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Abstract 12 

 13 

Atmospheric aerosols significantly impact Earth’s climate and air quality. In 14 

addition to their number and mass concentrations, their chemical composition 15 

influences their environmental and health effects. This study examines global trends in 16 

aerosol composition from 2000 to 2020, using the EMAC atmospheric chemistry-17 

climate model and a variety of observational datasets. These include PM2.5 data from 18 

regional networks and 744 PM1 datasets from AMS field campaigns conducted at 169 19 

sites worldwide. Results show that organic aerosol (OA) is the dominant fine aerosol 20 

component in all continental regions, particularly in areas with significant biomass 21 

burning and biogenic VOC emissions. EMAC effectively reproduces the prevalence of 22 

secondary OA but underestimates the aging of OA in some cases, revealing 23 

uncertainties in distinguishing fresh and aged SOA. While sulfate is a major aerosol 24 

component in filter-based observations, AMS and model results indicate nitrate 25 

predominates in Europe and Eastern Asia. Mineral dust also plays a critical role in 26 

specific regions, as highlighted by EMAC. The study identifies substantial declines in 27 

sulfate, nitrate, and ammonium concentrations in Europe and North America, attributed 28 

to emission controls, with varying accuracy in model predictions. In Eastern Asia, 29 

sulfate reductions due to SO2 controls are partially captured by the model. OA trends 30 

differ between methodologies, with filter data showing slight decreases, while AMS 31 

data and model simulations suggest slight increases in PM1 OA across Europe, North 32 

America, and Eastern Asia. This research underscores the need for integrating advanced 33 

models and diverse datasets to better understand aerosol trends and guide 34 

environmental policy. 35 

 36 

 37 
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1. Introduction 39 

Atmospheric aerosols are tiny solid or liquid particulate matter (PM) suspended in 40 

the air, ranging in size from a few nanometers to several micrometers. Atmospheric 41 

aerosol, especially fine particles with diameters less than 2.5 micrometers (PM2.5), 42 

poses health risks as it can penetrate deep into the respiratory system (Who, 2003). 43 

Long-term exposure to high levels of PM has been associated with respiratory and 44 

cardiovascular diseases (Brook et al., 2010; George et al., 2017). Dominici et al. (2006) 45 

and Pope et al. (2009) highlight the impact of PM on mortality and morbidity, while 46 

more recent studies have determined that the air pollution by PM2.5 is responsible for 47 

more than 3 million premature deaths per year worldwide (Lelieveld et al., 2015; Who, 48 

2022). As a result, air pollution is recognized as the largest environmental threat to 49 

human health in the recent WHO report (Who, 2021). Furthermore, aerosols can 50 

directly influence the Earth's climate by scattering and absorbing sunlight, leading to 51 

changes in radiation balance (Haywood and Boucher, 2000; Ipcc, 2013). Aerosols can 52 

also affect the Earth’s energy balance indirectly through interactions with clouds, i.e., 53 

by serving as cloud condensation (CCN) and ice (IN) nuclei, affecting cloud formation, 54 

cloud properties, and precipitation patterns (Andreae and Rosenfeld, 2008). Beside the 55 

number and mass concentrations of atmospheric aerosol, its chemical composition 56 

determines its aerosol-related climatic (Klingmuller et al., 2019; Klingmüller et al., 57 

2020; Kok et al., 2023) and health impacts (Lelieveld et al., 2015; Fang et al., 2017; 58 

Karydis et al., 2021). 59 

Atmospheric aerosols have various precursors, and they can be categorized into 60 

primary and secondary aerosols based on their origin. Primary sources include natural 61 

processes such as volcanic eruptions, wildfires, and sea spray, as well as human 62 

activities like industrial emissions and transportation. Secondary aerosols are formed 63 

through the oxidation of gas phase pollutants in the atmosphere. Sulfate aerosols are 64 

formed through the oxidation of sulfur dioxide (SO2) which is primarily released from 65 

the burning of fossil fuels, particularly coal, and natural sources like volcanoes. Nitrate 66 

aerosols result from the atmospheric oxidation of nitrogen oxides (NOx) emitted from 67 

combustion processes, such as those in vehicles and power plants. Ammonium is 68 

formed by the reaction of ammonia (NH₃), which is emitted from agricultural activities 69 

and waste treatment, with an acid. Secondary organic aerosols (SOA) can form through 70 

the oxidation of volatile organic compounds (VOCs), which are emitted from 71 

vegetation, industrial processes, and vehicle exhaust. 72 
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Several measures have been discussed and implemented to mitigate pollutants 73 

emitted from specific source sectors including transport, energy (power generation, 74 

industries etc.), waste management, urban planning and agriculture. A few of the most 75 

prominent global conferences that have taken place for the purpose of combating 76 

climate change and air pollution are the Conferences of the Parties (COP) since the 77 

early 90s, and the supreme decision-making body of the United Nations’ Framework 78 

Convention on Climate Change (UNFCCC). Their passed agreements binding the 79 

parties to individual emission targets are for instance the Agenda 21 of 1992, the Kyoto 80 

Protocol of 1997 and its successor - the Paris Agreement of 2015. Besides these global 81 

agreements, the single parties had to implement national or continental plans to meet 82 

air quality requirements. The resulting emission trends have been so drastic that aerosol 83 

composition has been unevenly altered in different parts of the world. Most European 84 

countries are bound by the Gothenburg Protocol targets from 1999 and its amendment 85 

from 2012 and have in majority successfully reduced pollutant levels (Emep, 2021). 86 

SOx emissions have declined the most, by more than 80% in the last two decades. NOx 87 

emissions have declined significantly as well (by 50%), but for NH3 only very small 88 

reductions have been achieved (~10%) (Hoesly et al., 2018; Emep, 2021). NMVOCs 89 

have also been significantly decreased due to emission controls to the transportation 90 

and the solvents sector (Hoesly et al., 2018). In the US, pollutant levels are controlled 91 

through regulations imposed by the National Ambient Air Quality Standards 92 

(NAAQS), the Regional Haze Rule and the US Clean Air act of 1970. The US and 93 

Canada are also part of the Gothenburg protocol. Over Asia, South Korea and China 94 

belong to the Newly Industrialized and high-growth economies. Especially from 1980 95 

to the mid-2000s, pollutants emissions grew in China (Hoesly et al., 2018; Zhai et al., 96 

2019). However, in the face of the Beijing Olympic Games in 2008, there have been 97 

drastic endeavors of air pollution control in Beijing and neighboring administrative 98 

regions (Huang et al., 2010). In 2013, the first consistent and aggressive emission 99 

controls started under the Clean Air Action (Zhai et al., 2019). The Clean Air Action 100 

has identified three target regions, the megacity clusters of Beijing-Tianjin-Hebei, 101 

Yangtze River Delta and the Pearl River Delta, while in 2018, the latter was replaced 102 

by the Fenwei Plain (Zhai et al., 2019). 103 

Air pollution concentration levels can vary by time of day, season, across large spans 104 

of time, based on meteorological factors, and in connection to climate change. Trends 105 

analysis of air pollution concentrations (Guerreiro et al., 2014; Lang et al., 2019) can 106 
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allow the assessment of the impact of various factors on air quality including changes 107 

in industrial activities, traffic patterns, or energy production. Analyzing trends in air 108 

pollutants enables comparisons between different regions or countries (Anttila and 109 

Tuovinen, 2010; Chow et al., 2022; Kyllönen et al., 2020) as well as between different 110 

datasets that provide information for the same pollutant. This can highlight areas that 111 

are successfully addressing air quality issues, provide benchmarks for others to follow 112 

but also highlight any kind of inability of each method to reproduce the concentration 113 

levels of the pollutants. 114 

In this study, we use the comprehensive atmospheric chemistry-climate model 115 

EMAC to present 20-year global composition trends of fine aerosols in different regions 116 

of the planet. Here, for the first time, EMAC uses a computationally lite version of the 117 

organic aerosol module ORACLE (Tsimpidi et al., 2014) and the new highly 118 

computationally efficient module ISORROPIA-lite (Kakavas et al., 2022; Milousis et 119 

al., 2024). The large emission trends in our model are considered by employing the 120 

Copernicus Atmosphere Monitoring Service (CAMS) inventory for anthropogenic 121 

emissions (Granier et al., 2019). Model results are combined with a global observational 122 

aerosol composition dataset to provide insights into the large spatiotemporal changes 123 

in aerosol composition over the past two decades, driven by changes in aerosol 124 

precursor emissions. The dataset includes observations from regional filter-based 125 

monitoring networks that routinely collect PM2.5 (e.g. EMEP, IMPROVE, EPA, 126 

EANET, SPARTAN), and a unique comprehensive compilation of 744 individual 127 

Aerosol Mass Spectometer (AMS) field campaigns worldwide that provide in-situ 128 

measurements of PM1 composition. 129 

 130 

2. Observational Dataset 131 

 132 

2.1 PM1 Dataset 133 

Since the year 2000, the quadrupole-based Aerodyne aerosol mass spectrometer (Q-134 

AMS) and its successors enjoy great popularity as a method for atmospheric aerosol 135 

sampling. A great advantage of AMS is its ability to deliver high-resolved real-time 136 

quantitative data on mass concentration of particles between ~ 0.05 - 1 µm 137 

(Canagaratna et al., 2007) as a function of their non-refractory chemical composition 138 

(i.e., OA and inorganic SO4
2-, NO3

-, NH4
+, and Cl-) (Jayne et al., 2000). Thus, over the 139 

years and numerous field campaigns, a lot of valuable chemical and microphysical 140 
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information about ambient aerosols has been obtained (Ng et al., 2011). During 2000s, 141 

these campaigns did not last more than a month, however, the development of the 142 

Aerosol Chemical Speciation Monitor (ACSM), a small and cost-efficient version of 143 

AMS, allowed the long-term monitoring of the PM1 composition over several locations 144 

during the 2010s. 145 

 146 

2.1.1 AMS factor analysis techniques 147 

The AMS spectra of OA are often further analyzed via factor analysis techniques in 148 

order to extract detailed information about the OA composition as well. Among factor 149 

analysis techniques (e.g., ME-2 (Paatero, 1999); PCA (Zhang et al., 2013); MCA 150 

(Zhang et al., 2007; Cottrell et al., 2008)), the PMF (Paatero and Tapper, 1994; Paatero, 151 

1997) is the most popular technique, occasionally in combination with the ME-2. 152 

Overall, a mass spectrum that peaks at m/z = 44 (or ƒ44) and m/z = 43 (or ƒ43) is mostly 153 

dominated by the CO2
+ and C2H3O

+ ions, respectively. The first is mostly linked to 154 

acidic groups (i.e, -COOH), typically associated with chemically aged and oxygenated 155 

organic aerosols (OOA), while the latter is dominated by non-acid oxygenates. OOA 156 

can be further categorized into different levels of aging and volatility stages. Most 157 

commonly, a less oxidized (semi-volatile) OA (L-OOA (Bougiatioti et al., 2014)) and 158 

a more oxidized (low-volatile) OA (M-OOA (Bozzetti et al., 2017)) are distinguished 159 

(Jimenez et al., 2009; Ng et al., 2010; Crippa et al., 2014; Stavroulas et al., 2019). The 160 

two OOA factors could be identified on the basis of the ƒ44 to ƒ43 ratio: M-OOA 161 

component spectra have a higher ƒ44, while L-OOA component spectra have slightly 162 

higher ƒ43. Besides these general factors, other oxygenated OA compounds have been 163 

resolved in some campaigns. One of the most important is the IEPOX-OA with 164 

abundant ions at m/z = 53, 75, or 82. This “isoprene” factor correlates strongly with 165 

molecular tracers of SOA that are derived from isoprene epoxydiols (Xu et al., 2015; 166 

Budisulistiorini et al., 2013; Budisulistiorini et al., 2016). Several campaigns in North 167 

America have found IEPOX-OA, as have campaigns in South America and Australia. 168 

Furthermore, methane-sulfonic acid (MSA) is often retrieved from datasets of marine 169 

sites (Crippa et al., 2014; Mallet et al., 2019). Some studies could identify a nitrogen-170 

enriched OA-factor, NOA, mainly composed of amino compounds formed from 171 

industrial or marine emissions. A more local-SOA factor that is related to humic-like 172 

substances, termed as HULIS OA, found in the Netherlands (Schlag et al., 2016) and 173 

in Crete (Crippa et al., 2014). In Greece (Bougiatioti et al., 2014; Stavroulas et al., 2019; 174 
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Vasilakopoulou et al., 2023), in the Amazonian (De Sá et al., 2019) and often in Asia 175 

(Zhang et al., 2015b; Chakraborty et al., 2015; Du et al., 2015) OOA factors directly 176 

associated with biomass burning were found, that are processed from fresh biomass 177 

burning emissions. Furthermore, OOA compounds that are verifiable only biogenically 178 

oxygenated were also derived (Kostenidou et al., 2015).  179 

Apart from the mass spectrum, OA types can also be distinguished by their oxygen 180 

to carbon ratio (O:C), which is an indicator of photochemical aging. Primary organic 181 

aerosol (POA) is fresh and has a lower oxygen content than OOA, therefore lower O:C 182 

ratios. Yet, it sometimes has the same dominant m/z peaks. Some of the most commonly 183 

resolved POA factors are the Hydrocarbon-like (HOA) and Biomass Burning (BBOA) 184 

OA. HOA has spectra that are distinguished by clear hydrocarbon signatures, 185 

dominated by the ion series CnH2n+1
+ and CnH2n-1

+ (Ng et al., 2010). HOA correlates 186 

with fossil fuel combustion tracers like NOx, CO and elemental carbon (Lanz et al., 187 

2008; Tsimpidi et al., 2016), therefore, is very often observed to be traffic-related and 188 

a rather dominant POA factor in urban areas (Crippa et al., 2014; Xu et al., 2015; 189 

Budisulistiorini et al., 2016). On the other hand, BBOA typically originates from forest 190 

and savanna fires as well as from anthropogenically induced agricultural fires (Hoesly 191 

et al., 2018) and residential wood burning for heating. This makes the contribution of 192 

BBOA to total OA highly episodic (Zhang et al., 2007) and seasonal, and in several 193 

cases underestimated due to the rapid physicochemical transformation of these 194 

emissions to OOA (Stavroulas et al., 2019; Vasilakopoulou et al., 2023). Typical tracers 195 

to identify BBOA in the spectra are gas-phase acetonitrile, particle-phase levoglucosan 196 

and potassium (K+) (Lanz et al., 2010; Crippa et al., 2014). However, its mass spectra 197 

are also highly variable since they can be affected by different types of wood and 198 

burning conditions (Crippa et al., 2014).  199 

Furthermore, a coal combustion factor (CCOA) is often identified, which presents a 200 

dominant contribution to POA during the heating season, mostly in Eastern Asia (Sun 201 

et al., 2013; Zhang et al., 2014). In many cases, HOA shows remarkably similar spectral 202 

patterns as CCOA, so that these two factors could not be separated and, instead, are 203 

combined in a fossil fuel related OA factor (FFOA) (Sun et al., 2018; Xu et al., 2019). 204 

Another relatively frequent primary type resolved by the factor analysis is the cooking 205 

related OA (COA) (Mohr et al., 2012). Its spectral pattern is governed by OA from 206 

fresh cooking emissions and, fittingly, the spectral profiles have a distinct diurnal cycle 207 

which corresponds to typical (local) meal hours (Mohr et al., 2012; Sun et al., 2013; 208 
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Stavroulas et al., 2019). Occasionally, special types of COA are also resolved, including 209 

coffee roastery OA (Timonen et al., 2013) and OA related to charbroiling (Lanz et al., 210 

2007). 211 

 212 

2.1.2 AMS Dataset 213 

Here, a collection of AMS and ACSM field campaign datasets during the period of 214 

2000-2020 has been compiled. The dataset covers a wide range of environments and 215 

seasons from almost every continental region worldwide (Figure 1), characterized by a 216 

variety of atmospheric and climatological conditions as well as sources of pollutants. 217 

The selected field campaigns lasted from at least one full week to several months. 218 

Individual campaigns lasting more than one month are divided into shorter periods of 219 

preferably only one month. All of these individual periods of campaign data (thus 220 

covering a maximum of one month) are hereafter referred to as individual datasets.  221 

 222 

The number of both PM1 and OA composition datasets found for each year is 223 

increasing significantly for all regions through the years (Figure 2) due to the growing 224 

popularity of the AMS devices and the continuous improvement of the analysis 225 

Figure 1: Seasonal distribution of datasets per subcontinent. The colored bars 

indicate the relative proportions by season. The numbers in the colored boxes 

indicate the absolute number of field campaigns that occurred in each season. 
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techniques. Especially during the second decade, 226 

the number of field campaigns increase 227 

drastically, supported by the use of ACSM 228 

devices since 2010. The long-term campaigns in 229 

South Africa (2010-2011; (Tiitta et al., 2014)) 230 

and the Southern Great Planes (2010- 2012; 231 

(Parworth et al., 2015)) belong to the very first 232 

where the ACSM has been utilized. Furthermore, 233 

campaigns in regions downwind of urban 234 

environments have gotten a growing attention 235 

mostly after 2014, primarily in Europe. However, 236 

usually these datasets are not factor analyzed and 237 

lack information for the OA composition. It is 238 

worth mentioning that the small number of 239 

downwind datasets available can partially 240 

attributed to the ambiguous definition of 241 

downwind sites, which might have led instead to 242 

the more conventional classifications of rural or 243 

urban locations in some cases.  244 

Overall, the compiled dataset includes PM1 245 

aerosol composition from 744 AMS field 246 

campaigns datasets at 169 observational sites 247 

around the world, while factor analysis has been 248 

used to estimate the OA composition in 398 cases 249 

at 140 different observational sites (Table S1). The dataset includes an intermediate 250 

level regional breakdown following the sixth assessment report of IPCC working group 251 

III (Ipcc, 2022) as shown in Figure 3. The most represented subcontinents are Europe, 252 

Eastern Asia and North America. Datasets from these three northern-hemisphere 253 

continents are more or less evenly distributed over the seasons with only a little 254 

imbalance for North America which is over-represented during summer (Figure 1). The 255 

rest of the regions include a significantly lower number of datasets; therefore, the 256 

seasonal distribution is often very uneven. As an example, 50% of the data over the 257 

Asia-Pacific Developed region has been collected during spring. On the contrary, the 258 

Figure 2: Total AMS (dark 

red) and factor analysis 

(green) datasets per year in 

(a) rural, (b) urban-

downwind, and (c) urban 

regions 

(a) Rural/Remote 

(b) urban/industrial Downwind 

(c) Urban 
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changes between the wet and dry seasons are well represented over Africa where the 259 

ACSM has been employed for year-long campaigns (Tiitta et al., 2014). 260 

  261 

2.1.3 Observed PM1 Aerosol Composition 262 

The PM1 aerosol composition derived from AMS field campaigns at 8 regions 263 

around the world is depicted in Figure 4. The analysis of the AMS dataset reveals that 264 

OA is the dominant component of PM1 in all continental regions. Campaign data from 265 

tropical or subtropical regimes (e.g., Latin America and Southern/Southeast Asia) is 266 

strongly affected by biomass burning and biogenic VOC emissions, illustrating 267 

remarkably high OA fractions with regional means around 65% and a maximum of 268 

92% in the Amazonian. However, OA concentration shares up to 90% are also found 269 

over the Northern Hemisphere regions where the regional average OA contribution to 270 

PM1 concentrations is around 50%. Overall, OA contributes between 17 - 92% (50% 271 

on average) of total PM1. This agrees well with the ranges reported by Kanakidou et al. 272 

(2005) (20%-90%) and Zhang et al. (2007) (18%-70% or 45% on average). Sulfate has 273 

been the dominant inorganic compound in the aerosol composition in most regions 274 

Figure 3: Worldwide distribution of AMS and ACSM datasets for the of period 

2000 - 2020. The world map is colored according to the intermediate level regional 

breakdown of the sixth assessment report of IPCC working group III (IPCC, 2022). 

