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Abstract. Fire-enabled Dynamic Global Vegetation Models (DGVMs) play an essential role in predicting vegetation dynamics 11 

and biogeochemical cycles amid climate change. Modeling, but modelling wildfires has been challenging in process-based 12 

biophysics-oriented DGVMs, as human behaviour plays a crucial regarding the role. This of socioeconomic drivers.  In this 13 

study aims, we aimed to revealbuild a simple global statistical model for the relationships between biophysical andthat 14 

incorporates socioeconomic drivers of wildfire dynamics and, together with biophysical drivers, tailored for integration within 15 

DGVMs. Using monthly burnedburnt area (BA) that can be integrated into DGVMs. We data form the latest global burned 16 

area product from GFED5 as our response variable, we developed GeneralisedGeneralized Linear Models (GLMs) to capture 17 

the relationships between potential predictor variables (biophysical and socio-economic) that are simulated by DGVMs and/or 18 

available in future scenarios and the latest global burned area product from GFED5. Predictor variables were chosen to. We 19 

used predictors that represent aspects of fire weather, vegetation structure and activity, human land use and behaviourbehavior 20 

and topography. The final Based on an iterative process of choosing various variable combinations that represent potential key 21 

drivers of wildfires, we chose a model was chosen by minimizingwith minimum collinearity and by maximizingmaximum 22 

model performance in terms of reproducing observations. The finalOur results show that the  best performing (deviance 23 

explained 56.8%) and yet parsimonious model includedincludes eight socio-economic and biophysical predictor variables 24 

encompassing the Fire Weather Index (FWI), a novel Gross PrimaryMonthly Ecosystem Productivity Index (GPPIMEPI), 25 

Human Development Index (HDI), Population Density (PPN), Percentage Tree Cover (PTC), Percentage Non-Tree Cover 26 

(PNTC), Number of Dry Days (NDD), and Topographic Positioning Index (TPI). Given its simplicity, our model demonstrated 27 

a remarkable capability, explaining 56.8% ofWhen keeping the burnt area variability, comparable to other state-of-the-art 28 

global fire models.variables constant (partial residual plots), FWI, PTC, TPI and PNTC were positively related to BA, while 29 

GPPIMEPI, HDI, PPN, and NDD were negatively related to wildfireBA. While the model effectively predicted the spatial 30 

distribution of burned areas (BA (Normalized Mean Error [NME] = 0.72), its standout performance lay in capturing the 31 

seasonal variability, especially in regions often characterized by distinct wet and dry seasons, notably southern Africa , (R2 = 32 
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0.72 to 0.99), Australia (R2 68) and parts of South America (R2 >= 0.5075 to 0.90). Our model reveals the robust predictive 33 

power of fire weather and vegetation dynamics emerging as reliable predictors of these seasonal global fire patterns. Finally, 34 

simulations with and without dynamically changing HDI revealed HDI as an important driver of the observed global decline 35 

in BA. The model presented model should be compatible with most, if not all, DGVMs used to develop future scenarios. 36 

 37 

 38 

 39 

1 Introduction 40 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 41 

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires 42 

have recently occurred in Australia and Canada, each burning more than 15 million ha (Barnes et al., 2023; Jain et al., 2024) .  43 

Even though the effects of fires may be positive through contributing to selected natural ecosystem processes, large and 44 

frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic value, 45 

and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The negative 46 

role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However, climate 47 

change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial drivers 48 

as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25% reduction in 49 

burnt area extent over the past two decades, explicitly attributing this decline to human activities (Andela et al., 2017). Wu et 50 

al. (2021) argue that future demographic and climate patterns will cause an increase in burned areas, particularly in high la titude 51 

warming and tropical regions. However, Knorr et al. (2016) concludes that under a moderate emissions scenario, global burned 52 

areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse gas emissions. 53 

Cunningham et al. (2024), on the other hand reported that although total burned area is declining globally, extreme fire even ts 54 

are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global fire dynamics 55 

are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance and 56 

management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modeling could guide 57 

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) 58 

(Koubi, 2019; Robinne et al., 2018). 59 

 60 

Modeling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 61 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 62 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 63 
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vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 64 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 65 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 66 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). One of their greatest 67 

limitations lies in representing the often-dominating effects of humans on fire ignitions, fire spread, and fire suppression in a 68 

mechanistic process-based way as this might be elusive (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 2022). 69 

Hence statistical approaches have often been used to evaluate human impacts on wildfires, in combination with weather and 70 

vegetation drivers (Haas et al., 2022; Kuhn-Régnier et al., 2021). Besides, some authors reported that the application of 71 

statistical models for ecosystems other than the ones used in their derivation is often not reliable (e.g Perry, 1998). Integration 72 

of mechanistic process-based techniques and statistical methods remains a lasting solution to advance our understanding of 73 

fire dynamics.  74 

 75 

Global wildfire modeling offers a macroscopic perspective, allowing researchers to analyze large-scale patterns across diverse 76 

ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The strength of modeling fires at a global scale lies in its abi lity 77 

to capture overarching patterns (spatial, seasonal and inter-annual) that might provide valuable insights for strategic wildfire 78 

control. While one can argue about the potential oversimplification of local factors and the challenges in representing fine-79 

scale heterogeneity, global models do, on the other hand, excel in capturing and understanding the effect of climate change, 80 

partly because they capture large climatic gradients (Robinne et al., 2018). The ability to capture the interconnectedness of 81 

ecosystems and fire regimes on a planetary scale contributes to a more holistic approach to understand global vegetation 82 

dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). As such, studies on evaluating drivers of burnt areas 83 

at a global scale in the face of ongoing climatic shifts are crucial in ensuring sustainable management of vulnerable ecosystems.  84 

 85 

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively 86 

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), 87 

 88 

1 Introduction 89 

Globally, the impacts of climate change continue to manifest through extreme weather events and changes in weather patterns 90 

(Clarke et al., 2019). Notably, climate change has led to more severe fire weather in large parts of the world and record fires 91 

have recently occurred in Australia and Canada, burning more than 15 million and 7 million ha (Jain et al., 2024; MacCarthy 92 

et al., 2024).  Even though the effects of fires may be positive through contributing to selected natural ecosystem processes, 93 

large and frequent fires are often destructive and have far-reaching effects through loss of life, biodiversity, landscape aesthetic 94 
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value, and increase in forest fragmentation and soil erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al., 2022). The 95 

negative role of climate change in driving large and frequent burning has been well documented (Brown et al., 2023). However, 96 

climate change by itself does not fully account for the recent changes in global wildfire patterns as human activities are crucial 97 

drivers as well (Pausas and Keeley, 2021). For instance, recent empirical investigations have highlighted a notable 25% 98 

reduction in burnt area extent over the past two decades, explicitly attributing this decline to human activities(Andela et a l., 99 

2017). Wu et al. (2021) argue that future demographic and climate patterns will cause an increase in burnt areas, particularly 100 

in high latitude warming and tropical regions. However, Knorr et al. (2016) concluded that, under a moderate emissions 101 

scenario, global burnt areas will continue to decline, but they will begin to rise again around mid-century with high greenhouse 102 

gas emissions. Cunningham et al. (2024), on the other hand reported that although total burnt area is declining globally, ext reme 103 

fire events are increasing as consequence of climate change especially in boreal and temperate conifer biomes. Future global 104 

fire dynamics are clearly driven by the overarching interaction between human activities (altered ignition patterns, surveillance 105 

and management) and climate (Krawchuk et al., 2009). Accurately evaluating these factors through modelling could guide 106 

prescribing solutions that will ensure reliable fire management and attainment of Sustainable Development Goals (SDGs) 107 

(Koubi, 2019; Robinne et al., 2018). 108 

 109 

Modelling continues to be an essential tool for comprehending and forecasting wildfire dynamics, founded on the intricate 110 

interplay among fire weather, vegetation, and human activities (Bistinas et al., 2014; Hantson et al., 2016). Models for wildfire 111 

can be process-based or statistical. While process-based models delve into the physics and dynamics of wildfires and 112 

vegetation, statistical models, on the other hand, tend to focus on analyzing historical data and identifying correlations to 113 

predict future wildfire events (Morvan, 2011; Xi et al., 2019). Process-based models such as fire-enabled DGVMs stand out 114 

in understanding interactions between climate, vegetation, and human activities in a mechanistic manner (Hantson et al., 2016; 115 

Rabin et al., 2017). However, their predictive skill is often not yet satisfactory (Hantson et al., 2020). The predictive skill of 116 

process-based models is often limited due to incomplete representation of fire drivers, uncertainty in parameterization, and 117 

difficulties in accurately simulating human-fire interactions One of their greatest limitations lies in representing the often-118 

dominating effects of humans on fire ignitions, fire spread, and fire suppression in a mechanistic process-based way as this 119 

might be elusive (Archibald, 2016; DeWilde and Chapin, 2006; Hantson et al., 2020). Hence statistical approaches have often 120 

been used to evaluate human impacts on wildfires, in combination with weather and vegetation drivers (Haas et al., 2022; 121 

Kuhn-Régnier et al., 2021). Statistical approaches can effectively quantify and evaluate empirical relationships between fire 122 

occurrences and diverse predictors, providing flexibility in handling diverse data from multiple spatial and temporal scales.  123 

However, some authors reported that the application of statistical models for ecosystems other than the ones used in their 124 

derivation is often not reliable (e.g Perry, 1998). This is mainly because statistical models assume that the relationship between 125 

predictors and responses is stationery and context dependent, which is not typical of fires that are stochastic in nature.  126 
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Integration of mechanistic process-based techniques and statistical methods remains one common way forward to advance our 127 

understanding of fire dynamics. 128 

 129 

The integration of DGVMs and statistical models increasingly benefits from remote sensing data (Dantas De Paula et al., 130 

2020). Remote sensing provides spatially explicit observations, such as vegetation cover, leaf area index (LAI), and biomass,  131 

which are used to initialize, calibrate, and validate DGVM simulations (Yang et al., 2020). Meanwhile, statistical models help 132 

correct biases in DGVM outputs and enhance predictions by combining empirical relationships with mechanistic model results. 133 

This integration enables more reliable modelling of global wildfires, offering a macroscopic perspective, and allowing 134 

researchers to analyze large-scale patterns across diverse ecosystems (Doerr and Santín, 2016; Flannigan et al., 2009). The 135 

strength of modelling fires at a global scale lies in its ability to capture overarching patterns (spatial, seasonal and inter-annual) 136 

that might provide valuable insights for strategic wildfire control. While one can argue about the potential oversimplification 137 

of local factors and the challenges in representing fine-scale heterogeneity, global models do, on the other hand, excel in 138 

capturing and understanding the effect of climate change, partly because they capture large climatic gradients (Robinne et al ., 139 

