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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics
and biogeochemical cycles amid climate change-—Medeling, but modelling wildfires has been challenging in process-based
biophysics-oriented DGVMs, as-human-behavieurplays-a-crueial-regarding the role—Fhis_of socioeconomic drivers. In this
study-aims, we aimed to revealbuild a simple global statistical model for-the-relationships-between-biephysical-andthat
incorporates socioeconomic drivers of wildfire dynamics-ané, together with biophysical drivers, tailored for integration within

DGVMs. Using monthly burnedburnt area (BA) that-can-be-integrated-into-BGVMs—\We-data form the latest global burned
area product from GFEDS as our response variable, we developed GeneralisedGeneralized Linear Models (GLMs) to capture

the relationships between potential predictor variables (biophysical and socio-economic) that are simulated by DGVMs and/or

available in future scenarios-and-the

used predictors that represent aspects of fire weather, vegetation structure and activity, human land use and behavieurbehavior

and topography. Fhe-final-Based on an iterative process of choosing various variable combinations that represent potential key

drivers of wildfires, we chose a model was-chosen-by-minimizingwith minimum collinearity and by-maximizingmaximum

model performance in terms of reproducing observations. The-finalOur results show that the best performing (deviance

explained 56.8%) and yet parsimonious model ineludedincludes eight socio-economic and biophysical predictor variables
encompassing the Fire Weather Index (FWI), a novel-Gress-PrimaryMonthly Ecosystem Productivity Index (GRPHVIEPI),
Human Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover
(PNTC), Number of Dry Days (NDD), and Topographic Positioning Index (TPI). Given-itssimplicityeurmodeldemonstrated
a remarkable capability, explaining 56.8% of When keeping the burnt area variability, comparable to-other state-of-the-art
global-fire-medels.variables constant (partial residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while
GPPIMEPI, HDI, PPN, and NDD were negatively related to wildfireBA. While the model effectively predicted the spatial
distribution of burned-areas{BA (Normalized Mean Error [NME] = 0.72), its standout performance lay in capturing the
seasonal variability, especially in regions often characterized by distinct wet and dry seasons, notably southern Africa; (R =
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0.72 t0 0.99), Australia (R? 68) and parts-of-South America (R? >= 0.5075 to 0.90). Our model reveals the robust predictive
power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal global fire patterns. Finally

simulations with and without dynamically changing HDI revealed HDI as an important driver of the observed global decline

in BA. The model presented-redel should be compatible with most, if not all, DGVMs used to develop future scenarios.
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1 Introduction

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires

have recently occurred in Australia and Canada, burning more than 15 million and 7 million ha (Jain et al., 2024; MacCarthy

et al., 2024). Even though the effects of fires may be positive through contributing to selected natural ecosystem processes

large and frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic
3
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value, and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The

negative role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However,

climate change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial

drivers as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25%

reduction in burnt area extent over the past two decades, explicitly attributing this decline to human activities(Andela et al.,

2017). Wu et al. (2021) argue that future demographic and climate patterns will cause an increase in burnt areas, particularly

in high latitude warming and tropical regions. However, Knorr et al. (2016) concluded that, under a moderate emissions

scenario, global burnt areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse

gas emissions. Cunningham et al. (2024), on the other hand reported that although total burnt area is declining globally, extreme

fire events are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global

fire dynamics are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance

and management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs)
(Koubi, 2019; Robinne et al., 2018).

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016;

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and

difficulties in accurately simulating human-fire interactions One-of theirgreatest-limitations-Hiesin-representing-the-often-

mightbe-elusive-(Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 2020). Hence statistical approaches have often

been used to evaluate human impacts on wildfires, in combination with weather and vegetation drivers (Haas et al., 2022;
Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and evaluate empirical relationships between fire

occurrences and diverse predictors, providing flexibility in handling diverse data from multiple spatial and temporal scales.

However, some authors reported that the application of statistical models for ecosystems other than the ones used in their

derivation is often not reliable (e.g Perry, 1998). This is mainly because statistical models assume that the relationship between

predictors and responses is stationery and context dependent, which is not typical of fires that are stochastic in nature.
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Integration of mechanistic process-based techniques and statistical methods remains one common way forward to advance our

understanding of fire dynamics.

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al.
2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results.

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing
researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santin, 2016; Flannigan et al., 2009). The
strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual)
that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al .,

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023).

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in

ensuring sustainable management of vulnerable ecosystems.

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics

of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal
outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmeona-Meoreno-et-ak;
2005)-tnecorporating-monthly-data-in-global-fire-medeling(Carmona-Moreno et al., 2005). Incorporating monthly data in global

fire modelling helps researchers to accurately capture seasonal variations in fire activity. Hence, global models developed

using monthly data are necessary.
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Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN)(Bergado et al., 2021)

Random Forest (RF) and generalized additive models (GAM)(Chuvieco et al., 2021) which are currently not easily integrated

into DGV Ms, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced

recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion

of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that

are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables.

Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for

seasonal dynamics and without a focus on driver variables that can be predicted with DGVMSs. Generally, most earlier fire

modules in DGVMs such as the LPJ-L Mfire(v1) were informally parameterized to predict seasonal fire cyclesmedels and do

not consider the fuller range of predictors available in a more rigorous statistical framework (Fosberqg et al., 1999; Pfeiffer et

al., 2013). Nurrohman, et al., (2024) produced monthly fire predictions from downscaling of annual model outputs without

building a statistical approach that is calibrated based on monthly inputs. This left an opportunity to improve burnt area models

in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a

simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also

being easily integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on

variables pertinent to fire modelling, with the goal to later integrate it into DGVMSs. This integration can efficiently enhance

our comprehension of inadequately understood factors while leveraging the potential of finely detailed temporal resolution

burnt area datasets.

The main aim of this research is to build a parsimonious statistical model for global seasonal burnedburnt areas that can be
integrated into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnedburnt
area dynamics, 2) to leverage a GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate
the interannual and seasonal cycles of burnt area extent, both globally and regionally.
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2 Data and Methods

In this study, we used-a GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation,
weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also
evaluated. Fig. 1 provides an overview of the steps that were followed during medeltingmodelling.