The rural (green), downwind (red) and urban (blue) campaign locations and the total 

number of PM1 composition (and OA factor analysis in parenthesis) datasets for 

each region are also shown. 
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275 

Figure 4: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 75th 

percentiles (box) of the mass concentration (in μg m–3) for the major PM1 aerosol 

components, i.e., organic aerosol (green), sulfate (red), nitrate (blue), ammonium 

(yellow), chloride (purple), and the total non-refractive PM1 (dark red).  The 10th and 

90th percentiles (whiskers) for each aerosol component are also shown. The number 

of total months (m.) with AMS data and the number of campaigns (cmp.) is written 

in small boxes under the violins.  
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(Figure 4). The highest regional average share of sulfate is found over Asia-Pacific 276 

Developed (37%) while the lowest over Europe (17%) where SO2 has been drastically 277 

reduced due to strict air pollution mitigation strategies. Nitrate dominates over sulfate 278 

over Europe and Eastern Asia. However, it is surprising that the PM1 inorganic 279 

composition of North America is dominated by sulfate, even though similar mitigation 280 

strategies have been enforced as in Europe. This might be due to an over-representation 281 

of summer data in North America (Figure 1) which resulted in lower nitrate 282 

concentrations since higher temperatures hinder the condensation of nitric acid in the 283 

aerosol phase. At the same time, sulfate concentrations are higher during summer due 284 

to the increased photochemical production of H2SO4. Overall, nitrate concentrations are 285 

highest in winter in Europe and North America, accounting for roughly a quarter of 286 

total PM1 (Figures S1 and S2). A similar proportion is observed in spring, although the 287 

absolute concentration is lower. The lowest average nitrate concentrations and shares 288 

occur in summer, when sulfate peaks and dominates the inorganic composition. 289 

Although both sulfate and nitrate are generated through photochemical reactions, this 290 

seasonal shift is due to nitric acid remaining in the gas phase at higher temperatures. 291 

Additionally, the increased production of sulfuric acid reduces the amount of free 292 

ammonia available for ammonium nitrate formation, further contributing to the summer 293 

nitrate decline (Seinfeld and Pandis, 2006). Ammonium concentrations remain 294 

relatively stable throughout the seasons, presenting similar shares of PM1 (Figures S1 295 

and S2). However, in contrast to Europe and North America, sulfate concentrations in 296 

East Asia are highest in winter, closely followed by summer (Figure S3). While 297 

photochemical reactions still dominate during warmer, sunnier seasons, aqueous phase 298 

reactions are more influential in East Asian winter, particularly under high relative 299 

humidity (RH) and severe haze conditions. These factors are often present in Chinese 300 

winters and likely explain this regional pattern (Zhang et al., 2015a; Zhou et al., 2020a). 301 

Over the southern regions, ammonium follows sulfate in the inorganic aerosol 302 

composition due to the high agricultural activities. Overall, the global average 303 

contribution of the inorganic compounds to total PM1 concentration is 20%, 18%, and 304 

11%, and 1% by sulfate, nitrate, ammonium, and chloride, respectively. However, 305 

Zhang et al. (2007) reported much stronger contribution by sulfate (32%), less by nitrate 306 

(10%), and similar values of ammonium (13%) and chloride (1%). Given that Zhang et 307 

al. (2007) utilized AMS observations from the early 2000s, this is a first indication that 308 

the inorganic aerosol composition has been altered during the last 20 years.  309 
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2.1.4 Observed PM1 Organic Aerosol Composition 310 

HOA concentrations are observed to be higher over North America and Eastern Asia 311 

in comparison to Europe (Figure 5). This could be explained by the significant influence 312 

of traffic emissions on HOA in the vicinity of urban areas. While urban locations are 313 

equally represented with rural sites in the dataset collection of North America and 314 

Eastern Asia, in Europe, rural sites are immensely over-represented (3 times more than 315 

urban sites), diminishing the importance of HOA. On the other side, the over-316 

representation of rural sites in the European dataset resulted in high concentrations of 317 

BBOA which is found to be the dominant primary source of OA in the region (Lanz et 318 

al., 2010). Here, BBOA originates mostly from domestic wood burning during the 319 

colder seasons in central Europe, including the Alps, rather than from open biomass 320 

burning. Even though a few campaigns took place in the European boreal forests, only 321 

very few factor analyses have distinguished BBOA as an individual component. Thus, 322 

the contribution of European boreal forests to total European BBOA is unfortunately 323 

not clear yet. Similarly, biomass burning is an important source of OA in North 324 

America and Eastern Asia (Rattanavaraha et al., 2017; Zhou et al., 2020b) but less 325 

important than HOA (Figure 5). Biomass burning also presents an especially important 326 

source in tropical and subtropical regions (i.e., South Asia and the Developing Pacific, 327 

Africa, and Latin America and Caribbean) due to episodic wildfires and harvest related 328 

burning (Budisulistiorini et al., 2018; Cash et al., 2021). Overall, the concentration 329 

range of BBOA is very high since it varies a lot with season. However, it should be 330 

emphasized that the availability of factor analysis datasets in equatorial and southern 331 

hemisphere continents is very low and therefore, there is not enough data available for 332 

statistically profound statements. The last primary type of OA, COA, is population 333 

dependent and therefore is mainly found in urban areas and highly populated regions 334 

(Zhou et al., 2020b). Cooking is a very constant and local source throughout the year 335 

with low variability and high contributions over Eastern Asia, Europe, North America, 336 

and South Asia and developing Pacific, especially in urban campaign sites.  337 

OOA is unequivocally the dominant contributor to total OA with a mean share of 338 

60% in urban and 75% in rural regions. Overall, the OOA contribution range from 19% 339 

(urban minimum) to 99% (rural maximum). The extreme shares were both found during 340 

European campaigns. The mean OOA share in Europe however lies roughly in the same 341 

magnitude as the global mean (~70%). The dominant OOA subfactors resolved are L-342 

OOA and M-OOA, while the more aged M-OOA dominates in the OA composition of 343 
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all examined regions (~60% of total OOA). This agrees with the findings of Ng et al. 344 

(2010), who stated that OOA component spectra become increasingly similar to each 345 

other with atmospheric oxidation, indicating that ambient OA converges towards highly 346 

aged M-OOA.  347 

Figure 5: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 

75th percentiles (box) of the mass concentration (in μg m–3) for the major PM1 OA 

components calculated from the collected factor analysis datasets, i.e., COA (olive 

green), BBOA (orange), HOA (dark red), L-OOA (light turquoise), M-OOA (dark 

turquoise), OOA (blue), and total OA (green). The 10th and 90th percentiles 

(whiskers) for each aerosol component are also shown. The number of datasets (m.) 

and the number of campaigns (cmp.) is written in small boxes under the violins.  
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2.2 PM2.5 Dataset 348 

Routine filter measurement PM2.5 data from large observational networks in East 349 

Asia, Europe and North America is used. The filter samplers have three modules that 350 

independently collect PM2.5 species on a Teflon, a nylon and a quartz filter. The aerosol 351 

chemical composition is determined by further analysis of the filters in the laboratory 352 

via ion chromatography (inorganic ions), thermal-optical analysis (OC and EC), and X-353 

ray fluorescence (XRF; trace elements) (Solomon et al., 2014). Potential difficulties 354 

that could arise when comparing on-line AMS and ACSM PM1 composition to off-line 355 

filter based PM2.5 composition, are discussed in section 5. The Environmental 356 

Protection Agency (EPA) network includes 211 monitor sites primarily in urban areas 357 

of North America. The data used here cover monthly averaged PM2.5 aerosol 358 

component measurements during 2000-2018 359 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html). The Interagency 360 

Monitoring of Protected Visual Environments (IMPROVE) network includes 198 361 

monitoring sites that are representative of the regional haze conditions over North 362 

America. IMPROVE samplers collect 24-hour samples, every three days. The data used 363 

here cover monthly averaged PM2.5 aerosol component measurements during 2000-364 

2018 (http://views.cira.colostate.edu/fed/QueryWizard/Default.aspx). It is worth 365 

mentioning that ammonium measurements by IMPROVE are only available until the 366 

year 2006. The European Monitoring and Evaluation Programme (EMEP) network 367 

monitors the long-range transmission of air pollutants in Europe and Eastern Eurasia 368 

(Figure 6). This network includes 70 monitoring sites. The data used here cover 369 

monthly averaged PM2.5 aerosol component measurements during 2000-2018 370 

(https://www.emep.int/). Finally, the Acid Deposition Monitoring Network in East Asia 371 

(EANET) network includes 39 (18 remote, 10 rural, 11 urban) air concentration monitor 372 

sites in Eurasia, Eastern Asia, South-East Asia and Developing Pacific, and Asia-373 

Pacific Developed. The data used here cover monthly averaged PM2.5 aerosol 374 

component measurements during 2001-2017 (https://www.eanet.asia/). The global 375 

particulate matter network SPARTAN (Snider et al., 2015; Snider et al., 2016) includes 376 

a global federation of ground-level PM2.5 monitors situated primarily in highly 377 

populated regions around the word (i.e,, North America, Latin America and Caribbean, 378 

Africa, Middle East, Southern Asia, Eastern Asia, South-Eastern Asia and Developing 379 

Pacific) (Figure 6). The data used here covers monthly averaged PM2.5 aerosol 380 

component measurements of sulfate, nitrate, ammonium and sodium during 2013-2019 381 
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(https://www.spartan-network.org/). Finally, PM2.5 aerosol component measurements 382 

from individual observational field campaigns over Latin America and Caribbean, 383 

Africa, Europe, Eastern Asia, and Asia-Pacific Developed reported as campaign 384 

averages in the literature are used ( Wang et al., 2019;  Radhi et al., 2010; Favez et al., 385 

2008; Mkoma, 2008; Mkoma et al., 2009; Weinstein et al., 2010; Celis et al., 2004; 386 

Bourotte et al., 2007; Fuzzi et al., 2007; Mariani and De Mello, 2007; Martin et al., 387 

2010; Souza et al., 2010; Gioda et al., 2011; Molina et al., 2010; Molina et al., 2007; 388 

Kuzu et al., 2020; Aggarwal and Kawamura, 2009; Batmunkh et al., 2011; Cho and 389 

Park, 2013; Feng et al., 2006; Li et al., 2010; Pathak et al., 2011; Zhang et al., 2012; 390 

Zhao et al., 2013). 391 

 392 

2.2.1 PM2.5 Aerosol Composition 393 

The PM2.5 aerosol composition derived from filter observations around the world is 394 

depicted in Figure 7. OA is the dominant component of PM2.5 in most regions, 395 

especially over regions affected by the tropical forests of the southern hemisphere (e.g., 396 

Latin America & Caribbean and Africa). Over the Northern Hemisphere, OA and EC 397 

dominate the aerosol composition in Eastern Asia (54% and 22% of total PM2.5, 398 

respectively) and contribute significantly to PM2.5 over Europe (30% and 5% of total 399 

PM2.5, respectively). On the other hand, over North America, OA share is equally 400 

important to sulfate over rural areas (28% of total PM2.5 each) and less important over 401 

urban areas (24% versus 33% of sulfate). Indeed, sulfate is the most important inorganic 402 

component of PM2.5 around the world (~50% of the inorganic PM2.5 mass on average) 403 

followed by nitrate and ammonium (~20% each). This contradicts the results from AMS 404 

Figure 6: Worldwide distribution of filter-based observations for the period of 

2000-2020. The world map is colored following the intermediate level regional 

breakdown of the sixth assessment report of IPCC working group III (IPCC, 2022). 

The black dots correspond to the location of the monitor stations.  
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405 

Figure 7: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 75th 

percentiles (box) of the mass concentration (in μg m–3) for the major PM2.5 aerosol 

components, i.e., sulfate (red), nitrate (blue), ammonium (yellow), sodium (pink), chloride 

(purple), crustal ions (brown), organic aerosol (green), and elemental carbon (black).  The 10th 

and 90th percentiles (whiskers) for each aerosol component are also shown.  
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campaigns showing that ammonium nitrate surpasses ammonium sulfate in the aerosol 406 

composition, especially over Europe and North America. However, filter measurements 407 

are prone to negative sampling artifacts due to evaporation losses of the semivolatile 408 

ammonium nitrate under warm and dry conditions (Ames and Malm, 2001), in contrast 409 

to the nonvolatile sulfate aerosols (Docherty et al., 2011). The contribution of sulfate 410 

to the measured inorganic PM2.5 aerosol composition is highest over Middle East, while 411 

nitrate contributes significantly over Europe (Figure 7). The dominant inorganic ion 412 

varies with the season (Figures S1-S3). Nitrate is most important in winter, accounting 413 

for about a quarter of total PM2.5, while sulfate is the dominant PM2.5 component in 414 

summer and spring. Over the 8 regions where all 7 components are measured, the 415 

average contribution of each species to total PM2.5 concentration is 21%, 12%, 10%, 416 

2%, 3%, and 40%, and 12% by sulfate, nitrate, ammonium, sodium, chloride, OA, and 417 

EC respectively.  418 

 419 

3 Model calculated Dataset 420 

The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is used, a numerical 421 

chemistry and climate simulation system that includes sub-models describing 422 

atmospheric processes from the troposphere to the mesosphere and their interaction 423 

with oceans, land, and human influences (Jöckel et al., 2006). EMAC uses the Modular 424 

Earth Submodel System (MESSy2) (Jöckel et al., 2010) to link the different sub-models 425 

with an atmospheric dynamical core, being an updated version of the 5th generation 426 

European Centre - Hamburg general circulation model (ECHAM5) (Roeckner et al., 427 

2006). The EMAC model has been extensively described and evaluated against 428 

observations and satellite measurements and can be applied to a range of spatial 429 

resolutions (Tsimpidi et al., 2016; Karydis et al., 2016; Janssen et al., 2017; Tsimpidi 430 

et al., 2018; Pozzer et al., 2022; Milousis et al., 2024). The spectral resolution used in 431 

this study is T63L31, corresponding to a horizontal grid resolution of 1.875ox1.875o 432 

and 31 vertical layers extending to 10 hPa at about 25 km from the surface. The 433 

presented model simulations cover the period 2000–2020. 434 

 435 

3.1 Model configuration 436 

In the model configuration used, EMAC calculates fields of gas phase species online 437 

through the Module Efficiently Calculating the Chemistry of the Atmosphere 438 

(MECCA) submodel (Sander et al., 2019). MECCA calculates the concentration of a 439 
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range of gases, including aerosol precursor species such as SO2, NH3, NOx, DMS, 440 

H2SO4 and DMSO. The concentrations of the major oxidant species (OH, H2O2, NO3, 441 

and O3) are also calculated online. The loss of gas phase species to the aerosol through 442 

heterogeneous reactions (e.g., N2O5 to form HNO3) is treated using the 443 

MECCA_KHET submodel (Jöckel et al., 2010). The aqueous phase oxidation of SO2 444 

and the uptake of HNO3 and NH3 in cloud droplets are treated by the SCAV submodel 445 

(Tost et al., 2006; Tost et al., 2007). 446 

Aerosol microphysics and gas/aerosol partitioning are calculated by the Global 447 

Modal-aerosol eXtension (GMXe) module (Pringle et al., 2010). The aerosol size 448 

distribution is described by 7 interacting lognormal modes (4 hydrophilic and 3 449 

hydrophobic modes). The modes cover the aerosol size spectrum (nucleation, Aitken, 450 

accumulation and coarse). The aerosol composition within each mode is uniform with 451 

size (internally mixed), though can vary between modes (externally mixed). The 452 

removal of gas and aerosol species through dry deposition is calculated within the 453 

DRYDEP submodel (Kerkweg et al., 2006) based on the big leaf approach. The 454 

sedimentation of aerosols is calculated within the SEDI submodel (Kerkweg et al., 455 

2006) using a first order trapezoid scheme. Cloud properties and microphysics are 456 

calculated by the CLOUD submodel utilizing the detailed two-moment microphysical 457 

scheme of Lohmann and Ferrachat (2010) and considering a physically based treatment 458 

of the processes of liquid (Karydis et al., 2017) and ice crystal (Bacer et al., 2018) 459 

activation. 460 

 461 

3.2 State of the art modules for the inorganic thermodynamics 462 

The inorganic aerosol composition is computed with the ISORROPIA-lite 463 

thermodynamic equilibrium model (Kakavas et al., 2022) as implemented in EMAC by 464 

Milousis et al. (2024). ISORROPIA-lite is an accelerated and simplified version of the 465 

widely used ISORROPIA-II aerosol thermodynamics model which calculates the 466 

gas/liquid/solid equilibrium partitioning of the K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--467 

Cl--H2O aerosol system. ISORROPIA-lite assumes that the aerosol is always in a 468 

metastable state (i.e., it is composed only of a supersaturated aqueous phase) and uses 469 

binary activity coefficients from precalculated look-up tables to minimize the 470 

computational cost. ISORROPIA-lite provides almost identical results with 471 

ISORROPIA-II in a metastable mode and reduces its computational cost by 35% 472 

(Kakavas et al., 2022). The application of ISORROPIA-lite in EMAC improved the 473 
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computational speed of the model by 4% (Milousis et al., 2024). The assumption of 474 

thermodynamic equilibrium is a good approximation for fine mode aerosols which can 475 

reach equilibrium within the time frame of one model timestep. However, the 476 

equilibrium timescale for large particles is typically larger than the timestep of the 477 

model (Meng and Seinfeld, 1996). To account for kinetic limitations, the process of 478 

gas/aerosol partitioning is calculated in two stages (Pringle et al., 2010). In the first 479 

stage the amount of the gas phase species that are able to kinetically condense onto the 480 

aerosol phase within the model timestep is calculated assuming diffusion limited 481 

condensation (Vignati et al., 2004). In the second stage ISORROPIA-lite re-distributes 482 

the mass between the gas and the aerosol phase assuming instant equilibrium between 483 

the two phases. 484 

 485 

3.3 State of the art module for organic aerosol 486 

The organic aerosol composition and evolution in the atmosphere is calculated by 487 

the ORACLE module (Tsimpidi et al., 2024). ORACLE is a computationally efficient 488 

version of the ORACLE module (Tsimpidi et al., 2014) which simulates a wide variety 489 

of semi-volatile organic products separating them into bins of logarithmically spaced 490 

effective saturation concentrations. ORACLE minimizes the number of surrogate 491 

species used to describe POA and SOA formation from different emission sources, 492 

while at the same time it reproduces similar total organic aerosol mass concentrations 493 

with the ORACLE module (Tsimpidi et al., 2024). In this application ORACLE uses 494 

three surrogate species with effective saturation concentration at 298 K of C* = 10-2, 495 

101, and 104 µg m-3 to cover the volatility range of LVOCs, SVOCs and IVOCs 496 

emissions from biomass burning and other combustion sources (biofuel and fossil fuel 497 

combustion, and other urban sources). These organic compounds are allowed to 498 

partition between the gas and aerosol phases resulting in the formation of POA. The 499 

least volatile fraction, at 10-2 µg m-3, describes the low volatility organics in the 500 

atmosphere that are mostly in the particulate phase even in remote locations. The 10 µg 501 

m-3 volatility bin describes the semivolatile organics in the atmosphere which partition 502 

between the particle and gas phase at atmospheric conditions. Finally, even under 503 

highly polluted conditions the majority of the material in the 104 µg m-3 volatility bin 504 

will exist almost exclusively in the vapor phase. Photochemical reactions that modify 505 

the volatility of the emitted organic compounds that remain in the gas phase are taken 506 

into account and the oxidation products are simulated separately in the module to keep 507 
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track of the SOA formation from SVOC and IVOC emissions. LVOCs are not allowed 508 

to participate in photochemical reactions since they are already in the lowest volatility 509 

bin. A similar approach is followed for SOA formed from VOCs. In the this version of 510 

ORACLE, it is assumed that the oxidation of the anthropogenic and biogenic VOC 511 

species results in two products for each precursor distributed in two volatility bins with 512 

effective saturation concentrations at 298 K equal to 1 and 103 µg m-3 at 298 K. Overall, 513 

we have assumed that functionalization and fragmentation processes after any 514 

subsequent photochemical aging as a result of the reaction with OH results in a net 515 

average decrease of volatility by a factor of 103 for SOA produced by SVOC/IVOC and 516 

anthropogenic VOC, without a net average change of volatility for SOA produced by 517 

biogenic VOC (Tsimpidi et al., 2024). In total 18 organic compounds are simulated  518 

explicitly, i.e., 9 in each of the gas and aerosol phases. Based on the saturation 519 

Figure 8: Schematic of the VBS resolution and the formation procedure of POA and 

SOA from LVOCs, SVOCs, IVOCs and VOCs emissions in ORACLE-lite. Red 

indicates that the compound is in the vapor phase and blue in the particulate phase. 