2018). The ability to capture the interconnectedness of ecosystems and fire regimes on a planetary scale contributes to a more 140 

holistic approach to understanding global vegetation dynamics and carbon cycling (Bowman et al., 2013; Kelly et al., 2023). 141 

As such, studies on evaluating drivers of burnt areas at a global scale in the face of ongoing climatic shifts are crucial in  142 

ensuring sustainable management of vulnerable ecosystems.  143 

 144 

There is a growing recognition of the significance of exploring both inter-annual and seasonal variations to comprehensively 145 

understand the dynamics of fire across diverse ecosystems (Dwyer et al., 2000), partly because of the strong seasonal dynamics 146 

of vegetation. Also, understanding seasonal cycles of fires helps to identify peak fire seasons, regions prone to seasonal 147 

outbreaks, potential shifts in fire regimes over time and facilitating adaptive management strategies (Carmona‐Moreno et al., 148 

2005). Incorporating monthly data in global fire modeling(Carmona‐Moreno et al., 2005). Incorporating monthly data in global 149 

fire modelling helps researchers to accurately capture seasonal variations in fire activity. Hence, global models developed 150 

using monthly data are necessary.  151 

 152 

Recent efforts have seen global burned area models based on diverse datasets and statistical approaches such as Convolution 153 

Neural Network (CNN)(Bergado et al., 2021), Random Forest (RF) and generalized additive models (GAM) (Chuvieco et al., 154 

2021). However, the integration of these techniques into DGVM is yet to be realized.  Haas et al. (2022)) developed a statistical 155 

global model for burned area using a GLM, however, their model does only simulate annual dynamics, not seasonal patterns. 156 

Generally, most earlier fire modules in DGVMs were informally parameterised models and do not consider the fuller range of 157 

predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et al., 2013). This left an opportunity 158 

to improve burned area models in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there 159 
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haven't been any reports on a simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of 160 

global burned areas, while also being easily integrated into DGVMs. Closing this gap can best be facilitated by using up-to-161 

date remote sensing datasets pertinent to fire modeling. This integration can efficiently enhance our comprehension of 162 

inadequately understood factors while leveraging the potential of finely detailed temporal resolution burnt area datasets using 163 

a DVGM-integrable statistical model. 164 

 165 

Recent efforts have seen global burnt area models based on Convolution Neural Network (CNN)(Bergado et al., 2021), 166 

Random Forest (RF) and generalized additive models (GAM)(Chuvieco et al., 2021) which are currently not  easily  integrated 167 

into DGVMs, although we note that recent work from Son et al. (2024) is an important step towards integration of an advanced 168 

recursive neural network in a DGVM. GLMs are easier to implement into DGVMs, and their partial residual plots show the 169 

relationships of each predictor with the response variable when all other drivers are kept constant, which facilitates a discussion 170 

of potential underlying mechanisms. The risk of overfitting can be minimized by only choosing potential driver variables that 171 

are mechanistically expected to play an important role and by choosing only a limited number of uncorrelated driver variables. 172 

Accordingly, Haas et al. (2022) developed a GLM for global burnt area with good model skill but without accounting for 173 

seasonal dynamics and without a focus on driver variables that can be predicted with DGVMs. Generally, most earlier fire 174 

modules in DGVMs such as the LPJ-LMfire(v1) were informally parameterized to predict seasonal fire cyclesmodels and do 175 

not consider the fuller range of predictors available in a more rigorous statistical framework (Fosberg et al., 1999; Pfeiffer et 176 

al., 2013). Nurrohman, et al., (2024) produced monthly fire predictions from downscaling of annual model outputs without 177 

building a statistical approach that is calibrated based on monthly inputs. This left an opportunity to improve burnt area models 178 

in DGVMs to accurately represent the detailed seasonal dynamics. To our knowledge, there haven't been any reports on a 179 

simpler and more efficient statistical model specifically crafted to capture the seasonal cycles of global burnt areas, while also 180 

being easily integrated into DGVMs. Closing this gap can best be facilitated by developing a statistical model based on 181 

variables pertinent to fire modelling, with the goal to later integrate it into DGVMs. This integration can efficiently enhance 182 

our comprehension of inadequately understood factors while leveraging the potential of finely detailed temporal resolution 183 

burnt area datasets.  184 

 185 

The main aim of this research is to build a parsimonious statistical model for global seasonal burnedburnt areas that can be 186 

integrated into a DGVM. The specific objectives are to 1) to improve our understanding of major drivers of global burnedburnt 187 

area dynamics, 2) to leverage a GLM for predicting global burnt areas using DGVM-integrable predictors and 3) to evaluate 188 

the interannual and seasonal cycles of burnt area extent, both globally and regionally. 189 

 190 
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2 Data and Methods 191 

In this study, we used a GLM to assess the drivers and distribution of global wildfires based on a combination of vegetation, 192 

weather, anthropogenic and topographic predictors. The spatial and temporal variability (interannual and seasonality) was also 193 

evaluated. Fig. 1 provides an overview of the steps that were followed during modelingmodelling.  194 

 195 

 196 
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 197 

  198 

Figure 1: Study workflow showing an overview of steps followed in model calibration and evaluation together with the 199 

outputs. 200 

 201 

2.1 Fire data 202 

Monthly BA data for the period 2002 and 2018 were derived from monthly mean fractional BA from the GFEDv5. GFED 5 203 

data are selected because of their improved ability to detect burnt area scars (Chen et al., 2023).Monthly BA data for the 204 

periods 2002 and 2018 were derived from monthly mean fractional BA from the GFED5. We selected this data because of 205 
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their improved ability to detect burnt area scars (Chen et al., 2023). GFED5 BA data are classified according to 17 major land 206 

cover types using the MODIS classification scheme. We used this land cover information to remove burnt area in cropland 207 

land cover type (type croplands and croplands/natural vegetation mosaic), to exclude the effect of cropland residue burning 208 

which we suppose is likely hasto have different drivers from burning in non-arable lands. We used data for the period 2002 to 209 

2010 for model training and data for 2011 to 2018 for model testing.BA data comes at a resolution of 0.25° × 0.25°, therefore 210 

we aggregated it by a factor of 2 to a resolution of 0.5°. This was done for ease of processing at a global scale and at the same 211 

time to ensure that our outputs are DGVM integrable since they are commonly applied at 0.5° globally.  212 

2.2 Predictor variables  213 

In this study, we only used variables which don't prohibit the use of the model for future projections. Whilst there are many 214 

possible variables that could be tried as predictors of fire, especially in terms of socioeconomics predictors, we here only use 215 

variables which don't prohibit the use of the model for future projections.  These variables arerestricted our selection to 216 

variables where: climate and vegetation variables typically available in a DGVM framework; socioeconomic variables with 217 

future scenario projections; and time-invariant topographic variables. Previous studies used several variables that we couldn’t 218 

include due to lack of future scenario projections such as nighttime lights, cattle density (Forkel et al., 2019a), Vegetation 219 

optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture (Mukunga et al., 2023), soil fertility (Aldersley 220 

et al., 2011).(Forkel et al., 2019a), Vegetation optical depth (Forkel et al., 2019b), Lightning (Rabin et al., 2017), Soil moisture 221 

(Mukunga et al., 2023), soil fertility (Aldersley et al., 2011). Consequently, we considered predictor variables that are 222 

compatible with DGVM integration to calibrate the model effectively. The chosen predictor variables were categorized based 223 

on their representational nature and their roles in fire modelingmodelling(See Table 1).. Table 1 provides a comprehensive 224 

overview of each variable category, including their sources and spatio-temporal resolutions. 225 

 226 

 227 

Predictor Abbreviations 

Classification 

category 

(Climate, 

vegetation, 

landcover, 

landscape 

fragmentation, 

ignition, 

suppression 

topographic 

effect) 

Original spatial 

resolution 

Temporal  

resolution 
Source 

Percentage Grass 

cover 
 PGC Vegetation 300m Annual 

ESA CCI 

landcover 
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Percentage non-

tree vegetation 

cover 

 PNTC Vegetation 250m Annual 

MODISMODIS - 

MOD44B 

(DiMiceli et al., 

2011) 

Topographic 

positioning index 
 TPI Topography 90m Static 

digital elevation 

model products of 

global 250 m 

GMTED2010 and 

near-global 90 m 

SRTM4.1dev. 

Digital elevation 

model products of 

global 250 m 

GMTED2010 

(GMTE data 

2010) and near-

global 90 m 

SRTM v4 (Jarvis 

et al., 2008) 

Human 

Development 

Index 

 HDI 
Ignition/suppressi

on/fragmentation 
subnational Annual 

Global data 

labGlobal data lab 

(Smits and 

Permanyer, 2019) 

Road density  RD 
Ignition/suppressi

on/fragmentation 
0.5° × 0.5° Static 

Global Roads 

Inventory Project 

(GRIP) 

databaseGlobal 

Roads Inventory 

Project (GRIP) 

database (Meijer 

et al., 2018) 

Population 

density 
 PPN 

Ignition/suppressi

on/fragmentation 
2.5 arc minutes 5-year intervals 

Socioeconomic 

data and 

applications 

centre 

(SEDAC)Socioec

onomic data and 

applications 

centre (SEDAC) 

(Klein Goldewijk 

et al., 2017) 

Percentage crop 

cover 
 PCC Fragmentation 5 arc minutes Annual 

HistorY Database 

of the Global 

Environment 

(HYDE 

3.3HistorY 

Database of the 

Global 
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Environment 

(HYDE 3.3) 

(Klein Goldewijk 

et al., 2017) 

Percentage 

pasture cover 
 PPS Vegetation 5 arc minutes Annual 

HistorY Database 

of the Global 

Environment 

(HYDE 

3.3)HistorY 

Database of the 

Global 

Environment 

(HYDE 

3.3)(Klein 

Goldewijk et al., 

2017) 

Precipitation 

seasonality 
 PS Climate 0.5° × 0.5° Annual 

Copernicus 

climate data store 

(Copernicus 

Climate Change 

Service 2018) 

Fire weather 

index 
 FWI Climate 0.5° × 0.5° Monthly 

Copernicus 

climate data store 

(Copernicus 

Climate Change 

Service 2018) 

Precipitation of 

the driest quarter 
 PPNQ Climate 0.5° × 0.5°  Annual 

Copernicus 

climate data store 

(Copernicus 

Climate Change 

Service 2018) 

Number of dry 

days 
NDD Climate 0.5° × 0.5° Annual 

Copernicus 

climate data store 

(Copernicus 

Climate Change 

Service 2018) 