Predictorvariables

Monthly burnt area

Vegetation
Weather
Anthropogenic
Topographic

Correlation matrix

Variance Inflation factor

Generalized Linear

Pearson Correlation

Modeling

Model evaluation

Fire distribution

Deviance explained
Normalized mean error

Spatial distribution
Inter-annual variation
Seasonal variation
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Period : 2002 -2018

¥ *  Vegetation
Monthly burnt area Predictor | * Weather
GFEDvV5 variables *  Anthropogenic
2 * Topographic

*  Aggregation

Data processing =-------- : gzizg‘l?d“a"t?on

Correlation matrix - - -—---. [ Pearson Correlation

Variance inflation factor

Generalized
linear model ------ Quasi-binomial
training

Period : 2002 -2010

Period : 2011 -2018 Model + Deviance explained
P il =i ¢ Normalized mean
evaluation SFToF

.

Fire

Spatial distribution
------- * Interannual variation
distribution « Seasonal variation

Figure 1: Study workflow showing an overview of steps followed in model calibration and evaluation together with the

outputs.

2.1 Fire data

periods 2002 and 2018 were derived from monthly mean fractional BA from the GFED5. We selected this data because of

8
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their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified according to 17 major land

cover types using the MODIS classification scheme. We used this land cover information to remove burnt area in cropland
land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of cropland residue burning

which we suppose is likely hasto have different drivers from burning in non-arable lands. \We used data for the period 2002 to

2010 for model training and data for 2011 to 2018 for model testing.BA data comes at a resolution of 0.25° x 0.25°, therefore

we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for ease of processing at a global scale and at the same
time to ensure that our outputs are DGVM integrable since they are commonly applied at 0.5° globally.

2.2 Predictor variables

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many

possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we here-orby-use

arerestricted our selection to

variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic variables with
future scenario projections; and time-invariant topographic variables. Previous studies used several variables that we couldn’t

include due to lack of future scenario projections such as nighttime lights, cattle density (Ferkel-et-al—2019a),\egetation

etal2011).(Forkel et al., 2019a), Vegetation optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture

(Mukunga et al., 2023), soil fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are

compatible with DGVM integration to calibrate the model effectively. The chosen predictor variables were categorized based
on their representational nature and their roles in fire medelingmodelling(See Table 1).. Fable-1-provides-a-comprehensive

Classification
category
(Climate,
vegetation,
landcover,
Predictor Abbreviations landscape
fragmentation,
ignition,
suppression
topographic
effect)

PGC Vegetation 300m Annual

Original spatial | Temporal

- . Source
resolution resolution

Percentage Grass
cover

ESA CClI
landcover
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Percentage non-
tree  vegetation
cover

PNTC

Vegetation

250m

Annual

MODISMODIS -
MOD44B
(DiMiceli et al.
2011)

Topographic
positioning index

TPI

Topography

90m

Static

digital  elevation
model products of
e
GMTED2010-and

near-global-90-m
SRTM4- 1dev-
Digital elevation
model products of
global 250 m
GMTED2010
(GMTE data
2010) and near-
global 90 m
SRTM v4 (Jarvis
etal., 2008)

Human
Development
Index

HDI

Ignition/suppressi
on/fragmentation

subnational

Annual

Global——data
fabGlobal data lab
Smits and
Permanyer, 2019)

Road density

RD

Ignition/suppressi
on/fragmentation

0.5° % 0.5°

Static

Global—Reads
Inventory—Project
(GRIP)
databaseGlobal

Roads Inventory
Project GRIP
database (Meijer

Population
density

PPN

Ignition/suppressi
on/fragmentation

2.5 arc minutes

5-year intervals

etal., 2018)
Secioeconomic
data——and
applications
centre
{SEBACG)Socioec
onomic data and
applications
centre (SEDAC)
(Klein_Goldewijk

Percentage crop
cover

PCC

Fragmentation

5 arc minutes

Annual

etal., 2017)
HistorY-Database
of —the —Global
Environment
HvDE
3-3HistorY
Database of the
Global
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Environment
HYDE 3.3)

(Klein Goldewijk
etal., 2017)

Percentage
pasture cover

PPS

Vegetation

5 arc minutes

Annual

HistorY Database
of the Global
Environment
(HYDE
33)HistorY
Database of the
Global
Environment

HYDE
3.3)(Klein
Goldewijk et al.,
2017)

Precipitation
seasonality

PS

Climate

0.5° % 0.5°

Annual

Copernicus
climate data store
(Copernicus

Climate Change
Service 2018)

Fire weather
index

FWI

Climate

0.5° % 0.5°

Monthly

Copernicus
climate data store
(Copernicus

Climate Change
Service 2018)

Precipitation  of
the driest quarter

PPNQ

Climate

0.5° x 0.5°

Annual

Copernicus
climate data store
(Copernicus

Climate Change
Service 2018)

Number of dry
days

NDD

Climate

0.5°x0.5°

Annual

Copernicus
climate data store
(Copernicus
Climate Change

Percentage
grazeland cover

PGzZC

Vegetation

5 arc minutes

Annual

Service 2018)
HistorY Database
of the Global
Environment
(HYDE
33)HistorY
Database of the
Global
Environment
(HYDE 3.3)

(Klein Goldewijk
etal, 2017)
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228
229
230
231

R32

P33
R34
P35
P36
R37
P38
P39
R40

HistorY-Database
of —the—Global
Environment
{HYDE
33)HistorY
PRC Vegetation 5 arc minutes Annual Database of the
Global
Environment
HYDE 3.3)
(Klein Goldewijk
etal, 2017)
Copernicus
climate data store
AAP Climate 5 arc minutes Annual (Copernicus

Climate Change
Service 2018)

Percentage
rangeland cover

Annual average
precipitation

Gross rimal MOBLFAIMOD
_primary | gpp Vegetation 0.5° % 0.5° Monthly 17A1 _ (Runnin
productivity and Zhao, 2019)
Aboveground AGB Vegetation 0.5° x 0.5° Longterm
biomass average
MOBISMODIS -
Percentage  Tree PTC Vegetation 250m Annual MODa4B
cover (DiMiceli et al.
2011)
Fraction of MODIS
Absorbed Monthly MODlS%
Photosyntheticall | FAPAR Vegetation 500m (originally 8 (Runnina_ and
y Active days)
Radiation Zhao, 2019

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial
& temporal) and the respective data sources.

