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Abstract. Fire-enabled Dynamic Global VVegetation Models (DGVMs) play an essential role in predicting vegetation dynamics
and biogeochemical cycles amid climate change, but modelling wildfires has been challenging in process-based biophysics-
oriented DGVMs, regarding the role of socioeconomic drivers. In this study, we aimed to build a simple global statistical
model that incorporates socioeconomic drivers of wildfire dynamics, together with biophysical drivers, tatlored-for-integration
within BGVMs.a DGV M-compatible framework. Using monthly burnt area (BA) data fermfrom the latest global burned area

product from GFEDS as our response variable, we developed Generalized Linear Models {GLMs)-to capture the relationships
between potential predictor variables (biophysical and socio-economic) that are simulated by DGVMs and/or available in
future scenarios. We used predictors that represent aspects of fire weather, vegetation structure and activity, human land use
and behavior and topography. Based on an iterative process of choosing various variable combinations that represent potential
key drivers of wildfires, we chose a model with minimum collinearity and maximum model performance in terms of
reproducing observations. Our results show that the- best performing (deviance explained 56.8%) and yet parsimonious model
includes eight socio-economic and biophysical predictor variables encompassing the Fire Weather Index (FWI), a-Monthly
Ecosystem Productivity Index (MEPI), Human Development Index (HDI), Population Density (PPN), Percentage Tree Cover
(PTC), Percentage Non-Tree Cover (PNTC), Number of Dry Days (NDD), and Topographic Positioning Index (TPI). When
keeping the other variables constant (partial residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while
MEPI, HDI, PPN, and NDD were negatively related to BA. While the model effectively predicted the spatial distribution of
BA (Normalized Mean Error [NME]-= 0.72), its standout performance lay in capturing the seasonal variability, especially in
regions often characterized by distinct wet and dry seasons, notably southern Africa (R? = 0.72 to 0.99), Australia (R? = 0.68)
and South America (R? = 0.75 to 0.90). Our model reveals the robust predictive power of fire weather and vegetation dynamics

emerging as reliable predictors of these seasonal global fire patterns. Finally, simulations with and without dynamically
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1 Introduction

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns

(Clarke et al., 2019). In Australia, the mean annual burned area in forested regions was about 1.8 million ha per year between
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1988-2001, increasing to 3.5 million ha per year between 2002—2018, before the 2019-2020 “Black Summer” fires burned
over 15 million ha nationally (Australian Government, 2020; Canadell et al., 2021). Similarly, in Canada, the 1986-2022 mean
annual burned area was about 2.1 million ha, compared with the record-breaking 15 million ha burned in 2023 (Curasi et al.,
2024; Jain et al., 2024; MacCarthy et al., 2024). These multi-decadal increases in burned area in both countries are consistent

with evidence that climate change has intensified fire-conducive weather over time. Even though the effects of fires may be
positive through contributing to selected natural ecosystem processes, large and frequent fires are often destructive and have

far-reaching effects through loss of life, biodiversity, landscape aesthetic value, and increase in forest fragmentation and soil
erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative role of climate change in driving large and
frequent burning has been well documented (Brown et al., 2023). However, climate change by itself does not fully account for
the recent changes in global wildfire patterns as human activities are crucial drivers as well (Pausas and Keeley, 2021). For

instance, recent empirical investigations have highlighted a notable 25% reduction in burnt area extent over the past two
decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et al. (2021) argue that future

demographic and climate patterns will cause an increase in burnt areas, particularly in high latitude warming and tropical

regions. However, Knorr et al. (2016) concluded that, under a moderate emissions scenario, global burnt areas will continue

to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. Cunningham et al. (2024),

on the other hand reported that although total burnt area is declining globally, extreme fire events are increasing as consequence

of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics are clearly driven by the
overarching_interaction between human activities (altered ignition patterns, surveillance and management) and climate
(Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide prescribing solutions that will

ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) (Koubi, 2019; Robinne et al.,

2018).

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and
vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to
predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016;
Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and
difficulties in accurately simulating human-fire interactions (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al.,
2020). Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather
and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Statistical approaches can effectively guantify and
evaluate empirical relationships between fire occurrences and diverse predictors, providing flexibility in handling diverse data
from multiple spatial and temporal scales. However, some authors reported that the application of statistical models for
ecosystems other than the ones used in their derivation is often not reliable (e.g. Perry, 1998). This is mainly because statistical
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models assume that the relationship between predictors and responses is stationery and context dependent, which is not typical
of fires that are stochastic in nature. Integration of mechanistic process-based techniques and statistical methods remains one
common way forward to advance our understanding of fire dynamics.

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al.,
2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results.

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santin, 2016; Flannigan et al., 2009). The
strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual)
that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in
capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al.,
2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more
holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023).
As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in

ensuring sustainable management of vulnerable ecosystems.

There is a growing recognition of the significance of exploring both inter-annualinterannual and seasonal variations to<
comprehensively understand the dynamics of fire across diverse ecosystems {Dwayeret-al,2000);(Dwyer et al., 2000), partly
because of the strong seasonal dynamics of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire
seasons, regions prone to seasonal outbreaks, potential shifts in fire regimes over time and facilitating adaptive management
strategies (Carmona-Meoreneo-et-al;2005).(Carmona-Moreno et al., 2005). Incorporating monthly data in global fire modelling
helps researchers to accurately capture seasonal variations in fire activity. Hence, global models developed using monthly data

are necessary.

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN: Bergado et al., 2021), Random<—

Forest (RF) and Generalized Additive Models (GAM) (Chuvieco et al., 2021) which are currently not easily integrated into
DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced
recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion
of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that
5
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are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables.
AceerdinghyHaasetal{2022)Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill
but without accounting for seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs.
Generally, most earlier fire modules in DGVMs such as the LPJ-EMfireLmfire (v1) were informally parameterized to predict

seasonal fire cycles and do not consider the fuller range of predictors available in a more rigorous statistical framework
{Fosberg-etal1999:Pfeifferet-al2013)Nurrohman,et-al—{2024)(Fosberg et al., 1999; Pfeiffer et al., 2013). Nurrohman
et al. (2024) produced monthly fire predictions from downscaling of annual model outputs without building a statistical
approach that is eatibratedtrained based on monthly inputs. This left an opportunity to improve burnt area models in DGVMs
to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a simpler and
more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also being easily
integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on variables pertinent

to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance our comprehension
of inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets.

The main aim of this research is to build a parsimonious statistical model for global seasonal burnt areas that can be integr ated
into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnt area dynamics,
2) to leverage a GLM for predicting global burnt areas using DGVM-integrablecompatible predictors and 3) to evaluate the
interannual and seasonal cycles of burnt area extent, both globally and regionally.

2 Data and Methods “

In this study, we used GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation,«
weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also
evaluated. Fig. 1 provides an overview of the steps that were followed during modelling.
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205 exclude the effect of cropland residue burning which we suppose is likely to have different drivers from burning in non-arable { Formatted Table
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-The BA data
comes at a resolution of 0.25° x 0.25°, therefore we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for

ease of processing at a global scale and at the same time to ensure that our outputs are DGVM integrable since they are
commonly applied at 0.5° globally.

2.2 Predictor variables “

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many+«
possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we restricted our
selection to variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic
variables with future scenario projections; and time-invariant topographic variables. Previous studies used several variables
that we couldn’t include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a);

egetation-ontical-depth(Forkel e 019h ahtnina (Rabin e 0 oil-mo a (M noa_et 3 0 o

to-calibrate2019), vegetation optical depth (Forkel et al., 2019), lightning (Rabin et al., 2017), soil moisture (Mukunga et al.,
2023), soil fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are compatible with DGVM

integration to train the model effectively. The chosen predictor variables were categorized based on their representational
nature and their roles in fire modelling (See Table 1).
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Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial<.

& temporal) and the respective data sources.

2.2.1 Vegetation-related predictors “

We used eightnine vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These<
variables encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC),
Percentage Graze Cover (PGZC) Percentage Rangeland Cover (PRC) and—PereemagelreeLGeve#ﬁG)—PFeweaswerk
a y a Percentage Tree
Cover (PTC), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Aboveground Biomass (ABG), and Gross
primary productivity (GPP). Previous work emphasizes the important role of vegetation on burnt area dynamics. For example,
Thonicke et al. (2010), discussed the crucial role of vegetation structure in shaping fire occurrence, spread and intensity. PGC
defines the land covered by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass and
shrubs, contributing to overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to suppress
fire occurrence as they fragment the landscape acting and so act as a barrier to fire spread {Haas-et-al;-2022).(Haas et al.
2022).

PGZC, PRC, PTNC and PTC were used to evaluate the relationship between landcover and burnt area distribution. Previous
studies reported that land use/cover type has made a significant contribution to wildfire distribution (Gallardo et al., 2016;
Villarreal and Vargas, 2021). GPP, AGB, and FAPAR were proxies for vegetation productivity and type, and fuel load. Also
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some studies emphasized the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et

al., 2021).