Percentage 

grazeland cover  
 PGZC Vegetation 5 arc minutes Annual 

HistorY Database 

of the Global 

Environment 

(HYDE 

3.3)HistorY 

Database of the 

Global 

Environment 

(HYDE 3.3) 

(Klein Goldewijk 

et al., 2017) 
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Percentage 

rangeland cover 
 PRC Vegetation 5 arc minutes Annual 

HistorY Database 

of the Global 

Environment 

(HYDE 

3.3)HistorY 

Database of the 

Global 

Environment 

(HYDE 3.3) 

(Klein Goldewijk 

et al., 2017) 

Annual average 

precipitation 
 AAP Climate 5 arc minutes Annual 

Copernicus 

climate data store 

(Copernicus 

Climate Change 

Service 2018) 

Gross primary 

productivity 
 GPP Vegetation 0.5° × 0.5° Monthly 

MOD17A1MOD

17A1 (Running 

and Zhao, 2019) 

Aboveground 

biomass 
 AGB Vegetation 0.5° × 0.5° 

Longterm 

average 
 

Percentage Tree 

cover 
 PTC Vegetation 250m  Annual 

MODISMODIS - 

MOD44B 

(DiMiceli et al., 

2011) 

Fraction of 

Absorbed 

Photosyntheticall

y Active 

Radiation 

 FAPAR Vegetation 500m 

Monthly 

(originally 8 

days) 

MODISMODIS - 

MOD15A2H  

(Running and 

Zhao, 2019) 

 228 

Table 1: List of predictor variables that were considered in this study including their classifications, resolution (spatial 229 

& temporal) and the respective data sources. 230 

 231 

2.32.1 Vegetation-related predictors  232 

We used eight vegetation predictor variables to comprehensively evaluate their role on global fire distribution. These variables 233 

encompass Percentage Grass Cover (PGC), Percentage Non-Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage 234 

Graze Cover (PGZC), Percentage Rangeland Cover (PRC), and Percentage Tree Cover (PTC). Previous work emphasizes the 235 

important role of vegetation on burnt area dynamics. For example, Thonicke et al. (2010), discussed the crucial role of 236 

vegetation structure in shaping fire occurrence, spread and intensity. PGC defines the land covered by grass, influencing fue l 237 

availability, while PNTC considers non-tree vegetation such as grass and shrubs, contributing to overall fuel dynamics. PCC 238 

reflects the presence of cultivated crops which have been found to suppress fire occurrence as they fragment the landscape 239 

acting and so act as a barrier to fire spread (Haas et al., 2022). 240 
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 241 

We used PGZC, PRC, PTNC and PTC to evalute the relationship between landcover and burnt area distribution. Previous 242 

studies reported that landcover change has made a significant contribution to wildfire distribution (Gallardo et al., 2016; 243 

Villarreal and Vargas, 2021).  244 

 245 

We used Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed Photosynthetically 246 

Active Radiation (FAPAR) as proxies for vegetation health and productivity. Previous studies emphasized the varying effects 247 

of vegetation parameters on fire events (Bowman et al., 2020; Kuhn-Régnier et al., 2021).  248 

 249 

Thonicke et al. (2010),Thonicke et al. (2010), for example, discussed the crucial role of vegetation structure in shaping fire 250 

occurrence, spread and intensity. Consequently, our study considered eight vegetation predictor variables to comprehensively 251 

evaluate their role on global fire distribution. These variables encompass Percentage Grass Cover (PGC), Percentage Non-252 

Tree Cover (PNTC), Percentage Crop Cover (PCC), Percentage Graze Cover (PGZC), Percentage Rangeland Cover (PRC), 253 

and Percentage Tree Cover (PTC). 254 

PGC defines the land covered by grass, influencing fuel availability, while PNTC considers non-tree vegetation such as grass 255 

and shrubs, contributing to overall fuel dynamics. PCC reflects the presence of cultivated crops which have been found to 256 

suppress fire occurrence as they fragment the landscape acting and so act as a barrier to fire spread (Haas et al., 2022). Previous 257 

studies reported that landcover change has a significant contribution to wildfire distribution (Gallardo et al., 2016; Vilar et al., 258 

2021).(Haas et al., 2022). Previous studies reported that landcover change has made a significant contribution to wildfire 259 

distribution (Gallardo et al., 2016; Villarreal and Vargas, 2021). To understand the relationship between landcover and burnt 260 

area distribution, we incorporate PGZC, PRC, PTNC and PTC.  261 

Numerous studies discussed the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn -Régnier 262 

et al., 2021). Accordingly, Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed 263 

Photosynthetically Active Radiation (FAPAR) were considered in this study as proxies for vegetation health and productivity. 264 

Numerous studies discussed the varying effects of vegetation parameters on fire events (Bowman et al., 2020; Kuhn -Régnier 265 

et al., 2021). Accordingly, Gross Primary Productivity (GPP), Aboveground Biomass (AGB), and Fraction of Absorbed 266 

Photosynthetically Active Radiation (FAPAR) were considered in this study proxies for vegetation health and productivity. 267 

2.4 Vegetation2.2 Topographic-related predictors  268 

We used topographic positioning index (TPI) to evaluate how topography can influence the occurrence and spread of fires. 269 

Topography has been reported to be more influential in regions with complex terrain and microclimatic conditions (Blouin et 270 

al., 2016; Fang et al., 2015; Oliveira et al., 2014). Some studies used slope (Cary et al., 2006) and surface area ratio (Par isien 271 

et al., 2011) in their models and reported topography to marginally contribute to wildfire dynamics. However, recent studies 272 
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reported some significant contributions of topography to global burnt area distribution when using the TPI (Haas et al., 2022). 273 

TPI is designed to encompass and evaluate the complex influence of terrain features, such as elevation and slope, on the 274 

distribution of burnt areas. Thus, TPI goes beyond simplistic representations of landscapes and offers a more nuanced 275 

perspective on how terrain characteristics contribute to the occurrence and extent of wildfires. Given the role of terrain on fire 276 

behavior and propagation patterns, the inclusion of TPI in this study allows for a comprehensive examination of wildfire 277 

distribution.  278 

Topography can influence the occurrence and spread of fires especially in regions with complex terrain and microclimatic 279 

conditions (Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 2014).(Blouin et al., 2016; Fang et al., 2015; Oliveira et al., 280 

2014). To capture the impact of topography, some studies used slope (Cary et al., 2006)(Cary et al., 2006) and surface area 281 

ratio (Parisien et al., 2011)(Parisien et al., 2011) in their models and reported topography to marginally contribute to wildfire 282 

dynamics. However, recent studies reported some significant contributions of topography to global burnt area distribution 283 

when using the topographic positioning index (TPI) (Haas et al., 2022).(Haas et al., 2022). TPI is designed to encompass and 284 

evaluate the complex influence of terrain features, such as elevation and slope, on the distribution of burnedburnt areas. Thus, 285 

TPI goes beyond simplistic representations of landscapes and offers a more nuanced perspective on how terrain characteristics 286 

contribute to the occurrence and extent of wildfires. Given the role of terrain on fire behavior and propagation patterns, the 287 

inclusion of TPI in this study allows for a comprehensive examination of wildfire distribution.  288 

2.52.3 Anthropogenic Influence Predictors 289 

We used the Human Development Index (HDI), Population Density (PPN), and Road Density (RD) to capture the impact of 290 

anthropogenic factors on both fire ignition and suppression. The inclusion of HDI aims to encapsulate human influence on 291 

ecological landscapes, thereby affecting the dynamics of both ignition and suppression processesTo comprehensively capture 292 

the impact of anthropogenic factors on both fire ignition and suppression, our study integrates three key predictors: Human 293 

Development Index (HDI), Population Density (PPN), and Road Density (RD). The inclusion of HDI aims to encapsulate 294 

human influence on ecological landscapes, thereby affecting the dynamics of both ignition and suppression processes. HDI is 295 

a composite index developed by the United Nations Development Program (UNDP) to assess long-term progress in three basic 296 

dimensions of human development, including health (life expectancy at birth), education (mean years of schooling and 297 

expected years of schooling), and standard of living (gross national income per capita) (Uddin, 2023). HDI values range from 298 

0 to 1, with higher values indicating higher levels of human development. Although HDI itself may not directly relate to fire 299 

occurrence, it stands as a valuable socio-economic indicator that significantly influences overall fire dynamics and 300 

management, like how Gross Domestic Product (GDP) has been used in other fire models (Perkins et al., 2022). To address 301 

the limitations of using GDP as a proxy for human development in predicting global fires, we opted for HDI. Previous research 302 

has utilized GDP for this purpose (Zhang et al., 2023),(Zhang et al., 2023), however, GDP is an indicator of a country's 303 

economic performance (Callen, 2008). In contrast, HDI is rather broad socioeconomic indicator, which we assume acts as a 304 
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proxy for factor such as investments and advancements in fire control methods, surveillance, technology, and outreach 305 

strategies increasing awarenessHDI data is much broader as it captures the country’s social and economic development levels, 306 

making it a more suitable and consistent measure for our analysis. HDI evaluates a country or other administrative region's 307 

development status based on the critical factors of life expectancy, education, and income, providing a nuanced understanding 308 

of the socio-economic context shaping fire behavior (Teixeira et al., 2023).(Teixeira et al., 2023). To evaluate model sensitivity 309 

to inclusion of HDI, we trained our model based on the three settings: including, excluding and holding HDI constant.  310 

2.62.4 Weather-Related Predictors 311 

To capture the impact of fire weather on the distribution of wildfires, we employed the Canadian Fire Weather Index (FWI), 312 

renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire behavior 313 

and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating informed decisions on 314 

fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate well with burned area 315 

across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass production limitations. 316 

While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of how moisture 317 

availability can affect available combustible vegetation. We incorporated additional covariates capturing seasonal and annual  318 

weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average Precipitation (AAP). The 319 

selection of these predictors was informed by their significance in previous global fire modeling studies (Chuvieco et al., 2021; 320 

Joshi and Sukumar, 2021; Le Page et al., 2008; Mukunga et al., 2023; Saha et al., 2019), as well as insights from seminal 321 

works such as that by (Pechony and Shindell, 2010). 322 

2. We employed the Canadian Fire Weather Index (FWI) to capture the impact of fire weather on the distribution of wildfires. 323 

FWI is renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate potential fire 324 

behavior and danger 7To capture the impact of fire weather on the distribution of wildfires, we employed the Canadian Fire 325 