The circles correspond to primary organic material that can be emitted either in the 

gas or in the aerosol phase. The triangles indicate the formation of SOA from 

SVOCs by fuel combustion and biomass burning sources, while the squares show 

SOA from IVOCs by fuel combustion and biomass burning sources, and the 

diamonds the formation of SOA from anthropogenic and biogenic VOC sources. 

The partitioning processes, the aging reactions and the names of the species used to 

track all compounds are also shown. 
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concentration of each organic compound, ORACLE calculates the partitioning between 520 

the gas and particle phases by assuming bulk equilibrium and that all organic 521 

compounds form a pseudo-ideal solution. A schematic overview of the ORACLE 522 

module and the different aerosol types and chemical processes considered here is 523 

provided in Figure 8. More details about ORACLE can be found in Tsimpidi et al. 524 

(2024).  525 

 526 

3.4 Emissions 527 

Fuel combustion and agriculture related emissions are based on the high resolution 528 

(0.1°×0.1°) Copernicus Atmosphere Monitoring Service global anthropogenic 529 

emission inventory applied at monthly intervals, CAMSv4.2 (Granier et al., 2019). The 530 

emission factors used for the distribution of traditional POA emissions from fuel 531 

combustion and open biomass burning sources into the three volatility bins considered 532 

by ORACLE are based on the work of Tsimpidi et al. (2024). These emission factors 533 

account additionally for IVOC emissions that are not included in the original emission 534 

inventories. We assume that the missing IVOC emissions from anthropogenic 535 

combustion are 1.5 times the traditional OA emissions included in the inventory. 536 

LVOCs and SVOCs are assumed to be emitted in the aerosol phase, while IVOCs are 537 

emitted in the gas phase. Then, they are allowed to partition between the gas and particle 538 

phase. Figure S4 shows the temporal evolution of anthropogenic emissions of inorganic 539 

(SO2, NH3, NOx) and organic (LVOC, SVOC, IVOC, VOC) aerosol precursors over 540 

the last 20 years, while Table S5 shows their decadal percentage change between the 541 

2000s and 2010s.  Open biomass burning emissions are calculated online based on the 542 

dry matter burned from observations (Kaiser et al., 2012) and the fire type which affect 543 

the emission factors for the different tracers (Akagi et al., 2011). Similar to POA 544 

emissions from fuel combustion, POA from biomass burning is distributed to LVOC, 545 

SVOC, and IVOC emissions, however, no additional IVOC emissions are assumed for 546 

open biomass burning and therefore the sum for the biomass burning emission factors 547 

is unity (Tsimpidi et al., 2016). 548 

Biogenic emissions of isoprene and terpenes are calculated online using the Model 549 

of Emissions of Gases and Aerosol from Nature (MEGANv2.04; Guenther et al., 2012) 550 

with an average emission flux of 454 and 81.7  Tg yr-1, respectively. The natural 551 

emissions of NH3 are based on the GEIA database (Bouwman et al., 1997) and include 552 

excreta from domestic animals, wild animals, synthetic nitrogen fertilizers, oceans, 553 
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biomass burning, and emissions from soils under natural vegetation. NOx produced by 554 

lightning is calculated online and distributed vertically based on the parameterization 555 

of Price and Rind (1992). The emissions of NO from soils are calculated online based 556 

on the algorithm of Yienger and Levy (1995). Eruptive and non-eruptive volcanic 557 

degassing emissions of SO2 are based on the AEROCOM data set (Dentener et al., 558 

2006). The oceanic DMS emissions are calculated online by the AIRSEA submodel 559 

(Pozzer et al., 2006). Emission fluxes of sea spray aerosols are calculated online (Guelle 560 

et al., 2001) assuming a composition of 55% Cl-, 30.6% Na+, 7.7% SO4
2-, 3.7% Mg2+, 561 

1.2% Ca2+, 1.1% K+ (Seinfeld and Pandis, 2006). The average global emission flux of 562 

sea spray aerosols is 5910 Tg yr-1. Dust emission fluxes are calculated online by using 563 

the meteorological fields calculated by the EMAC model (temperature, pressure, 564 

relative humidity, soil moisture and the surface friction velocity) together with specific 565 

input fields for soil properties (i.e., the geographical location of the dust sources, the 566 

clay fraction of the soils, the rooting depth, and the monthly vegetation area index) 567 

(Astitha et al., 2012). The average global emission flux of dust particles is 5684 Tg yr-
568 

1. Emissions of individual crustal species (Ca2+, Mg2+, K+, Na+) are estimated as a 569 

constant fraction of mineral dust emissions. This fraction is determined based on the 570 

geological information that exists for the different dust source regions of the planet 571 

(Karydis et al., 2016) and is applied online on the calculated mineral dust emission 572 

fluxes based on the location of the grid cell (Klingmuller et al., 2018). 573 

 574 

3.5 Model calculated aerosol composition 575 

The EMAC simulation corroborates the findings based on filters and AMS 576 

observations that OA is the dominant component of fine atmospheric aerosols in all 577 

continental regions (Figure 9). The strongest OA contribution to total PM2.5 (more than 578 

50%) is calculated over regions affected by biomass burning and biogenic VOC 579 

emissions: the tropical forests and savannas of Africa, Latin America and Caribbean, 580 

Southern Asia, and Southeast Asia and Developing Pacific, as well as the boreal forests 581 

of Eurasia. Considerable OA shares (30-35%) are also calculated over the industrialized 582 

regions of the Northern Hemisphere (i.e., North America, Europe, Eastern Asia) and 583 

the Middle East, where strong fossil and biofuel combustion related sources are located. 584 

OA shares peak in the summer over Europe and North America and in the winter over 585 

East Asia (Figures S1-S3). EMAC is also able to reproduce the dominance of SOA 586 

(resolved by the AMS as OOA) in all regions, even in regions with strong primary 587 
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emissions, e.g., close to tropical forests or industrial areas. However, EMAC cannot 588 

reproduce the dominance of aged SOA in many cases (resolved as M-OOA by the 589 

AMS), especially over Eastern Asia, revealing weaknesses in the oxidation scheme of 590 

its organic module (e.g., including missing sources and formation pathways). POA has 591 

the strongest contribution (more than 20%) over heavily forested areas (e.g., Africa and 592 

Eurasia) and the lowest (less than 10%) over highly industrialized regions (e.g., Europe 593 

Figure 9: Pie charts showing the simulated 20-year average chemical composition 

of PM2.5 in the 10 regions considered according to WGIII AR6. The central world 

map shows the simulated average near-surface concentration of PM2.5 (in μg m-3) 

during the period 2000-2020. 
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and Middle East). Regarding the inorganic aerosol composition, the EMAC model is 594 

not always consistent with the filter-based observations since in many regions it reveals 595 

that nitrate overpasses sulfate in the aerosol composition, which is also supported by 596 

the AMS results. These regions are Europe, North America, and Eastern Asia, where 597 

nitrate accounts for 25-30% of total PM2.5, with higher contributions in winter and 598 

lower contributions in summer (Figures S1-S3). Sulfate becomes the dominant 599 

inorganic aerosol component only during winter over North America (Figures S1-S3). 600 

On the other side, sulfate contribution is stronger over the Middle East and Latin 601 

America and Caribbean (~30%). Ammonium follows the spatial distribution of sulfate 602 

and nitrate with high contributions to PM2.5 composition (~10-15%) over the highly 603 

populated and agriculturally intensive regions of North America, Europe, Eastern Asia 604 

and Southern Asia. Mineral dust is simulated to be a significant natural contributor to 605 

aerosol composition in some regions. Here we only focus on the chemically active 606 

components of mineral dust, which are the crustal cations of calcium, potassium, 607 

sodium, and magnesium. Their total share to PM2.5 composition is around 15% in 608 

regions affected by desert emissions (e.g., Africa, Middle East, Eastern Asia) while in 609 

other areas their contribution is limited (~ 1%). Finally, sodium and chloride from sea 610 

salt emissions are found to be high over regions with long coastlines per land area. Most 611 

notably, chloride consists of 8% of the total PM2.5 over the Asia Pacific Developed 612 

region, while sodium is the dominant inorganic component in the same region with a 613 

share of 8.5%. 614 

 615 

4 In depth model Evaluation 616 

4.1 Sulfate 617 

The EMAC performance for sulfate is best over North America, where the model 618 

tends to underpredict its concentrations with a MB of -0.45 μg m-3 (Figure 10a). The 619 

model performs better over rural regions with very low NMB (-8%) and worst over 620 

urban locations (NMB=-40%). This performance can be attributed to the low spatial 621 

resolution used and to possible errors in the assumed injection height of SO2 (Yang et 622 

al., 2019) which can affect sulfate concentrations close to sources. Furthermore, EMAC 623 

tends to overestimate sulfate over the Midwest, while underestimating its 624 

concentrations over the Eastern states (Figure 10). The coarse resolution of the model 625 

cannot reproduce the orography of the mountainous Midwest and therefore 626 

overestimates the sulfate concentrations at high altitude sites. On the other hand, due to 627 
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its coarse resolution, it underestimates the sulfate concentrations over the urban areas 628 

of the densely populated Eastern states. Therefore, the model underpredicts 629 

observations over the Eastern US, where sulfate concentrations are high, and 630 

overpredicts observations over the Midwest, where sulfate concentrations are low. As 631 

a result, the model produces a quite narrow range of concentrations (i.e., 0.3 - 2.5 µg 632 

m-3) over the North America in contrast to the AMS observations which cover almost 633 

three orders of magnitude, ranging from 0.1 to 10 µg m-3. The seasonal pattern of both 634 

measured and observed data shows clear differences between summer and winter. The 635 

model calculates the highest sulfate concentrations in autumn, in contrast to the AMS 636 

observations which show a peak in summer. The lowest sulfate concentrations are 637 

observed in winter which are well captured by the model at most sites (Figure 10a). 638 

Figure 10: Deviations (in %) between EMAC results and the AMS and ACSM 

datasets over the period 2000 – 2020 (top). Negative values (blue colors) correspond 

to underprediction of sulfate concentrations by the model. Scatter plots comparing 

model results for PM1 sulfate concentrations (in μg m-3) with AMS and ASCM 

observations (bottom) over (a) North America, (b) Europe, and (c) Eastern Asia. 

Each point represents the data set mean and is colored based on the season of the 

field campaign. Also shown are the 1:1, 2:1, and 1:2 lines. 
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In Europe, the model underpredicts sulfate in all types of environments and all 639 

seasons by about 40% due to errors in emissions and an underestimation of the 640 

oxidation capacity of the atmosphere (Emep, 2021). However, a few overpredictions 641 

are calculated over Italy and Greece. Around 65% of the simulated sulfate 642 

concentrations over Europe are within a factor of 2 compared to measurements (Figure 643 

10b). The performance of the model does not exhibit any clear seasonal pattern except 644 

a slight tendency towards higher underpredictions during summer when the observed 645 

sulfate concentrations are the highest of the year. Over Asia, sulfate concentrations are 646 

significantly higher than over Europe and North America, however, the performance of 647 

the model is similar. Sulfate is underpredicted most of the time (Figure 10c, Table 1). 648 

The model performs better over rural locations (NME=-38%) and worst over urban 649 

areas (50%). Furthermore, while the model underpredicts sulfate concentrations during 650 

all seasons, its performance is worst in winter when sulfate exhibits its annual peak 651 

concentrations (Figure 10c) due to its multiphase formation during haze events, a 652 

pathway not accurately resolved by the model.  Furthermore, similar to North America, 653 

the concentration range of the simulated sulfate over Eastern Asia is much narrower 654 

than the observed, covering little more than one order of magnitude compared to two 655 

orders of magnitude reported by the AMS. Over the tropical and subtropical regions, 656 

sulfate is underestimated again, mostly over the Asian regions (NME ≈ -45%) and less 657 

over Africa and Latin America and Caribbean (NME ≈ -30%) (Table S2, Figure S5). 658 

Table 1: Statistical evaluation of EMAC PM1 sulphate concentrations against AMS 

and ACSM datasets over Europe, North America, and Eastern Asia for the period of 

2000–2020. 
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4.2 Nitrate 659 

The model is able to capture the observed average nitrate concentrations over the 660 

different regions and seasons with very low NMB (below 10%). However, the NME is 661 

high over all regions (40-80%) indicating that the discrepancy between model results 662 

and observations is highly scattered and not systematically biased (Table 2). The 663 

accurate prediction of nitrate concentrations is rather complex. Nitrate is typically 664 

formed in areas characterized by high ammonia and nitric acid concentrations and low 665 

sulfate concentrations. At the same time, the thermodynamic equilibrium of ammonium 666 

nitrate varies several orders of magnitude under typical atmospheric conditions 667 

(Seinfeld and Pandis, 2006). This variation causes significant challenges in the 668 

calculation of nitrate concentrations since small errors in RH and T can shift the 669 

equilibrium of nitric acid to the gas or the aerosol phase. Therefore, even though the 670 

scatter is not negligible, it is encouraging that the EMAC model seems to perform 671 

surprising well under diverse environments and atmospheric conditions (Figure 11). 672 

The scatter is more intense over North America (NME=88%), especially during the 673 

summer season where the occurrence of high temperatures and the semi-volatile nature 674 

of NH4NO3 hinder the model’s ability to capture the observations accurately (Figure 675 

11a). However, the model is still able to capture the seasonality of nitrate concentrations 676 

well with the highest concentrations calculated during the periods with the lowest 677 

temperatures (i.e., winter), when almost all the nitric acid that is available is transferred 678 

to the particulate phase. 679 

Over Europe, despite some widely dispersed points, the majority of datapoints (70%) 680 

lie within a factor of two compared to observations (Figure 11b). Similar to North 681 

America, the seasonality is very well captured, and the model predictions are mostly 682 

scattered during the warmer seasons. However, the overall performance is better here 683 

with NMB = -4% and NME = 53%. Over Eastern Asia, the overestimation appears to 684 

be more systematic, especially during the summer and fall (Figure 11c). However, with 685 

an overall NMB of 7.7%, the performance can still be considered very good (Table 2). 686 

Nitrate levels are significantly overestimated by the model, especially over the west 687 

coast of South Korea and the Chinese inlands (Figure 11). However, Eastern China and 688 

especially the coastal regions are well described by the model. The contribution of sea 689 

salt to nitrate formation is important in these coastal regions due to their proximity to 690 

the Pacific Ocean (Bian et al., 2017). Therefore, the overestimation of nitrate levels on 691 

the west coast of Korea, in contrast to the well captured east coast, could be caused by 692 
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the dominant west-east winds in the Yellow Sea simulated by the model, leading to an 693 

overestimation of the sea salt content that can contribute to nitrate formation. Over the 694 

tropical and subtropical regions, the discrepancies between the simulated and observed 695 

nitrate concentrations are less dispersed with a tendency towards overprediction by the 696 

model in most regions (Figure S5; Table S2).  Over Latin America and the Caribbean, 697 

the model underpredicts nitrate (NMB = -50%) except for a few strong overpredictions, 698 

mostly during the wet season, suggesting possible errors in simulated wet deposition 699 

(Figure S5). On the other hand, over Africa, the model overpredicts nitrate during the 700 

dry season, especially over Welegund, an observation site downwind of Johannesburg. 701 

Nitrate is strongly overpredicted over the Asia Pacific Developed region, especially 702 

over the industrialized regions of Japan and Australia. On the contrary, the model 703 

performance for nitrate is good over the Southeast Asia and the Developing Pacific 704 

Figure 11: Deviations (in %) between EMAC results and the AMS and ACSM 

datasets over the period 2000 – 2020 (top). Negative values (blue colors) correspond 

to underprediction of nitrate concentrations by the model. Scatter plots comparing 

model results for PM1 nitrate concentrations (in μg m-3) with AMS and ASCM 

observations (bottom) over (a) North America, (b) Europe, and (c) Eastern Asia. 