2.32.1 Vegetation-related predictors

We used eight vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables

encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage

Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree Cover (PTC). Previous work emphasizes the

important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010), discussed the crucial role of

vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered by grass, influencing fuel

availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to overall fuel dynamics. PCC

reflects the presence of cultivated crops which have been found to suppress fire occurrence as they fragment the landscape

acting and so act as a barrier to fire spread (Haas et al., 2022).
12
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We used PGZC, PRC, PTNC and PTC to evalute the relationship between landcover and burnt area distribution. Previous

studies reported that landcover change has made a significant contribution to wildfire distribution (Gallardo et al., 2016;
Villarreal and Vargas, 2021).

We used Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed Photosynthetically

Active Radiation (FAPAR) as proxies for vegetation health and productivity. Previous studies emphasized the varying effects

of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et al., 2021).

2.4 \egetation2.2 Topographic-related predictors

We used topographic positioning index (TPI) to evaluate how topography can influence the occurrence and spread of fires.

Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions (Blouin et
al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio (Parisien

et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent studies
13
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reported some significant contributions of topography to global burnt area distribution when using the TP1 (Haas et al., 2022).

TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on the

distribution of burnt areas. Thus, TPI goes beyond simplistic representations of landscapes and offers a more nuanced

perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire

behavior and propagation patterns, the inclusion of TPl in this study allows for a comprehensive examination of wildfire

distribution.

2.52.3 Anthropogenic Influence Predictors

We used the Human Development Index (HDI), Population Density (PPN), and Road Density (RD) to capture the impact of

anthropogenic factors on both fire ignition and suppression. The inclusion of HDI aims to encapsulate human influence on

ecological landscapes, thereby affecting the dynamics of both ignition and suppression processesFo-comprehensively-capture

a composite index developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic

dimensions of human development, including health (life expectancy at birth), education (mean years of schooling and

expected years of schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from

0 to 1, with higher values indicating higher levels of human development. Although HDI itself may not directly relate to fire

occurrence, it stands as a valuable socio-economic indicator that significantly influences overall fire dynamics and
management, like how Gross Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address
the limitations of using GDP as a proxy for human development in predicting global fires, we opted for HDI. Previous research

has utilized GDP for this purpose {Zhang-et-al—2023);(Zhang et al., 2023), however, GDP is an indicator of a country's

economic performance (Callen, 2008). In contrast, HDI is rather broad socioeconomic indicator, which we assume acts as a
14

[Formatted: Line spacing: single




B05
B06
B07
308
B09
B10

B11

B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35

proxy for factor such as investments and advancements in fire control methods, surveillance, technology, and outreach
strategies increasing awareness

is. HDI evaluates a country or other administrative region's
development status based on the critical factors of life expectancy, education, and income, providing a nuanced understanding
of the socio-economic context shaping fire behavior (Teixeiraetal2023).(Teixeira et al., 2023). To evaluate model sensitivity

to inclusion of HDI, we trained our model based on the three settings: including, excluding and holding HDI constant.

2.62.4 Weather-Related Predictors

2. We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires.

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire
behavioranddangel’ 0-Captdfe ""5- o re Aleather—oRtie - 5.5'3 v'!‘ We-emptoyeathie v.‘.ﬁ.‘ e

potential-fire behavier-and-danger-(de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating

informed decisions on fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate

well with burnt areas across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass

production limitations. While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of

how moisture availability can affect available combustible vegetation. We incorporated additional covariates capturing

seasonal and annual weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average

Precipitation (AAP). The selection of these predictors was informed by their significance in previous global fire modelling
studies (Chuvieco et al., 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well
as insights from seminal works such as that by Pechony and Shindell, (2010).

15
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2.3 Data ProeesssingProcessing

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had
a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation,
resampling, and consolidation. For instance, while the native temporal resolution of FAPAR was 8 days, we transformed it
into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an annual temporal
resolution, except for FWI, GPP, and FAPAR, which were also available every month. For annual predictors, we replicated
the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize
with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented
5-year span. Kuhn-Régnieretal(2021)Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as

key driver for global fires. To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the

-Monthly Ecosystem
Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was

originally defined in the work by Forrest et al. (2024). This index allowed us to quantify the relationship between vegetation

growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire
dynamics.

GPPp,
Max(GPPrm,GPPm—1,-.GPPm_13,)

GPP-indexMEPI =

(0]

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated
additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the
mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPARG (the mean FAPAR over
the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel

accumulation.

2.84 Statistical medelingmodelling and final predictor choice

address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical

16
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B67  package(CoreTeam, 2014). Following established guidelines by Dormann et al. (2013) , we applied the conventional threshold

368 of R > 0.5 to enhance the model's efficiency.
369
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378 Moreover, we employed the Variance Inflation Factor (VIF) to evaluate collinearity among predictor variables, removing those
B79  with VIF values surpassing 5, as recommended by © brien—2067-0 brien, (2007). Post collinearity tests, an additional 3
B80  parameters were adopted to progressively select the best model, namely: 1) a simple (~ parsimonious) model which comprise
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of a full suite of categories of covariate combinations (i.e vegetation, climate, topography, ignitions), 2) the deviance explained

value and 3) the normalised mean square error value as illustrated in the making of Burnt Area Simulator For Europe (BASE)

A quasi-binomial GLM was selected for medelingmodelling BA due to its capability to handle non-Gaussian error
distributions, seamless integration into DGVMs and ability to generate partial residual plots{Bistinas-et-ak,-2014; Haasetak;
2022;-Lehsten-et-al-2016)-, i.e. the effect of each predictor in the model while the others are held constant (Bistinas et al.,
2014; Haas et al., 2022; Lehsten et al., 2016). Calibration of the model utilized data from 2002 to 2010 while testing utilized
data from 2011 to 2018. Residual plots were utilized to examine the magnitude and nature of each predictor's relationship with

wildfire burnt area distribution.