To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the Monthly Ecosystem

Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was
originally defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation

growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire
dynamics.

GPP,
MEPI = m
2max(GPPyyGPPryg1,4-,GPPmge 134

1) <

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated
additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the
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mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPARG (the mean FAPAR over

Formatted: Finnish

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel

accumulation.\We

Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as a key driver for global fires.

2.2.2 Topographic-related predictors «

We-used-topegraphic-positioning-index-{TPH-toTo evaluate how topography can influence the occurrence and spread of fires:,+

we incorporated Topographic Positioning Index (TPI) Topography has been reported to be more influential in regions with
complex terrain and microclimatic conditions : : ; -(Blouin et al., 2016;
Fang et al., 2015; Oliveira et al., 2014), Some studies used slope (Gwe%al—Z@@é)(Carv et al., 2006) and surface area ratio

{Parisien-et-ak—2011)(Parisien et al., 2011) in their models and reported topography to marginally contribute to wildfire

dynamics. However, recent studies reported some significant contributions of topography to global burnt area distribution

when using the TPI (Haaset-al2022).(Haas et al., 2022). TPI is designed to encompass and evaluate the complex influence
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of terrain features, such as elevation and slope, on the distribution of burnt areas. Thus, TPl goes beyond simplistic
representations of landscapes and offers a more nuanced perspective on how terrain characteristics contribute to the occurrence
and extent of wildfires. Given the role of terrain on fire behavior and propagation patterns, the inclusion of TPI in this study
allows for a comprehensive examination of wildfire distribution.

2.2.3 Anthropogenic afluence-Predictorsinfluence predictors “ { Formatted: Line spacing: 1,5 lines, Don't keep with
We-usedTo capture the impact of anthropogenic factors on both fire ignition and suppression, we adopted the Human< [ Formatted: Line spacing: Multiple 1,36 li

Development Index (HDI), Population Density (PPN), and Road Density (RD)-te-capture-the-impact-of anthropegenic-factors
en-beth-fire-ignition-and-suppressien:). The inclusion of HDI aims to encapsulate human influence on ecological landscapes,
thereby affecting the dynamics of both ignition and suppression processes. HDI is a composite index developed by the United
Nations Development Program (UNDP) to assess long-term progress in three basic dimensions of human development,
including health (life expectancy at birth), education (mean years of schooling and expected years of schooling), and standard
of living (gross national income per capita) {Jddin—2623)-(Uddin, 2023). HDI values range from 0 to 1, with higher values
indicating higher levels of human development. Although HDI itself may not directly relate to fire occurrence, it stands as a
valuable socio-economic indicator that significantly influences overall fire dynamics and management, like how Gross

Domestic Product (GDP) has been used in other fire models {Perkins—et-al—2022)-(Perkins et al., 2022). To address the

HDI(Zhang et al., 2023), however, GDP is an indicator of a country's economic performance (Callen, 2008). In contrast, HDI

is a broader socioeconomic indicator which evaluates a country or other administrative region's development status based on
the critical factors of life expectancy, education, and income;. We assume it acts as a proxy for factors such as investments and

advancements in fire control methods, surveillance, technology, and outreach strategies increasing awareness, thus providing
a more nuanced understanding of the socio-economic context shaping fire behavior (Feixeira—et-al;—2023).than GDP. To
evaluate model sensitivity to inclusion of HDI, we trained our model based on the three settings: including, excluding and
holding HDI constant.

2.2.4 Weather-Related-Predictorsrelated predictors b { Formatted: Line spacing: 1,5 lines, Don't keep with 1
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310
811
812
813
314
815
316 We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires.
817 FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire
318 behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed
319 decisions on fire prevention, preparedness, and suppression strategies. It has been shown to correlate well with burnt areas

320 across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations.
321 While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture

322 availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual

B23  weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The
324 selection of these predictors was informed by their significance in previous global fire modelling studies (Chuvieco et al.,
325 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal
B26  works such as that by Pechony and Shindell (2010).

827
328 2.3 Data Precessingprocessing “ { Formatted: Line spacing: 1,5 lines, Don't keep with 1
B29  We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had<— { Formatted: Line spacing: Multiple 1,36 li

330  aspatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation,
PSl resampling, and consolidation. For instance, while the native temporal resolution of FAPAR wasand GPP were 8 days, we
332  transformed it into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an
P33 annual temporal resolution, except for FWI—GPP—and-FAPAR; which werewas also available every month. For annual
334 predictors, we replicated the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized
335  every month to synchronize with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used
336 monthly over the represented 5-year span. Kuhn-Régnieretal{(2021)-highlighted-the-important role-of antecedentvegetation
837 i i
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2.4 Variable selection

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical
package (CereTeam;2014).(CoreTeam, 2014). Following established guidelines by Bermann-et-ak-{20613)-Dormann et al.
(2013), we applied the conventional threshold of R > 0.5 to enhance the model's efficiency. Moreover, we employed the
Variance Inflation Factor (VIF) to evaluate collinearity among predictor variables, removing those with VIF values surpassing
5, as recommended by O brien;—+2007).0 brien, (2007). Post collinearity tests, an additional 3 parameters were adopted to
progressively select the best model, namely: 1) a simple (~ parsimonious) model which comprise of a full suite of categories
of covariate combinations (i.e. vegetation, climate, topography, ignitions), 2) the deviance explained value and 3) the
normalised-mean-square—error-Normalised Mean Square Error (NME) value as illustrated in the making of Burnt Area
Simulator Ferfor Europe (BASE)-(Forrest-et-ak2024)Thevariables-include the MEPI-FWI PNTC HDI P :
Forrest et al., 2024).

2.5 Model training, and PPN—-testing, «

A quasi-binomial GLM was selected for modelling BA due to its capability to handle non-Gaussian error distributions, ease

of transference to other modelling framework’s ability to generate partial residual plots, i.e., the effect of each predictor in the

model while the others are held constant (Bistinas et al., 2014; Haas et al., 2022; Lehsten et al., 2016), Residual plots were

utilized to examine the magnitude and nature of each predictor's relationship with wildfire burnt area distribution.

wtilized-data—from-2002to-We used data from the period 2002-2010 for model training, the period 2011-2018 for model
testing, and the full period 2002-2018 dataset for predictions and model evaluation. These time periods were chosen to ensure

that the testing data remained independent from the training data while also allowing predictions to span a sufficiently long
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timeframe to enhance the robustness of the analysis and evaluation. The essence of splitting training vs testing is to train the
model on training data, and then check that the results are similarly good on the testing data (for example, no overfitting to the
training data) before making predictions on the full dataset. Hence, during model testing we compared the performance of the
model on training data vs testing data to assess model robustness.

2.6 Model selection
We employed a sequential model-building approach, beginning with additive structures (M1-M12) to estimate the independent
contribution of climate, vegetation, and human variables on burned area (Table 2). This approach aligns with established fire

risk modelling practices (e.g., Forrest et al., 2024). Additional predictors were introduced if they represented ecologically
meaningful processes (e.g., drought severity, vegetation productivity) and improved model fit (deviance explained and

Normalised Mean Error). Multiplicative interaction terms (M13 onward) were added only when fire ecology theory suggested
synergistic effects (e.g., human ignitions under extreme weather, vegetation dryness and temperature) and retained if deviance
explained improved. This stepwise approach ensures both statistical rigor and ecological interpretability rather than ad hoc
formula selection.
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Model(s) Formula type | Deviance NME (range) Rationale for additive / interaction terms

explained
(range)

M1-M2 Additive, 0.35-0.37 0.74-0.75 Start with core fire-weather, vegetation, and human
baseline variables widely used in fire risk modelling (e.q., FWI,
predictors HDI). Summation quantifies independent effects and
FWI GPP provides a baseline for deviance explained.

HDI, PTC, RD
+ PGC)

M3-M9 Additive, 0.52-0.54 0.72-0.71 Additional vegetation productivity and phenology
extended metrics tested to capture fuel continuity and biomass
predictors (e.qg. effects. Additive inclusion based on ecological theory
PNTC, (fuel load — fire extent) and retained if deviance T > 1—
FAPAR, PCC) 2%.

M10-M12 | Additive, 0.52-0.55 0.71-0.72 Added nonlinear terms (e.g., poly(PTC,2)) to test
polynomial _ + curvilinear effects of vegetation productivity on fire
seasonal risk, seasonal indices (e.g., FAPAR12) reflect lagged
predictors vegetation—fire relationships.

M13-M20 | Additive + | 0.55-0.57 0.71-0.72 Interaction terms introduced where ecological or
interaction anthropogenic synergies are expected (e.g., human
terms density x vegetation affects ignition; drought x fuel load
(HDIxPCC affects spread). Retained if deviance > 2 and NME
MEPIXPNTC improves 2%.
etc.)