Each point represents the data set mean and is colored based on the season of the 

field campaign. Also shown are the 1:1, 2:1, and 1:2 lines.  
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(NMB = -3%) with few random over- and underpredictions during the monsoon and 705 

the transition periods towards that season.  706 

 707 

4.3 Ammonium 708 

EMAC tends to underpredict ammonium over the three main subcontinents of the 709 

Northern Hemisphere, however, its performance is considered satisfactory with 710 

relatively low bias and scatter (Table 3). The model evaluation exhibits a large scatter 711 

only over North America (NME = 63%), where 50% of the comparison sites are beyond 712 

the factor 2 intervals (Figure 12a). Ammonium tends to be overestimated during autumn 713 

and underestimated during the rest of the seasons; especially during the summer (Figure 714 

12a). Over Europe, the model exhibits its best performance with low NMB (-9%). The 715 

average deviation from the observations is also relatively low (Figure 12) and 75% of 716 

the model results diverge less than a factor of two from measurements. Surprisingly, 717 

the model performance is best over the Benelux region (Figure 12) where NH3 718 

emissions are the highest over Europe. While the good model performance for 719 

ammonium over Europe indicates an accurate emission inventory for agricultural and 720 

livestock NH3, the overprediction of nitrate and underprediction of sulfate suggest that 721 

the model overpredicts the fraction of ammonium that exists as ammonium nitrate 722 

(instead of ammonium sulfate). Over Asia, the model strongly underestimates 723 

ammonium (NMB = -30%), especially over Eastern China (Figure 12). While this 724 

Table 2: Statistical evaluation of EMAC PM1 nitrate concentrations against AMS 

and ACSM datasets over Europe, North America, and Eastern Asia for the period of 

2000–2020. 
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underestimation can be partially attributed to sulfate underpredictions, the simultaneous 725 

overestimation of nitrate over the same areas indicates errors in the NH3 emission 726 

inventory. On the other hand, ammonium is overpredicted close to the deserts of Inland 727 

China (e.g., over Tibet) and over South Korea (Figure 12). Over the Tropics and the 728 

southern continents, ammonium is underestimated to a higher extent than in the 729 

northern continents (with NMB from -40 to -60%). The main problem in model 730 

performance is over Asia Pacific Developed and Africa, where the model predicts low 731 

ammonium shares that are not supported by AMS observations (Figure S2). On the 732 

other hand, EMAC has the largest underprediction and highest NMB over Latin 733 

America. Nevertheless, here and over South Asia, EMAC and AMS agree that 734 

ammonium has the smallest fraction of PM1. Overall, deviations in ammonium can be 735 

traced back to global livestock emission inventory uncertainties as criticized by Hoesly 736 

et al. (2018). 737 

Figure 12: Deviations (in %) between EMAC results and the AMS and ACSM 

datasets over the period 2000 – 2020 (top). Negative values (blue colors) correspond 

to underprediction of ammonium concentrations by the model. Scatter plots 

comparing model results for PM1 ammonium concentrations (in μg m-3) with AMS 

and ASCM observations (bottom) over (a) North America, (b) Europe, and (c) 

Eastern Asia. Each point represents the data set mean and is colored based on the 

season of the field campaign. Also shown are the 1:1, 2:1, and 1:2 lines.  
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 739 

4.4 Organic aerosol 740 

The model performance for total OA concentration varies significantly between the 741 

three continents. Over North America, the simulated mean OA represents well the 742 

observed OA by AMS (NMB = -4%). However, the comparison exhibits a significant 743 

scatter (NME = 64%) since the model tends to overpredict OA over rural locations 744 

(NMB = 37%) and underpredict it over and downwind of urban sites (NMB = -28%). 745 

The model roughly captures the seasonality of OA concentrations over North America, 746 

with high OA concentrations in summer and autumn and lower concentrations in spring 747 

and winter. OA concentrations peak during summer due to enhanced biogenic VOC 748 

emissions and photochemistry (Goldstein and Galbally, 2007; Tsimpidi et al., 2016), 749 

however, EMAC tends to overpredict some low OA concentrations measured by AMS 750 

over a few rural locations during summertime (Figure 13a). Over Europe, the model 751 

tends to underestimate OA during all seasons, except summer (Figure 13b). The model 752 

performance is worst during wintertime, where sources from biomass burning, 753 

particularly by domestic wood burning, and their dark oxidation have been recently 754 

identified as a major source of model bias over Europe during wintertime (Tsimpidi et 755 

al., 2016; Kodros et al., 2020). This also affects the simulated OA seasonality over 756 

Europe where the model estimates higher OA concentrations during summer over all 757 

types of environments, while the AMS observations reveal that this is true only over 758 

Table 3: Statistical evaluation of EMAC PM1 ammonium concentrations against 

AMS and ACSM datasets over Europe, North America, and Eastern Asia for the 

period of 2000–2020. 
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rural locations. According to AMS, over and downwind of urban areas, OA 759 

concentrations peak during wintertime. Over Eastern Asia, the model exhibits its best 760 

performance with relatively low bias (NMB = -29%) and scatter (NME = 49%). In 761 

contrast to Europe, the wintertime OA is well captured by the model even over urban 762 

locations (Table 4). The model has excellent performance over rural and urban-763 

downwind locations with 75% of the datapoints lying within a factor of two compared 764 

to observations. However, as it is typical for every global model (Tsigaridis et al., 765 

2014), the model fails to reproduce some of the high OA concentrations observed over 766 

large urban centers due to its limited spatial resolution. Over the rest of the continental 767 

regions, the overall performance of the model is satisfying for OA. EMAC tends to 768 

underpredict OA over the tropical regions of South Asia and Developing Pacific and 769 

over the more urbanized regions of the Asia Pacific Developed, without any clear 770 

seasonal pattern (Figure S5). In contrast, simulated OA are overestimated over Africa, 771 

Figure 13: Deviations (in %) between EMAC results and the AMS and ACSM datasets 

over the period 2000 – 2020 (top). Negative values (blue colors) correspond to 

underprediction of organic aerosol concentrations by the model. Scatter plots comparing 

model results for PM1 organic aerosol concentrations (in μg m-3) with AMS and ASCM 

observations (bottom) over (a) North America, (b) Europe, and (c) Eastern Asia. Each 

point represents the data set mean and is colored based on the season of the field 

campaign. Also shown are the 1:1, 2:1, and 1:2 lines.  
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mostly during the dry season. Over Latin America and Caribbean, the evaluation 772 

datapoints are more scattered with a few significant overestimations during the 773 

Amazonian wet season and underestimations during the dry season. 774 

 775 

4.4.1 POA 776 

The simulated POA concentrations are compared with the sum of the AMS HOA 777 

and BBOA concentrations. POA concentrations are mostly underestimated by the 778 

model over North America and Europe (NMB ≈ -45%) and significantly overestimated 779 

over Eastern Asia (NMB = 98%). In North American rural regions, POA simulated 780 

concentrations are highest during spring and winter and lowest during fall, consistent 781 

with the observed POA levels. However, during summer, most of the observed data is 782 

underestimated by the model (Figure 14). Over urban locations, POA is more severely 783 

underestimated (NMB = -68%) due to the coarse spatial resolution of the model and the 784 

evaporation of organic compounds upon emission. POA concentrations are also 785 

underestimated over European urban regions (NMB = -52%), however, to a lesser 786 

extent than over North America. Over rural locations, the model performance is 787 

scattered during all seasons with a few cases of strong over and under predictions (NME 788 

= 62%). Over Eastern Asia, a pronounced overestimation during winter is striking, 789 

especially over mega-city clusters (NMB = 106%; Table 5) such as around Hong Kong 790 

and Shanghai. This discrepancy can be related to overestimations in the emission 791 

inventory (e.g., not including the emission reductions in the frame of the Chinese 792 

Table 4: Statistical evaluation of EMAC PM1 OA concentrations against AMS and 

ACSM datasets over Europe, North America, and Eastern Asia during 2000–2020. 
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control action plans) but also to the overestimated partition of the freshly emitted 793 

SVOCs to the aerosol phase during the low winter temperatures. Tsimpidi et al. (2016) 794 

has also reported POA overestimations over Eastern Asia due to too high simulated 795 

bbPOA transported from the surrounding boreal forests. Since in ORACLE POA do 796 

not participate in aqueous phase and other heterogeneous reactions, they do not convert 797 

to SOA via these pathways, which can explain part of the positive model bias during 798 

winter.  799 

  800 

Table 5: Statistical evaluation of EMAC PM1 POA concentrations against AMS and 

ACSM datasets over Europe, North America, and Eastern Asia during 2000–2020. 

Table 6: Statistical evaluation of EMAC PM1 SOA concentrations against AMS and 

ACSM datasets over Europe, North America, and Eastern Asia during 2000–2020. 
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 801 

4.4.2 SOA 802 

The model simulated OOA concentrations over North America are in very good 803 

agreement with the OOA derived by the PMF analysis of the AMS observations (NMB 804 

= 4.5%). The model performs well over both urban and rural areas and during all 805 

seasons, except winter when it tends to underpredict the AMS-OOA estimations (Table 806 

6; Figure 14c). L-OOA concentrations are reproduced by the model particularly well 807 

(Figure S6a), however, M-OOA concentrations are slightly underestimated during 808 

spring and fall and severely underpredicted during winter (Figure S6d). Similarly, the 809 

model performance for all OOA types over Europe is best during summer and worst 810 

during winter when it underpredicts the AMS estimations, especially for the M-OOA 811 

(Figure S6e). During summer, the high temperatures enhance the biogenic VOC 812 

emissions from vegetation and, more importantly, the more abundant solar radiation 813 

increase the transformation of gas phase organic compounds through photochemical 814 

processing into particulate OOA (Seco et al., 2011; Xu et al., 2017; Tsimpidi et al., 815 

Figure 14: Scatter plots comparing model results for PM1 primary organic aerosol (a-

c) and secondary organic aerosol (d-f) concentrations (in μg m-3) with AMS and ASCM 

observations of HOA+BOA and OOA, respectively, over North America (a, d), Europe 

(b, e), and Eastern Asia (c, f). Each point represents the data set mean and is colored 

based on the season of the field campaign. Also shown are the 1:1, 2:1, and 1:2 lines.  
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2016). The model performance during summer suggests that the model can accurately 816 

represent this process. In winter, however, photochemical processing has lower impact 817 

on OOA formation and evolution (Xu et al., 2017). Therefore, in seasons with 818 

decreasing temperatures and/or photochemical activity, the model performance is 819 

worsening, strongly suggesting that other processes become increasingly more 820 

important. Missing SOA formation processes are related to heterogeneous reactions 821 

like oligomerization or aqueous phase processing (Hallquist et al., 2009; Tsimpidi et 822 

al., 2016). Under high RH, aqueous phase processing can rapidly result in highly 823 

oxidized OOA (i.e., M-OOA with high oxygen to carbon ratio, O:C), while the impacts 824 

on fresher, less oxygenated OOA (i.e., L-OOA) are minor. For the latter, photochemical 825 

aging processes under low RH are more important (Xu et al., 2017). Such processes 826 

occur during all seasons, however, the meteorological conditions during winter favor 827 

the formation of M-OOA from aqueous phase chemistry against the L-OOA formation 828 

from gas-phase photochemical oxidation processes (Xu et al., 2017; Mortier et al., 829 

2020; Pozzer et al., 2022). Therefore, this missing formation pathway becomes 830 

gradually more important from spring and fall to winter. Additionally, recent studies 831 

have identified high production of SOA during wintertime which can be attributed to 832 

the rapid oxidation of biomass burning OA by the NO3 radical during nighttime (Kodros 833 

et al., 2020; Paglione et al., 2020; Liu, 2024). Since residential heating from woodstoves 834 

is not included in the model and ORACLE includes only the predominant 835 

photochemical processing of BBOA by OH, a non-consideration of dark chemical 836 

processing of BBOA can lead to substantial underprediction of OOA during the cold 837 

seasons. Over Eastern Asia, OOA is underestimated even during summer (Figure 14f), 838 

mainly due to the underestimation of M-OOA since L-OOA is relatively well 839 

represented during all seasons (Figure S6). In fact, Eastern Asia is characterized by high 840 

RH even during summer, corroborating our hypothesis that aqueous phase processes 841 

may be an important missing piece in simulating the SOA formation. Recent studies 842 

have provided strong evidence that the uptake of water-soluble gas-phase oxidation 843 

products (even small carbonyls like formaldehyde and acetic acid) to the aqueous phase 844 

and their subsequent oxidation and oligomerization can lead to significant increases of 845 

SOA mass during pollution events (Gkatzelis et al., 2021). Overall, EMAC performs 846 

best over the Eastern Asian rural areas during summer and spring and worst in the 847 

vicinity of urban regions during fall and winter. Especially during wintertime, while the 848 

model simulates well the total OA, it significantly overpredicts POA (Figure 14c) and 849 
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at the same time underpredicts SOA (especially M-OOA). This disagreement can be 850 

due to an overestimation of the POA formation from the emitted SVOC species, but 851 

also due to a missing mechanism that can significantly transform POA to SOA in the 852 

aerosol phase during winter. 853 

 854 

5 Aerosol Trends 855 

Here, the simulated 20-year global aerosol composition trends of fine aerosols are 856 

presented and discussed against trends calculated based on observational data. For this, 857 

it is vital to have data well distributed spatially and measured consistently in a 858 

comparable way at all observational sites within a region (Tørseth et al., 2012; Hand et 859 

al., 2011). These conditions, unfortunately, cannot be satisfied by the available PM1 860 

datasets (Figure 2). Instead, here we summarize the available observational data from 861 

each region for the 1st versus the 2nd decade of the examined period. This allows a rough 862 

statistical comparison between the two decades and can give insights on the overall 863 

tendency of the observed aerosol composition trends for each region. These trends are 864 

compared against the simulated PM1 trends based on the respective spatiotemporal 865 

model data, as well as based on all the available model data for the entire model domain 866 

over the complete 20-year period (Figure 15). As the spatial and temporal AMS 867 

campaign distribution is much higher for regions in the northern than the southern 868 

hemisphere, only PM1 data of the former is plotted here. PM2.5 data from the large 869 

monitoring networks is also used to calculate the aerosol composition trends within the 870 

regions of North America, Europe, and Eastern Asia. These networks present 871 

cooperative measurement efforts that, among others, provide routinely filter based 872 

measured data of aerosol composition. Even though not every element is always 873 

measured at all sites and despite data gaps for some places, collectively, the networks’ 874 

datasets provide the consistency and duration requirements mentioned above. The 875 

calculated trends are compared against PM2.5 simulated results based on the respective 876 

spatiotemporal model data. It is worth noting that a comparison of filter PM2.5 to AMS 877 

detected PM1 is not completely straightforward. First, as seen in Sections 2.1.3 and 878 

2.2.1, there are expected compositional differences between the two size ranges, 879 

especially in polluted regions (Sun et al., 2020; Petit et al., 2015). Second, instrumental 880 

differences of the real-time on-line AMS (Decarlo et al., 2006) versus the non-real-time 881 

off-line filter instruments (Docherty et al., 2011; Hand et al., 2011) can manipulate the 882 

measurements in different ways, as discussed in the following sections.  883 
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 884 

5.1 Europe 885 

Figure 16 depicts the interannual and seasonal concentration change of filter 886 

measured PM2.5 components with a polynomial fitted trendline, in comparison to the 887 

corresponding concentration trends as calculated by the EMAC model. Both 888 

observations and the model reveal a concentration decrease for the three main inorganic 889 

components of PM2.5, following the emission reductions during the last 20 years. 890 

Sulfate concentrations have decreased drastically during the last decade (i.e., -46% 891 

compared to 2000s). However, the simulated reduction is not so apparent mainly 892 

because filter observations show much higher concentrations during the first half of the 893 

2000s than model simulations. Until 2005, observed sulfate concentrations rose during 894 

all seasons, however, they rapidly dropped under the 2000 levels in the following years. 895 

The average decline rate is -0.15 µg m-3 yr-1, compared to the simulated rate of -0.02 896 

µg m-3 yr-1. AMS measurements (Figure 17) corroborate the findings of filter 897 

observations, revealing a drastic decrease in PM1 sulfate concentrations during the 898 

decade of 2010s (i.e., -18% compared to 2000s). EMAC underestimates European PM1 899 

(b) Nitrate 

(d) Organic Aerosol (c) Ammonium 

(a) Sulfate 

Figure 15: Simulated decadal change in (a) sulfate, (b) nitrate, (c) ammonium, and (d) 

anthropogenic organic aerosol concentrations between the 2000s and 2010s.  
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900 

Figure 16: Temporal evolution of the observed (a, c, e, and g subplots on the left) 

and simulated (b, d, f, h subplots on the right) concentrations of PM2.5 sulfate (a, b), 

nitrate (c, d), ammonium, (e, f), and organic aerosol (g, h) during the period 2000–

2018 over Europe. Black lines show the annual trend while the dark blue, light blue, 

orange, and red lines represent the seasonal trends during winter, spring, summer, 

and autumn. Ranges represent the 1σ SD (standard deviation). 
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sulfate (Figure 10b) resulting in a less pronounced negative trend in its concentrations 901 

(i.e., -11%) since the model underestimation is more pronounced during the 2000s. The 902 

average simulated decadal change in sulfate PM1 concentrations for the entire European 903 

domain is -15% (Figure 15). Similar to sulfate, filter measured nitrate concentrations 904 

rose until 2005 (except during summer where they remain in low levels) and then 905 

quickly dropped again with an average rate of -0.09 µg m-3 yr-1 (Figure 16c). The high 906 

observed nitrate concentrations during the first half of the 2000s results in an average 907 

decrease of -35% between the two decades. On the other hand, the calculated change 908 

of AMS-PM1 nitrate concentrations between the 2000s and the 2010s is -10 %, which 909 

is similar to the simulated drop of -12%. However, it is worth mentioning that the model 910 

significantly overestimates the nitrate concentrations both in comparison to AMS 911 

measurements (Figure 11b) and to filter observations, especially during summer 912 

(Milousis et al., 2024). The analysis of model simulation and observations (both by 913 

AMS and filters) reveal that ammonium concentrations exhibit strong reductions 914 

between the decades of 2000s and 2010s. The average concentration reduction between 915 

the two decades is -21% based on the AMS observations, -13% based on the EMAC 916 

results for PM1 (or -16% for the entire European domain), and -56% for the PM2.5 filter 917 

observations. Therefore, the reduction of ammonium is much stronger based on the 918 

filter observations (i.e., -0.1 µg m-3 yr-1) than based on AMS measurements or modeled 919 

data (i.e., -0.02 µg m-3 yr-1). It is worth emphasizing that ammonium is clearly 920 

declining, even though NH3 emissions have only been slightly reduced. This apparent 921 

inconsistency can be attributed to the strong reductions of SO2 and NOx. This results in 922 

reduced availability of acids (i.e., H2SO4 and HNO3) preventing the formation of 923 

ammonium and allowing the NH3 to reside in the gas phase. This is also verified by 924 

NH3 observations, where no significant trends, and even statistical increases, have been 925 

observed despite reported reductions in NH3 emissions (Fagerli et al., 2016; Liu et al., 926 

2024).  927 

The downward trend of organic aerosol calculated based on the filter observations 928 

(-0.04 µg m-3 yr-1) is milder than that of inorganic components and differs between 929 

seasons (Figure 16e). During summer, there is no clear trend observed, while in winter, 930 

OC concentration soars after 2003 until 2005 when it starts to gradually drop until it 931 

reaches the concentration levels of the other seasons during the second half of 2010s. 932 

Irregularities in the early first decade could be owed to a lack of OC data (Fagerli et al., 933 

2016). OC data during spring and autumn shows a mild downward trend after 2005 as 934 
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well. Overall, the average difference of OC concentration between the two decades is -935 

