrinsic value, and the developed model stands as a 799 

relatively simple tool for informing global seasonal fire predictions. 800 

  801 

4.7 Next steps for DGVM integration, future directions and model improvements  802 

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation 803 

state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM.  DGVMs include GPP and the 804 

cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and 805 

universal coupling strategy to capture the effect of vegetation on burnt area. areas. However, all model results are imperfect 806 

and biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model 807 
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training.  This error will propagate to the burnt area calculation and so this discrepancy should be investigated.  In the likely 808 

event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account 809 

for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture 810 

certain dynamics and states.  However, we note that our comparatively restricted variable set and simple GLM approach will 811 

be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches 812 

with larger suites of predictor variables. For example Son et al., (2024)For example Son et al. (2024) achieved excellent 813 

correspondence with observed data using an advanced recursive neural network which was partially integrated into the 814 

JSBACH DGVM. However, only the fuel predictor was taken from the prognostically simulated JSBACH model state, other 815 

high importance dynamic predictors (including PFTplant functional type cover fractions and both absolute values and 816 

anomalies of LAI and water content of four soil layers) are all determined from fixed input data - remotely sensed of climate 817 

reanalysis.  SoThus, in this case, the quality of the results from hypothetical full integration will be dependent on the ability of 818 

JSBACH to simulate many more variables correctly.   The model presented here is tailored for integration into a DGVM by 819 

using only a few variables which can be robustly predicted, and, as a simple GLM in contrast to more complex machine 820 

learning methods, is less prone to overfitting and relying on correlations in the data which may not hold in the DGVM predicted 821 

state. Furthermore, the new model includes seasonal variations in burned area, which are not captured by all existing fire 822 

modules within DGVMs (Hantson et al., 2020). 823 

  824 

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they 825 

can either be prescribed input variables or can be calculated from the climate input.  Finally, to build a fully coupled vegetation-826 

fire model, it is then necessary to include the effects of the simulated fire on the vegetation.  For this step we can utilise the 827 

mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE 828 

model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may 829 

need to be adjusted to account for the different simulated burnt area. (Rabin et al., 2017) or the appropriate equations in 830 

SPITFIRE (Thonicke et al., 2010). These parameterizations may need to be adjusted to account for the different simulated 831 

burnt areas.  832 

5. Conclusions 833 

We sought to build a parsimonious statistical model for global seasonal burnt areas that can be integrated into a DGVM. The 834 

specific objectives were to 1) to improve our understanding of major drivers of global burnt area dynamics, 2) to leverage a 835 

GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate the interannual and seasonal 836 

cycles of burnt area extent, both globally and regionally. 837 

 838 

We present a parsimonious statistical model specifically tailored for global burnt areas, with the goal of integration into 839 

DGVMs. FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively related 840 
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to BA. Our findings highlight the significance of socio-economic advancements, particularly those improving fire management 841 

strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-842 

economic predictor in our model. While our parsimonious model exhibited limitations in predicting the interannual variabi lity 843 

of global fires, it demonstrated commendable accuracy in forecasting the spatial (NME = 0.72). The strength of similarity 844 

between observed and predicted seasonal cycles varied according to the GFED region with R2 ranging between 0.06 to 0.99. 845 

Its standout performance laid in capturing the seasonal variability, especially in regions often characterized by distinct wet and 846 

dry seasons, notably southern Africa (R2 = 0.72 to 0.99), Australia (R2 68) and South America (R2 = 0.75 to 0.90). Our predicted 847 

interannual variability exhibited poor strength of relationship between the predicted trend when compared to the observed (R2= 848 

0.24) 849 

 850 

We hope that our research outcomes will stimulate a more rigorous implementation of global fire models within DGVM 851 

frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of global fire patterns and 852 

enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in the face of ongoing 853 

global changes. 854 

 855 

We present a parsimonious statistical model to simulate global burnt area on a monthly timestep thus including seasonal 856 

variations. This is an important advance as representation of the seasonal cycle is a weakness in global fire models, both in  857 

and out of DGVMs, and across different model types. Notably, this representation of the seasonal cycle was achieved with 858 

only two sub annual predictor variables. We found the drivers FWI, TPI, and PNTC are positively associated with BA, whereas 859 

MEPI, HDI, PPN, and NDD exhibit negative relationships, and PTC showed a unimodal response with strongest effect at 860 

intermediate tree cover. The diversity of these drivers underscores the multifaceted influence of both climatic and socio-861 

economic drivers on fire dynamics. Our model explicitly accommodates these drivers, capturing how variations in climate, 862 

vegetation productivity, and human development interact to modulate fire occurrence and extent. Notably, the use of HDI to 863 

represent societal development as a proxy for fire management capacity and the transition away from fire-dependent 864 

agricultural practices provides a coarse but global socioeconomic driver beyond GDP and population density. Including this 865 

in DGVMs can improve fire, vegetation and human feedbacks, particularly with respect to Shared Socioeconomic Pathways 866 