M21-M26 | Full 0.56-0.57 0.71-0.72 Topography (TPI) and drought indices (NDD) interact

interactions
topographic  +
climate
covariates

with vegetation to capture compound effects on fire
behavior; final models balance explanatory power with

ecological plausibility and parsimony.
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Table 2: Summary of models (M1-M26) with corresponding formulas, performance metrics, and rationale for
predictor inclusion or interaction terms. Predictor additions were guided by ecological theory (e.q., fuel load, climate
extremes, anthropogenic factors) and retained based on statistical improvements.

2.7 Model performance evaluation

Model performance was assessed using the Nermalized-Mean-Errer{NME) following Keley-etal{2013).Kelley et al. (2013).«
NME serves as a standardized metric for evaluating global fire-model performance, facilitating direct comparison between
predictions and observations. The NME was calculated following Eq. (2).

Ail obs; — sim; 1
NME = 2 Ao .
Y Ailobs;—obs I
@

<
The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all
cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the
observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment
between observed and simulated values. BA-fractions-were-treated-as-a-probability-ranging-from-0-to-1-following-a-guasi

conducting a collinearity test, the models were systematically evaluated using various combinations of predictor variables. A
total of 2526 model runs were conducted, each incorporating different sets of variables while iteratively excluding some, to
discern the extent to which each predictor explained variance when others were not included (see Table Al). We followed the

stepwise approach of variable inclusion, exclusion, interaction terms, log transformations, and polynomial transformations as
described by Forrest-et-al- i i i jeeti j

al. (2024). While their analysis focused on Europe, our objective was to replicate and test the method at a global scale. To

evaluate the reliability of the predicted interannual variability and seasonal cycles, we applied a regression function to
determine the relationship (R?) between the observed and predicted trends- using annual average data for the period 2002-

2018. An R? of 1 shows good performance in our predictions and an R? of 0 shows poor performance in our predictions. To
assess the trend in predicted interannual variability, we used the Mann-Kendall test {Kendall-1975;-Mann,-1945).(Kendall
1975; Mann, 1945). This widely used method detects monotonic trends in environmental data. Being non-parametric, it works
for all distributions, does not require normality, but assumes no serial correlation.

3 Results «
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3.1 Correlation between variables

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12,
FAPARG6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however
some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and
model performance. For example, NDD was strongly correlated to PTC {=(~ -0.68), but both increased the variance explained

by the full model.
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436  Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation. « { Formatted: Line spacing: Multiple 1,15 li
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138  3.12 Optimal model selection and GLM results.

139  The initial models (model 1 to model 3) progressively include more variables—hewever-a-noticeable-jump and substantial
140 improvement is observed in devianeemodel 3 which explained when52.98% following the inclusion of PNTC-s-added-(Model
M4l 3:-0,5298).. Models 4 to 8 involve adding vegetation (FAPAR) and various land use types (PCC, PPS, PRC, PGC). This is

442 accompanied by marginal improvement in deviance explained, indicating these factors provide some additional predictive

443 power but are not as impactful as existing vegetation covariates (such as GPP). Models 10 to 12 introduce polynomial terms

h44  for PTC. This results in an increase in deviance-explained,-peaking-at-around-0.558836performance explaining 55.88% in
Ma5  Medelmodel 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in
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marginal inereaseimprovement in devianee-explained-performance with the highest recorded in Medelmodel 15(~0.5664789)-
which explained 56.65%. Models 19 to 2526 fine-tune the overall performance by incorporating various variables and their

interactions. Model 24, which includes a comprehensive set of climatic, vegetation, human, and topographic variables along
with their interactions, achieves the highest devianceperformance as it explained (~0.5720048).57.20%. The marginal
improvements observed in subsequent models indicate that while additional variables contribute to the model, the primary
influencing factors were already identified by Medelmodel 19, however it was not the simplest model (~ parsimonious), and

consisted-of-otherincluded variables that-we-don’t-havefor which future projections for-are currently unavailable (e.g., RD}:),

due to the lack of established projection models or datasets. Since the main objective of the study was to produce a DGVM-

compatible model, availability of future projections for these datasets was indispensable to model building. We removed some

of the redundant variables till Medelmodel 24 (~11 variables), however, it was not as parsimonious as Medelmodel 25 (~8
variables). Therefore, Modelmodel 25, which offers a balance of parsimony, simplicity, high deviance explained, and low

NME, was selected as the best model in this analysis.

_Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of<
wildfires (p < 0.05), as outlined in Table 23.

) Estimate Std.Error T value Pr(>Jt)) :
(Intercept) - 6.159e+00 2.349x107-02 | -262.17 <0.00001 ‘
Fwi 9.206e-01 1.948x100-03 | 477.28 <0.00001 ‘
MEPI -2.270+00 8.974x1003 | -252.96 <0.00001 ‘
HDI -1.6806+00 1.235x1002 | -135.99 <0.00001 ‘
PNTC 5.170e-02 2.270x10M04 | 227.78 <0.00001 ‘
poly(PTC.2)1 2.135e+03 1.114x10%01 191.55 <0.00001 )
poly(PTC.2)2 -9.783¢+02 6.975 -140.27 <0.00001 )
P 2.225e-01 3.946x10~03 | 56.39 <0.00001 ‘
NDD -9.550e-03 4.757x10-05 | -200.78 <0.00001 ‘
PPN -1.075-03 1.808x10°-05 | -59.48 <0.00001 ‘

Table 23. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results
indicate that all predictors in the final model were statistically significant for wildfire distribution (p < 0.05).
26
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65
':66 Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among
467 the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and
468  PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the
469  expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the

70  MEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.

72 Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate
473 conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential
474 relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving

475  wildfire dynamics.
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“80  Figure 3: Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor< { Formatted: Line spacing: Multiple 1,36 li

481  variables. These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 1972).
|482 Predictor variables were Gross-Primary-ProduetionMonthly Ecosystem Productivity Index (GRRMEPI), Fire Weather
483 Index (FWI), Percentage Non-Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC),
484  Topographic Position Index (TPI), Population Density (PPN) and Number of Dry Days (NDD).

185

186

187 3.3 Performance evaluation

“88  The model demonstrated comparable performance across the training and testing datasets. Specifically, the training data {Formatted: Font: Not Bold

189 yielded a deviance explained of 0.57 and an NME of 0.73, while the testing data yielded a deviance explained of 0.56 and an

490 NME of 0.70. The close agreement between training and testing performance supports the robustness of the model and justifies

191 its application to the full dataset, which we subsequently evaluated with respect to both spatial and temporal predictive

492 capability.

M93  The full dataset model demonstrated strong performance in predicting BA, accounting-for-over-50as it explained 56.83% of
494 the variability in burnt a i ined= i i SR
195

ance-explained-=0.568) \While-ourte ahthvlagaed-those-of-a-clob ed bution

196 -area. Our model's performance, based
197  on eight predictors and operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious.
198
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Assessment-of Overall, the model accuracy ylelded an NME of 0.718, |nd|cat|ng a generally close correspondence between<—
observed and predicted burnt area patterns

The correlation analysis further shows significant variation in the strength of relationship between observed and predicted
burnt area extent across the 14 GFED regions annually (Fig. 4a) and seasonally (Fig. 4b). These include: Boreal North America
(BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA),
Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF),
Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia
(EQAS) and Australia and New Zealand (AUST).

Our model overall performed poorly in predicting interannual variability as exhibited by a poor strength of relationship between
the predicted trend when compared to the observed (R?= 0.24). This poor relationship was exhibited across most of the GFED
regions (R? < 0.50, Fig. 4a), except for the NHSA which showed strong similarities between the predicted trend and observed
trend (R? = 0.55). This observation suggests that the combination of covariates that we incorporated in this model has limited
strength in capturing global interannual variability in burnt areas.

Unlike the global interannual trends, there was a strong strength of similarity between observed and predicted seasonal cycles
in most GFED regions (refer to Fig. 4b and Fig. A4). The model predicted better in GFED regions that are situated in Southern
Africa, South America, Australia and Asia (R? > 0.50). However, a few poor seasonal predictions were recorded in GFED
regions situated in North America, North Africa and Europe as indicated by a poor relationship between observed burnt area
and predicted burnt area (R? < 0.50).
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Figure 4: Evaluation of the selected model using observed burned area data from GFED5 predicted data (2011-2018).

The maps show r-square values highlighting the model’s performance for interannual (a) and seasonal variability (b

per GFED region.