22%. However, model data does not corroborate this reduction; on the opposite a slight 936 

increase is calculated by the model during the last five years (Figure 16h). This agrees 937 

with the AMS observations which predict a positive OA trend (Figure 17d) with an 938 

average increase of +0.44 µg m-3 (or 10%) from the first to the second decade. Despite 939 

the prominent underestimation of PM1 OA by the model, the simulated PM1 OA trend 940 

is also positive with an average decadal increase of +0.55 µg m-3 (or 31%). Overall, 941 

inconsistencies between AMS and filter observations can be attributed to instrumental 942 

differences. First, is the size of particulate matter observed which is 2.5 μm for filters 943 

and up to 1 μm for the AMS. The size distribution of OA can be affected by multiple 944 

factors, including RH and chemical composition. Sun et al. (2020) have shown that the 945 

PM1/PM2.5 SOA ratio increases when RH is below 60% and the contribution of 946 

inorganic components in the aerosol decreases. This increase is related to differences 947 

in aerosol water content due to changes in aerosol hygroscopicity and phase state. 948 

Simulated data reveals that the frequency of RH dropping below 60% over European 949 

locations has marginally increased (by 1%) during the decade of 2010s. However, the 950 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 

Figure 17: Decadal PM1 concentration trends in Europe expressed by the bar plots 

of the mass concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, and 

(d) OA during the periods 2000 - 2010 (left) and 2011 - 2020 (right) as calculated 

from the AMS observational dataset (dark colors) and the corresponding simulation 

values (light colors). The upper and lower whiskers range from 10-90%, the 

quartiles from 25-75% of the dataset. The black line is the median. 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



42 

 

drastic reduction of sulfate and nitrate levels during the same period can explain the 951 

increase in PM1 OA, as measured by the AMS, as opposed to the decrease in PM2.5 OA 952 

observed by filters. Another important difference between the AMS and the filters is 953 

that the latter, in contrast to AMS, only detects the carbonaceous fraction (OC) of OA. 954 

Then, the ratio of the total organic mass (OM) to OC must be considered when 955 

comparing the measured OC to AMS or simulated OA. However, the OM:OC is 956 

broadly debated in literature. OM:OC is closely correlated to the oxygen to carbo ratio 957 

(O:C) and therefore it is dependent on the chemical aging degree of OA. For the range 958 

of SOA found in the atmosphere, Aiken et al. (2008) calculated the OM/OC ratios 959 

between 1.9 to 2.5. Similarly, the ratio for POA varies depending on the source and 960 

composition between 1.3 and 1.5 (Aiken et al., 2008). As the EMEP stations in Europe 961 

are a mix of urban and rural locations, the measured OC concentrations are typically 962 

multiplied by a median OM:OC value of 1.7. However, the oxidation capacity of the 963 

atmosphere has increased as anthropogenic emissions such as SO2 have decreased 964 

(Dalsøren et al., 2016), leading to an increased oxidation rate of organic compounds 965 

and the formation of SOA. Consequently, a growing SOA fraction over the last 20 years 966 

would have been accompanied by a rising OM:OC ratio. It can be assumed that while 967 

the OC measured by the filters showed a slight downward trend (Figure 16g), a 968 

conversion into OA via adapted gradually increasing OM:OC ratios could have 969 

compensated the OC reduction and show a better matching trend compared to the AMS 970 

and EMAC OA. 971 

 972 

5.2 North America 973 

Over North America, the filter measured inorganic aerosol compound 974 

concentrations declined strongly during the last 20 years, following their precursor 975 

emission reductions, with higher reductions over urban locations (Figure 18) and less 976 

over rural regions (Figure 19). Nitrate reductions are more pronounced over urban 977 

regions (-0.07 µg m-3 yr-1), especially during winter, while over rural locations, the 978 

decline is imperceptible (-0.01 µg m-3 yr-1) since the abundance of NH3 have 979 

decelerated the decrease of NH4NO3. On the other hand, the drastic decrease of SO2 980 

emissions (Table S5, Figure S4) resulted in strong reductions of sulfate concentrations 981 

primarily over urban areas (-0.16 µg m-3 yr-1) but also over remote regions (-0.07 µg m-
982 

3 yr-1), especially during the summer seasons. Following the reductions of sulfate and 983 
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984 

 (b) Sulfate 

 (d) Nitrate 

 (f) Ammonium 

 (h) Organic aerosol 

EMAC simulations over urban N. America EPA observations over N. America 

 (a) Sulfate 

 (c) Nitrate 

 (e) Ammonium 

 (g) Organic aerosol 

Figure 18: Temporal evolution of the observed (a, c, e, and g subplots on the left) 

and simulated (b, d, f, h subplots on the right) concentrations of PM2.5 sulfate (a, b), 

nitrate (c, d), ammonium, (e, f), and organic aerosol (g, h) during the period 2000–

2018 over urban locations in North America. Black lines show the annual trend 

while the dark blue, light blue, orange, and red lines represent the seasonal trends 

during winter, spring, summer, and autumn. Ranges represent the 1σ SD (standard 

deviation). 
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nitrate, ammonium decrease strongly over urban locations by -0.08 µg m-3 yr-1,  985 

especially during the 2010s (Figure 18), even though NH3 emissions remain practically 986 

unchanged (Figure S4). Similarly, over Canada, strong reductions in sulfate and nitrate 987 

concentrations were observed by the Canadian Air and Precipitation Monitoring 988 

Network (CAPMoN), driven by significant decreases in SO₂ and NOₓ emissions (Cheng 989 

et al., 2022). While PM2.5 concentrations decreased in eastern Canada, as observed by 990 

the National Air Pollution Surveillance (NAPS), emission reductions were less 991 

effective in the west, where large-scale wildfires overwhelmed these improvements and 992 

even led to occasional increases in PM2.5 concentrations (Yao and Zhang, 2024). These 993 

Figure 19: Temporal evolution of the observed (a, c, e, and g subplots on the left) and 

simulated (b, d, f, h subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate 

(c, d), and organic aerosol (e, f) during the period 2000–2018 over rural locations in 

North America. Black lines show the annual trend while the dark blue, light blue, 

orange, and red lines represent the seasonal trends during winter, spring, summer, and 

autumn. Ranges represent the 1σ SD (standard deviation). 

 (b) Sulfate 

 (d) Nitrate 

 (f) Organic aerosol 

EMAC simulations over rural N. America IMPROVE observations over N. America 

 (a) Sulfate 

 (c) Nitrate 

 (e) Organic aerosol 
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regional differences over Canada are also captured by the EMAC model (Figure 15). 994 

Furthermore, EMAC simulates a weaker decline of sulfate concentrations over both 995 

rural and urban locations (Figures 18 and 19), mainly due to its tendency to 996 

underestimate sulfate concentrations during the 2000s and especially during summer. 997 

Reductions on the simulated nitrate and ammonium concentrations are also noticeable 998 

but to a lesser extent than on the filter observations (Figures 18 and 19). The observed 999 

OA concentrations over urban regions decrease until 2009, however, they gradually 1000 

increase during 2010s by 0.11 µg m-3 yr-1. On the other hand, the model calculated OA 1001 

concentration levels remain practically unchanged during the simulated period. Both 1002 

the simulated and the observed OA concentration trends are also very weak over the 1003 

rural and remote regions (Figure 19). 1004 

Figure 20 depicts the decadal PM1 concentration trends in North America between 1005 

2000s and 2010s. The AMS data for PM1 aerosol composition is composed of 1006 

observational datasets from 30 field campaigns during the 2000s and 58 during the 1007 

2010s (Figure 2). This uneven distribution can statistically manipulate the calculations 1008 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 

Figure 20: Decadal PM1 concentration trends in North America expressed by the bar 

plots of the mass concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, 

and (d) OA during the periods 2000 - 2010 (left) and 2011 - 2020 (right) as calculated 

from the AMS observational dataset (dark colors) and the corresponding simulation 

values (light colors). The upper and lower whiskers range from 10-90%, the quartiles 

from 25-75% of the dataset. The black line is the median. 
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and hinder the extraction of valid statements for trends over North America. Sulfate 1009 

concentrations exhibit a tighter distribution during the 2nd decade (Figure 20); however, 1010 

the mean concentration remains unchanged between the two decades. On the other 1011 

hand, the simulated sulfate concentrations increase during the 2010s, mainly due to the 1012 

larger proportion of urban field campaigns during the second decade. Indeed, the model 1013 

simulates a reduction of the continental average sulfate concentrations by 20%, with 1014 

maximum differences exceeding 1 μg m-3 over the Southeast US (Figure 15). This 1015 

contradicted behavior is also mirrored on nitrate concentrations where both the AMS 1016 

dataset and the corresponding simulated results produce a positive trend between the 1017 

two decades, while the simulated continental average nitrate concentrations decrease 1018 

(Figure 15). Furthermore, compared to AMS observations, the model tends to 1019 

underpredict sulfate concentrations and overpredict nitrate. This results in a strong 1020 

correlation of the simulated ammonium with nitrate exhibiting a significant positive 1021 

trend, which is not observed in the AMS dataset (Figure 20). Finally, as for PM2.5 OA, 1022 

the observed and, to a lesser extent, the simulated PM1 OA concentrations increase 1023 

slightly during the 2010s.  1024 

 1025 

5.3 Eastern Asia 1026 

EANET observations of PM2.5 sulfate reveal a significant increase of its 1027 

concentrations until 2007 (Figure 21). However, in view of the upcoming Beijing 1028 

Olympic Games in 2008, the first SO2 emission controls have started to be 1029 

implemented, and sulfate gradually reduced by -0.27 µg m-3 yr-1. By the end of 2017, 1030 

SO2 emissions have been declined by 59% following the Clean Air Action (Zhai et al., 1031 

2019), however, observed sulfate concentrations have decreased by only 23% due to an 1032 

increased dry deposition and oxidation rate of SO2 during the same period (Fagerli et 1033 

al., 2016). EMAC fails to reproduce the reduction of sulfate concentrations after 2008 1034 

since the CAMS emission inventory assumes only a stabilization of SO2 emissions after 1035 

the year 2013, instead of a strong decline (Figure S4). At the same period, NOx was 1036 

reduced by 21% and NH3 by just 3% (Zhai et al., 2019). This however is not mirrored 1037 

in the observed nitrate trends (Figure 21), where nitrate reduces by only -0.05 µg m-3 1038 

yr-1 after 2007. The strong SO2 reduction hinders the decline of nitrate since reductions 1039 

in (NH4)2SO4 release NH3 to react with HNO3 and form NH4NO3. In contrast to 1040 

observations, the simulated nitrate and ammonium continues to increase until the end 1041 

of 2010s following the trends in NOx emissions used as input in the model (Figure S4). 1042 
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The frequency of AMS field-campaigns started to grow significantly in Eastern Asia 1043 

only after 2008, while after 2013, the first consistent and aggressive emission controls 1044 

started in China under the Clean Air Action (Zhai et al., 2019). Thus, since 2013 marks 1045 

a significant year for Eastern Asia and due to the lack of AMS campaigns prior to 2006 1046 

in the region, the decade comparison for Eastern Asia is done for the periods of 2006-1047 

2012 and 2013-2020. Between these two periods, AMS observations reveal a -17% 1048 

decline for sulfate, while the corresponding simulated sulfate concentrations reduce by 1049 

just -5% (Figure 22). Similar to PM2.5, the average PM1 nitrate concentrations remain 1050 

Figure 21: Temporal evolution of the observed (a, c, e, and g subplots on the left) and 

simulated (b, d, f, h subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate 

(c, d), and ammonium (e, f) during the period 2000–2018 over Eastern Asia. Black lines 

show the annual trend while the dark blue, light blue, orange, and red lines represent the 

seasonal trends during winter, spring, summer, and autumn. Ranges represent the 1σ SD 

(standard deviation). 

 (b) Sulfate 

 (d) Nitrate 

 (f) Ammonium 

EMAC simulations over E. Asia EANET observations over E. Asia 

 (a) Sulfate 

 (c) Nitrate 

 (e) Ammonium 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



48 

 

the same between the two periods with a marginal decline observed by the AMS and a 1051 

marginal increase simulated by EMAC, while the observed ammonium reduces by 18% 1052 

following the reduction in sulfate concentrations (Figure 22). In contrast to inorganic 1053 

aerosol precursors, the anthropogenic VOC emissions over Eastern Asia continue to 1054 

increase even after 2013, mostly due to the use of solvents but also due to the energy 1055 

transformation and industrial sector (Hoesly et al., 2018). Thus, both the observed and 1056 

the simulated PM1 OA concentrations increase between the two examined periods by 1057 

15% and 33%, respectively (Figure 22). 1058 

 1059 

6 Conclusion 1060 

This study investigates global trends in atmospheric aerosol composition over the 1061 

past two decades, using the EMAC chemistry-climate model and the CAMS 1062 

anthropogenic emissions inventory. Results integrate model outputs with global 1063 

observational data from 2000-2020, covering PM2.5 composition from regional 1064 

monitoring networks (e.g., EMEP in Europe) and PM1 composition from 744 AMS 1065 

observational datasets at 169 sites worldwide. Findings reveal substantial regional 1066 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 

Figure 22: Decadal PM1 concentration trends in Eastern Asia expressed by the bar plots 

of the mass concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, and (d) 

OA during the periods 2006 - 2012 (left) and 2013 - 2020 (right) as calculated from the 

AMS observational dataset (dark colors) and the corresponding simulation values (light 

colors). The upper and lower whiskers range from 10-90%, the quartiles from 25-75% 

of the dataset. The black line is the median. 
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variations in aerosol composition driven by industrial activities, energy production, and 1067 

air quality regulations, highlighting the complexity of air pollution dynamics and its 1068 

management. 1069 

AMS field campaign data show that OA are the dominant PM1 component globally, 1070 

especially in tropical and subtropical regions affected by biomass burning and biogenic 1071 

VOC emissions. Sulfate is the primary inorganic compound across most areas, though 1072 

nitrate predominates in Europe and Eastern Asia. Notably, North America shows 1073 

unexpected sulfate dominance, likely due to seasonal sampling bias. HOA levels are 1074 

higher in North America and Eastern Asia, while BBOA is prominent in rural Europe 1075 

and tropical regions. OOA, particularly aged M-OOA, is the largest OA contributor in 1076 

rural regions across all studied areas. 1077 

For PM2.5 composition, global filter observations indicate OA as the primary 1078 

component in most regions, notably in Southern Hemisphere tropical forests. In Eastern 1079 

Asia, OA and elemental carbon (EC) are prominent, while OA and sulfate have similar 1080 

importance in rural North America. Globally, sulfate constitutes roughly 50% of the 1081 

inorganic PM2.5 mass, followed by nitrate and ammonium. However, sulfate dominance 1082 

observed in filter samples contrasts with AMS findings, likely due to sampling artifacts. 1083 

Regionally, sulfate is highest in the Middle East, while nitrate plays a significant role 1084 

in Europe. Across eight regions, PM2.5 averages are: 21% sulfate, 12% nitrate, 10% 1085 

ammonium, 2% sodium, 3% chloride, 40% OA, and 12% EC. 1086 

The EMAC model confirms OA as the dominant component of fine aerosols 1087 

globally, with the highest concentrations in regions influenced by biomass burning, 1088 

such as tropical forests and savannas. Northern industrialized regions exhibit 1089 

substantial OA levels (30-35%) from fossil and biofuel combustion. While EMAC 1090 

successfully reproduces the prominence of SOA, it struggles to accurately simulate 1091 

aged SOA in areas like Eastern Asia. The model further suggests that nitrate surpasses 1092 

sulfate in PM2.5 composition in Europe, North America, and Eastern Asia, consistent 1093 

with AMS findings but differing from some filter observations. Ammonium mirrors 1094 

sulfate and nitrate distribution, with significant contributions in populated and 1095 

agricultural regions. Mineral dust and sea salt emissions also play key roles regionally. 1096 

Overall, EMAC provides valuable insights into global fine aerosol composition, while 1097 

indicating areas for model refinement. 1098 

This study presents a 20-year analysis of global trends in fine aerosol composition, 1099 

comparing EMAC model simulations with observed trends. Given limited and 1100 
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inconsistent PM1 datasets, the analysis focuses on broad regional trends across the first 1101 

and second decades, using primarily Northern Hemisphere AMS campaign data and 1102 

PM2.5 data from major monitoring networks in North America, Europe, and East Asia. 1103 

While these comparisons offer insights, they are complicated by compositional 1104 

differences between PM1 and PM2.5 and by differences between real-time AMS and 1105 

non-real-time filter-based methods. 1106 

Both filter-based data and EMAC simulations show a major decline in key inorganic 1107 

components over Europe, especially in sulfate, which dropped by 46% in the last 1108 

decade. The EMAC model, however, underestimates the sulfate reduction due to initial 1109 

discrepancies in early 2000s concentrations. Nitrate and ammonium also declined 1110 

significantly, though the model overestimates nitrate levels. Organic aerosol (OA) 1111 

trends vary by method: filter data indicate a slight decrease, while AMS data and 1112 

simulations suggest a mild OA increase in PM1, likely due to differences in particle size 1113 

(PM2.5 vs. PM1) and instrument detection capabilities (filter-based OC vs. AMS OA). 1114 

In North America, filter-based measurements reveal sharp declines in inorganic 1115 

aerosol compounds, particularly in urban areas. Nitrate and sulfate concentrations 1116 

decreased significantly due to lower SO2 and NOx precursor emissions, with 1117 

ammonium levels following this trend, although ammonia itself remained stable in the 1118 

2010s. The EMAC model, however, simulates a weaker sulfate and nitrate decline, 1119 

underestimating sulfate in the early 2000s while overestimating nitrate. Observed OA 1120 

concentrations in urban North America decreased until 2009, then rose in the 2010s, a 1121 

trend only partially captured by the model. PM1 sulfate and nitrate levels from AMS 1122 

data show inconsistent trends, with the model generally underestimating sulfate and 1123 

overestimating nitrate, leading to a positive ammonium trend in the model not observed 1124 

in AMS data. 1125 

In Eastern Asia, EANET PM2.5 data show rising sulfate concentrations until 2007, 1126 

followed by a decline as SO2 emission controls implemented prior to the 2008 Beijing 1127 

Olympics. Despite a 59% reduction in SO2 emissions by 2017, sulfate concentrations 1128 

fell by only 23%, likely due to increased dry deposition and oxidation rates. The EMAC 1129 

model does not fully capture this trend, as it assumes stable SO2 emissions post-2013 1130 

rather than a steep decline. Similarly, while observed nitrate and ammonium levels 1131 

show minimal reductions after 2007, the model inaccurately projects continued 1132 

increases, reflecting discrepancies in NOx emissions trends. AMS data indicate a 17% 1133 

reduction in PM1 sulfate from 2006–2012 to 2013–2020, compared to a 5% reduction 1134 
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in the model, with observed PM1 OA concentrations increasing by 15% and model 1135 

predictions showing a 33% rise, driven by sustained VOC emissions from solvents and 1136 

industrial sources. 1137 

Overall, despite the complexities and inconsistencies in long-term aerosol trend 1138 

analysis due to instrumental and methodological differences, this study highlights the 1139 

importance of consistent, long-term global aerosol trend analysis. By integrating model 1140 

results and observational data over 20 years, the study reveals significant 1141 

spatiotemporal changes in atmospheric aerosol composition over different regions of 1142 

the planet, largely driven by recent changes in aerosol precursor emissions. 1143 