Model performance was assessed using the Normalized Mean Error (NME) following Keley-etal(2013).Kelley et al. (2013).
NME serves as a standardized metric for evaluating global fire model performance, facilitating direct comparison between
predictions and observations. The NME was calculated following Eq. (2).

> Ail obs; — sim; I
NME = é
Y Ailobs;—obs 1

2

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all
cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the
observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment
between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-
binomial distribution. We-applied-the-logit-Hink-function-based-on-the-methodology-outlined-by-Haas-et-al{2022).We applied

the logit link function based on the methodology outlined by Haas et al. (2022). After conducting a collinearity test, the models

were systematically evaluated using various combinations of predictor variables. A total of 25 model runs were conducted,
each incorporating different sets of variables while iteratively excluding some, to discern the extent to which each predictor

explained variance when others were not included (see Table 2).A1). We followed the stepwise approach of variable inclusion,

exclusion, interaction terms, log transformations, and polynomial transformations as described by Forrest et al. (2024). While

their analysis focused on Europe, our objective was to replicate and apply the method at a global scale. To evaluate the

reliability of the predicted interannual variability and seasonal cycles, we applied a regression function to determine the
relationship (R?) between the observed and predicted trends. An R? of 1 shows good performance in our predictions and an R?
19
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of 0 shows poor performance in our predictions. To assess the trend in predicted interannual variability, we used the Mann-
Kendall test {Kendal 1975 Mann1945)(Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends
in environmental data. Being non-parametric, it works for all distributions, does not require normality, but assumes no serial

correlation. We extracted the trend test results and plotted a map of trend distributions across 14 different GFED regions to

identify areas with significant predicted trends (P<0.05) from those with non-significant trends. The 14 GFED regions include,
Boreal North America (BONA), Temperate North America (TENA), Central America (CEAM), Northern Africa (NHAF),
Southern Africa (SHAF), Europe (EURO), the Middle East (MIDE), Equatorial Asia (EQAS), Southern Asia (SEAS), Boreal
Asia (BOAS), Temperate Asia (TEAS), Australia and New Zealand (AUST), and Northern Hemisphere South America

(NHSA), and Southern Hemisphere South America (SHSA).We-extracted-the-trend-test-results-and-plotted-a-map-of-trend
W&m ifi v
3 Results

3.1 Correlation between variables

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12,

FAPARG6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however

some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and

model performance. For example, NDD was strongly correlated to PTC ( ~ -0.68), but both increased the variance explained
by the full model.
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3.1 Optimal model selection and GLM results

medel-The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump in deviance
explained when PNTC is added (Model 3: 0,5298). Models 4 to 8 involve adding vegetation (FAPAR) and various land use
types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, indicating these factors

provide some additional predictive power but are not as impactful as existing vegetation covariates (such as GPP). Models 10
to 12 introduce polynomial terms for PTC. This results in an increase in deviance explained, peaking at around 0.558836 in
Model 12. Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in
marginal increase in deviance explained with the highest recorded in Model 15(~ 0.5664789). Models 19 to 25 fine-tune the
overall performance by incorporating various variables and their interactions. Model 24, which includes a comprehensive set
of climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest deviance explained
(~0.5720048). The marginal improvements observed in subsequent models indicate that while additional variables contribute
to the model, the primary influencing factors were already identified by Model 19, however it was not the simplest model; (~
parsimonious), and eermprisedconsisted of other variables that we don’t have future projections for (e.g RD). We removed
some of the redundant variables till Model 24 (~11 variables), however, it was not as parsimonious as Model 25 (~8 variables).

Therefore, Model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected

as the best model in this analysis.

Fedd el e NME
—glmburat—FP\WA+ GPP+

odett HD+PTC+RD)

model2 gimburat ~FWI+-G
HDI+PTC+RD+PGC)

model-3 ghmburat ~ FWI+G 0.5298061 0.7208771
HDI+PTC+RD+PNTC)
glmburmt—PW+ GPP+

model4 HDH+PTC+RD+PNTC 05312036 0.7188448
+FAPAR)
“glm{burat—FP\Wl+ GPP+

model 5 HDH+PTC+RD+PNTC 05312697 0.7191269
+FAPAR+PCC)
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Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of
wildfires (p < 0.05), as outlined in Table 32.

. Estimate Std.Error T value Pr(>[t))
Intercept - 6.159e+00 2.349x107-02 | -262.17 <0.00001
Fwi 9.296e-01 1.948x107-03 | 477.28 <0.00001
MEPI -2.270e+00 8.974x107-03 | -252.96 <0.00001
HDI -1.680e+00 1.235x10°-02 | -135.99 <0.00001
PNTC 5.170e-02 2.270x10-04 | 227.78 <0.00001
oly(PTC.2)1 2.135e+03 1.114x10°01 | 191.55 <0.00001
oly(PTC.2)2 -9.783e+02 6.975 -140.27 <0.00001
TPI 2.225¢-01 3.946x107-03 | 56.39 <0.00001
NDD -9.550e-03 4.757x107-05 | -200.78 <0.00001
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165

466
467
468
469
470
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472
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477

PP -1.075e-03

1.808x10"-05

A

Table 32, Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results

indicate that all predictors in the final model were statistically significant abeutfor, wildfire distribution (p < 0.05).
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Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among
the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and
PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the
expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the
GPPIMEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, climate
conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential
relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving

wildfire dynamics.
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Figure 3: Partial Residual Plots illustrating the relationship between Burnedburnt Areas (BA) and the eight final

predictor variables. These-plots-show-the effect of each-predictor-while-the others-are-heldconstan arson—an
MeCleary-1972) These plots show the effect of each predictor while the others are held constant (Larsen and McCleary
1972). Predictor variables were Gross Primary Production Index (GPP), Fire Weather Index (FWI), Percentage Non-
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Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index
(TPI), Population Density (PPN) and Number of Dry Days (NDD).