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating
notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 45). However, in
extratropical regions, particularly in the northern hemisphere, instances of ever-predictionoverprediction were observed. This
discrepancy is evident in the inconsistencies between observed annual distribution patterns and those predicted by the model.
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3.24 Interannual variabilitydistribution

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to+«
2018, with the peak decline observed in 2004 (see Fig. 56). This downtrend was reproduced by the model, but the model
underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with

the decreasing patterns reported in garlier studies (Andela-etal—2017:Jonesetal;2022)-(Andela et al., 2017; Jones et al.
2022), Excluding and holding HDI constant in the model made the projected trend remain steady, suggesting the role of

anthropogenic developments (increasing HDI over time) driving a downward trend in wildfire distribution.
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Figure 56: Interannual variability in burnt area extent showing the observed trend (based on GFEDS burnt estimates< { Formatted: Line spacing: Multiple 1,36 li

detection for the period 2002-2018 and model projections_of the respective period under different HDI treatments:

when HDI was excluded, included and held constant from the value of the first year in the model. , [ Formatted: Font: Not Bold

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area
extent across the 14 GFED regions (refer to Fig. 6a7 and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted a
significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA,
SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in
GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and
Europe demonstrated no significant trend, as illustrated in Fig. 6a7.
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583  Our analysis results show that the global extent of BA shows an alternating seasonal cycle with strong peaks in February and< [ Formatted: Line spacing: Multiple 1,36 li

584  August (see Fig. 78). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the
585  observed trend (R? = 0.54). Like-theglobal-interannual-trends—the-strength-of similaritybetween-observed-and-predicted
586 i
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4.1 Main drivers of global burned area

We found a v a that our candidate variables, namely FWI,«
PNTC, PTC, TPI, MEPI, HDI, PPN and NDD--Of all-the-key-variables;, had strong influence on burnt areas. FWI and PNTC
exhibited a strong positive relationship with fire occurrence, underscoring the importance of conducive fire-weather conditions

and combustible fuel in driving wildfire occurrence and spread. High PNTC is most likely related to high amounts of
flammable vegetation, such as grasses and shrubs. Our findings-shew that fire weather (~ FWI) and fuel availability (~PNTC)
influence burnt area extent align with previous studies =
Régnier-et-al—2021)-(Andela et al., 2017; Bistinas et al., 2014; Forkel et al., 2019; Kuhn-Régnier et al., 2021), The other
studies, however, did focus on the annual burnt area, not the seasonal cycle, which is also crucial to adapt to changes in fire
risk.

Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower nen-tree-coverPNTC
show lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas
with low PNTC are often characterized by trees. Grass and shrubs often encourage frequent burning much more than trees
Quli-etal;2017-Wragg-et-ak;2018)-(Juli et al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover,
which is often less flammable, leading to fewer fires. Though our findings support previous literature indicating that regions
with abundant combustible vegetation and favorable fire-weather conditions are prone to frequent burning {Kraaij-et-al,2018;
TFhenickeetal2010);(Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative relationship between NDD
and burnt area. Previous studies found a positive relationship between NDD and burnt area fractions {Haas-et-al—2022)-like
our-single-(Haas et al., 2022), like our single-factor plots of NDD and burnt area in Fig A3. This result most probably shows
that relationships derived with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal
fire predictions. Studies have shown that the effect of dryness on fire varies depending on vegetation communities in
Mediterranean ecosystems {Cardil-et-al,—2019).-Stott-(2000)(Cardil et al., 2019). Stott (2000) echoed similar sentiments for
tropical environments, indicating the complex relationship between vegetation, dryness and fire. Our efforts to investigate this

complex relationship through an interaction term did not significantly improve our model accuracy (~ model 26). Hence, future
studies may benefit from further exploring the complex relationship between dryness and vegetation at a global scale,
particularly the effect of incorporating polynomial terms on correlated predictors in a linear model.

Our findings revealed that HDI, MEPI and PPN are negatively associated with trends in global fire extent. For HDI, our
findings imply that technological advancements, improved surveillance systems, and effective mitigation efforts play a
significant role in limiting the extent of burnt areas. Contrary to expectations based on Haas-et-al{(2022);Haas et al. (2022)
PPN, which should correlate with more ignitions, does not appear to increase the burnt area extent (see Fig. 3). In fact, we
observed that lower PPN corresponded to larger burnt areas, likely due to the impact of human activities on landscape
fragmentation through road construction, and measures to suppress fires in human inhabited spaces to protect properties
{Klosteret-al-2010)Saunders-etal {1994} (Kloster et al., 2010). Saunders et al. (1991) observed that the response of fire to
changes in PPN is governed by two opposing processes, an increase in population leads to more ignition sources, while
39
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636  simultaneously prompting greater fire management efforts to suppress fires. They further highlighted that fire suppression
637 rates are highest in densely populated areas. This suggests that the scale (both spatial and temporal) of analysis may influence
638 nature and extent to which PPN affects burnt area extent. Our results for the effect of PPN have important implications for
639  DGVMs and land surface models. These models differ widely in the assumed effect of PPN, often using a unimodal response
640  simulating BA annually, in some cases distributing the wildfires across seasons in a second step, using rather simplified
|641 assumptions {Feckentrup-et-al—2019).(Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between
642 MEPI and burnt areas, as MEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative
643 relationship, indicating that other factors may be influencing the connection between MEPI and the extent of burnt areas. Our
|644 findings are in line with those of Ferrest-et-ak-(2024)Forrest et al. (2024) who initially investigated the effect of this index on
645 burnt areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed a more refined measure,
646 MEPI. Future research could benefit from evaluating the relationships between MEPI and burnt areas in other GFED regions

647 and temporal scales.

48
49 4.12 Spatial variation in model performance ‘ [ Formatted: Line spacing: 1,5 lines, Don't keep with 1
50 Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South« [ Formatted: Line spacing: Multiple 1,36 li

651  America than in other world regions (See Fig. 4). The stronger performance in these areas is likely due to the well-defined and
652  predictable fire regimes in these reglons Since fire acthlty here is strongly governed by distinct wet- dry seasonal cycles,

53 which align closely with atfire

54  weather enabllng our model to capture these pattems effectlvely usmg linear functions (A#ehmtbald—zg%—\#an@eHAleFﬁePaL
HitatingSee Fig. A5), hence better

656 model generalization.

57
E58 Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as
659  well as Asia. Performance here declines as fire regimes are more heterogeneous and driven by a combination of biophysical

|660 and anthropogenic factors (Chuvieco-et-al; 2021 Forkelet-ak-2019b).(Chuvieco et al., 2021; Forkel et al., 2019). High

661 interannual variability in burnt areas in these regions is due to irregular droughts, land use change, and fire suppression policies

662  that make prediction more challenging for linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and
63 varied ignition sources in temperate and boreal regions further complicates seasonal pattern detection (Flannigan-etal;2009)
64 Chirvieeo-etal—{2024)(Flannigan et al., 2009). Chuvieco et al. (2021) reported about this challenge when building global

665 models. Thus, our findings build upon existing models on global burnt area distribution. What sets our model apart from

666  previous models is its ability to reliably identify global seasonal fire distribution patterns. This simplicity offers a notable

667 advantage, as it facilitates more nuanced interpretation and implementation of DGVMs compared to annual models.

68 4.3 Attribution of global trends « [ Formatted: Line spacing: 1,5 lines, Don't keep with 1
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studies have improved our understanqu of drlvers of fire but differ in approach and attributional focus for fire trends. For

instance, Joshi and Sukumar (2021) employed region-specific multilayer neural networks to reveal spatially varying

sensitivities between fire and socio-environmental drivers, providing strong spatial diagnostics but limited transparency on
attributions of burnt area trends. Kraaij et al. (2018) provided detailed biome-level attribution of destructive fires by linking

drought, fuel state and vegetation context in case studies (e.g., fynbos/plantation complexes), emphasizing vegetation and

weather controls at local scales. Mukunga et al. (2023) used random-forest analyses to quantify the added value of human

predictors for ignition probability, focusing on anthropogenic controls of ignitions rather than burnt area extent. Building on

these approaches, our study contributes novel attributional insight because it explicitly integrates a compact set of DGVM
compatible fire-weather and fuel indices (FWI, PTC, TPI, PNTC) with a socio-economic indicator (HDI) within a

parsimonious statistical framework for burnt area trends. This allows direct attribution of directional effects (for example, the
negative association between HDI and burnt area) across regions. Work by Andela et al. (2017), primarily attributed the decline

in global burnt areas to agricultural expansion and intensification. Earl-and-Simmends{(2048)Earl and Simmonds, (2018)

supported this view, adding that increased net primary productivity in Northern Africa also played a significant role. However,

our results suggest that human development is a more important driver than agricultural expansion alone. Despite the
conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland fractions as predictor
variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). Interestingly, our analysis
revealed that excluding the HDI from our model and holding it constant to the value of the first year predicted a steady trend
that deviates from the observed negative trend in global fire extent and including HDI feHewsis partly followed by a decreasing
trend-that-aligns-with-the-observed-trend. (Fig. 5) This hlghllghts the 3|gn|f|cant influence of HDI in projecting the purported
negatlve global fire trend. HBHi