 1144 

Code and data availability. The usage of MESSy (Modular Earth Submodel System) 1145 

and access to the source code is licensed to all affiliates of institutions which are 1146 

members of the MESSy Consortium. Institutions can become a member of the MESSy 1147 

Consortium by signing the “MESSy Memorandum of Understanding”. More 1148 

information can be found on the MESSy Consortium website: http://www.messy-1149 

interface.org (last access: 8 November 2024). The data produced in the study are 1150 

available from the author upon request 1151 

 1152 

 1153 

Authors contribution: APT designed the research with contributions from VAK. APT 1154 

and VAK developed ORACLE-lite. AM and VAK implemented ISOROPIA-lite in 1155 

EMAC. SS selected all AMS observations and NM provided specific observations from 1156 

sites over the Mediterranean. APT performed the simulations. APT and SS analyzed 1157 

the results.  APT, SS and VAK wrote the manuscript with contributions from NM and 1158 

AM. All co-authors made revisions and corrections. 1159 

 1160 

Competing interests: The authors declare that no competing interests are present 1161 

 1162 

Acknowledgements: The work described in this paper has received funding from the 1163 

Initiative and Networking Fund of the Helmholtz Association through the project 1164 

“Advanced Earth System Modelling Capacity (ESM)”. The authors gratefully 1165 

acknowledge the Earth System Modelling Project (ESM) for funding this work by 1166 

providing computing time on the ESM partition of the supercomputer JUWELS 1167 

(Alvarez, 2021) at the Jülich Supercomputing Centre (JSC). 1168 

 1169 

Financial support: This research has been supported by the project FORCeS funded 1170 

from the European Union’s Horizon 2020 research and innovation program under grant 1171 

agreement no. 821205. 1172 

 1173 

References 1174 

Aggarwal, S. G. and Kawamura, K.: Carbonaceous and inorganic composition in long-1175 

range transported aerosols over northern Japan: Implication for aging of water-1176 

soluble organic fraction, Atmospheric Environment, 43, 2532-2540, 1177 

10.1016/j.atmosenv.2009.02.032, 2009. 1178 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



52 

 

Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, 1179 

K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., 1180 

Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., 1181 

Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., 1182 

Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, 1183 

and ambient organic aerosols with high-resolution time-of-flight aerosol mass 1184 

spectrometry, Environmen. Sci. & Technol., 42, 4478-4485, 2008. 1185 

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., 1186 

Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic 1187 

biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-1188 

4072, 10.5194/acp-11-4039-2011, 2011. 1189 

Ames, R. B. and Malm, W. C.: Comparison of sulfate and nitrate particle mass 1190 

concentrations measured by IMPROVE and the CDN, Atmospheric Environment, 1191 

35, 905-916, 10.1016/s1352-2310(00)00369-1, 2001. 1192 

Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The 1193 

nature and sources of cloud-active aerosols, Earth-Science Reviews, 89, 13-41, 1194 

10.1016/j.earscirev.2008.03.001, 2008. 1195 

Anttila, P. and Tuovinen, J. P.: Trends of primary and secondary pollutant 1196 

concentrations in Finland in 1994-2007, Atmospheric Environment, 44, 30-41, 1197 

10.1016/j.atmosenv.2009.09.041, 2010. 1198 

Astitha, M., Lelieveld, J., Kader, M. A., Pozzer, A., and de Meij, A.: Parameterization 1199 

of dust emissions in the global atmospheric chemistry-climate model EMAC: impact 1200 

of nudging and soil properties, Atmospheric Chemistry and Physics, 12, 11057-1201 

11083, 10.5194/acp-12-11057-2012, 2012. 1202 

Bacer, S., Sullivan, S. C., Karydis, V. A., Barahona, D., Kramer, M., Nenes, A., Tost, 1203 

H., Tsimpidi, A. P., Lelieveld, J., and Pozzer, A.: Implementation of a 1204 

comprehensive ice crystal formation parameterization for cirrus and mixed-phase 1205 

clouds in the EMAC model (based on MESSy 2.53), Geoscientific Model 1206 

Development, 11, 4021-4041, 10.5194/gmd-11-4021-2018, 2018. 1207 

Batmunkh, T., Kim, Y. J., Lee, K. Y., Cayetano, M. G., Jung, J. S., Kim, S. Y., Kim, 1208 

K. C., Lee, S. J., Kim, J. S., Chang, L. S., and An, J. Y.: Time-Resolved 1209 

Measurements of PM2.5 Carbonaceous Aerosols at Gosan, Korea, J. Air Waste 1210 

Manage. Assoc., 61, 1174-1182, 10.1080/10473289.2011.609761, 2011. 1211 

Bian, H. S., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, 1212 

M. T., Karydis, V. A., Kucsera, T. L., Pan, X. H., Pozzer, A., Skeie, R. B., Steenrod, 1213 

S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of 1214 

global particulate nitrate from the AeroCom phase III experiment, Atmospheric 1215 

Chemistry and Physics, 17, 12911-12940, 10.5194/acp-17-12911-2017, 2017. 1216 

Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, 1217 

G., Canonaco, F., Prevot, A. S. H., Nenes, A., Pandis, S. N., and Mihalopoulos, N.: 1218 

Processing of biomass-burning aerosol in the eastern Mediterranean during 1219 

summertime, Atmospheric Chemistry and Physics, 14, 4793-4807, 10.5194/acp-14-1220 

4793-2014, 2014. 1221 

Bourotte, C., Curl-Amarante, A. P., Forti, M. C., Pereira, L. A. A., Braga, A. L., and 1222 

Lotufo, P. A.: Association between ionic composition of fine and coarse aerosol 1223 

soluble fraction and peak expiratory flow of asthmatic patients in Sao Paulo city 1224 

(Brazil), Atmospheric Environment, 41, 2036-2048, 1225 

10.1016/j.atmosenv.2006.11.004, 2007. 1226 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



53 

 

Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K. W., 1227 

and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, 1228 

Global Biogeochemical Cycles, 11, 561-587, 10.1029/97gb02266, 1997. 1229 

Bozzetti, C., El Haddad, I., Salameh, D., Daellenbach, K. R., Fermo, P., Gonzalez, R., 1230 

Minguillón, M. C., Iinuma, Y., Poulain, L., Elser, M., Müller, E., Slowik, J. G., 1231 

Jaffrezo, J. L., Baltensperger, U., Marchand, N., and Prévôt, A. S. H.: Organic 1232 

aerosol source apportionment by offline-AMS over a full year in Marseille, Atmos. 1233 

Chem. Phys., 17, 8247-8268, 10.5194/acp-17-8247-2017, 2017. 1234 

Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-1235 

Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., 1236 

Siscovick, D., Smith, S. C., Jr., Whitsel, L., and Kaufman, J. D.: Particulate matter 1237 

air pollution and cardiovascular disease: An update to the scientific statement from 1238 

the American Heart Association, Circulation, 121, 2331-2378, 1239 

10.1161/CIR.0b013e3181dbece1, 2010. 1240 

Budisulistiorini, S. H., Riva, M., Williams, M., Miyakawa, T., Chen, J., Itoh, M., 1241 

Surratt, J. D., and Kuwata, M.: Dominant contribution of oxygenated organic aerosol 1242 

to haze particles from real-time observation in Singapore during an Indonesian 1243 

wildfire event in 2015, Atmos. Chem. Phys., 18, 16481-16498, 10.5194/acp-18-1244 

16481-2018, 2018. 1245 

Budisulistiorini, S. H., Baumann, K., Edgerton, E. S., Bairai, S. T., Mueller, S., Shaw, 1246 

S. L., Knipping, E. M., Gold, A., and Surratt, J. D.: Seasonal characterization of 1247 

submicron aerosol chemical composition and organic aerosol sources in the 1248 

southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee, Atmos. 1249 

Chem. Phys., 16, 5171-5189, 10.5194/acp-16-5171-2016, 2016. 1250 

Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J., Baumann, K., 1251 

Edgerton, E. S., Shaw, S. L., Knipping, E. M., Worsnop, D. R., Jayne, J. T., Gold, 1252 

A., and Surratt, J. D.: Real-Time Continuous Characterization of Secondary Organic 1253 

Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using 1254 

the Aerodyne Aerosol Chemical Speciation Monitor, Environmental Science & 1255 

Technology, 47, 5686-5694, 10.1021/es400023n, 2013. 1256 

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., 1257 

Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., 1258 

Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and 1259 

Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols 1260 

with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, 26, 185-1261 

222, https://doi.org/10.1002/mas.20115, 2007. 1262 

Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., 1263 

Joshi, R., Heal, M. R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., 1264 

Mandal, T. K., Shivani, Gadi, R., Gurjar, B. R., and Nemitz, E.: Seasonal analysis 1265 

of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: 1266 

chemical characterisation, source apportionment and new marker identification, 1267 

Atmos. Chem. Phys., 21, 10133-10158, 10.5194/acp-21-10133-2021, 2021. 1268 

Celis, J. E., Morales, J. R., Zaror, C. A., and Inzunza, J. C.: A study of the particulate 1269 

matter PM10 composition in the atmosphere of Chillan, Chile, Chemosphere, 54, 1270 

541-550, 10.1016/s0045-6535(03)00711-2, 2004. 1271 

Chakraborty, A., Bhattu, D., Gupta, T., Tripathi, S. N., and Canagaratna, M. R.: Real-1272 

time measurements of ambient aerosols in a polluted Indian city: Sources, 1273 

characteristics, and processing of organic aerosols during foggy and nonfoggy 1274 

periods, Journal of Geophysical Research: Atmospheres, 120, 9006-9019, 1275 

https://doi.org/10.1002/2015JD023419, 2015. 1276 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



54 

 

Cheng, I., Zhang, L., He, Z., Cathcart, H., Houle, D., Cole, A., Feng, J., O'Brien, J., 1277 

Macdonald, A. M., Aherne, J., and Brook, J.: Long-term declines in atmospheric 1278 

nitrogen and sulfur deposition reduce critical loads exceedances at multiple 1279 

Canadian rural sites, 2000–2018, Atmos. Chem. Phys., 22, 14631-14656, 1280 

10.5194/acp-22-14631-2022, 2022. 1281 

Cho, S. Y. and Park, S. S.: Resolving sources of water-soluble organic carbon in fine 1282 

particulate matter measured at an urban site during winter, Environmental Science-1283 

Processes & Impacts, 15, 524-534, 10.1039/c2em30730h, 2013. 1284 

Chow, W. S., Liao, K. Z., Huang, X. H. H., Leung, K. F., Lau, A. K. H., and Yu, J. Z.: 1285 

Measurement report: The 10-year trend of PM<sub>2.5 </sub>major components 1286 

and source tracers from 2008 to 2017 in an urban site of Hong Kong, China, 1287 

Atmospheric Chemistry and Physics, 22, 11557-11577, 10.5194/acp-22-11557-1288 

2022, 2022. 1289 

Cottrell, L. D., Griffin, R. J., Jimenez, J. L., Zhang, Q., Ulbrich, I., Ziemba, L. D., 1290 

Beckman, P. J., Sive, B. C., and Talbot, R. W.: Submicron particles at Thompson 1291 

Farm during ICARTT measured using aerosol mass spectrometry, Journal of 1292 

Geophysical Research-Atmospheres, 113, 10.1029/2007jd009192, 2008. 1293 

Crippa, M., Canonaco, F., Lanz, V. A., Aijala, M., Allan, J. D., Carbone, S., Capes, G., 1294 

Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., 1295 

Freney, E., Ruiz, L. H., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, 1296 

A., Kortelainen, A. M., Kulmala, M., Laaksonen, A., Mensah, A., Mohr, C., Nemitz, 1297 

E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petaja, T., Poulain, L., Saarikoski, 1298 

S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and 1299 

Prevot, A. S. H.: Organic aerosol components derived from 25 AMS data sets across 1300 

Europe using a consistent ME-2 based source apportionment approach, Atmospheric 1301 

Chemistry and Physics, 14, 6159-6176, 10.5194/acp-14-6159-2014, 2014. 1302 

Dalsøren, S. B., Myhre, C. L., Myhre, G., Gomez-Pelaez, A. J., Søvde, O. A., Isaksen, 1303 

I. S. A., Weiss, R. F., and Harth, C. M.: Atmospheric methane evolution the last 40 1304 

years, Atmos. Chem. Phys., 16, 3099-3126, 10.5194/acp-16-3099-2016, 2016. 1305 

de Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., 1306 

Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone, S., Liu, Y. J., Sedlacek, A., 1307 

Springston, S., Goldstein, A. H., Barbosa, H. M. J., Alexander, M. L., Artaxo, P., 1308 

Jimenez, J. L., and Martin, S. T.: Contributions of biomass-burning, urban, and 1309 

biogenic emissions to the concentrations and light-absorbing properties of 1310 

particulate matter in central Amazonia during the dry season, Atmos. Chem. Phys., 1311 

19, 7973-8001, 10.5194/acp-19-7973-2019, 2019. 1312 

DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. 1313 

C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and 1314 

Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass 1315 

spectrometer, Analytical Chemistry, 78, 8281-8289, 10.1021/ac061249n, 2006. 1316 

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., 1317 

Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J. P., Textor, 1318 

C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol 1319 

and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, 1320 

Atmos. Chem. Phys., 6, 4321-4344, 2006. 1321 

Docherty, K. S., Aiken, A. C., Huffman, J. A., Ulbrich, I. M., DeCarlo, P. F., Sueper, 1322 

D., Worsnop, D. R., Snyder, D. C., Peltier, R. E., Weber, R. J., Grover, B. D., 1323 

Eatough, D. J., Williams, B. J., Goldstein, A. H., Ziemann, P. J., and Jimenez, J. L.: 1324 

The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental 1325 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



55 

 

intercomparisons and fine particle composition, Atmospheric Chemistry and 1326 

Physics, 11, 12387-12420, 10.5194/acp-11-12387-2011, 2011. 1327 

Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., and 1328 

Samet, J. M.: Fine particulate air pollution and hospital admission for cardiovascular 1329 

and respiratory diseases, Jama, 295, 1127-1134, 10.1001/jama.295.10.1127, 2006. 1330 

Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q. Q., Yang, W., Wang, F., Bai, Z. P., 1331 

Zhao, X. D., and Yang, Y. C.: Chemical characterization of submicron aerosol and 1332 

particle growth events at a national background site (3295 m a.s.l.) on the Tibetan 1333 

Plateau, Atmos. Chem. Phys., 15, 10811-10824, 10.5194/acp-15-10811-2015, 2015. 1334 

EMEP: EMEP Status Report: Transboundary particulate matter, photo-oxidants, 1335 

acidifying and eutrophying components., Norwegian Meterological Institute, 2021. 1336 

Fagerli, H., Tsyro, S., Denby, B., Olivie, D., Nyiri, A., Gauss, M., Simpson, D., Wind, 1337 

P., Benedictow, A., Mortier, A., Jonson, J., Schulz, M., Kirkevåg, A., Valdebenito, 1338 

A., Iversen, T., Seland, Ø., Aas, W., Hjellbrekke, A.-G., Solberg, S., and Varma, V.: 1339 

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying 1340 

components. EMEP Status Report 2016, 10.13140/RG.2.2.27632.46088, 2016. 1341 

Fang, T., Guo, H. Y., Zeng, L. H., Verma, V., Nenes, A., and Weber, R. J.: Highly 1342 

Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between 1343 

Sulfate and Aerosol Toxicity, Environmental Science & Technology, 51, 2611-1344 

2620, 10.1021/acs.est.6b06151, 2017. 1345 

Favez, O., Cachler, H., Sciare, J., Alfaro, S. C., El-Araby, T. M., Harhash, M. A., and 1346 

Abdelwahab, M. M.: Seasonality of major aerosol species and their transformations 1347 

in Cairo megacity, Atmospheric Environment, 42, 1503-1516, 1348 

10.1016/j.atmosenv.2007.10.081, 2008. 1349 

Feng, J., Hu, M., Chan, C. K., Lau, P. S., Fang, M., He, L., and Tang, X.: A comparative 1350 

study of the organic matter in PM2.5 from three Chinese megacities in three different 1351 

climatic zones, Atmospheric Environment, 40, 3983-3994, 1352 

10.1016/j.atmosenv.2006.02.017, 2006. 1353 

Fuzzi, S., Decesari, S., Facchini, M. C., Cavalli, F., Emblico, L., Mircea, M., Andreae, 1354 

M. O., Trebs, I., Hoffer, A., Guyon, P., Artaxo, P., Rizzo, L. V., Lara, L. L., 1355 

Pauliquevis, T., Maenhaut, W., Raes, N., Chi, X. G., Mayol-Bracero, O. L., Soto-1356 

Garcia, L. L., Claeys, M., Kourtchev, I., Rissler, J., Swietlicki, E., Tagliavini, E., 1357 

Schkolnik, G., Falkovich, A. H., Rudich, Y., Fisch, G., and Gatti, L. V.: Overview 1358 

of the inorganic and organic composition of size-segregated aerosol in Rondonia, 1359 

Brazil, from the biomass-burning period to the onset of the wet season, Journal of 1360 

Geophysical Research-Atmospheres, 112, 10.1029/2005jd006741, 2007. 1361 

George, D. T., Howard, K., Isabella, A.-M., John, B., Robert, D. B., Kevin, C., Sara 1362 

De, M., Francesco, F., Bertil, F., Mark, W. F., Jonathan, G., Dick, H., Frank, J. K., 1363 

Nino, K., Robert, L., Annette, P., Sanjay, T. R., David, R., Beate, R., Jonathan, M. 1364 

S., Thomas, S., Torben, S., Jordi, S., and Bert, B.: A joint ERS/ATS policy 1365 

statement: what constitutes an adverse health effect of air pollution? An analytical 1366 

framework, European Respiratory Journal, 49, 1600419, 10.1183/13993003.00419-1367 

2016, 2017. 1368 

Gioda, A., Amaral, B. S., Monteiro, I. L. G., and Saint'Pierre, T. D.: Chemical 1369 

composition, sources, solubility, and transport of aerosol trace elements in a tropical 1370 

region, Journal of Environmental Monitoring, 13, 2134-2142, 10.1039/c1em10240k, 1371 

2011. 1372 

Gkatzelis, G. I., Papanastasiou, D. K., Karydis, V. A., Hohaus, T., Liu, Y., Schmitt, S. 1373 

H., Schlag, P., Fuchs, H., Novelli, A., Chen, Q., Cheng, X., Broch, S., Dong, H., 1374 

Holland, F., Li, X., Liu, Y. H., Ma, X. F., Reimer, D., Rohrer, F., Shao, M., Tan, Z., 1375 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



56 

 

Taraborrelli, D., Tillmann, R., Wang, H. C., Wang, Y., Wu, Y. S., Wu, Z. J., Zeng, 1376 

L. M., Zheng, J., Hu, M., Lu, K. D., Hofzumahaus, A., Zhang, Y. H., Wahner, A., 1377 

and Kiendler-Scharr, A.: Uptake of Water-soluble Gas-phase Oxidation Products 1378 

Drives Organic Particulate Pollution in Beijing, Geophysical Research Letters, 48, 1379 