Weather Index (FWI), renowned for its comprehensive framework integrating diverse meteorological parameters to evaluate 326 

potential fire behavior and danger (de Jong et al., 2016). The FWI is widely adopted by fire management agencies facilitating 327 

informed decisions on fire prevention, preparedness, and suppression strategies, and global context has been shown to correlate 328 

well with burnt areas across the globe (Jones et al., 2022). We used the number of dry days (NDD) as a proxy for biomass 329 

production limitations. While it falls in the category of weather-related fire predictors, in this study it’s an indirect indicator of 330 

how moisture availability can affect available combustible vegetation. We incorporated additional covariates capturing 331 

seasonal and annual weather dynamics that influence fires, including Precipitation Seasonality (PS), and Annual Average 332 

Precipitation (AAP). The selection of these predictors was informed by their significance in previous global fire modelling 333 

studies (Chuvieco et al., 2021; Joshi and Sukumar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha et al., 2019), as well 334 

as insights from seminal works such as that by Pechony and Shindell, (2010). 335 
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2.3 Data ProcesssingProcessing 336 

We harmonized the spatial and temporal resolution of the predictor dataset to conform to our analytical framework, which had 337 

a spatial resolution of 0.5° and a temporal resolution of one month. This involved employing techniques such as aggregation, 338 

resampling, and consolidation. For instance, while the native temporal resolution of FAPAR was 8 days, we transformed it 339 

into a monthly temporal resolution to align with our primary variable. Most predictors originally possessed an annual temporal 340 

resolution, except for FWI, GPP, and FAPAR, which were also available every month. For annual predictors, we replicated 341 

the same data for each month. Similarly, long-term variables like AGB, RD, and TPI were utilized every month to synchronize 342 

with the shorter-resolution predictors. PPN, which was available at a 5-year interval, was used monthly over the represented 343 

5-year span. Kuhn-Régnier et al. (2021)Kuhn-Régnier et al. (2021) highlighted the important role of antecedent vegetation as 344 

key driver for global fires. To evaluate the role of fuel accumulation from the previous year on the burnt area, we derived the 345 

Gross Primary Productivity Index (GPPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). GPPI was 346 

originally defined as Monthly Ecosystem Productivity Index (MEPI) in the work by Forrest et al. (2024).Monthly Ecosystem 347 

Productivity Index Index (MEPI) using monthly Gross Primary Productivity (GPP) data following Eq. (1). MEPI was 348 

originally defined in the work by Forrest et al. (2024).  This index allowed us to quantify the relationship between vegetation 349 

growth, fuel accumulation and subsequent fire activity, providing a more nuanced understanding of the factors influencing fire 350 

dynamics. 351 

 352 

GPP indexMEPI =  
𝐺𝑃𝑃𝑚

𝑚𝑎𝑥(𝐺𝑃𝑃𝑚 ,𝐺𝑃𝑃𝑚−1,,...,𝐺𝑃𝑃𝑚−13,) 
      353 

 (1) 354 

 355 

 356 

Where GPPm is the month’s GPP, and the denominator is the maximum GPP of the past 13 months. Furthermore, we calculated 357 

additional metrics including GPP12 (the mean gross primary productivity over the previous 12 months), (FAPAR12) (the 358 

mean fraction of absorbed photosynthetically active radiation over the past 12 months), and FAPAR6 (the mean FAPAR over 359 

the last 6 months). These metrics serve to capture average vegetation productivity, serving as refined indicators of fuel 360 

accumulation. 361 

2.84 Statistical modelingmodelling and final predictor choice 362 

To address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistica l 363 

package (CoreTeam, 2014). Following established guidelines (Dormann et al., 2013), we applied the conventional threshold 364 

of R > 0.5 to enhance the model's efficiency. This helped us identify and exclude correlated variables from the analysis.To 365 

address variable collinearity, we conducted pairwise correlation analyses among predictor variables using the R statistical 366 
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package(CoreTeam, 2014). Following established guidelines by Dormann et al. (2013) , we applied the conventional threshold 367 

of R > 0.5 to enhance the model's efficiency. 368 

 369 

 Specifically, variables such as AGB, FAPAR12, FAPAR6, AAP, and RD were excluded due to their strong correlations with 370 

other variables (see Fig. 2). There were some correlated variables that were however returned in the model due to their 371 

significant contribution to fire modelling and model performance. For example NDD was strongly correlated to PTC ( ~ -372 

0.68), but keeping both increased the variance explained by the full model. 373 

 374 
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 375 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation 376 

 377 

Moreover, we employed the Variance Inflation Factor (VIF) to evaluate collinearity among predictor variables, removing those 378 

with VIF values surpassing 5, as recommended by O’brien. (2007).O’brien, (2007). Post collinearity tests, an additional 3 379 

parameters were adopted to progressively select the best model, namely: 1) a simple (~ parsimonious) model which comprise 380 
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of a full suite of categories of covariate combinations (i.e vegetation, climate, topography, ignitions), 2) the deviance explained 381 

value and 3) the normalised mean square error value as illustrated in the making of Burnt Area Simulator For Europe (BASE) 382 

(Forrest et al., 2024). Fig A3 shows ten scatter plots of the final variable selection based on the optimum model, each depicting 383 

the relationship between the burnt area fraction and different environmental or socio-economic variables. The variables include 384 

the GPPI(Forrest et al., 2024). The variables include the MEPI, FWI, PNTC, HDI, PTC, TPI, NDD and PPN.  385 

 386 

A quasi-binomial GLM was selected for modelingmodelling BA due to its capability to handle non-Gaussian error 387 

distributions, seamless integration into DGVMs and ability to generate partial residual plots (Bistinas et al., 2014; Haas et al., 388 

2022; Lehsten et al., 2016)., i.e. the effect of each predictor in the model while the others are held constant (Bistinas et al., 389 

2014; Haas et al., 2022; Lehsten et al., 2016). Calibration of the model utilized data from 2002 to 2010 while testing utilized 390 

data from 2011 to 2018. Residual plots were utilized to examine the magnitude and nature of each predictor's relationship with 391 

wildfire burnt area distribution.  392 

 393 

Model performance was assessed using the Normalized Mean Error (NME) following Kelley et al., (2013).Kelley et al. (2013). 394 

NME serves as a standardized metric for evaluating global fire model performance, facilitating direct comparison between 395 

predictions and observations. The NME was calculated following Eq. (2). 396 

 397 

𝑁𝑀𝐸 =
 ∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖  𝛪

∑ 𝐴𝑖 𝛪 𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠 𝛪
      (2) 398 

 399 

The NME score was computed by summing the discrepancies between observations (obs) and simulations (sim) across all 400 

cells (i), weighted by the respective cell areas (Ai), and then normalized by the average distance from the mean of the 401 

observations. A lower NME value reflects superior model performance, with a value of 0 indicating a perfect alignment 402 

between observed and simulated values. BA fractions were treated as a probability ranging from 0 to 1, following a quasi-403 

binomial distribution. We applied the logit link function based on the methodology outlined by Haas et al. (2022).We applied 404 

the logit link function based on the methodology outlined by Haas et al. (2022). After conducting a collinearity test, the models 405 

were systematically evaluated using various combinations of predictor variables. A total of 25 model runs were conducted, 406 

each incorporating different sets of variables while iteratively excluding some, to discern the extent to which each predicto r 407 

explained variance when others were not included (see Table 2).A1). We followed the stepwise approach of variable inclusion, 408 

exclusion, interaction terms, log transformations, and polynomial transformations as described by Forrest et al. (2024). While 409 

their analysis focused on Europe, our objective was to replicate and apply the method at a global scale. To evaluate the 410 

reliability of the predicted interannual variability and seasonal cycles, we applied a regression function to determine the 411 

relationship (R2) between the observed and predicted trends. An R2 of 1 shows good performance in our predictions and an R2 412 
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of 0 shows poor performance in our predictions. To assess the trend in predicted interannual variability, we used the Mann-413 

Kendall test (Kendall, 1975; Mann, 1945).(Kendall, 1975; Mann, 1945). This widely used method detects monotonic trends 414 

in environmental data. Being non-parametric, it works for all distributions, does not require normality, but assumes no serial 415 

correlation. We extracted the trend test results and plotted a map of trend distributions across 14 different GFED regions to 416 

identify areas with significant predicted trends (P<0.05) from those with non-significant trends. The 14 GFED regions include, 417 

Boreal North America (BONA), Temperate North America (TENA), Central America (CEAM), Northern Africa (NHAF), 418 

Southern Africa (SHAF), Europe (EURO), the Middle East (MIDE), Equatorial Asia (EQAS), Southern Asia (SEAS), Boreal 419 

Asia (BOAS), Temperate Asia (TEAS), Australia and New Zealand (AUST), and Northern Hemisphere South America 420 

(NHSA), and Southern Hemisphere South America (SHSA).We extracted the trend test results and plotted a map of trend 421 

distributions across different GFED regions to identify areas with significant predicted trends (P<0.05) from those with non-422 

significant trends. 423 

3 Results 424 

3.1 Correlation between variables 425 

We found correlated variables that we had to exclude from the analysis. Specifically, variables such as AGB, FAPAR12, 426 

FAPAR6, AAP, and RD were excluded due to their strong correlations with other variables (see Fig. 2). There were however 427 

some variables that correlated but had to be returned to the model due to their significant contribution to fire modelling and 428 

model performance. For example, NDD was strongly correlated to PTC ( ~ -0.68), but both increased the variance explained 429 

by the full model. 430 

 431 
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 432 

 433 

Figure 2: Correlation matrix of all the variables that were considered for modelling in this investigation. 434 

 435 
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3.1 Optimal model selection and GLM results 436 

Table 2 provides a list of results from our progressive inclusion of model covariates as we aimed to identify the optimum 437 

model. The initial models (model 1 to model 3) progressively include more variables, however, a noticeable jump in deviance 438 

explained when PNTC is added (Model 3: 0,5298). Models 4 to 8 involve adding vegetation (FAPAR) and various land use 439 

types (PCC, PPS, PRC, PGC). This is accompanied by marginal improvement in deviance explained, indicating these factors 440 

provide some additional predictive power but are not as impactful as existing vegetation covariates (such as GPP). Models 10 441 

to 12 introduce polynomial terms for PTC. This results in an increase in deviance explained, peaking at around 0.558836 in 442 

Model 12.  Models 13 to 16 incorporate interactions between HDI and land use types (e.g., PCC and PRC), resulting in 443 

marginal increase in deviance explained with the highest recorded in Model 15(~ 0.5664789). Models 19 to 25 fine-tune the 444 

overall performance by incorporating various variables and their interactions. Model 24, which includes a comprehensive set 445 

of climatic, vegetation, human, and topographic variables along with their interactions, achieves the highest deviance explained 446 