Gaxew&e%—%@%}%wughﬁeselmportantlv, HDI is not uniform worldwide but varies substantially across regions and

levels of socioeconomic development. For instance, in high-HDI countries, greater financial resources, infrastructure, and

institutional capacity often translate into stronger investments in fire control technologies, improved surveillance systems, and

more effective prevention campaigns. By contrast, in low and middle HDI countries, limited resources and weaker institutional

frameworks may constrain fire management capabilities, resulting in greater reliance on natural fire dynamics or less

formalized suppression efforts. As many countries continue to develop, it translates improvements in HDI and fire management

strategies. Although strategies are often implemented independently and on a smaller scale, their cumulative impact on global
fire trends is substantial. Thus, HDI serves as a broad socioeconomic indicator that we assume acts as a proxy for the combined

effects of investments, advancements in fire control methods, surveillance, technology, and outreach strategies that increase
awareness (Teixeira et al., 2023). Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire
control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the
development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively

mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods.
41
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06 4.4 Interannual variability
07 Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high
08  precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. SEAL).
709 Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated
710  FAPARI12 in models 9 to 12 (Table Al) and MEPI in models 11 to 26 (Table Al). Unfortunately, these adjustments did not
711 enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between increased
12 precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa {Shekede
13 etak;2024).(Shekede et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent fire seasons
714 using GPP12 in model 10, respectively. While this approach did not improve global interannual predictions, it showed a slight
715 enhancement in deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded by the effects of
|716 the fire-aerosol positive feedback mechanism in Africa (Zhang—et-al;—2023)(Zhang et al., 2023) and periodic El Nifio
717 conditions, which can affect rainfall patterns and lead to drier vegetation conditions, reducing the predictability of fire
18 occurrence, especially with linear models {Shikwambana-et-al-2022).(Shikwambana et al., 2022). We note that in the recent
19 comparison of fire-enabled DGVMs in the Fire Model Intercomparison Project (FireMIP) project (Hantson—et—ak
20  2020)(Hantson et al., 2020), all models did a poorer job of matching the interannual variability than the spatial patterns by a
721 considerable margin. The seven acceptably-performing models achieved a mean spatial NME (across all data and model
722 comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual variability. Our modelling efforts
723  highlight the complexity of accurately predicting wildfire trends and underscore the need for future research to identify
724 covariates that more effectively capture the interannual variability of fires at a global scale.

725 4.5 Fire seasonality N [ Formatted: Line spacing: 1,5 lines, Don't keep with 1

726 Globally, our model predicts a notable peak in burnt areas during February and August- (Fig. 8). The February peak< [Formatted: Line spacing: Multiple 1,36 li
727 corresponds to dry conditions and fuel accumulation in northern hemisphere regions such as NHSA, NHAF, and MIDE—}r
728  eentrast; (Fig. A2), with the complementary August peak primarily-emanates-from-tropical-occurring in regions eharacterized
729  by-distinct-seasonal-patterns—particularly-in-such as SHSA, SHAF, and AUST. Here;Our model predicts this with only two
730 sub annual predictors - the dry-season-augments-the-combustibilitylogarithm of aceumulated-fuel-from-thepreceding-wet
1731 easonfacilitating-fire spread-—This-observation-corroborates-earlier studies-in-the j j
732
733
1734 enha ood-and-severity-of wildfi during dry-season—Converselythe onset-of therainy-season-precipitatesa
735  markedreduction-in-the-occurrence-ofwildfires-in-theseregiens:). This underscores the enduring influence of fire weather and
736 vegetation dyramiesgrowth and phenology as principal drivers of seasonal burnt area cycles, with factors such as moisture
737  content in vegetation and soil, as well as humidity, playing pivotal roles in modulating ignition and fire extent within

hekedeFWI and MEPI as already demonstrated for
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738 ecosystems. The seasonal forecasts generated by our model hold significant implications for guiding adaptive strategies, fire
739 management and prevention at both regional and global scale.

40

41 The findings of this study exhibit robustness in capturing the global seasonal eyelescycle (R? = 0.536, See Fig.7), facilitated
42 i i i i i i i ineati asona
43 y-but notable exceptions

44 were observed in North America, the Middle East and Mediterranean North Africa, and Europe (R? <0.50, See Fig.8). This
745 discrepancy could be attributed to the intricate climatic conditions inherent to these regions, which influence fires in a manner

|746 that eludes simple linear modelling. For instance, tropical regions with clear-cut wet and dry seasons tend to exhibit more
747  regular fire cycles, largely governed by seasonal shifts in precipitation, temperature, and vegetation growth. These predictable
748 patterns make them well-suited to linear modelling approaches {\/an-Der\Werf-et-ak2017)-(Van Der Werf et al., 2017). In
749 contrast, extra-tropical areas in-the-nerthern-hemisphere-experience more irregular and less seasonally driven fire activity.
750 Here, the interaction of drought events, land management, and socio-economic drivers introduces variability that weakens
751  model performance {Chuvieco-et-al-—2021-Forkel-et-al—2019b)-(Chuvieco et al., 2021; Forkel et al., 2019), Additionally, [Formatted: English (United States)
752  varied ignition sources in temperate and boreal zones disrupt consistent seasonal fire patterns (Flannigan—et—ak;

753 2009)(Flannigan et al., 2009). Given the parsimonious design of our model, with only ~eight predictors and only two of those
754 on a monthly time step, we think that the model’s performance is acceptable. FerFurthermore, this acceptable seasonal

1755 performance fills a gap in the available global fire models. To our knowledge there are no such models which are strongly
756  data-constrained (i.e statistically fitted as opposed to empirical or processes-based) and which predict the seasonal cycle. The
757 closest is SIMFIRE, which is fitted to observed data but which calculates annual burnt area and then distributes throughout the
758 year using a prescribed seasonal cycle based on observed data (Rabin et al., 2017). So, whilst the work presented is not yet

759 integrated into a DGVM, it represents a significant advance in this direction. This is particularly important given the

760 comparatively poor performance of global fire models in predicting the seasonal concentration of burnt area (Hantson et al.,
761 2020, Table 3). However, for certain regions, it might be possible to increase model performance by implementing further
762 region-specific predictors and relationships. Accurate predictions regarding the seasonal dynamics of diverse GFED regions
763 can facilitate the identification of temporal windows when fires are prevalent, thereby furnishing valuable insights for

764  simulating carbon emissions in DGVMs.

765 4.6 Model limitations and excluding drivers of burnt area < [ Formatted: Line spacing: 1,5 lines, Don't keep with 1
766  Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and+« [Formatted: Line spacing: Multiple 1,36 li

767  socioeconomic (~RD), did not make it to the final model (See Table A1) despite their potential relevance identified in previous

768  studies : : : -(Forkel

769  etal., 2019; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022) , The differences in our {Formatted: English (United States)
770  findings are related to differences in the statistical or modelling approach and the fact that most of these studies addressed

771 annual BA patterns, not seasonal variations. Nevertheless, these other factors can clearly also be important for understanding
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fire dynamics, e.g-., influencing fuel availability, landscape structure, and ignition sources. For instance, grazing lands can
significantly impact fire behavior by altering fuel types and continuity, with areas used for grazing potentially reducing fuel
loads (Davies-etal-2010;-Strand-etal-2014).(Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation
health and productivity, affecting fuel moisture content and thus fire risk {Pausas-and-Ribeire,2013).(Pausas and Ribeiro
2013). However, these factors are apparently indirectly represented by the final model, as they are correlated to the driver
variables in the final model. FAPAR, for example, is generally highly correlated with GPP. Furthermore, RD is associated
with human-caused ignitions and fire suppression capabilities {Ferkeletal—2019b).(Forkel et al., 2019). However, it was
excluded here because its contributions were already effectively represented by HDI and PPN, which capture broader
socioeconomic conditions and infrastructure impacts. Apart-from-that-Haas-et-ak(2022)Apart from that, Haas et al. (2022)
observed a shift in the direction of contribution for covariates when PPN and RD are used together. -Considering that we may

not have future projections for RD unlike PPN, including the issue of collinearity, we decided to retain only PPN in our model.
Furthermore, our attempt to include RD in our models 21, 23 and 24 (Table A1) yielded marginal improvements, which were
not different from when we excluded it in model 25. Overall, the decision to exclude most of these covariates was aimed at
reducing redundancy and multicollinearity, ensuring a balance between model complexity and predictive power. By focusing
on more comprehensive variables with high explanatory power, the final model achieves robust explanatory power. However,
the often-small differences in the deviance explained and the NME between different models imply that vegetation-fire
modelers might also pick a slightly different set of variables for DGVM integration without using much predictive power.

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal
variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the
statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potentially
omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelling
techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires (Forkel-et-al-2019b;Joshi-and-Sukumar;
202%-Mukunga-et-al—2023;-Zhang-et-ak-2023)-(Forkel et al., 2019; Joshi and Sukumar, 2021; Mukunga et al., 2023; Zhang
etal., 2023), This might contribute to observed shortcomings in our model's ability to predict spatial fire distribution in certain
regions and to capture interannual variability across many parts of the world. Future investigations should aim to explore the

inclusion of other established predictors and methodologies in global fire modelling once they become easily compatible with
DGVM integration. Despite these challenges, our study possesses intrinsic value, and the developed model stands as a
relatively simple tool for informing global seasonal fire predictions.