10.1029/2020gl091351, 2021. 1380 

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the 1381 

earth's atmosphere, Environmental Science & Technology, 41, 1514-1521, 1382 

10.1021/es072476p, 2007. 1383 

Granier, C., Darras, S., Gon, H. D. v. d., Doubalova, J., Elguindi, N., Galle, B., Gauss, 1384 

M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse, C., Quack, B., Simpson, D., 1385 

and Sindelarova, K.: The Copernicus Atmosphere Monitoring Service global and 1386 

regional emissions (April 2019 version) 10.24380/d0bn-kx16, 2019. 1387 

Guelle, W., Schulz, M., Balkanski, Y., and Dentener, F.: Influence of the source 1388 

formulation on modeling the atmospheric global distribution of sea salt aerosol, 1389 

Journal of Geophysical Research: Atmospheres, 106, 27509-27524, 1390 

https://doi.org/10.1029/2001JD900249, 2001. 1391 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. 1392 

K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature 1393 

version 2.1 (MEGAN2.1): an extended and updated framework for modeling 1394 

biogenic emissions, Geosci. Model Dev., 5, 1471-1492, 10.5194/gmd-5-1471-2012, 1395 

2012. 1396 

Guerreiro, C. B. B., Foltescu, V., and de Leeuw, F.: Air quality status and trends in 1397 

Europe, Atmospheric Environment, 98, 376-384, 10.1016/j.atmosenv.2014.09.017, 1398 

2014. 1399 

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., 1400 

Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., 1401 

Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., 1402 

Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., 1403 

Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The 1404 

formation, properties and impact of secondary organic aerosol: current and emerging 1405 

issues, Atmospheric Chemistry and Physics, 9, 5155-5236, 10.5194/acp-9-5155-1406 

2009, 2009. 1407 

Hand, J., Copeland, S. A., McDade, C., Day, D., Moore, Jr., Dillner, A., Pitchford, M., 1408 

Indresand, H., Schichtel, B., Malm, W., and Watson, J.: Spatial and seasonal patterns 1409 

and temporal variability of haze and its constituents in the United States, IMPROVE 1410 

Report V,  2011. 1411 

Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due 1412 

to tropospheric aerosols: A review, Reviews of Geophysics, 38, 513-543, 1413 

10.1029/1999rg000078, 2000. 1414 

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, 1415 

T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., 1416 

Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. 1417 

R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive 1418 

gases and aerosols from the Community Emissions Data System (CEDS), Geosci. 1419 

Model Dev., 11, 369-408, 10.5194/gmd-11-369-2018, 2018. 1420 

Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, 1421 

L., Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. 1422 

R.: Highly time-resolved chemical characterization of atmospheric submicron 1423 

particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution 1424 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



57 

 

Aerosol Mass Spectrometer, Atmospheric Chemistry and Physics, 10, 8933-8945, 1425 

10.5194/acp-10-8933-2010, 2010. 1426 

IPCC: (Intergovernmental Panel on Climate Change): The physical science basis. 1427 

Contribution of working group I to the fifth assessment report of the 1428 

intergovernmental panel on climate change. T.F. Stocker, D. Qin, G.-K. Plattner, M. 1429 

Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley 1430 

(eds.). Cambridge University Press, Cambridge, United Kingdom and New York, 1431 

NY, USA, 2013. 1432 

IPCC, P.R. Shukla, J. S., R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, 1433 

M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. 1434 

Luz, J. Malley (Ed.): Climate Change 2022: Mitigation of Climate Change. 1435 

Contribution of Working Group III to the Sixth Assessment Report of the 1436 

Intergovernmental Panel on Climate Change Cambridge University Press, 1437 

Cambridge, UK and New York, NY, USA, 10.1017/9781009157926, 2022. 1438 

Janssen, R. H. H., Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Lelieveld, J., Crippa, M., 1439 

Prévôt, A. S. H., Ait-Helal, W., Borbon, A., Sauvage, S., and Locoge, N.: Influence 1440 

of local production and vertical transport on the organic aerosol budget over Paris, 1441 

Journal of Geophysical Research: Atmospheres, 122, 8276-8296, 1442 

https://doi.org/10.1002/2016JD026402, 2017. 1443 

Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and 1444 

Worsnop, D. R.: Development of an Aerosol Mass Spectrometer for Size and 1445 

Composition Analysis of Submicron Particles, Aerosol Science and Technology, 33, 1446 

49-70, 10.1080/027868200410840, 2000. 1447 

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, 1448 

J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., 1449 

Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, 1450 

K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., 1451 

Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. 1452 

R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., 1453 

Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., 1454 

Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., 1455 

Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., 1456 

Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, 1457 

L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and 1458 

Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science, 326, 1459 

1525-1529, 2009. 1460 

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., 1461 

Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel 1462 

System (MESSy2), Geoscientific Model Development, 3, 717-752, 2010. 1463 

Jöckel, P., Tost, H., Pozzer, A., Bruehl, C., Buchholz, J., Ganzeveld, L., Hoor, P., 1464 

Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., 1465 

Taraborrelli, D., Van Aardenne, J., and Lelieveld, J.: The atmospheric chemistry 1466 

general circulation model ECHAM5/MESSy1: consistent simulation of ozone from 1467 

the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067-5104, 2006. 1468 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., 1469 

Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: 1470 

Biomass burning emissions estimated with a global fire assimilation system based 1471 

on observed fire radiative power, Biogeosciences, 9, 527-554, 10.5194/bg-9-527-1472 

2012, 2012. 1473 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



58 

 

Kakavas, S., Pandis, S. N., and Nenes, A.: ISORROPIA-Lite: A Comprehensive 1474 

Atmospheric Aerosol Thermodynamics Module for Earth System Models, Tellus 1475 

Series B-Chemical and Physical Meteorology, 74, 1-23, 10.16993/tellusb.33, 2022. 1476 

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. 1477 

C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, 1478 

J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, 1479 

C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic 1480 

aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123, 1481 

2005. 1482 

Karydis, V. A., Tsimpidi, A. P., Pozzer, A., and Lelieveld, J.: How alkaline compounds 1483 

control atmospheric aerosol particle acidity, Atmospheric Chemistry and Physics, 1484 

21, 14983-15001, 10.5194/acp-21-14983-2021, 2021. 1485 

Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M., and Lelieveld, J.: Effects of 1486 

mineral dust on global atmospheric nitrate concentrations, Atmos. Chem. Phys., 16, 1487 

1491-1509, 10.5194/acp-16-1491-2016, 2016. 1488 

Karydis, V. A., Tsimpidi, A. P., Bacer, S., Pozzer, A., Nenes, A., and Lelieveld, J.: 1489 

Global impact of mineral dust on cloud droplet number concentration, Atmospheric 1490 

Chemistry and Physics, 17, 5601-5621, 10.5194/acp-17-5601-2017, 2017. 1491 

Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: 1492 

Technical Note: An implementation of the dry removal processes DRY DEPosition 1493 

and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. 1494 

Chem. Phys., 6, 4617-4632, 2006. 1495 

Klingmuller, K., Lelieveld, J., Karydis, V. A., and Stenchikov, G. L.: Direct radiative 1496 

effect of dust-pollution interactions, Atmospheric Chemistry and Physics, 19, 7397-1497 

7408, 10.5194/acp-19-7397-2019, 2019. 1498 

Klingmuller, K., Metzger, S., Abdelkader, M., Karydis, V. A., Stenchikov, G. L., 1499 

Pozzer, A., and Lelieveld, J.: Revised mineral dust emissions in the atmospheric 1500 

chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch), 1501 

Geoscientific Model Development, 11, 989-1008, 10.5194/gmd-11-989-2018, 2018. 1502 

Klingmüller, K., Karydis, V. A., Bacer, S., Stenchikov, G. L., and Lelieveld, J.: Weaker 1503 

cooling by aerosols due to dust-pollution interactions, Atmospheric Chemistry and 1504 

Physics, 20, 15285-15295, 10.5194/acp-20-15285-2020, 2020. 1505 

Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato, S., Florou, 1506 

K., Skyllakou, K., Kaltsonoudis, C., Nenes, A., and Pandis, S. N.: Rapid dark aging 1507 

of biomass burning as an overlooked source of oxidized organic aerosol, 1508 

Proceedings of the National Academy of Sciences of the United States of America, 1509 

117, 33028-33033, 10.1073/pnas.2010365117, 2020. 1510 

Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. 1511 

T., He, C. L., and Leung, D. M.: Mineral dust aerosol impacts on global climate and 1512 

climate change, Nature Reviews Earth & Environment, 4, 71-86, 10.1038/s43017-1513 

022-00379-5, 2023. 1514 

Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., 1515 

Eleftheriadis, K., and Pandis, S. N.: Sources and chemical characterization of 1516 

organic aerosol during the summer in the eastern Mediterranean, Atmospheric 1517 

Chemistry and Physics, 15, 11355-11371, 10.5194/acp-15-11355-2015, 2015. 1518 

Kuzu, S. L., Yavuz, E., Akyüz, E., Saral, A., Akkoyunlu, B. O., Özdemir, H., Demir, 1519 

G., and Ünal, A.: Black carbon and size-segregated elemental carbon, organic carbon 1520 

compositions in a megacity: a case study for Istanbul, Air Quality, Atmosphere & 1521 

Health, 13, 827-837, 10.1007/s11869-020-00839-1, 2020. 1522 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



59 

 

Kyllönen, K., Vestenius, M., Anttila, P., Makkonen, U., Aurela, M., Wängberg, I., 1523 

Mastromonaco, M. N., and Hakola, H.: Trends and source apportionment of 1524 

atmospheric heavy metals at a subarctic site during 1996-2018, Atmospheric 1525 

Environment, 236, 10.1016/j.atmosenv.2020.117644, 2020. 1526 

Lang, P. E., Carslaw, D. C., and Moller, S. J.: A trend analysis approach for air quality 1527 

network data, Atmospheric Environment-X, 2, 10.1016/j.aeaoa.2019.100030, 2019. 1528 

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prevot, 1529 

A. S. H.: Source apportionment of submicron organic aerosols at an urban site by 1530 

factor analytical modelling of aerosol mass spectra, Atmospheric Chemistry and 1531 

Physics, 7, 1503-1522, 2007. 1532 

Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., Szidat, S., 1533 

Wehrli, M. N., Wacker, L., Weimer, S., Caseiro, A., Puxbaum, H., and Prevot, A. S. 1534 

H.: Source attribution of submicron organic aerosols during wintertime inversions 1535 

by advanced factor analysis of aerosol mass spectra, Environmental Science & 1536 

Technology, 42, 214-220, 10.1021/es0707207, 2008. 1537 

Lanz, V. A., Prevot, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., 1538 

Gianini, M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and 1539 

Baltensperger, U.: Characterization of aerosol chemical composition with aerosol 1540 

mass spectrometry in Central Europe: an overview, Atmospheric Chemistry and 1541 

Physics, 10, 10453-10471, 10.5194/acp-10-10453-2010, 2010. 1542 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution 1543 

of outdoor air pollution sources to premature mortality on a global scale, Nature, 1544 

525, 367-371, 10.1038/nature15371, 2015. 1545 

Li, L., Wang, W., Feng, J., Zhang, D., Li, H., Gu, Z., Wang, B., Sheng, G., and Fu, J.: 1546 

Composition, source, mass closure of PM2.5 aerosols for four forests in eastern 1547 

China, Journal of Environmental Sciences, 22, 405-412, 10.1016/s1001-1548 

0742(09)60122-4, 2010. 1549 

Liu, L., ; Thorsten Hohaus; Philipp Franke; Anne C. Lange; Ralf Tillmann; Hendrik 1550 

Fuchs; Zhaofeng Tan; Franz Rohrer; Vlassis Karydis; Quanfu He; Vaishali Vardhan; 1551 

Stefanie Andres; Birger Bohn; Frank Holland; Benjamin Winter; Sergej Wedel; 1552 

Anna Novelli; Andreas Hofzumahaus; Andreas Wahner; and Astrid Kiendler-1553 

Scharr: Observational evidence reveals the significance of nocturnal chemistry in 1554 

secondary organic aerosol formation across all seasons, npj Climate and 1555 

Atmospheric Science, in review, 2024. 1556 

Liu, X., Lara, R., Dufresne, M., Wu, L., Zhang, X., Wang, T., Monge, M., Reche, C., 1557 

Di Leo, A., Lanzani, G., Colombi, C., Font, A., Sheehan, A., Green, D. C., 1558 

Makkonen, U., Sauvage, S., Salameh, T., Petit, J.-E., Chatain, M., Coe, H., Hou, S., 1559 

Harrison, R., Hopke, P. K., Petäjä, T., Alastuey, A., and Querol, X.: Variability of 1560 

ambient air ammonia in urban Europe (Finland, France, Italy, Spain, and the UK), 1561 

Environment International, 185, 108519, 1562 

https://doi.org/10.1016/j.envint.2024.108519, 2024. 1563 

Lohmann, U. and Ferrachat, S.: Impact of parametric uncertainties on the present-day 1564 

climate and on the anthropogenic aerosol effect, Atmos. Chem. Phys., 10, 11373-1565 

11383, 10.5194/acp-10-11373-2010, 2010. 1566 

Mallet, M. D., D'Anna, B., Même, A., Bove, M. C., Cassola, F., Pace, G., Desboeufs, 1567 

K., Di Biagio, C., Doussin, J. F., Maille, M., Massabò, D., Sciare, J., Zapf, P., di 1568 

Sarra, A. G., and Formenti, P.: Summertime surface PM1 aerosol composition and 1569 

size by source region at the Lampedusa island in the central Mediterranean Sea, 1570 

Atmos. Chem. Phys., 19, 11123-11142, 10.5194/acp-19-11123-2019, 2019. 1571 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



60 

 

Mariani, R. L. and de Mello, W. Z.: PM2.5-10, PM2.5 and associated water-soluble 1572 

inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro, 1573 

Atmospheric Environment, 41, 2887-2892, 10.1016/j.atmosenv.2006.12.009, 2007. 1574 

Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. 1575 

H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, 1576 

T., Poschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Dias, M. A. S., 1577 

Spracklen, D. V., Swietlicki, E., and Trebs, I.: SOURCES AND PROPERTIES OF 1578 

AMAZONIAN AEROSOL PARTICLES, Reviews of Geophysics, 48, 1579 

10.1029/2008rg000280, 2010. 1580 

Meng, Z. Y. and Seinfeld, J. H.: Time scales to achieve atmospheric gas-aerosol 1581 

equilibrium for volatile species, Atmospheric Environment, 30, 2889-2900, 1582 

10.1016/1352-2310(95)00493-9, 1996. 1583 

Milousis, A., Tsimpidi, A. P., Tost, H., Pandis, S. N., Nenes, A., Kiendler-Scharr, A., 1584 

and Karydis, V. A.: Implementation of the ISORROPIA-lite aerosol 1585 

thermodynamics model into the EMAC chemistry climate model (based on MESSy 1586 

v2.55): implications for aerosol composition and acidity, Geosci. Model Dev., 17, 1587 

1111-1131, 10.5194/gmd-17-1111-2024, 2024. 1588 

Mkoma, S. L.: Physico-Chemical Characterisation of Atmospheric Aerosols in 1589 

Tanzania, with Emphasis on the Carbonaceous Aerosol Components and on 1590 

Chemical Mass Closure, 2008. 1591 

Mkoma, S. L., Maenhaut, W., Chi, X. G., Wang, W., and Raes, N.: Characterisation of 1592 

PM10 atmospheric aerosols for the wet season 2005 at two sites in East Africa, 1593 

Atmospheric Environment, 43, 631-639, 10.1016/j.atmosenv.2008.10.008, 2009. 1594 

Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, 1595 

C., Alastuey, A., Querol, X., Seco, R., Penuelas, J., Jimenez, J. L., Crippa, M., 1596 

Zimmermann, R., Baltensperger, U., and Prevot, A. S. H.: Identification and 1597 

quantification of organic aerosol from cooking and other sources in Barcelona using 1598 

aerosol mass spectrometer data, Atmospheric Chemistry and Physics, 12, 1649-1599 

1665, 10.5194/acp-12-1649-2012, 2012. 1600 

Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L., 1601 

Ramos-Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H., Cardenas, B., 1602 

Gutierrez-Avedoy, V., and Molina, M. J.: Air quality in North America's most 1603 

populous city &ndash; overview of the MCMA-2003 campaign, Atmos. Chem. 1604 

Phys., 7, 2447-2473, 10.5194/acp-7-2447-2007, 2007. 1605 

Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., 1606 

Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, 1607 

J. J., Stevens, P. S., Volkamer, R., and Zavala, M.: An overview of the MILAGRO 1608 

2006 Campaign: Mexico City emissions and their transport and transformation, 1609 

Atmospheric Chemistry and Physics, 10, 8697-8760, 10.5194/acp-10-8697-2010, 1610 

2010. 1611 

Mortier, A., Gliß, J., Schulz, M., Aas, W., Andrews, E., Bian, H., Chin, M., Ginoux, P., 1612 

Hand, J., Holben, B., Zhang, H., Kipling, Z., Kirkevåg, A., Laj, P., Lurton, T., 1613 

Myhre, G., Neubauer, D., Olivié, D., von Salzen, K., Skeie, R. B., Takemura, T., 1614 

and Tilmes, S.: Evaluation of climate model aerosol trends with ground-based 1615 

observations over the last 2 decades – an AeroCom and CMIP6 analysis, Atmos. 1616 

Chem. Phys., 20, 13355-13378, 10.5194/acp-20-13355-2020, 2020. 1617 

Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, 1618 

D. R.: Real-Time Methods for Estimating Organic Component Mass Concentrations 1619 

from Aerosol Mass Spectrometer Data, Environmental Science & Technology, 45, 1620 

910-916, 10.1021/es102951k, 2011. 1621 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



61 

 

Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, 1622 

J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., 1623 

Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., 1624 

Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed 1625 

in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. 1626 

Phys., 10, 4625-4641, 10.5194/acp-10-4625-2010, 2010. 1627 

Paatero, P.: Least squares formulation of robust non-negative factor analysis, 1628 

Chemometrics and Intelligent Laboratory Systems, 37, 23-35, 10.1016/s0169-1629 

7439(96)00044-5, 1997. 1630 

Paatero, P.: The Multilinear Engine—A Table-Driven, Least Squares Program for 1631 

Solving Multilinear Problems, Including the n-Way Parallel Factor Analysis Model, 1632 

Journal of Computational and Graphical Statistics, 8, 854-888, 1633 

10.1080/10618600.1999.10474853, 1999. 1634 

Paatero, P. and Tapper, U.: Positive matrix factorization-A nonnegative factor model 1635 

with optimal utilization of error-estimates of data values, Environmetrics, 5, 111-1636 

126, 10.1002/env.3170050203, 1994. 1637 

Paglione, M., Gilardoni, S., Rinaldi, M., Decesari, S., Zanca, N., Sandrini, S., 1638 

Giulianelli, L., Bacco, D., Ferrari, S., Poluzzi, V., Scotto, F., Trentini, A., Poulain, 1639 

L., Herrmann, H., Wiedensohler, A., Canonaco, F., Prévôt, A. S. H., Massoli, P., 1640 