(~0.5720048). The marginal improvements observed in subsequent models indicate that while additional variables contribute 447 

to the model, the primary influencing factors were already identified by Model 19, however it was not the simplest model , (~ 448 

parsimonious), and comprisedconsisted of other variables that we don’t have future projections for (e.g RD). We removed 449 

some of the redundant variables till Model 24 (~11 variables), however, it was not as parsimonious as Model 25 (~8 variables). 450 

Therefore, Model 25, which offers a balance of parsimony, simplicity, high deviance explained, and low NME, was selected 451 

as the best model in this analysis. 452 

 453 

 454 

Model Formulae Deviance explained NME 

model 1 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD) 
0.3548030 0.7472088 

model 2 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PGC) 
0.3699393 0.7495652 

model 3 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC) 
0.5298061 0.7208771 

model 4  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR) 

0.5312036 0.7188448 

model 5 

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC) 

0.5312697 0.7191269 
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model 6 

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PPS) 

0.5328183 0.7195616 

model 7  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PRC) 

0.5313813 0.7193946 

model 8  

glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PGC) 

0.5349288 0.7190611 

model 9  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + 

FAPAR12 + PGC) 

0.5359802 0.7181930 

model 10  

 glm(burnt ~ FWI + GPP12 

+ HDI + poly(PTC, 2) + 

PNTC + FAPAR + PCC + 

FAPAR12 + PGC + PPN ) 

0.5295939 0.7172668 

 455 

model 

11  
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PGC + PS) 0.5579946 0.7193546 

model 

12  
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 0.7192122 

model 

13  
 glm(burnt ~ FWI + GPPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC + PS) 0.5569187 0.7214560 

model 

14  
 glm(burnt ~ FWI + GPPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15  
 glm(burnt ~ FWI + GPPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16  
glm(burnt ~ FWI + GPPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17  
 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 
 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + TPI) 0.5711503 0.7167015 

model 

19  

 glm(burnt ~ FWI + GPPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + PGC + 

FAPAR12) 
0.5709692 0.7175149 
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Model 

20 
 glm(burnt ~ FWI + GPPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12) 0.5677209 0.7182814 

Model 

21 
glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN 0.5714474 0.7170576 

Model 

22 
 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN  0.5705348 0.7177887 

Model 

23 
glm(burnt ~ FWI + GPPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN 0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN + 

AAP 
0.5720048 0.7173093 

Model 

25 
glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TPI 0.5682776 0.7186160 

Model 

26 glm(burnt ~ FWI + GPPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI 
0.5687439 0.7194855 

 456 

Table 2: Results of modeling attempts using different combinations of predictor variables using a progressive inclusion 457 

of covariates approach. 458 

 459 

 460 

Our results reveal that each predictor variable incorporated in the final analysis significantly predicted the distribution of 461 

wildfires (p < 0.05), as outlined in Table 32. 462 

  Estimate Std.Error T value Pr(>|t|) 

(Intercept) - 6.159e+00 2.349x10^-02 -262.17 <0.00001 

FWI 9.296e-01 1.948x10^-03 477.28 <0.00001 

MEPI -2.270e+00 8.974x10^-03 -252.96 <0.00001 

HDI -1.680e+00 1.235x10^-02 -135.99 <0.00001 

PNTC 5.170e-02 2.270x10^-04 227.78 <0.00001 

poly(PTC,2)1 2.135e+03 1.114x10^01 191.55 <0.00001 

poly(PTC,2)2 -9.783e+02 6.975 -140.27 <0.00001 

TPI 2.225e-01 3.946x10^-03 56.39 <0.00001 

NDD -9.550e-03 4.757x10^-05 -200.78 <0.00001 
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PPN -1.075e-03 1.808x10^-05 -59.48 <0.00001 

 463 

Table 32. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results 464 

indicate that all predictors in the final model were statistically significant aboutfor wildfire distribution (p < 0.05). 465 

  Estimate Std.Error T value Pr(>|t|) 

(Intercept) - 6.159e+00 2.349e-02 -262.17 <0.00001 

FWI 9.296e-01 1.948e-03 477.28 <0.00001 

GPPI -2.270e+00 8.974e-03 -252.96 <0.00001 

HDI -1.680e+00 1.235e-02 -135.99 <0.00001 

PNTC 5.170e-02 2.270e-04 227.78 <0.00001 

poly(PTC,2)1 2.135e+03 1.114e+01 191.55 <0.00001 

poly(PTC,2)2 -9.783e+02 6.975e+00 -140.27 <0.00001 

TPI 2.225e-01 3.946e-03 56.39 <0.00001 

NDD -9.550e-03 4.757e-05 -200.78 <0.00001 

PPN -1.075e-03 1.808e-05 -59.48 <0.00001 

 466 

Our analysis results revealed the relationship between various predictors and BA distribution, as depicted in Fig. 3. Among 467 

the predictors studied, FWI, PNTC, PTC and TPI showed a positive relationship with BA distribution. Notably, FWI and 468 

PNTC showed particularly strong relationships, underscoring the substantial role of fire weather, fuel availability on the 469 

expansion of BA extent. Conversely, several predictors showed a negative relationship with BA distribution, including the 470 

GPPIMEPI, HDI, PPN and NDD. A polynomial of PTC shows a slightly bell-shaped relationship with burnt area fraction.  471 

 472 

Overall, our observations highlight the critical role of factors such as fire weather, fuel availability, vegetation cover, c limate 473 

conditions, and landscape characteristics in shaping BA distribution patterns. Fig.3 visually represents the differential 474 

relationship of these predictors on BA distribution, offering a comprehensive overview of the underlying mechanisms driving 475 

wildfire dynamics. 476 

 477 
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 478 

 479 

Figure 3: Partial Residual Plots illustrating the relationship between Burnedburnt Areas (BA) and the eight final 480 

predictor variables. These plots show the effect of each predictor while the others are held constant (Larson and 481 

McCleary 1972) These plots show the effect of each predictor while the others are held constant (Larsen and McCleary, 482 

1972). Predictor variables were Gross Primary Production Index (GPP), Fire Weather Index (FWI), Percentage Non-483 
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Tree Cover (PNTC), Human Development Index (HDI), Percentage Tree Cover (PTC), Topographic Position Index 484 

(TPI), Population Density (PPN) and Number of Dry Days (NDD). 485 

 486 

The model demonstrated strong performance in predicting BA, accounting for over 50% of the variability in burnt areas 487 

(Deviance explained = 0.568). While our results slightly lagged those of a global fire distribution model by Haas et al. 488 

(2022),Haas et al. (2022), who found a deviance explained of 0.69, it's noteworthy that their model incorporated a broader 489 

array of variables (16 predictors) and operated at a coarser temporal resolution (annual). Our model's performance, based on 490 

eight predictors and operating at a finer temporal resolution (monthly), is considered satisfactory and parsimonious. 491 

 492 

Assessment of model accuracy yielded an NME of 0.718, indicating a generally close correspondence between observed and 493 

predicted burnt area patterns (see Fig. 4). This level of accuracy is comparable to that reported by previous global fire models, 494 

such as (Haas et al., 2022) and (Hantson et al., 2016),This level of accuracy is comparable to that reported by previous global 495 

fire models, such as Haas et al. (2022) and Hantson et al. (2016) which reported NMEs ranging from 0.60 to 1.10. 496 

 497 

Spatially, our model effectively captured the distribution of BA in the tropics and the southern hemisphere, demonstrating 498 

notable similarities between observed and predicted burnt area fractions on an annual basis (see Fig. 4). However, in 499 

extratropical regions, particularly in the northern hemisphere, instances of over-prediction were observed. This discrepancy is 500 

evident in the inconsistencies between observed annual distribution patterns and those predicted by the model. 501 
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 504 

Figure 4: Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area  505 

(bottom). 506 

 507 
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3.2 Interannual variability 508 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to  509 

2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was consistently observed in both the actual and 510 

predicted extent. Notably, the projected trend exhibited a steeper decline compared to the observed trend, indicating a potential 511 

underestimation of inter-annual variability by the model. However, it aligns with the decreasing patterns reported in earlier 512 

studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant in the model made the projected trend 513 

remain steady, suggesting the role of anthropogenic developments driving a downward trend in wildfire distribution. 514 

 515 

 516 

3.2 Interannual variability 517 

Our analysis results revealed a substantial global decrease in burnt areas exceeding 1 million square kilometers from 2002 to  518 

2018, with the peak decline observed in 2004 (see Fig. 5). This downtrend was reproduced by the model, but the model 519 

underestimated the interannual variability and the model-predicted decline was stronger than observed. However, it aligns with 520 

the decreasing patterns reported in earlier studies (Andela et al., 2017; Jones et al., 2022). Excluding and holding HDI constant 521 

in the model resulted in smaller reduction of predicted BA over time. 522 

 523 
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 524 

Figure 5: Interannual variability in burnt area extent showing the observed trend (based on GFED detections) and 525 

predicted trends. Included are interannual trendsGFED5 burnt estimates detection and model projections under 526 

different HDI treatments: when HDI was excluded, included and held constant from the value of the first year in the 527 

model. 528 

 529 

The Mann Kendall trend analysis further shows significant variation in the magnitude and direction of predicted burnt area 530 

extent across the 14 GFED regions (refer to Fig. 66a and Table A1A2). Five regions (SHAF, SHSA, NHAF, CEAS) predicted 531 

a significantly positive trend (p < 0.05) in burnt area extent, while the other regions predicted no significant trends (NHSA , 532 

SHSA, MIDE, TENA, AUST, EURO, EQAS, CEAM, BONA, BOAS). Overall, the projected positive trend predominated in 533 

GFED regions situated in central and southern Africa, and central and southern Asia. In contrast, the Americas, Australia, and 534 

Europe demonstrated no significant trend, as illustrated in Fig. 66a. 535 

 536 
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 538 

 539 

 540 

Figure 6: Variation in the trend of interannual variability for burnt areas across different GFED regions. Where (a) 541 

shows the direction of the trend and (b) shows the spatial distribution of the strength of relationship (r-square values) 542 

between observed and predicted interannual variability per GFED region. 543 

 544 

Our predictive model performed poorly in predicting interannual variability as exhibited by a poor strength of relationship 545 

between the predicted trend when compared to the observed (R2= 0.24) (See Fig 76b and Fig A1). This poor relationship was 546 
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exhibited across most of the GFED regions (R2 < 0.50), except for the NHSA which showed strong similarities between the 547 

predicted trend and observed trend (R2 = 0.55). This observation suggests that the combination of covariates that we 548 

incorporated in this model has limited strength in capturing global interannual variability in burned area. However, the 549 

predicted global trend is in sync with previously reported global trends (Jones et al., 2022).burnt area. However, the predicted 550 

global trend is in sync with previously reported global trends (Jones et al., 2022). 551 