The model demonstrated strong performance in predicting BA, accounting for over 50% of the variability in burnt areas
(Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution model by Haas-et-al
{2022)Haas et al. (2022), who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader
array of variables (16 predictors) and operated at a coarser temporal resolution (annual). Our model's performance, based on

eight predictors and operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious.

Assessment of model accuracy yielded an NME of 0.718, indicating a generally close correspondence between observed and

predicted burnt area patterns (see Fig. 4). Fhislevel-of-accuracy-is-comparable-to-that reperted-by-previous-global-fire-medels;

such-as{Haas-etal2022)-and-(Hantson-et-al2016), This level of accuracy is comparable to that reported by previous global
fire models, such as Haas et al. (2022) and Hantson et al. (2016) which reported NMEs ranging from 0.60 to 1.10.

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating
notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 4). However, in
extratropical regions, particularly in the northern hemisphere, instances of over-prediction were observed. This discrepancy is

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model.

27

[Formatted: Line spacing: single




Observed burnt area (GFEDS5)

PR
=

b02
b03

28

Burnt area fraction

0-0.002
0.002-0.005
0.005-0.01
0.01-0.02
0.02-0.03
0.03-0.05
0.05-0.1

0.1-0.2
0.2-0.5
0.5-1

1-0.002

Burnt area fraction

0-0.002
0.002-0.005
0.005-0.01
0.01-0.02
0.02-0.03
0.03-0.05

[Formatted: Line spacing: single




b04
505
506

F07

Observed burnt area (GFED5): 2011 - 2018

Burnt area fraction

0-0.002
0.002-0.005
0.005-0.01
0.01-0.02
0.02-0.03
0.03-0.05
0.05-0.1

Burnt area fraction

0-0.002
0.002-0.005

Figure 4: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area
(bottom).
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3.2 Interannual variability

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to

2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was reproduced by the model, but the model
underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with
the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant

in the model resulted in smaller reduction of predicted BA over time.
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Figure 5: Interannual variability in burnt area extent showing the observed trend (based on GFED-detections)-and
predicted-trends—tncluded-are-interannual-trendsGFEDS burnt estimates detection and model projections under

different HDI treatments: when HDI was excluded, included and held constant from the value of the first year in the

model.

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area
extent across the 14 GFED regions (refer to Fig. 66a and Table A1A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted
a significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA,
SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in
GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and

Europe demonstrated no significant trend, as illustrated in Fig. 66a.
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538
(a)
Trend

D No trend

l Positive trend
539
540
b4l Figure 6: Variation in the trend of interannual variability for burnt areas across different GFED regions. \Where (a)
542 shows the direction of the trend and (b) shows the spatial distribution of the strength of relationship (r-square values)
543 between observed and predicted interannual variability per GFED region.

544

545  Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship

F46 between the predicted trend when compared to the observed (R?= 0.24) (See Fig 76b and Fig A1). This poor relationship was
33
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564

exhibited across most of the GFED regions (R? < 0.50), except for the NHSA which showed strong similarities between the
predicted trend and observed trend (R? = 0.55). This observation suggests that the combination of covariates that we
incorporated in this model has limited strength in capturing global interannual variability in burped-area—However-the

edicted-glebaltrend-is-in-syne-with-previeusly-reported-global-trends-(Jones-et-ak—2022)-burnt area. However, the predicted
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[ ceam
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[0 NHAF
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[ SHAF 0 2500 5000 7500 km

[ sHsA L —
[ TENA

3.3 Seasonal Cycle

Our analysis results show that athe global extent of BA shows an alternating seasonal cycle with strong peaks in February and
August (see Fig. 87). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the
observed trend (R? = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted
seasonal cycles varies according to the GFED region with R? ranging between 0.06 to 0.99 (refer to Fig. 98). The model
predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R? > 0.50) (see Fig.
98 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R? < 0.50).
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567 Figure 87: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent.
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Figure 98: Spatial distribution of r-square values for the relationship between observed and predicted seasonal
variability per GFED region.

4 Discussion

We found a DGVM compatible parsimonious global statistical model made of FWI, PNTC, PTC, TPI, GRPRPHIMEPI, HDI, PPN
and NDD. Of all the key variables, FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring

the importance of conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High
PNTC is most likely related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings show that fire
weather (~FWI) and fuel availability (~PNTC) influence burnedburnt area extent align with previous studies {Andela-et-al;

;- Bisti : : egni -(Andela et al., 2017; Bistinas et al., 2014; Forkel

etal., 2019b; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnedburnt area, not the seasonal

cycle, which is also crucial to adapt to changes in fire risk.
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Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree cover show
lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with
low PNTC are often characterised-by trees—Grasses-and-shrubs-often-encourage-frequent burning-much-morethan-trees-(Juli
et-ak2017:-Wragg-et-ak2018).characterized by trees. Grass and shrubs often encourage frequent burning much more than
trees (Juli et al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable,

leading to fewer fires. Though our findings support previous literature indicating that regions with abundant combustible
vegetation and favorable fire-weather conditions are prone to frequent burning {raaij—et-—ak,—2018; Thenickeet—ak;
2010);(Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative relationship between NDD and burnt area.
Previous studies found a positive relationship between NDD and burnt area fractions {Haas-et-al-2022), similarto(Haas et al.
2022), like our single factor plots of NDD and burnt area in Fig A3. This result most probably shows that relationships derived

with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal fire predictions. Studies have
shown that the effect of dryness on fire varies depending on vegetation communities in Mediterranean ecosystems {Cardil-et
al-2019).-Stott(2000)(Cardil et al., 2019). Stott (2000) echoed similar sentiments for tropical environments, indicating the

complex relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an

interaction term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further
exploring the complex relationship between dryness; and vegetation at a global scale, particularly the effect of incorporating

polynomial terms on correlated predictors in a linear model.