4.7 Next steps for DGVM integration, future directions and model improvements

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation
state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM. -DGVMs include GPP and the
cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and
universal coupling strategy to capture the effect of vegetation on burnt area—areas. However, all model results are imperfect
and biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model
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|808 training. -This error will propagate to the burnt area calculation and so this discrepancy should be investigated. -In the likely
809 event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account
810 for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture
|811 certain dynamics and states. -However, we note that our comparatively restricted variable set and simple GLM approach will
812  bemore straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches
|813 with larger suites of predictor variables. Fer-example-Sen-et-al—(2024)For example Son et al. (2024) achieved excellent
814  correspondence with observed data using an advanced recursive neural network which was partially integrated into the
815  JSBACH DGVM. However, only the fuel predictor was taken from the prognostically simulated JSSBACH model state, other

|816 high importance dynamic predictors (including PFFplant functional type cover fractions and both absolute values and

817 anomalies of LAI and water content of four soil layers) are all determined from fixed input data - remotely sensed of climate
18 reanalysis. -SeThus, in this case, the quality of the results from hypothetical full integration will be dependent on the ability of
19  JSBACH to simulate many more variables correctly. —The model presented here is tailored for integration into a DGVM by

820 using only a few variables which can be robustly predicted, and, as a simple GLM in contrast to more complex machine

821 learning methods, is less prone to overfitting and relying on correlations in the data which may not hold in the DGVM predicted
22 state._Furthermore, the new model includes seasonal variations in burned area, which are not captured by all existing fire
23 modules within DGVMs (Hantson et al., 2020).

25 In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they
26 can either be prescribed input variables or can be calculated from the climate input. -Finally, to build a fully coupled vegetation-
27 fire model, it is then necessary to include the effects of the simulated fire on the vegetation. -For this step we can utilise the
828  mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE

29 model {Rabin-etal—20 or-the appropriate eguations—in-SP R honicke e 010} These parameterizations—may

31 SPITFIRE (Thonicke et al., 2010). These parameterizations may need to be adjusted to account for the different simulated

32 burnt areas.

33 5. Conclusions “ [ Formatted: Line spacing: 1,5 lines, Don't keep with 1
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We present a parsimonious statistical model to simulate global burnt area on a monthly timestep thus including seasonal

variations. This is an important advance as representation of the seasonal cycle is a weakness in global fire models, both in
and out of DGVMs, and across different model types. Notably, this representation of the seasonal cycle was achieved with
only two sub annual predictor variables. We found the drivers FWI, TPI, and PNTC are positively associated with BA, whereas
MEPI, HDI, PPN, and NDD exhibit negative relationships, and PTC showed a unimodal response with strongest effect at
intermediate tree cover. The diversity of these drivers underscores the multifaceted influence of both climatic and socio-

economic drivers on fire dynamics. Our model explicitly accommodates these drivers, capturing how variations in climate,
vegetation productivity, and human development interact to modulate fire occurrence and extent. Notably, the use of HDI to

represent societal development as a proxy for fire management capacity and the transition away from fire-dependent
agricultural practices provides a coarse but global socioeconomic driver beyond GDP and population density. Including this

in DGVMs can improve fire, vegetation and human feedbacks, particularly with respect to Shared Socioeconomic Pathways
(SSPs, O’Neill et al., 2017) or other scenarios.

Overall, the model developed in this study has demonstrated strong performance in simulating global burned area patterns. It
holds potential for integration into DGVMs to enhance the representation of fire dynamics, albeit it remains to be tested how
well the model performs when remote-sensing-derived vegetation and land cover variables are replaced with those simulated
by a DGVM.
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The code used in this analysis, model fitting, and plotting is available at https://doi.org/10.5281/zenodo.14177016. Data used
for model fitting are available at https://doi.org/10.5281/zenod0.14110150.
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Appendices

Table Al: Results of modelling attempts using different combinations of predictor variables using a progressive<
inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer
colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest
error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better
performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated
by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model
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Figure Al: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across<

different GFED regions.
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|934 Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across+— <[ Formatted: Line spacing: Multiple 1,36 li

935  different GFED regions.
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Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental« [ Formatted: Line spacing: Multiple 1,36 li

and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development
Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation
Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation
between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and
burnt area fraction.
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61

[ Formatted: Header

{ Formatted Table



062
063
064

065

066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086

References

62

I | Y Y N N A NN

Formatted:

Header

Formatted:

Font color: Auto

Formatted

: Line spacing: Multiple 1,15 li

Formatted:

Font color: Auto

Formatted:

Line spacing: Multiple 1,15 li

Formatted:

Font color: Auto

Formatted:

Line spacing: Multiple 1,15 li

Formatted:

Font color: Auto

Formatted:

Line spacing: Multiple 1,15 i

Formatted:

Font color: Auto

Formatted:

Line spacing: Multiple 1,15 i

Formatted:

Line spacing: Multiple 1,36 li

Formatted:

Font: Not Bold

Formatted:

Line spacing: 1,5 lines, Don't keep with 1

{ Formatted Table



B [Formatted: Header

{ Formatted Table




20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

B [Formatted: Header

{ Formatted Table



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

B [Formatted: Header

{ Formatted Table



85
86
87

88
89
90

91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

66

B [Formatted: Header

{ Formatted Table



4

o [Formatted: Header

{ Formatted Table




e e e e S S S S S S S S S e e T e S S S S S S S T =)

Aldersley, A., Murray, S.J., Cornell, S.E., 2011. Global and regional analysis of climate and human drivers of wildfire. Sci.
Total Environ. 409, 3472-3481.

Andela, N., Morton, D.C., Giglio, L., Chen, Y., van der Werf, G.R., Kasibhatla, P.S., DeFries, R.S., Collatz, G.J., Hantson, S.,
Kloster, S., 2017. A human-driven decline in global burned area. Science 356, 1356—1362.

Archibald, S., 2016. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. B Biol. Sci.
371, 20150346. https://doi.org/10.1098/rsth.2015.0346

Australian Government, 2020. Estimating greenhouse gas emissions from bushfires in Australia’s temperate forests: focus on

2019-20 (Technical Update). Australian Government, Department of Industry, Science, Energy and Resources.

Bergado, J.R., Persello, C., Reinke, K., Stein, A., 2021. Predicting wildfire burns from big geodata using deep learning. Saf.
Sci. 140, 105276.

Bistinas, I., Harrison, S.P., Prentice, I.C., Pereira, J.M.C., 2014. Causal relationships versus emergent patterns in the global

controls of fire frequency. Biogeosciences 11, 5087-5101.

Blouin, K.D., Flannigan, M.D., Wang, X., Kochtubajda, B., 2016. Ensemble lightning prediction models for the province of
Alberta, Canada. Int. J. Wildland Fire 25, 421-432.

Bowman, D.M., Kolden, C.A., Abatzoglou, J.T., Johnston, F.H., van der Werf, G.R., Flannigan, M., 2020. Vegetation fires in
the Anthropocene. Nat. Rev. Earth Environ. 1, 500-515.

Bowman, D.M., O’Brien, J.A., Goldammer, J.G., 2013. Pyrogeography and the global quest for sustainable fire management.
Annu. Rev. Environ. Resour. 38, 57-80.

Bowman, D.M., Williamson, G.J., Abatzoglou, J.T., Kolden, C.A., Cochrane, M.A., Smith, A.M., 2017. Human exposure and
sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058.

Brown, P.T., Hanley, H., Mahesh, A., Reed, C., Strenfel, S.J., Davis, S.J., Kochanski, A.K., Clements, C.B., 2023. Climate
warming increases extreme daily wildfire growth risk in California. Nature 621, 760—766.

Callen, T., 2008. What is gross domestic product. Finance Dev. 45, 48-49.

Canadell, J.G., Meyer, C.P., Cook, G.D., Dowdy, A., Briggs, P.R., Knauer, J., Pepler, A., Haverd, V., 2021. Multi-decadal

increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921.

Cardil, A., Vega-Garcia, C., Ascoli, D., Molina-Terrén, D.M., Silva, C.A., Rodrigues, M., 2019. How does drought impact

burned area in Mediterranean vegetation communities? Sci. Total Environ. 693, 133603.

Carmona-Moreno, C., Belward, A., Malingreau, J.-P., Hartley, A., Garcia-Alegre, M., Antonovskiy, M., Buchshtaber, V.
Pivovarov, V., 2005. Characterizing interannual variations in global fire calendar using data from Earth observing satellites.
Glob. Change Biol. 11, 1537-1555.

Cary, G.J., Keane, R.E., Gardner, R.H., Lavorel, S., Flannigan, M.D., Davies, I.D., Li, C., Lenihan, J.M., Rupp, T.S., Mouillot,

F., 2006. Comparison of the Sensitivity of Landscape-fire-succession Models to Variation in Terrain, Fuel Pattern, Climate

and Weather. Landsc. Ecol. 21, 121-137. https://doi.org/10.1007/s10980-005-7302-9
68

| 4"/

o [Formatted: Header

{ Formatted Table



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

Chen, Y., Hall, J., Van Wees, D., Andela, N., Hantson, S., Giglio, L., Van Der Werf, G.R., Morton, D.C., Randerson, J.T.,
2023. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database
(GFEDS). Earth Syst. Sci. Data 15, 5227-5259.