(SSPs, O’Neill et al., 2017) or other scenarios.   867 

 868 

Overall, the model developed in this study has demonstrated strong performance in simulating global burned area patterns. It 869 

holds potential for integration into DGVMs to enhance the representation of fire dynamics, albeit it remains to be tested how 870 

well the model performs when remote-sensing-derived vegetation and land cover variables are replaced with those simulated 871 

by a DGVM. 872 

  873 

Code and data availability 874 Formatted: Line spacing:  Multiple 1,36 li
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The code used in this analysis, model fitting, and plotting is available at https://doi.org/10.5281/zenodo.14177016. Data used 875 

for model fitting are available at https://doi.org/10.5281/zenodo.14110150. 876 
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Appendices 892 

  893 

Table A1: Results of modelling attempts using different combinations of predictor variables using a progressive 894 

inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer 895 

colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest 896 

error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better 897 

performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated 898 

by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model 899 

performance. 900 

  901 

Model Formulae Deviance 

explained 

NME 

model 1  glm(burnt ~ FWI + GPP + HDI + PTC + RD) 0.3548030 0.7472088 

model 2  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PGC) 0.3699393 0.7495652 

model 3  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC) 0.5298061 0.7208771 

model 4   glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR) 0.5312036 0.7188448 
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model 5  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC) 0.5312697 0.7191269 

model 6  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PPS) 0.5328183 0.7195616 

model 7   glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 

PRC) 

0.5313813 0.7193946 

model 8  glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + PGC) 0.5349288 0.7190611 

model 9   glm(burnt ~ FWI + GPP + HDI + PTC + RD + PNTC + FAPAR + PCC + 

FAPAR12 + PGC) 

0.5359802 0.7181930 

model 

10  

 glm(burnt ~ FWI + GPP12 + HDI + poly(PTC, 2) + PNTC + FAPAR + PCC + 

FAPAR12 + PGC + PPN ) 

0.5295939 0.7172668 

model 

11  

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 

PGC + PS) 

0.5579946 0.7193546 

model 

12  

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + 

PS) 

0.5571164 0.7192122 

model 

13  

 glm(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC 

+ PS) 

0.5569187 0.7214560 

model 

14  

 glm(burnt ~ FWI + MEPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15  

 glm(burnt ~ FWI + MEPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16  

glm(burnt ~ FWI + MEPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17  

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + 

TPI) 

0.5711503 0.7167015 

model 

19  

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + 

PGC + FAPAR12) 

0.5709692 0.7175149 

Model 

20 

 glm(burnt ~ FWI + MEPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + 

FAPAR12) 

0.5677209 0.7182814 

Model 

21 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 

TPI + PPN 

0.5714474 0.7170576 

Model 

22 

 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + 

PPN  

0.5705348 0.7177887 

Model 

23 

glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ 

TPI+ PPN 

0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + 

TPI + PPN + AAP 

0.5720048 0.7173093 

Model 

25 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + 

TPI 

0.5682776 0.7186160 
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Model 

26 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC 

+ TPI 

0.5687439 0.7194855 

  902 

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. 903 

 904 

 905 

 906 

 907 
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 909 

 910 

 The GFED regions include Boreal North America (BONA), Temperate North America (TENA), Central America 911 

(CEAM), Northern Hemisphere South America (NHSA), Southern Hemisphere South America (SHSA), Europe 912 

(EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), Boreal 913 

Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia (EQAS) and Australia and New Zealand 914 

(AUST). Regions with significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show 915 

insignificant trends. 916 
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Region Sen's slope P-value 

BONA 558.354 0.1082 

TENA 895.8292 0.4338 

CEAM -1963.035 0.1494 

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43 

                               

 0.0001 

BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

 917 

 918 
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 921 

Figure A1: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across 922 

different GFED regions. 923 

 924 

 925 
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Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across 934 

different GFED regions. 935 

 936 

 937 

 938 

  939 
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 940 

  941 

Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental 942 

and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development 943 

Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation 944 

Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation 945 

between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and 946 

burnt area fraction.   947 

 948 

 949 

Region Sen's slope P-value 

BONA 
558.354 0.1082 

TENA 895.8292 0.4338 

CEAM -1963.035 0.1494 

Formatted: Line spacing:  Multiple 1,36 li



 

60 

 
 

 

Formatted: Header

Formatted Table

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43                                    0.0001 

  950 

 951 

 952 

 953 

Figure A4: Scatter plots illustrating the relationships between observed burnt area fraction (GFED5) and predicted 954 

burnt area fraction for the period between 2002 and 2018. 955 

 956 
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 957 

Figure A5. Shows the observed burnt area (in red), predicted burnt (in blue) seasonal variability in burnt area, fire 958 

weather index (in green) across GFED regions that have distinct seasonal patterns.  959 

 960 

  961 
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BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

Table A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with 962 

significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends. 963 
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