Our findings revealed that HDI, GPPIMEPI and PPN are negatively associated with trends in global fire extent. For HDI, our
findings implySpecificallythe-negative-relationship-between HB-and-burnt-area-tmplies-that technological advancements,
improved surveillance systems, and effective mitigation efforts play a significant role in limiting the extent of burredburnt
areas. Contrary to expectations based on Haas-etal{2022);Haas et al. (2022), PPN, which should correlate with more ignitions,

does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower PPN corresponded to larger burnt

areas, likely due to the impact of human activities on landscape fragmentation through road construction, and measures to
suppress fires in human inhabited spaces to protect properties (Klosteretal;2010)-Saunders-etal{(1994)(Kloster et al., 2010).
Saunders et al., (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase
in population leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires.
They further highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both
spatial and temporal) of analysis may influence the-nature and extent to which PPN affects burnt area extent. Our results for
the effect of PPN have, important implications for DGVMs and land surface models. These models differ widely in the assumed
effect of PPN, often using a unimodal response {Feckentrup-et-al2019)However-many-BGVMs-simulatesimulating, BA
annually, in some cases distributing the wildfires across seasons in a second step, using rather simplified assumptions

{Feckentrup-et-al-2019).(Teckentrup et al., 2019), Similarly, we anticipated a positive relationship between GPPIMEPI and
38
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burnt areas, as GRPPHMEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative
relationship, indicating that other factors may be influencing the connection between GRPIMEPI and the extent of burnt areas.

Our findings are intine-with-that-of Forrestet-al{20243in line with those of Forrest et al. (2024) who initially investigated the
effect of this index on burnt areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed

a more refined measure, GRRHMIEPI. Future research could benefit from evaluating the relationships between GPPHMEP], and

=AY

burnt areas in other GFED regions and temporal scales.

4.21 Spatial variation in model performance

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South

America than in other world regions;petentiathy-due-to-the-seasonal-patterns-of key-predictors (See Fig. 4). The stronger

performance in these areas is likely due to the well-defined and predictable fire regimes in these regionswhich-can-be. Since

fire activity here is strongly governed by distinct wet-dry seasonal cycles, which align closely with climate variables such as

precipitation, temperature, and vegetation productivity, factors that our model capture effectively eaptured—using linear

functions—(Archibald, 2016; Van Der Werf et al., 2017). These regions typically exhibit lower interannual variability in fire

occurrence, facilitating better model generalization.

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as

well as Asia. Annua ich-mightPerformance

here declines as fire regimes are more heterogeneous and driven by a combination of biophysical and anthropogenic factors

(Chuvieco et al., 2021; Forkel et al., 2019b). High interannual variability in burnt areas in these regions is due to irreqular

droughts, land use change, and fire suppression policies that make it—ore—difficult—to—predict—it{Chuvieco—et-al;

202%)-prediction more challenging for linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied

ignition sources in temperate and boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009).

Chuvieco et al., (2021) reported about this challenge when building global models. Thus, our findings build upon existing

models on global burredburnt area distribution. What sets our model apart from previous models is its ability to reliably
identify global seasonal fire distribution patterns. This simplicity offers a notable advantage, as it facilitates more nuanced
interpretation and implementation of DGVMs compared to annual models.

4.3 Attribution of global trends

Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends Jeshi-and

tiktia g ‘..‘. 018 Mukunga-et-al- . ey esSeareh HeAa AE-WO py-Andela et al. 0 JOShi

and Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017),
39
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primarily attributed the decline in global burnt areas to agricultural expansion and intensification. Earl-and-Simmonds
{2018)Earl and Simmonds (2018) supported this view, adding that increased net primary productivity in Northern Africa also
played a significant role. However, our results suggest that human development is a more important driver than agricultural
expansion alone. Despite the conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland
fractions as predictor variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2).
Interestingly, our analysis revealed that excluding the HDI from our model and holding it constant to the value of the first year
predicted a steady trend that deviates from the observed negative trend in global fire extent and including HDI follows a
decreasing trend that aligns with the observed trend (Fig. 5). This highlights the significant influence of HDI in projecting the
purported negative global fire trend. HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor

such as investments and advancements in fire control methods, surveillance, technology, and outreach strategies increasing

- (Teixeira et al.
2023). Although these strategies are often implemented independently and on a smaller scale, their cumulative impact on
global fire trends is substantial. Therefore, our model underscores the necessity for global initiatives aimed at enhancing fire
control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the
development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively
mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods.

4.4 Interannual variability

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high
precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1).
Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated
FAPAR12 in models 9 to 12 (Table 2A1) and GPRIMIEPI in models 11 to 26 (Table 2A1). Unfortunately, these adjustments
did not enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between
increased precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Africa
{Shekede-et-al-2024).(Shekede et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent
fire seasons using GPP12 in model 10, respectively. While this approach did not improve global interannual predictions, it
showed a slight enhancement in deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded
by the effects of the fire-aerosol positive feedback mechanism in Africa (Zhang-etak,-2023)(Zhang et al., 2023) and periodic
El Nifio conditions, which can affect rainfall patterns and lead to drier vegetation conditions, reducing the predictability of fire
occurrence, especially with linear models {Shikwambana—et—ak, 2022} Other—attempts—at—simulating—globalannua

burned(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model

Intercomparison Project (FireMIP) project (Hantson et al. 2020), all models did a poorer job of matching the interannual
40
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variability than the spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial

NME (across all data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual

variability.

accurately predicting wildfire trends and underscore the need for future research to identify covariates that more effectively

capture the interannual variability of fires at a global scale.