Chuvieco, E., Pettinari, M.L., Koutsias, N., Forkel, M., Hantson, S., Turco, M., 2021. Human and climate drivers of global

biomass burning variability. Sci. Total Environ. 779, 146361.

Clarke, H., Tran, B., Boer, M.M., Price, O., Kenny, B., Bradstock, R., 2019. Climate change effects on the frequency,

seasonality and interannual variability of suitable prescribed burning weather conditions in south-eastern Australia. Agric. For.
Meteorol. 271, 148-157.

Copernicus Climate Change Service, 2021. Downscaled bioclimatic indicators for selected regions from 1979 to 2018 derived

from reanalysis. https://doi.org/10.24381/CDS.FE90A594

CoreTeam, Rd., 2014. Vienna: R foundation for statistical computing, 2014.

Cunningham, C.X., Williamson, G.J., Bowman, D.M.J.S., 2024. Increasing frequency and intensity of the most extreme
wildfires on Earth. Nat. Ecol. Evol. 8, 1420-1425. https://doi.org/10.1038/s41559-024-02452-2
Curasi, S.R., Melton, J.R., Arora, V.K., Humphreys, E.R., Whaley, C.H., 2024. Global climate change below 2° C avoids large

end century increases in burned area in Canada. Npj Clim. Atmospheric Sci. 7, 228.

Dantas De Paula, M., Gémez Giménez, M., Niamir, A., Thurner, M., Hickler, T., 2020. Combining European Earth

Observation products with Dynamic Global Vegetation Models for estimating Essential Biodiversity Variables. Int. J. Digit.
Earth 13, 262-277. https://doi.org/10.1080/17538947.2019.1597187

Davies, K.W., Bates, J.D., Svejcar, T.J., Boyd, C.S., 2010. Effects of long-term livestock grazing on fuel characteristics in

rangelands: an example from the sagebrush steppe. Rangel. Ecol. Manag. 63, 662—-669.
de Jong, M.C., Wooster, M.J., Kitchen, K., Manley, C., Gazzard, R., McCall, F.F., 2016. Calibration and evaluation of the

Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom. Nat.
Hazards Earth Syst. Sci. 16, 1217-1237.

DeWilde, L., Chapin, F.S., 2006. Human Impacts on the Fire Regime of Interior Alaska: Interactions among Fuels, Ignition
Sources, and Fire Suppression. Ecosystems 9, 1342—1353. https://doi.org/10.1007/s10021-006-0095-0

DiMiceli, C.M., Carroll, M.L., Sohlberg, R.A., Huang, C., Hansen, M.C., Townshend, J.R., 2011. Annual global automated
MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000-2010,
collection 5 percent tree cover. Univ. Md. Coll. Park MD USA 2011.

Doerr, S.H., Santin, C., 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos.
Trans. R. Soc. B Biol. Sci. 371, 20150345.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitéo,

P.J., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography
36, 27-46.

69

| 4"/

o [Formatted: Header

{ Formatted Table



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Dwyer, E., Pinnock, S., Grégoire, J.-M., Pereira, J.M.C., 2000. Global spatial and temporal distribution of vegetation fire as

determined from satellite observations. Int. J. Remote Sens. 21, 1289-1302.

Earl, N., Simmonds, I., 2018. Spatial and temporal variability and trends in 20012016 global fire activity. J. Geophys. Res.
Atmospheres 123, 2524-2536.
Fang, L., Yang, J., Zu, J., Li, G., Zhang, J., 2015. Quantifying influences and relative importance of fire weather, topography

and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2-12.

Flannigan, M.D., Krawchuk, M.A., de Groot, W.J., Wotton, B.M., Gowman, L.M., 2009. Implications of changing climate for
global wildland fire. Int. J. Wildland Fire 18, 483-507.
Forkel, M., Andela, N., Harrison, S.P., Lasslop, G., Van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil,

A., 2019. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation

models. Biogeosciences 16, 57-76.

Forrest, M., Hetzer, J., Billing, M., Bowring, S.P., Kosczor, E., Oberhagemann, L., Perkins, O., Warren, D., Arrogante-Funes,

E., Thonicke, K., 2024. Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt
Area Simulator for Europe) model. EGUsphere 2024, 1-55.
Fosberg, M.A., Cramer, W., Brovkin, V., Fleming, R., Gardner, R., Gill, A.M., Goldammer, J.G., Keane, R., Koehler, P.,

Lenihan, J., 1999. Strategy for a fire module in dynamic global vegetation models. Int. J. Wildland Fire 9, 79-84.

Gallardo, M., Gémez, I., Vilar, L., Martinez-Vega, J., Martin, M.P., 2016. Impacts of future land use/land cover on wildfire

occurrence in the Madrid region (Spain). Reg. Environ. Change 16, 1047-1061.

Haas, O., Prentice, I.C., Harrison, S.P., 2022. Global environmental controls on wildfire burnt area, size, and intensity. Environ.
Res. Lett. 17, 065004.
Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., Archibald, S., Mouillot, F., Arnold, S.R.,

Artaxo, P., 2016. The status and challenge of global fire modelling. Biogeosciences 13, 3359-3375.
Hantson, S., Kelley, D.I., Arneth, A., Harrison, S.P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F.,

2020. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the
Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299-3318.

Hantson, S., Lasslop, G., Kloster, S., Chuvieco, E., 2015. Anthropogenic effects on global mean fire size. Int. J. Wildland Fire
24, 589-596.

Jain, P., Barber, Q.E., Taylor, S., Whitman, E., Acuna, D.C., Boulanger, Y., Chavardés, R.D., Chen, J., Englefield, P.,
Flannigan, M., 2024. Canada Under Fire—Drivers and Impacts of the Record-Breaking 2023 Wildfire Season. Authorea Prepr.
Jones, M.W., Abatzoglou, J.T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A.J., Burton, C., Betts, R.A., van
der Werf, G.R., 2022. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726.
Joshi, J., Sukumar, R., 2021. Improving prediction and assessment of global fires using multilayer neural networks. Sci. Rep.
11, 3295.

70

o [Formatted: Header

{ Formatted Table



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

Juli, G., Jon, E., Dylan, W., 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105.

Kelley, D.I., Prentice, 1.C., Harrison, S.P., Wang, H., Simard, M., Fisher, J.B., Willis, K.O., 2013. A comprehensive
benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313-3340.

Kelly, L.T., Fletcher, M.-S., Menor, 1.0., Pellegrini, A.F., Plumanns-Pouton, E.S., Pons, P., Williamson, G.J., Bowman, D.M.,
2023. Understanding Fire Regimes for a Better Anthropocene. Annu. Rev. Environ. Resour. 48.

Kendall, M., 1975. Multivariate analysis. Charles Griffin.

Klein Goldewijk, K., Beusen, A., Doelman, J., Stehfest, E., 2017. Anthropogenic land use estimates for the Holocene—-HYDE
3.2. Earth Syst. Sci. Data 9, 927-953.

Kloster, S., Mahowald, N.M., Randerson, J.T., Thornton, P.E., Hoffman, F.M., Levis, S., Lawrence, P.J., Feddema, J.J.
Oleson, K.W., Lawrence, D.M., 2010. Fire dynamics during the 20th century simulated by the Community Land Model.
Biogeosciences 7, 1877-1902.

Knorr, W., Arneth, A., Jiang, L., 2016. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781-785.
Knorr, W., Kaminski, T., Arneth, A., Weber, U., 2014. Impact of human population density on fire frequency at the global

scale. Biogeosciences 11, 1085-1102.

Koubi, V., 2019. Sustainable development impacts of climate change and natural disaster. Backgr. Pap. Prep. Sustain. Dev.
Outlook.

Kraaij, T., Baard, J.A., Arndt, J., Vhengani, L., Van Wilgen, B.W., 2018. An assessment of climate, weather, and fuel factors

influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecol. 14, 1-12.
Krawchuk, M.A., Moritz, M.A., Parisien, M.-A., Van Dorn, J., Hayhoe, K., 2009. Global pyrogeography: the current and
future distribution of wildfire. PloS One 4, e5102.

Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I.C., Harrison, S.P., 2021. The importance of antecedent

vegetation and drought conditions as global drivers of burnt area. Biogeosciences 18, 3861-3879.
Le Page, Y., Morton, D., Bond-Lamberty, B., Pereira, J.M.C., Hurtt, G., 2015. HESFIRE: a global fire model to explore the

role of anthropogenic and weather drivers. Biogeosciences 12, 887-903.

Lehsten, V., Arneth, A., Spessa, A., Thonicke, K., Moustakas, A., 2016. The effect of fire on tree—grass coexistence in

savannas: a simulation study. Int. J. Wildland Fire 25, 137-146.

MacCarthy, J., Tyukavina, A., Weisse, M.J., Harris, N., Glen, E., 2024. Extreme wildfires in Canada and their contribution to
global loss in tree cover and carbon emissions in 2023. Glob. Change Biol. 30, e17392. https://doi.org/10.1111/gcb.17392
Mann, H.B., 1945. Nonparametric tests against trend. Econom. J. Econom. Soc. 245-259.