 552 

 553 

Figure 7: Spatial distribution of r-square values for the relationship between observed and predicted interannual 554 

variability per GFED region. 555 

3.3 Seasonal Cycle 556 

Our analysis results show that athe global extent of BA shows an alternating seasonal cycle with strong peaks in February and 557 

August (see Fig. 87). The predicted pattern slightly underestimates the burnt area, however, appears to be closely knit with the 558 

observed trend (R2 = 0.54). Like the global interannual trends, the strength of similarity between observed and predicted 559 

seasonal cycles varies according to the GFED region with R2 ranging between 0.06 to 0.99 (refer to Fig. 98). The model 560 

predicted better in GFED regions that are situated in Southern Africa, South America, Australia and Asia (R2 > 0.50) (see Fig. 561 

98 and Fig A2). In contrast, poor seasonal predictions were recorded in GFED regions situated in North America, North Africa 562 

and Europe as indicated by a poor relationship between observed burnt area and predicted burnt area (R2 < 0.50). 563 

 564 



 

35 

 
 

 

Formatted: Line spacing:  single

 565 



 

36 

 
 

 

Formatted: Line spacing:  single

 566 

Figure 87: Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent. 567 

 568 

 569 
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 570 

Figure 98: Spatial distribution of r-square values for the relationship between observed and predicted seasonal 571 

variability per GFED region. 572 

4 Discussion  573 

Wildfires are common phenomena whose dynamics may pose relevant impacts on the ecology of species and humans across 574 

different biomes. The evolving dynamics of wildfires are anticipated to undergo significant changes in the future due to global 575 

environmental shifts. In this study, we sought to tease apart statistical relationships between biophysical and socioeconomic 576 

drivers of wildfire dynamics and burned areas to facilitate DGVM integration and reliable prediction of future wildfire 577 

dynamics. 578 

4.1 Main drivers of global burned area 579 

We found a DGVM compatible parsimonious global statistical model made of FWI, PNTC, PTC, TPI, GPPIMEPI, HDI, PPN 580 

and NDD. Of all the key variables, FWI and PNTC exhibited a strong positive relationship with fire occurrence, underscoring 581 

the importance of conducive fire-weather conditions and combustible fuel in driving wildfire occurrence and spread. High 582 

PNTC is most likely related to high amounts of flammable vegetation, such as grasses and shrubs. Our findings show that fire 583 

weather (~FWI) and fuel availability (~PNTC) influence burnedburnt area extent align with previous studies (Andela et al., 584 

2017; Bistinas et al., 2014; Forkel et al., 2019b; Kuhn-Régnier et al., 2021).(Andela et al., 2017; Bistinas et al., 2014; Forkel 585 

et al., 2019b; Kuhn-Régnier et al., 2021). The other studies, however, did focus on the annual burnedburnt area, not the seasonal 586 

cycle, which is also crucial to adapt to changes in fire risk. 587 

 588 
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Our results show that higher PNTC leads to higher burnt area fractions. In contrast, areas with lower non-tree cover show 589 

lower burnt area fractions. Areas with high PNTC typically consist of grasses and shrubs (~ height < 2 m), while areas with 590 

low PNTC are often characterised by trees. Grasses and shrubs often encourage frequent burning much more than trees (Juli 591 

et al., 2017; Wragg et al., 2018).characterized by trees. Grass and shrubs often encourage frequent burning much more than 592 

trees (Juli et al., 2017; Wragg et al., 2018). Conversely, low PNTC indicates high tree cover, which is often less flammable, 593 

leading to fewer fires. Though our findings support previous literature indicating that regions with abundant combustible 594 

vegetation and favorable fire-weather conditions are prone to frequent burning (Kraaij et al., 2018; Thonicke et al., 595 

2010),(Kraaij et al., 2018; Thonicke et al., 2010), we observed a surprising negative relationship between NDD and burnt area. 596 

Previous studies found a positive relationship between NDD and burnt area fractions (Haas et al., 2022), similar to(Haas et al., 597 

2022), like our single factor plots of NDD and burnt area in Fig A3. This result most probably shows that relationships derived 598 

with annual data, as in the other studies mentioned here, cannot simply be transferred to seasonal fire predictions. Studies have 599 

shown that the effect of dryness on fire varies depending on vegetation communities in Mediterranean ecosystems (Cardil et 600 

al., 2019). Stott (2000)(Cardil et al., 2019).  Stott (2000) echoed similar sentiments for tropical environments, indicating the 601 

complex relationship between vegetation, dryness and fire. Our efforts to investigate this complex relationship through an 602 

interaction term did not significantly improve our model accuracy (~ model 26). Hence, future studies may benefit from further 603 

exploring the complex relationship between dryness, and vegetation at a global scale, particularly the effect of incorporating 604 

polynomial terms on correlated predictors in a linear model. 605 

 606 

Our findings revealed that HDI, GPPIMEPI and PPN are negatively associated with trends in global fire extent. For HDI, our 607 

findings implySpecifically, the negative relationship between HDI and burnt area implies that technological advancements, 608 

improved surveillance systems, and effective mitigation efforts play a significant role in limiting the extent of burnedburnt 609 

areas. Contrary to expectations based on Haas et al. (2022),Haas et al. (2022), PPN, which should correlate with more ignitions, 610 

does not appear to increase the burnt area extent (see Fig. 3). In fact, we observed that lower PPN corresponded to larger bu rnt 611 

areas, likely due to the impact of human activities on landscape fragmentation through road construction, and measures to 612 

suppress fires in human inhabited spaces to protect properties (Kloster et al., 2010). Saunders et al. (1991)(Kloster et al., 2010). 613 

Saunders et al., (1991) observed that the response of fire to changes in PPN is governed by two opposing processes, an increase 614 

in population leads to more ignition sources, while simultaneously prompting greater fire management efforts to suppress fires. 615 

They further highlighted that fire suppression rates are highest in densely populated areas. This suggests that the scale (both 616 

spatial and temporal) of analysis may influence the nature and extent to which PPN affects burnt area extent. Our results for 617 

the effect of PPN have important implications for DGVMs and land surface models. These models differ widely in the assumed 618 

effect of PPN, often using a unimodal response (Teckentrup et al., 2019). However, many DGVMs simulatesimulating BA 619 

annually, in some cases distributing the wildfires across seasons in a second step, using rather simplified assumptions 620 

(Teckentrup et al., 2019).(Teckentrup et al., 2019). Similarly, we anticipated a positive relationship between GPPIMEPI and 621 

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto



 

39 

 
 

 

Formatted: Line spacing:  single

burnt areas, as GPPIMEPI is indicative of ecosystem dryness and flammability. However, our findings revealed a negative 622 

relationship, indicating that other factors may be influencing the connection between GPPIMEPI and the extent of burnt areas. 623 

Our findings are inline with that of Forrest et al. (2024)in line with those of Forrest et al. (2024) who initially investigated the 624 

effect of this index on burnt areas in Europe. Unlike previous global studies that utilized annual GPP, our research employed  625 

a more refined measure, GPPIMEPI. Future research could benefit from evaluating the relationships between GPPIMEPI and 626 

burnt areas in other GFED regions and temporal scales. 627 

 628 

4.21 Spatial variation in model performance 629 

Our model exhibits stronger performance in predicting the spatial distribution of fires in southern Africa, Australia, and South 630 

America than in other world regions, potentially due to the seasonal patterns of key predictors (See Fig. 4). The stronger 631 

performance in these areas is likely due to the well-defined and predictable fire regimes in these regions, which can be. Since 632 

fire activity here is strongly governed by distinct wet-dry seasonal cycles, which align closely with climate variables such as 633 

precipitation, temperature, and vegetation productivity, factors that our model capture effectively captured using linear 634 

functions. (Archibald, 2016; Van Der Werf et al., 2017). These regions typically exhibit lower interannual variability in fire 635 

occurrence, facilitating better model generalization. 636 

 637 

Conversely, our model tends to overpredict fires in the northern hemisphere, particularly in North and Central America, as 638 

well as Asia. Annual burned area variability is relatively high in Asia, Europe, and Central America, which mightPerformance 639 

here declines as fire regimes are more heterogeneous and driven by a combination of biophysical and anthropogenic factors 640 

(Chuvieco et al., 2021; Forkel et al., 2019b). High interannual variability in burnt areas in these regions is due to irregular 641 

droughts, land use change, and fire suppression policies that make it more difficult to predict it (Chuvieco et al., 642 

2021).prediction more challenging for linear models. Additionally, the influence of snow cover, freeze-thaw cycles, and varied 643 

ignition sources in temperate and boreal regions further complicates seasonal pattern detection (Flannigan et al., 2009). 644 

Chuvieco et al., (2021) reported about this challenge when building global models. Thus, our findings build upon existing 645 

models on global burnedburnt area distribution. What sets our model apart from previous models is its ability to reliably 646 

identify global seasonal fire distribution patterns. This simplicity offers a notable advantage, as it facilitates more nuanced 647 

interpretation and implementation of DGVMs compared to annual models. 648 

4.3 Attribution of global trends 649 

Our model has contributed novel insights to the existing understanding of the factors influencing global fire trends (Joshi and 650 

Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017),(Joshi 651 

and Sukumar, 2021; Kraaij et al., 2018; Mukunga et al., 2023). Previous research, such as the work by Andela et al. (2017), 652 
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primarily attributed the decline in global burnt areas to agricultural expansion and intensification. Earl and Simmonds 653 

(2018)Earl and Simmonds (2018) supported this view, adding that increased net primary productivity in Northern Africa also 654 

played a significant role. However, our results suggest that human development is a more important driver than agricultural 655 

expansion alone. Despite the conventional emphasis on agricultural factors, our attempt to incorporate cropland and rangeland  656 

fractions as predictor variables did not substantially enhance our understanding of this trend (model 5 -10, Table 2). 657 

Interestingly, our analysis revealed that excluding the HDI from our model and holding it constant to the value of the first year 658 

predicted a steady trend that deviates from the observed negative trend in global fire extent and including HDI follows a 659 

decreasing trend that aligns with the observed trend (Fig. 5). This highlights the significant influence of HDI in projecting the 660 

purported negative global fire trend. HDI is rather broad socioeconomic indicator, which we assume acts as a proxy for factor 661 

such as investments and advancements in fire control methods, surveillance, technology, and outreach strategies increasing 662 

awarenessThe HDI is related to factors like advancements in fire control methods, surveillance, technology, and outreach 663 

strategies increasing awareness, particularly in response to the growing human technological developments. (Teixeira et al., 664 