4.5 Fire seasonality

Globally, our model predicts a notable peak in burnedburnt areas during February and August. The February peak corresponds

to dry conditions and fuel accumulation in regions such as NHSA, NHAF, and MIDE. In contrast, the August peak primarily
emanates from tropical regions characterized by distinct seasonal patterns, particularly in SHSA, SHAF, and AUST. Here, the
dry season augments the combustibility of accumulated fuel from the preceding wet season, facilitating fire spread. This
observation corroborates earlier studies in the southern hemisphere, which underscore the prevalence of wildfires during

prolonged dry spells (Magadzire,2013;-Shekede-et-al-2024;-Strydom-and-Savage, 201 7)-(Magadzire, 2013; Shekede et al.,

2024; Strydom and Savage, 2017). Increased temperatures and desiccated vegetation substantially enhance the likelihood and

severity of wildfires during the dry season. Conversely, the onset of the rainy season precipitates a marked reduction in the
occurrence of wildfires in these regions. This underscores the enduring influence of fire weather and vegetation dynamics as
principal drivers of seasonal burnt area cycles, with factors such as moisture content in vegetation and soil, as well as humidity,
playing pivotal roles in modulating ignition and fire extent within ecosystems. The seasonal-gtebat forecasts generated by our
model hold significant implications for guiding adaptive strategies, fire management and prevention at both regional and global

scale.
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The findings of this study exhibit robustness in capturing seasonal cycles (R? = 0.536), facilitated by the inclusion of monthly

variables such as the MEPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While the seasonal

predictions demonstrate reliability across most GFED regions globally, notable exceptions were observed in North America,

North Africa, and Europe (R? <0.50) (see Fig 8). This discrepancy could be attributed to the intricate climatic conditions

inherent to these regions, which influence fires in a manner that eludes simple linear modelling. For instance, regions with

clear-cut wet and dry seasons tend to exhibit more reqular fire cycles, largely governed by seasonal shifts in precipitation

temperature, and vegetation growth. These predictable patterns make them well-suited to linear modelling approaches (Van

Der Werf et al., 2017). In contrast, areas in the northern hemisphere experience more irregular and less seasonally driven fire

activity. Here, the interaction of drought events, land management, and socio-economic drivers introduces variability that

weakens model performance (Chuvieco et al., 2021; Forkel et al., 2019b). Additionally, varied ignition sources in temperate

and boreal zones disrupt consistent seasonal fire patterns (Flannigan et al., 2009). Given the parsimonious design of our model,

with only ~eight predictors, we think that the model’s performance is acceptable. For certain regions, it might be possible to
increase_model performance by implementing further region-specific predictors and relationships. Accurate predictions

regarding the seasonal dynamics of diverse GFED regions can facilitate the identification of temporal windows when fires are

prevalent, thereby furnishing valuable insights for simulating carbon emissions in DGVMs.

4.6 Model limitations and excluding drivers of burnt area

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and
. . . ) e .

014 Pausas-and Keeley 0 Pa ns-et-a 0 ha

socioeconomic (~RD), did not make it to the final model (See Tabl

differencestoAl) despite their potential relevance identified in previous studies (Forkel et al., 2019b; Hantson et al., 2015;
Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The differences in our findings are related to differences in

the statistical or modelling approach and the fact that most of these studies addressed annual BA patterns, not seasonal
variations. Nevertheless, these other factors can clearly also be important for understanding fire dynamics, e.g. influencing
fuel availability, landscape structure, and ignition sources. For instance, grazing lands can significantly impact fire behavior
by altering fuel types and continuity, with areas used for grazing potentially reducing fuel loads (Bavies-etal2010; Strand-et
al-20%4).(Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity, affecting
fuel moisture content and thus fire risk {Pausas-and-Ribeire,2013).(Pausas and Ribeiro, 2013). However, these factors are

apparently indirectly represented by the final model, as they are correlated to the driver variables in the final model. FAPAR,

for example, is_generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire
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suppression capabilities (Forkel-etal;20196).(Forkel et al., 2019b). However, it was excluded here because its contributions
were already effectively represented by HDI and PPN, which capture broader socioeconomic conditions and infrastructure
impacts. Apartfrom-that-Haasetak{2022)Apart from that, Haas et al., (2022) observed a shift in the direction of contribution
for covariates when PPN and RD are used together. Considering that we may not have future projections for RD unlike PPN,

including the issue of collinearity, we decided to retain only PPN in our model. Furthermore, our attempt to include RD in our
models 21, 23 and 24 (Table 2A1) yielded marginal improvements, which were not different from when we excluded it in
model 25. Overall, the decision to exclude most of these covariates was aimed at reducing redundancy and multicollinearity,
ensuring a balance between model complexity and predictive power. By focusing on more comprehensive variables with high
explanatory power, the final model achieves robust explanatory power. However, the often-small differences in the deviance
explained and the NME between different models imply that vegetation-fire medelersmodelers might also pick a slightly

different set of variables for DGVM integration without using much predictive power.

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal
variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the
statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potential ly
omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modelingtechnigues

~ Random-Eorest Ne nebwo aBoo Boo or-alob es(Forkel e 019 Joshi-and-Sukum 0

Mukunga-etak2023;-Zhang-et-al2023)-modelling technigues (~ Random Forest, Neural networks, XgBoost, CatBoost) for
global fires (Forkel et al., 2019b; Joshi and Sukumar, 2021; Mukunga et al., 2023; Zhang et al., 2023). This might contribute

to observed shortcomings in our model's ability to predict spatial fire distribution in certain regions and to capture interannual
variability across many parts of the world. Future investigations should aim to explore the inclusion of other established
predictors and methodologies in global fire medelingmodelling once they become easily compatible with DGVM integration.
Despite these challenges, our study possesses intrinsic value, and the developed model stands as a relatively simple tool for
informing global seasonal fire predictions.

4.7 Next steps for DGVM integration, future directions and model improvements

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation
state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM. DGVMs include GPP and the

cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and

universal coupling strategy to capture the effect of vegetation on burnt area. However, all model results are imperfect and

biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model
43
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training. This error will propagate to the burnt area calculation and so this discrepancy should be investigated. In the likely

event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account

for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture
certain dynamics and states. However, we note that our comparatively restricted variable set and simple GLM approach will

be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches

with larger suites of predictor variables. For example-, Son et al., (2024) achieved excellent correspondence with observed

data using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the

fuel predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors

(including PFT cover fractions and both absolute values and anomalies of LAI and water content of four soil layers) are all

determined from fixed input data - remotely sensed of climate reanalysis. So, in this case, the quality of the results from

hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables correctly. The

model presented here is tailored for integration into a DGVM by using only a few variables which can be robustly predicted,

and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting and relying on

correlations in the data which may not hold in the DGVM predicted state.