Carbone, C., Facchini, M. C., and Fuzzi, S.: The impact of biomass burning and 1641 

aqueous-phase processing on air quality: a multi-year source apportionment study in 1642 

the Po Valley, Italy, Atmos. Chem. Phys., 20, 1233-1254, 10.5194/acp-20-1233-1643 

2020, 2020. 1644 

Parworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., Watson, T., and 1645 

Zhang, Q.: Long-term measurements of submicrometer aerosol chemistry at the 1646 

Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor 1647 

(ACSM), Atmospheric Environment, 106, 43-55, 10.1016/j.atmosenv.2015.01.060, 1648 

2015. 1649 

Pathak, R. K., Wang, T., Ho, K. F., and Lee, S. C.: Characteristics of summertime 1650 

PM2.5 organic and elemental carbon in four major Chinese cities: Implications of 1651 

high acidity for water-soluble organic carbon (WSOC), Atmospheric Environment, 1652 

45, 318-325, 10.1016/j.atmosenv.2010.10.021, 2011. 1653 

Petit, J. E., Favez, O., Sciare, J., Crenn, V., Sarda-Estève, R., Bonnaire, N., Močnik, 1654 

G., Dupont, J. C., Haeffelin, M., and Leoz-Garziandia, E.: Two years of near real-1655 

time chemical composition of submicron aerosols in the region of Paris using an 1656 

Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength 1657 

Aethalometer, Atmos. Chem. Phys., 15, 2985-3005, 10.5194/acp-15-2985-2015, 1658 

2015. 1659 

Pope, C. A., Ezzati, M., and Dockery, D. W.: Fine-Particulate Air Pollution and Life 1660 

Expectancy in the United States, New England Journal of Medicine, 360, 376-386, 1661 

10.1056/NEJMsa0805646, 2009. 1662 

Pozzer, A., Joeckel, P. J., Sander, R., Williams, J., Ganzeveld, L., and Lelieveld, J.: 1663 

Technical note: the MESSy-submodel AIRSEA calculating the air-sea exchange of 1664 

chemical species, Atmos. Chem. Phys., 6, 5435-5444, 2006. 1665 

Pozzer, A., Reifenberg, S. F., Kumar, V., Franco, B., Kohl, M., Taraborrelli, D., 1666 

Gromov, S., Ehrhart, S., Jöckel, P., Sander, R., Fall, V., Rosanka, S., Karydis, V., 1667 

Akritidis, D., Emmerichs, T., Crippa, M., Guizzardi, D., Kaiser, J. W., Clarisse, L., 1668 

Kiendler-Scharr, A., Tost, H., and Tsimpidi, A.: Simulation of organics in the 1669 

atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) 1670 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



62 

 

coupled to the ORACLE (v1.0) submodel, Geoscientific Model Development, 15, 1671 

2673-2710, 10.5194/gmd-15-2673-2022, 2022. 1672 

Price, C. and Rind, D.: A SIMPLE LIGHTNING PARAMETERIZATION FOR 1673 

CALCULATING GLOBAL LIGHTNING DISTRIBUTIONS, Journal of 1674 

Geophysical Research-Atmospheres, 97, 9919-9933, 1992. 1675 

Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, 1676 

C., Stier, P., Vignati, E., and Leieved, J.: Description and evaluation of GMXe: a 1677 

new aerosol submodel for global simulations (v1), Geoscientific Model 1678 

Development, 3, 391-412, 2010. 1679 

Radhi, M., Box, M. A., Box, G. P., Mitchell, R. M., Cohen, D. D., Stelcer, E., and 1680 

Keywood, M. D.: Optical, physical and chemical characteristics of Australian 1681 

continental aerosols: results from a field experiment, Atmospheric Chemistry and 1682 

Physics, 10, 5925-5942, 10.5194/acp-10-5925-2010, 2010. 1683 

Rattanavaraha, W., Canagaratna, M. R., Budisulistiorini, S. H., Croteau, P. L., 1684 

Baumann, K., Canonaco, F., Prevot, A. S. H., Edgerton, E. S., Zhang, Z., Jayne, J. 1685 

T., Worsnop, D. R., Gold, A., Shaw, S. L., and Surratt, J. D.: Source apportionment 1686 

of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 1687 

using the aerosol chemical speciation monitor (ACSM), Atmospheric Environment, 1688 

167, 389-402, https://doi.org/10.1016/j.atmosenv.2017.07.055, 2017. 1689 

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., 1690 

Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated climate to 1691 

horizontal and vertical resolution in the ECHAM5 atmosphere model, Journal of 1692 

Climate, 19, 3771-3791, 10.1175/jcli3824.1, 2006. 1693 

Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooss, J. U., 1694 

Harder, H., Huijnen, V., Jockel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., 1695 

Hella, R. B., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community 1696 

atmospheric chemistry box model CAABA/MECCA-4.0, Geoscientific Model 1697 

Development, 12, 1365-1385, 10.5194/gmd-12-1365-2019, 2019. 1698 

Schlag, P., Kiendler-Scharr, A., Blom, M. J., Canonaco, F., Henzing, J. S., Moerman, 1699 

M., Prévôt, A. S. H., and Holzinger, R.: Aerosol source apportionment from 1-year 1700 

measurements at the CESAR tower in Cabauw, the Netherlands, Atmos. Chem. 1701 

Phys., 16, 8831-8847, 10.5194/acp-16-8831-2016, 2016. 1702 

Seco, R., Peñuelas, J., Filella, I., Llusià, J., Molowny-Horas, R., Schallhart, S., Metzger, 1703 

A., Müller, M., and Hansel, A.: Contrasting winter and summer VOC mixing ratios 1704 

at a forest site in the Western Mediterranean Basin: the effect of local biogenic 1705 

emissions, Atmos. Chem. Phys., 11, 13161-13179, 10.5194/acp-11-13161-2011, 1706 

2011. 1707 

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air 1708 

Pollution to Climate Change, Second, John Wiley & Sons, Inc., Hoboken, New 1709 

Jersey2006. 1710 

Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, 1711 

D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, 1712 

J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., 1713 

Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, 1714 

Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., 1715 

Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and enhance 1716 

satellite-based estimates of ground-level particulate matter for global health 1717 

applications, Atmos. Meas. Tech., 8, 505-521, 10.5194/amt-8-505-2015, 2015. 1718 

Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, 1719 

A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, 1720 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



63 

 

J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., 1721 

Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, 1722 

S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., 1723 

Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global chemical 1724 

composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 1725 

9629-9653, 10.5194/acp-16-9629-2016, 2016. 1726 

Solomon, P. A., Crumpler, D., Flanagan, J. B., Jayanty, R. K. M., Rickman, E. E., and 1727 

McDade, C. E.: US National PM2.5 Chemical Speciation Monitoring Networks-1728 

CSN and IMPROVE: Description of networks, J. Air Waste Manage. Assoc., 64, 1729 

1410-1438, 10.1080/10962247.2014.956904, 2014. 1730 

Souza, P. A. d., Mello, W. Z. d., Mariani, R. L., and Sella, S. M.: Caracterização do 1731 

material particulado fino e grosso e composição da fração inorgânica solúvel em 1732 

água em São José dos Campos (SP), Química Nova, 33, 1247-1253, 2010. 1733 

Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., 1734 

Zarmpas, P., Liakakou, E., Gerasopoulos, E., and Mihalopoulos, N.: Sources and 1735 

processes that control the submicron organic aerosol composition in an urban 1736 

Mediterranean environment (Athens): a high temporal-resolution chemical 1737 

composition measurement study, Atmos. Chem. Phys., 19, 901-919, 10.5194/acp-1738 

19-901-2019, 2019. 1739 

Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F., Prévôt, A. S. H., Fu, P., Li, J., 1740 

Jayne, J., Worsnop, D. R., and Wang, Z.: Source apportionment of organic aerosol 1741 

from 2-year highly time-resolved measurements by an aerosol chemical speciation 1742 

monitor in Beijing, China, Atmos. Chem. Phys., 18, 8469-8489, 10.5194/acp-18-1743 

8469-2018, 2018. 1744 

Sun, Y., He, Y., Kuang, Y., Xu, W., Song, S., Ma, N., Tao, J., Cheng, P., Wu, C., Su, 1745 

H., Cheng, Y., Xie, C., Chen, C., Lei, L., Qiu, Y., Fu, P., Croteau, P., and Worsnop, 1746 

D. R.: Chemical Differences Between PM1 and PM2.5 in Highly Polluted 1747 

Environment and Implications in Air Pollution Studies, Geophysical Research 1748 

Letters, 47, e2019GL086288, https://doi.org/10.1029/2019GL086288, 2020. 1749 

Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. 1750 

J.: Aerosol composition, sources and processes during wintertime in Beijing, China, 1751 

Atmos. Chem. Phys., 13, 4577-4592, 10.5194/acp-13-4577-2013, 2013. 1752 

Tiitta, P., Vakkari, V., Croteau, P., Beukes, J. P., van Zyl, P. G., Josipovic, M., Venter, 1753 

A. D., Jaars, K., Pienaar, J. J., Ng, N. L., Canagaratna, M. R., Jayne, J. T., Kerminen, 1754 

V. M., Kokkola, H., Kulmala, M., Laaksonen, A., Worsnop, D. R., and Laakso, L.: 1755 

Chemical composition, main sources and temporal variability of PM<sub>1</sub> 1756 

aerosols in southern African grassland, Atmos. Chem. Phys., 14, 1909-1927, 1757 

10.5194/acp-14-1909-2014, 2014. 1758 

Timonen, H., Carbone, S., Aurela, M., Saarnio, K., Saarikoski, S., Ng, N. L., 1759 

Canagaratna, M. R., Kulmala, M., Kerminen, V.-M., Worsnop, D. R., and Hillamo, 1760 

R.: Characteristics, sources and water-solubility of ambient submicron organic 1761 

aerosol in springtime in Helsinki, Finland, Journal of Aerosol Science, 56, 61-77, 1762 

10.1016/j.jaerosci.2012.06.005, 2013. 1763 

Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund 1764 

Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring 1765 

and Evaluation Programme (EMEP) and observed atmospheric composition change 1766 

during 1972&ndash;2009, Atmos. Chem. Phys., 12, 5447-5481, 10.5194/acp-12-1767 

5447-2012, 2012. 1768 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



64 

 

Tost, H., Jockel, P. J., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A 1769 

new comprehensive SCAVenging submodel for global atmospheric chemistry 1770 

modelling, Atmos. Chem. Phys., 6, 565-574, 2006. 1771 

Tost, H., Joeckel, P., Kerkweg, A., Pozzer, A., Sander, R., and Lelieveld, J.: Global 1772 

cloud and precipitation chemistry and wet deposition: tropospheric model 1773 

simulations with ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 2733-2757, 2007. 1774 

Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., 1775 

Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. 1776 

K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. 1777 

C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, 1778 

J. L., Kaiser, J. W., Kirkevag, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, 1779 

X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J. J., Mueller, J. F., 1780 

Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L., 1781 

Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, O., Shindell, D. T., 1782 

Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, 1783 

T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, 1784 

F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, 1785 

X.: The AeroCom evaluation and intercomparison of organic aerosol in global 1786 

models, Atmospheric Chemistry and Physics, 14, 10845-10895, 10.5194/acp-14-1787 

10845-2014, 2014. 1788 

Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., and Lelieveld, J.: Global combustion 1789 

sources of organic aerosols: model comparison with 84 AMS factor-analysis data 1790 

sets, Atmos. Chem. Phys., 16, 8939-8962, 10.5194/acp-16-8939-2016, 2016. 1791 

Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N., and Lelieveld, J.: ORACLE 1792 

(v1.0): module to simulate the organic aerosol composition and evolution in the 1793 

atmosphere, Geoscientific Model Development, 7, 3153-3172, 10.5194/gmd-7-1794 

3153-2014, 2014. 1795 

Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N., and Lelieveld, J.: ORACLE 1796 

2-D (v2.0): an efficient module to compute the volatility and oxygen content of 1797 

organic aerosol with a global chemistry-climate model, Geoscientific Model 1798 

Development, 11, 3369-3389, 10.5194/gmd-11-3369-2018, 2018. 1799 

Vasilakopoulou, C. N., Matrali, A., Skyllakou, K., Georgopoulou, M., Aktypis, A., 1800 

Florou, K., Kaltsonoudis, C., Siouti, E., Kostenidou, E., Błaziak, A., Nenes, A., 1801 

Papagiannis, S., Eleftheriadis, K., Patoulias, D., Kioutsioukis, I., and Pandis, S. N.: 1802 

Rapid transformation of wildfire emissions to harmful background aerosol, npj 1803 

Climate and Atmospheric Science, 6, 218, 10.1038/s41612-023-00544-7, 2023. 1804 

Vignati, E., Wilson, J., and Stier, P.: M7: An efficient size-resolved aerosol 1805 

microphysics module for large-scale aerosol transport models, J. Geophys. Res.-1806 

Atmos., 109, doi: 10.1029/2003jd004485, 2004. 1807 

Wang, Y., Li, W., Gao, W., Liu, Z., Tian, S., Shen, R., Ji, D., Wang, S., Wang, L., 1808 

Tang, G., Song, T., Cheng, M., Wang, G., Gong, Z., Hao, J., and Zhang, Y.: Trends 1809 

in particulate matter and its chemical compositions in China from 2013–2017, 1810 

Science China Earth Sciences, 62, 1857-1871, 10.1007/s11430-018-9373-1, 2019. 1811 

Weinstein, J. P., Hedges, S. R., and Kimbrough, S.: Characterization and aerosol mass 1812 

balance of PM2.5 and PM10 collected in Conakry, Guinea during the 2004 1813 

Harmattan period, Chemosphere, 78, 980-988, 10.1016/j.chemosphere.2009.12.022, 1814 

2010. 1815 

WHO: Health aspects of air pollution with particulate matter, ozone and nitrogen 1816 

dioxide : report on a WHO working group, Bonn, Germany 13-15 January 2003,  1817 

2003. 1818 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



65 

 

WHO: WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, 1819 

nitrogen dioxide, sulfur dioxide and carbon monoxide,  2021. 1820 

WHO: Ambient (outdoor) air pollution: https://www.who.int/news-room/fact-1821 

sheets/detail/ambient-(outdoor)-air-quality-and-health, last access: 15/09/2024. 1822 

Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over 1823 

the southeastern United States using high-resolution aerosol mass spectrometry: 1824 

spatial and seasonal variation of aerosol composition and sources with a focus on 1825 

organic nitrates, Atmos. Chem. Phys., 15, 7307-7336, 10.5194/acp-15-7307-2015, 1826 

2015. 1827 

Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P., Wang, 1828 

Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and Photochemical 1829 

Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, 1830 

China, Environ Sci Technol, 51, 762-770, 10.1021/acs.est.6b04498, 2017. 1831 

Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, 1832 

J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in Aerosol Chemistry 1833 

From 2014 to 2016 in Winter in Beijing: Insights From High-Resolution Aerosol 1834 

Mass Spectrometry, Journal of Geophysical Research: Atmospheres, 124, 1132-1835 

1147, https://doi.org/10.1029/2018JD029245, 2019. 1836 

Yang, Y., Smith, S. J., Wang, H., Lou, S., and Rasch, P. J.: Impact of Anthropogenic 1837 

Emission Injection Height Uncertainty on Global Sulfur Dioxide and Aerosol 1838 

Distribution, Journal of Geophysical Research: Atmospheres, 124, 4812-4826, 1839 

https://doi.org/10.1029/2018JD030001, 2019. 1840 

Yao, X. and Zhang, L.: Identifying decadal trends in deweathered concentrations of 1841 

criteria air pollutants in Canadian urban atmospheres with machine learning 1842 

approaches, Atmos. Chem. Phys., 24, 7773-7791, 10.5194/acp-24-7773-2024, 2024. 1843 

Yienger, J. J. and Levy, H.: Empirical-model of global soil-biogenic NOx emissions, 1844 

Journal of Geophysical Research-Atmospheres, 100, 11447-11464, 1845 

10.1029/95jd00370, 1995. 1846 

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and 1847 

Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating 1848 

contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 1849 

19, 11031-11041, 10.5194/acp-19-11031-2019, 2019. 1850 

Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., and Yin, L.: Chemical compositions and 1851 

extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009-1852 

May 2010, Atmospheric Research, 106, 150-158, 10.1016/j.atmosres.2011.12.005, 1853 

2012. 1854 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, 1855 

M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., 1856 

Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., 1857 

Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, 1858 

F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., 1859 

Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. 1860 

R.: Ubiquity and dominance of oxygenated species in organic aerosols in 1861 

anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.  Res. 1862 

Lett., 34, doi: L13801 10.1029/2007gl029979, 2007. 1863 

Zhang, Y., Sun, J., Zhang, X., Shen, X., Wang, T., and Qin, M.: Seasonal 1864 

characterization of components and size distributions for submicron aerosols in 1865 

Beijing, Science China Earth Sciences, 56, 890-900, 10.1007/s11430-012-4515-z, 1866 

2013. 1867 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.



66 

 

Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding, 1868 

A., Wu, J., Ge, S., Chen, C., and Zhou, H.-c.: Chemical composition, sources and 1869 

evolution processes of aerosol at an urban site in Yangtze River Delta, China during 1870 

wintertime, Atmospheric Environment, 123, 339-349, 1871 

https://doi.org/10.1016/j.atmosenv.2015.08.017, 2015a. 1872 

Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Sun, Y. L., Liu, D., Qin, W., Canonaco, 1873 

F., Prévôt, A. S. H., Zhang, H. L., and Zhou, H. C.: Insights into characteristics, 1874 

sources, and evolution of submicron aerosols during harvest seasons in the Yangtze 1875 

River delta region, China, Atmos. Chem. Phys., 15, 1331-1349, 10.5194/acp-15-1876 

1331-2015, 2015b. 1877 

Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Hu, G. Y., Shen, X. J., Wang, Y. Q., Wang, T. 1878 

T., Wang, D. Z., and Zhao, Y.: Chemical composition and mass size distribution of 1879 

PM<sub>1</sub> at an elevated site in central east China, Atmos. Chem. Phys., 14, 1880 

12237-12249, 10.5194/acp-14-12237-2014, 2014. 1881 

Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and 1882 

Liu, H. Y.: Characteristics of concentrations and chemical compositions for PM2.5 1883 

in the region of Beijing, Tianjin, and Hebei, China, Atmospheric Chemistry and 1884 

Physics, 13, 4631-4644, 10.5194/acp-13-4631-2013, 2013. 1885 

Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A review 1886 

of aerosol chemistry in Asia: insights from aerosol mass spectrometer 1887 

measurements, Environ Sci Process Impacts, 22, 1616-1653, 10.1039/d0em00212g, 1888 

2020a. 1889 

Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A review 1890 

of aerosol chemistry in Asia: insights from aerosol mass spectrometer 1891 

measurements, Environmental Science: Processes & Impacts, 22, 1616-1653, 1892 

10.1039/D0EM00212G, 2020b. 1893 

 1894 

 1895 

https://doi.org/10.5194/egusphere-2024-3590
Preprint. Discussion started: 4 December 2024
c© Author(s) 2024. CC BY 4.0 License.