Morvan, D., 2011. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling.
Fire Technol. 47, 437-460.
Mukunga, T., Forkel, M., Forrest, M., Zotta, R.-M., Pande, N., Schlaffer, S., Dorigo, W., 2023. Effect of Socioeconomic

Variables in Predicting Global Fire Ignition Occurrence. Fire 6, 197.
71

| 4"/

o [Formatted: Header

{ Formatted Table



83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

Nolan, R.H., Anderson, L.O., Poulter, B., Varner, J.M., 2022. Increasing threat of wildfires: the year 2020 in perspective: A
Global Ecology and Biogeography special issue. Glob. Ecol. Biogeogr. 31, 1898-1905. https://doi.org/10.1111/geb.13588
Nurrohman, R.K., Kato, T., Ninomiya, H., Végh, L., Delbart, N., Miyauchi, T., Sato, H., Shiraishi, T., Hirata, R., 2024. Future

prediction of Siberian wildfire and aerosol emissions via the improved fire module of the spatially explicit individual -based

dynamic global vegetation model. EGUsphere 2024, 1-56.

O’brien, R.M., 2007. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 41, 673-690.
https://doi.org/10.1007/s11135-006-9018-6

Oliveira, S., Pereira, J.M., San-Miguel-Ayanz, J., Lourenco, L., 2014. Exploring the spatial patterns of fire density in Southern

Europe using Geographically Weighted Regression. Appl. Geogr. 51, 143-157.
O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van Ruijven, B.J., van Vuuren, D.P.,

Birkmann, J., Kok, K., Levy, M., Solecki, W., 2017. The roads ahead: Narratives for shared socioeconomic pathways

describing world futures in the 21st century. Glob. Environ. Change 42, 169-180.
https://doi.org/10.1016/j.gloenvcha.2015.01.004

Parisien, M.-A., Parks, S.A., Krawchuk, M.A., Flannigan, M.D., Bowman, L.M., Moritz, M.A., 2011. Scale-dependent
controls on the area burned in the boreal forest of Canada, 1980—2005. Ecol. Appl. 21, 789-805. https://doi.org/10.1890/10-
0326.1

Pausas, J.G., Keeley, J.E., 2021. Wildfires and global change. Front. Ecol. Environ. 19, 387-395.

Pausas, J.G., Ribeiro, E., 2013. The global fire—productivity relationship. Glob. Ecol. Biogeogr. 22, 728-736.

Pechony, O., Shindell, D.T., 2010. Driving forces of global wildfires over the past millennium and the forthcoming century.
Proc. Natl. Acad. Sci. 107, 19167-19170.
Perkins, O., Matej, S., Erb, K., Millington, J., 2022. Towards a global behavioural model of anthropogenic fire: The

spatiotemporal distribution of land-fire systems. Socio-Environ. Syst. Model. 4, 18130-18130.

Perry, G.L.W., 1998. Current approaches to modelling the spread of wildland fire: a review. Prog. Phys. Geogr. 22, 222-245.

Pfeiffer, M., Spessa, A., Kaplan, J.0., 2013. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0).
Geosci. Model Dev. 6, 643—685.

Rabin, S.S., Melton, J.R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J.O., Li, F., Mangeon, S., Ward, D.S.,
2017. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed
model descriptions. Geosci. Model Dev. 10, 1175-1197.

Robinne, F.-N., Burns, J., Kant, P., Flannigan, M., Kleine, M., de Groot, B., Wotton, D.M., 2018. Global fire challenges in a
warming world. [UFRO.

Running, S., Zhao, M., 2021. MODIS/Terra gross primary productivity gap-filled 8-day L4 global 500m SIN grid VO061.
NASA EOSDIS Land Process. Distrib. Act. Arch. Cent. DAAC Data Set MOD17A2HGF-061.

72

B [Formatted: Header

{ Formatted Table



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Saha, M.V., Scanlon, T.M., D’Odorico, P., 2019. Climate seasonality as an essential predictor of global fire activity. Glob.
Ecol. Biogeogr. 28, 198-210.

Santoro, M., Cartus, O., 2023. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground
biomass for the years 2010, 2017, 2018, 2019 and 2020, v4. No Title.

Saunders, D.A., Hobbs, R.J., Margules, C.R., 1991. Biological Consequences of Ecosystem Fragmentation: A Review.
Conserv. Biol. 5, 18-32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x

Shekede, M.D., Kusangaya, S., Chavava, C.B., Gwitira, I., Chemura, A., 2024. A two-decade analysis of the spatial and

temporal variations in burned areas across Zimbabwe. PLOS Clim. 3, e€0000201.

Shikwambana, L., Kganyago, M., Xulu, S., 2022. Analysis of wildfires and associated emissions during the recent strong

ENSO phases in Southern Africa using multi-source remotely-derived products. Geocarto Int. 37, 16654—16670.

Son, R., Stacke, T., Gayler, V., Nabel, J.E.M.S., Schnur, R., Alonso, L., Requena-Mesa, C., Winkler, A.J., Hantson, S., Zaehle,
S., Weber, U., Carvalhais, N., 2024. Integration of a Deep-Learning-Based Fire Model Into a Global Land Surface Model. J.
Adv. Model. Earth Syst. 16. https://doi.org/10.1029/2023ms003710

Stott, P., 2000. Combustion in tropical biomass fires: a critical review. Prog. Phys. Geogr. Earth Environ. 24, 355-377.
https://doi.org/10.1177/030913330002400303

Strand, E.K., Launchbaugh, K.L., Limb, R.F., Torell, L.A., 2014. Livestock grazing effects on fuel loads for wildland fire in

sagebrush dominated ecosystems. J. Rangel. Appl. 1, 35-57.
Teckentrup, L., Harrison, S.P., Hantson, S., Heil, A., Melton, J.R., Forrest, M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch,

S., Lasslop, G., 2019. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a

comparison of seven fire models. Biogeosciences 16, 3883-3910. https://doi.org/10.5194/bg-16-3883-2019
Teixeira, J.C.M., Burton, C., Kelly, D.I., Folberth, G.A., O’Connor, F.M., Betts, R.A., Voulgarakis, A., 2023. Representing

socio-economic factors in the INFERNO global fire model using the Human Development Index. Biogeosciences Discuss.
2023, 1-27.
Thonicke, K., Spessa, A., Prentice, I.C., Harrison, S.P., Dong, L., Carmona-Moreno, C., 2010. The influence of vegetation

fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences
7,1991-2011.

UCLouvain, 2017. ESA Climate Change Initiative-Land Cover. ESA CCI Land Cover Time-Ser.-Clim. Res. Data Package
CRDP.

Uddin, G.E., 2023. Human Development Index: A regional perspective. Int. J. Dev. Manag. Rev. 18, 125-140.

Van Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, B.M., Mu, M., Van Marle, M.J.,
Morton, D.C., Collatz, G.J., 2017. Global fire emissions estimates during 1997—2016. Earth Syst. Sci. Data 9, 697-720.
Villarreal, S., Vargas, R., 2021. Representativeness of FLUXNET Sites Across Latin America. J. Geophys. Res.

Biogeosciences 126, e2020JG006090. https://doi.org/10.1029/2020JG006090
73

o [Formatted: Header

{ Formatted Table




48
49
50
51
52
53
54
55
56
57
58
59
60

Wragg, P.D., Mielke, T., Tilman, D., 2018. Forbs, grasses, and grassland fire behaviour. J. Ecol. 106, 1983-2001.

Wu, C., Venevsky, S., Sitch, S., Mercado, L.M., Huntingford, C., Staver, A.C., 2021. Historical and future global burned area
with changing climate and human demography. One Earth 4, 517-530.

Xi, D.D., Taylor, S.W., Woolford, D.G., Dean, C.B., 2019. Statistical models of key components of wildfire risk. Annu. Rev.
Stat. Its Appl. 6, 197-222.

Yang, H., Ciais, P., Santoro, M., Huang, Y., Li, W., Wang, Y., Bastos, A., Goll, D., Arneth, A., Anthoni, P., Arora, V.K.,

Friedlingstein, P., Harverd, V.. Joetzjer, E., Kautz, M., Lienert, S., Nabel, J.E.M.S., O’Sullivan, M., Sitch, S., Vuichard, N.

Wiltshire, A., Zhu, D., 2020. Comparison of forest above-ground biomass from dynamic global vegetation models with

spatially _explicit remotely sensed observation-based estimates. Glob. Change Biol. 26. 3997-4012.
https://doi.org/10.1111/gch.15117
Zhang, Y., Mao, J., Ricciuto, D.M., Jin, M., Yu, Y., Shi, X., Wullschleger, S., Tang, R., Liu, J., 2023. Global fire modelling

and control attributions based on the ensemble machine learning and satellite observations. Sci. Remote Sens. 7, 100088.

74

B [Formatted: Header

[ Formatted: Line spacing: Multiple 1,36 li

{ Formatted Table