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they

can either be prescribed input variables or can be calculated from the climate input. Finally, to build a fully coupled vegetation-

fire model, it is then necessary to include the effects of the simulated fire on the vegetation. For this step we can utilise the

mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE

model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may

need to be adjusted to account for the different simulated burnt area.

5. Conclusions

We sought to deseribe-global-fire—distribution—the
developmentbuild a parsimonious statistical model for global seasonal burnt areas that can be integrated into a DGVM. The
specific objectives were to 1) to improve our understanding of a-cencise-model-capablemajor drivers of explaining-and-global
burnt area dynamics, 2) to leverage a GLM for predicting global fire-patterns—particularly-one-thatseamlessly-integrates-with
DPGVMs-is-essential-for-a-reliable-assessmentburnt areas using DGVM-integrable predictors and 3) to evaluate the interannual
and seasonal cycles of the-impacts-of-global-change—tn-this-study,~weburnt area extent, both globally and regionally.
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11 We present a parsimonious statistical model specifically tailored for global seasenal-burnedburnt areas, with the goal of
12 integration into DGVMs.

14 FWI, PTC, TPl and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively related to BA.
815  Our findings highlight the significance of socio-economic advancements, particularly those improving fire management

816  strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-

17 economic predictor in our model. Additionaty-fire-weatherand-vegetation-dynamics;-specifically-the- F\Wi-and-the-novel-G

—While our parsimonious model exhibited limitations in
19  predicting the interannual variability of global fires, it demonstrated commendable accuracy in forecasting the spatial and
20 seasonal-distribution-of-wildfires—(NME = 0.72). The strength of similarity between observed and predicted seasonal cycles

21 varied according to the GFED region with R? ranging between 0.06 to 0.99. Its standout performance laid in capturing the

22 seasonal variability, especially in regions often characterized by distinct wet and dry seasons, notably southern Africa (R? =
23 0.72 to 0.99), Australia (R? 68) and South America (R? = 0.75 to 0.90). Our predicted interannual variability exhibited poor

24 strength of relationship between the predicted trend when compared to the observed (R?= 0.24)

826 We hope that our research outcomes will stimulate a more rigorous implementation of global fire models within DGVM
827  frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of global fire patterns and
828 enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in the face of ongoing
829  global changes.
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832 The code used in this analysis model fitting, and plotting is available at https://doi.org/10.5281/zenodo.14177016. Data used
833  for model fitting are available at https://doi.org/10.5281/zenodo.14110150.
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Appendices

Table Al: Results of modelling attempts using different combinations of predictor variables using a progressive
inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer
colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest
error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better
performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated
by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model

performance.

=z
m

Model Formulae Deviance explained

model 1 glm(burnt ~ FWI + GPP +
I HDI + PTC + RD)

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PGC)

model 2

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PNTC)

0.5298061 0.7208771

model 3

glm(burnt ~ FWI + GPP +
model 4 HDI + PTC + RD + PNTC 0.5312036 0.7188448

+ FAPAR)

glm(burnt ~ FWI + GPP +
model 5 HDI + PTC + RD + PNTC 0.5312697 0.7191269
+ FAPAR + PCC)
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model 6

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PNTC
+ FAPAR + PCC + PPS)

0.5328183

0.7195616

model 7

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PNTC
+ FAPAR + PCC + PRC)

0.5313813

0.7193946

model 8

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PNTC

+ FAPAR + PCC + PGC)

0.5349288

0.7190611

model 9

glm(burnt ~ FWI + GPP +
HDI + PTC + RD + PNTC
+ FAPAR + PCC +
FAPARI12 + PGC)

0.5359802

0.7181930

model 10

glm(burnt ~ FWI + GPP12

+ HDI + poly(PTC, 2) +
PNTC + FAPAR + PCC +

FAPAR12 + PGC + PPN )

0.5295939

0.7172668
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Tl"de' “gIm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PGC + PS) | 0.5579946 -
m2°de' _alm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 | 0.7192122
T;de' _gim(burnt ~ FWI1 + MEPI + HDI*PCC + PGC + RD _+ poly(PTC, 2) + PNTC + PS) 0.5569187 | 0.7214560
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0.5563012 | 0.7215202

0.7191069

0.7167015

0.7175149

0.7182814

0.5677209

0.7177887

0.7170576

0.7173093

0.7186160

dee' “gIm(burnt ~ FWI + MEPI + HDI*PGC + RD_+ poly(PTC, 2) + PNTC+ PS)
model *
15 _glm(burnt ~ FWI + MEPI + HDI*PRC + RD + poly(PTC, 2) + PNTC + PS)
model
16 glm(burnt ~ FWI + MEPI*PNTC + HDI + RD + poly(PTC, 2) + PS)
model
17 _glm(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC + PS + NDD)
Ts"de' _gim(burnt ~ FW1 + MEPI + HDI + RD_+ poly(PTC, 2) + PNTC* PS + NDD + TPI)
model | glm(burnt ~ FWI + MEPI + HDI + RD + poly(PTC, 2) + PNTC* PS + NDD + PGC +
19 FAPAR12)
QAOOdeI _glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12)
'\Tdel glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN
Model «

) _glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN
Model

3 glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN
Model | glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN +
24 AAP

Model
25 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TPI
Model
26 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI
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Figure Al: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across

different GFED regions.
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Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across
different GFED regions.
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Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental
and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development
Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation
Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation
between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and
burnt area fraction.
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E

02
03

Region Sen's slope P-value

BONA 558.354 0.1082
TENA 895.8292 0.4338
CEAM -1963.035 0.1494
NHSA -1601.363 0.387
SHSA -9119.019 0.0529
EURO 189.2956 0.387
MIDE 202.3893 0.9016
NHAF -22329.83 0.0026
SHAF -28205.43 0.0001
BOAS -1560.25 0.1494
CEAS -8342.713 0.0011
SEAS -9671.238 0.0034
EQAS 69.04606 0.9671
AUST 1141.46 0.3434

Table ALA2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with

significant trends are in-bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends.
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