2023). Although these strategies are often implemented independently and on a smaller scale, their cumulative impact on 665 

global fire trends is substantial. Therefore, our model underscores the necessity for global initiatives aimed at enhancing f ire 666 

control measures through comprehensive awareness campaigns, capacity-building efforts, resource mobilization, and the 667 

development and deployment of reliable surveillance technologies. By addressing these factors collectively, we can effectively 668 

mitigate the extent and severity of global wildfires, thereby safeguarding ecosystems and human livelihoods. 669 

 670 

4.4 Interannual variability 671 

Despite demonstrating the significant role of the HDI in predicting global fire trends, our model struggled to achieve high 672 

precision in forecasting interannual variability both globally (see Fig. 5) and within specific GFED regions (see Fig. S1). 673 

Recognizing that this limitation might stem from an inadequate representation of vegetation (fuel) dynamics, we incorporated 674 

FAPAR12 in models 9 to 12 (Table 2A1) and GPPIMEPI in models 11 to 26 (Table 2A1). Unfortunately, these adjustments 675 

did not enhance our ability to predict the interannual variability of wildfires. Studies have found a relationship between 676 

increased precipitation in the years preceding the fire season and fire activity in the drier savanna regions of Southern Afr ica 677 

(Shekede et al., 2024).(Shekede et al., 2024). Hence, we also explored the role of previous fuel accumulation on subsequent 678 

fire seasons using GPP12 in model 10, respectively. While this approach did not improve global interannual predictions, it 679 

showed a slight enhancement in deviance explained (from 0.5357 to 0.5461). This improvement might have been confounded 680 

by the effects of the fire-aerosol positive feedback mechanism in Africa (Zhang et al., 2023)(Zhang et al., 2023) and periodic 681 

El Niño conditions, which can affect rainfall patterns and lead to drier vegetation conditions, reducing the predictability of fire 682 

occurrence, especially with linear models (Shikwambana et al., 2022). Other attempts at simulating global annual 683 

burned(Shikwambana et al., 2022). We note that in the recent comparison of fire-enabled DGVMs in the Fire Model 684 

Intercomparison Project (FireMIP) project (Hantson et al. 2020), all models did a poorer job of matching the interannual 685 
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variability than the spatial patterns by a considerable margin. The seven acceptably-performing models achieved a mean spatial 686 

NME (across all data and model comparisons) of 0.84 with respect to spatial patterns, but an NME of 1.15 for interannual 687 

variability. Other attempts at simulating global annual burnt area changes, for example with fire-enabled DGVMs (Fire Model 688 

Intercomparison Project (FireMIP)), LPJ-GUESS-GlobFIRM yielded similarly poor model performance concerning 689 

interannual variability (Hantson et al., 2020). Our modeling, and its successor, SPITFIRE, yielded similarly poor model 690 

performance concerning interannual variability (Hantson et al., 2020). Our modelling efforts highlight the complexity of 691 

accurately predicting wildfire trends and underscore the need for future research to identify covariates that more effectivel y 692 

capture the interannual variability of fires at a global scale. 693 

4.5 Fire seasonality 694 

The findings of this study exhibit robustness in capturing seasonal cycles (R2 = 0.536), facilitated by the inclusion of monthly 695 

variables such as the GPPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While the seasonal 696 

predictions demonstrated reliability across most GFED regions globally, notable exceptions were observed in North America, 697 

North Africa, and Europe (R2 <0.50). This discrepancy could be attributed to the intricate climatic conditions inherent to these 698 

regions, which influence fire weather in a manner that eludes simple linear modeling. Given the parsimonious design of our 699 

model, with only ~eight predictors, we think that the model performance is acceptable. For certain regions, it might be possible 700 

to increase model performance by implementing further region-specific predictors and relationships. Accurate predictions 701 

regarding the seasonal dynamics of diverse GFED regions can facilitate the identification of temporal windows when fires are 702 

prevalent, thereby furnishing valuable insights for simulating carbon emissions in DGVMs. 703 

 704 

Globally, our model predicts a notable peak in burnedburnt areas during February and August. The February peak corresponds 705 

to dry conditions and fuel accumulation in regions such as NHSA, NHAF, and MIDE. In contrast, the August peak primarily 706 

emanates from tropical regions characterized by distinct seasonal patterns, particularly in SHSA, SHAF, and AUST. Here, the 707 

dry season augments the combustibility of accumulated fuel from the preceding wet season, facilitating fire spread. This 708 

observation corroborates earlier studies in the southern hemisphere, which underscore the prevalence of wildfires during 709 

prolonged dry spells (Magadzire, 2013; Shekede et al., 2024; Strydom and Savage, 2017).(Magadzire, 2013; Shekede et al., 710 

2024; Strydom and Savage, 2017). Increased temperatures and desiccated vegetation substantially enhance the likelihood and 711 

severity of wildfires during the dry season. Conversely, the onset of the rainy season precipitates a marked reduction in the 712 

occurrence of wildfires in these regions. This underscores the enduring influence of fire weather and vegetation dynamics as 713 

principal drivers of seasonal burnt area cycles, with factors such as moisture content in vegetation and soil, as well as humidity, 714 

playing pivotal roles in modulating ignition and fire extent within ecosystems. The seasonal global forecasts generated by our 715 

model hold significant implications for guiding adaptive strategies, fire management and prevention at both regional and global 716 

scale. 717 



 

42 

 
 

 

Formatted: Line spacing:  single

4.6 Excluded drivers of burned area 718 

 719 

The findings of this study exhibit robustness in capturing seasonal cycles (R2 = 0.536), facilitated by the inclusion of monthly 720 

variables such as the MEPI and the logarithm of FWI, which are pivotal in delineating seasonal fire patterns. While the seasonal 721 

predictions demonstrate reliability across most GFED regions globally, notable exceptions were observed in North America, 722 

North Africa, and Europe (R2 <0.50) (see Fig 8). This discrepancy could be attributed to the intricate climatic conditions 723 

inherent to these regions, which influence fires in a manner that eludes simple linear modelling. For instance, regions with 724 

clear-cut wet and dry seasons tend to exhibit more regular fire cycles, largely governed by seasonal shifts in precipitation, 725 

temperature, and vegetation growth. These predictable patterns make them well-suited to linear modelling approaches (Van 726 

Der Werf et al., 2017). In contrast, areas in the northern hemisphere experience more irregular and less seasonally driven fi re 727 

activity. Here, the interaction of drought events, land management, and socio-economic drivers introduces variability that 728 

weakens model performance (Chuvieco et al., 2021; Forkel et al., 2019b). Additionally, varied ignition sources in temperate 729 

and boreal zones disrupt consistent seasonal fire patterns (Flannigan et al., 2009). Given the parsimonious design of our model, 730 

with only ~eight predictors, we think that the model’s performance is acceptable. For certain regions, it might be possible to 731 

increase model performance by implementing further region-specific predictors and relationships. Accurate predictions 732 

regarding the seasonal dynamics of diverse GFED regions can facilitate the identification of temporal windows when fires are 733 

prevalent, thereby furnishing valuable insights for simulating carbon emissions in DGVMs. 734 

4.6 Model limitations and excluding drivers of burnt area 735 

Several covariates initially considered, such as landcover variables (~PCC, PPS, PRC, PGC), vegetation (~FAPAR) and 736 

socioeconomic (~RD), did not make it to the final model (See Table 2) despite their potential relevance identified in previous 737 

studies(Forkel et al., 2019b; Hantson et al., 2015; Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The 738 

differences toA1) despite their potential relevance identified in previous studies (Forkel et al., 2019b; Hantson et al., 2015; 739 

Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al., 2022). The differences in our findings are related to differences in 740 

the statistical or modelling approach and the fact that most of these studies addressed annual BA patterns, not seasonal 741 

variations. Nevertheless, these other factors can clearly also be important for understanding fire dynamics, e.g. influencing 742 

fuel availability, landscape structure, and ignition sources. For instance, grazing lands can significantly impact fire behavior 743 

by altering fuel types and continuity, with areas used for grazing potentially reducing fuel loads (Davies et al., 2010; Strand et 744 

al., 2014).(Davies et al., 2010; Strand et al., 2014). Similarly, FAPAR indicates vegetation health and productivity, affecting 745 

fuel moisture content and thus fire risk (Pausas and Ribeiro, 2013).(Pausas and Ribeiro, 2013). However, these factors are 746 

apparently indirectly represented by the final model, as they are correlated to the driver variables in the final model. FAPAR, 747 

for example, is generally highly correlated with GPP. Furthermore, RD is associated with human-caused ignitions and fire 748 
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suppression capabilities (Forkel et al., 2019b).(Forkel et al., 2019b). However, it was excluded here because its contributions 749 

were already effectively represented by HDI and PPN, which capture broader socioeconomic conditions and infrastructure 750 

impacts. Apart from that, Haas et al. (2022)Apart from that, Haas et al., (2022) observed a shift in the direction of contribution 751 

for covariates when PPN and RD are used together.  Considering that we may not have future projections for RD unlike PPN, 752 

including the issue of collinearity, we decided to retain only PPN in our model. Furthermore, our attempt to include RD in our 753 

models 21, 23 and 24 (Table 2A1) yielded marginal improvements, which were not different from when we excluded it in 754 

model 25. Overall, the decision to exclude most of these covariates was aimed at reducing redundancy and multicollinearity, 755 

ensuring a balance between model complexity and predictive power. By focusing on more comprehensive variables with high 756 

explanatory power, the final model achieves robust explanatory power. However, the often-small differences in the deviance 757 

explained and the NME between different models imply that vegetation-fire modellersmodelers might also pick a slightly 758 

different set of variables for DGVM integration without using much predictive power. 759 

4.7 Shortcomings and Recommendations 760 

The findings of this study offer valuable insights into the underlying drivers and patterns shaping global fire dynamics.  761 

While our research represents relevant efforts in developing a streamlined model capable of accurately capturing seasonal 762 

variations in global fire distribution, it's important to acknowledge certain limitations. The selection of covariates and the 763 

statistical model was constrained by the necessity for integration within DGVMs applied to predict future dynamics, potential ly 764 

omitting some previously identified key predictors (~lightning frequency, gridded livestock densities) and modeling techniques 765 

(~ Random Forest, Neural networks, XgBoost, CatBoost) for global fires(Forkel et al., 2019b; Joshi and Sukumar, 2021; 766 

Mukunga et al., 2023; Zhang et al., 2023).modelling techniques (~ Random Forest, Neural networks, XgBoost, CatBoost) for 767 

global fires (Forkel et al., 2019b; Joshi and Sukumar, 2021; Mukunga et al., 2023; Zhang et al., 2023).  This might contribute 768 

to observed shortcomings in our model's ability to predict spatial fire distribution in certain regions and to capture interannual 769 

variability across many parts of the world. Future investigations should aim to explore the inclusion of other established 770 

predictors and methodologies in global fire modelingmodelling once they become easily compatible with DGVM integration. 771 

Despite these challenges, our study possesses intrinsic value, and the developed model stands as a relatively simple tool for  772 

informing global seasonal fire predictions. 773 

 774 

4.7 Next steps for DGVM integration, future directions and model improvements  775 

To integrate the model presented here into a DGVM and enable future predictions, the remotely sensed variables of vegetation 776 

state (PTC, PNTC and MEPI) must be replaced with equivalent variables from the DGVM.  DGVMs include GPP and the 777 

cover fractions of vegetation types required to calculate PTC, PNTC and MEPI, so these variables provide a robust and 778 

universal coupling strategy to capture the effect of vegetation on burnt area.  However, all model results are imperfect and 779 

biased to some degree, so the DGVM variables will not correspond perfectly with the remotely sensed ones used for model 780 
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training.  This error will propagate to the burnt area calculation and so this discrepancy should be investigated.  In the likely 781 

event that this discrepancy is not small, the GLM should be refitted using the model-calculated variables to implicitly account 782 

for biases in the DGVM simulation, although the burnt area estimated will still be dependent on the DGVM’s skill to capture 783 

certain dynamics and states.  However, we note that our comparatively restricted variable set and simple GLM approach will 784 

be more straightforward to integrate and less sensitive to errors in the DGVM simulated state than machine learning approaches 785 

with larger suites of predictor variables. For example , Son et al., (2024) achieved excellent correspondence with observed 786 

data using an advanced recursive neural network which was partially integrated into the JSBACH DGVM. However, only the 787 

fuel predictor was taken from the prognostically simulated JSBACH model state, other high importance dynamic predictors 788 

(including PFT cover fractions and both absolute values and anomalies of LAI and water content of four soil layers) are all 789 

determined from fixed input data - remotely sensed of climate reanalysis.  So, in this case, the quality of the results from 790 

hypothetical full integration will be dependent on the ability of JSBACH to simulate many more variables correctly.   The 791 

model presented here is tailored for integration into a DGVM by using only a few variables which can be robustly predicted, 792 

and, as a simple GLM in contrast to more complex machine learning methods, is less prone to overfitting and relying on 793 

correlations in the data which may not hold in the DGVM predicted state. 794 

 795 

In comparison to the vegetation variables, the inclusion of the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as they 796 

can either be prescribed input variables or can be calculated from the climate input.  Finally, to build a fully coupled vegetation-797 

fire model, it is then necessary to include the effects of the simulated fire on the vegetation.  For this step we can utilise the 798 

mortality and combustion components of fire models already available and integrated into DGVMs, for example the BLAZE 799 

model (Rabin et al., 2017) or the appropriate equations in SPITFIRE (Thonicke et al., 2010). These parameterizations may 800 

need to be adjusted to account for the different simulated burnt area.   801 

5. Conclusions 802 

Global fire patterns undergo constant changes influenced by fluctuations in vegetation, weather conditions, topography, and 803 

anthropogenic factors. Despite numerous attempts in previous studiesWe sought to describe global fire distribution, the 804 

developmentbuild a parsimonious statistical model for global seasonal burnt areas that can be integrated into a DGVM. The 805 

specific objectives were to 1) to improve our understanding of a concise model capablemajor drivers of explaining and global 806 

burnt area dynamics, 2) to leverage a GLM for predicting global fire patterns, particularly one that seamlessly integrates with 807 

DGVMs, is essential for a reliable assessmentburnt areas using DGVM-integrable predictors and 3) to evaluate the interannual 808 

and seasonal cycles of the impacts of global change. In this study, weburnt area extent, both globally and regionally. 809 

 810 
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We present a parsimonious statistical model specifically tailored for global seasonal burnedburnt areas, with the goal of 811 

integration into DGVMs.  812 

 813 

FWI, PTC, TPI and PNTC were positively related to BA, while MEPI, HDI, PPN, and NDD were negatively related to BA. 814 

Our findings highlight the significance of socio-economic advancements, particularly those improving fire management 815 

strategies, as evidenced by the negative trend in global fire extent predicted through the inclusion of the HDI as a crucial socio-816 

economic predictor in our model. Additionally, fire weather and vegetation dynamics, specifically the FWI and the novel GPP 817 

index, emerged as robust predictors of seasonal global fire patterns. While our parsimonious model exhibited limitations in 818 

predicting the interannual variability of global fires, it demonstrated commendable accuracy in forecasting the spatial and 819 

seasonal distribution of wildfires. (NME = 0.72). The strength of similarity between observed and predicted seasonal cycles 820 

varied according to the GFED region with R2 ranging between 0.06 to 0.99. Its standout performance laid in capturing the 821 

seasonal variability, especially in regions often characterized by distinct wet and dry seasons, notably southern Africa (R2 = 822 

0.72 to 0.99), Australia (R2 68) and South America (R2 = 0.75 to 0.90). Our predicted interannual variability exhibited poor 823 

strength of relationship between the predicted trend when compared to the observed (R2= 0.24) 824 

 825 

We hope that our research outcomes will stimulate a more rigorous implementation of global fire models within DGVM 826 

frameworks. This, in turn, will contribute to a deeper understanding of the intricate dynamics of global fire patterns and 827 

enhance our capacity to effectively manage and mitigate the consequences of evolving fire regimes in the face of ongoing 828 

global changes. 829 
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Appendices 854 

 855 

Table A1: Results of modelling attempts using different combinations of predictor variables using a progressive 856 

inclusion of covariates approach. For Normalized Mean Error (NME), higher values are represented by warmer 857 

colours (with red indicating the highest error), while lower values appear in cooler colours (green indicating the lowest 858 

error). In contrast, for Deviance Explained, higher values are shown in cooler colours (green indicating better 859 

performance), and lower values in warmer colours (red indicating poorer performance). An optimal model is indicated 860 

by a combination of cooler colours for both metrics, whereas a combination of warmer colours suggests poor model 861 

performance. 862 

 863 

Model Formulae Deviance explained NME 

model 1 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD) 
0.3548030 0.7472088 

model 2 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PGC) 
0.3699393 0.7495652 

model 3 
 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC) 
0.5298061 0.7208771 

model 4  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR) 

0.5312036 0.7188448 

model 5 

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC) 

0.5312697 0.7191269 
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model 6 

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PPS) 

0.5328183 0.7195616 

model 7  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PRC) 

0.5313813 0.7193946 

model 8  

glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + PGC) 

0.5349288 0.7190611 

model 9  

 glm(burnt ~ FWI + GPP + 

HDI + PTC + RD + PNTC 

+ FAPAR + PCC + 

FAPAR12 + PGC) 

0.5359802 0.7181930 

model 10  

 glm(burnt ~ FWI + GPP12 

+ HDI + poly(PTC, 2) + 

PNTC + FAPAR + PCC + 

FAPAR12 + PGC + PPN ) 

0.5295939 0.7172668 
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 866 

 867 

model 

11  
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PGC + PS) 0.5579946 0.7193546 

model 

12  
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC + FAPAR12 + PS) 0.5571164 0.7192122 

model 

13  
 glm(burnt ~ FWI + MEPI + HDI*PCC + PGC + RD  + poly(PTC, 2) + PNTC + PS) 0.5569187 0.7214560 
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model 

14  
 glm(burnt ~ FWI + MEPI + HDI*PGC + RD  + poly(PTC, 2) + PNTC+ PS) 0.5570586 0.7222061 

model 

15  
 glm(burnt ~ FWI + MEPI + HDI*PRC + RD  + poly(PTC, 2) + PNTC + PS) 0.5664789 0.7154708 

model 

16  
glm(burnt ~ FWI + MEPI*PNTC + HDI + RD  + poly(PTC, 2) + PS ) 0.5563012 0.7215202 

model 

17  
 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC + PS + NDD) 0.5681926 0.7191069 

model 

18 
 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + TPI) 0.5711503 0.7167015 

model 

19  

 glm(burnt ~ FWI + MEPI + HDI + RD  + poly(PTC, 2) + PNTC* PS + NDD + PGC + 

FAPAR12) 
0.5709692 0.7175149 

Model 

20 
 glm(burnt ~ FWI + MEPI + HDI  + poly(PTC, 2) + PNTC* PS + NDD + FAPAR12) 0.5677209 0.7182814 

Model 

21 
glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN 0.5714474 0.7170576 

Model 

22 
 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)+ PNTC*PS + NDD + TPI + PPN  0.5705348 0.7177887 

Model 

23 
glm(burnt ~ FWI + MEPI+ HDI + poly(PTC, 2) + RD + PNTC*PS + NDD+ TPI+ PPN 0.5714474 0.7170576 

Model 

24 

glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + RD + PNTC*PS + NDD + TPI + PPN + 

AAP 
0.5720048 0.7173093 

Model 

25 
glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2) + PNTC + PPN + NDD + TPI 0.5682776 0.7186160 

Model 

26 glm(burnt ~ FWI + MEPI + HDI + poly(PTC, 2)* NDD + NTC + PPN + NTC + TPI 
0.5687439 0.7194855 
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 874 

 875 

Figure A1: Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across 876 

different GFED regions. 877 
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 885 

 886 

Figure A2: Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across 887 

different GFED regions. 888 

 889 

 890 
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 892 

 893 

Figure A3: Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental 894 

and socio-economic variables: GPP Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development 895 

Index, Percentage Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation 896 

Seasonality and Annual Precipitation Index. The plots highlight distinct patterns, such as the negative correlation 897 

between percentage tree cover and burnt area fraction, and the positive correlation between number of dry days and 898 

burnt area fraction.   899 

 900 
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Region Sen's slope P-value 

BONA 558.354 0.1082 

TENA 895.8292 0.4338 

CEAM -1963.035 0.1494 

NHSA -1601.363 0.387 

SHSA -9119.019 0.0529 

EURO 189.2956 0.387 

MIDE 202.3893 0.9016 

NHAF -22329.83 0.0026 

SHAF -28205.43                                    0.0001 

BOAS -1560.25 0.1494 

CEAS -8342.713 0.0011 

SEAS -9671.238 0.0034 

EQAS 69.04606 0.9671 

AUST 1141.46 0.3434 

Table A1A2: Mann-Kendall test results for trend analysis across GFED regions from 2002 to 2018. Regions with 902 

significant trends are in bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends. 903 
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