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Abstract 

 

Atmospheric aerosols significantly impact Earth’s climate and air quality. In addition to their 

number and mass concentration, chemical composition influences their environmental effects. 

This study examines global trends in aerosol composition from 2000 to 2020, using the EMAC 15 

atmospheric chemistry-climate model and a variety of observational datasets. These include PM2.5 

surface data from regional networks and 744 PM1 datasets from 169 AMS field campaigns 

worldwide. Organic aerosol (OA) is the dominant fine aerosol component across all continents, 

particularly in areas with significant biomass burning and biogenic VOC emissions. EMAC 

reproduces the prevalence of secondary OA but underestimates OA aging, revealing uncertainties 20 

in distinguishing fresh versus aged SOA. Although sulfate remains a major component in filter-

based observations, both AMS measurements and model simulations reveal that nitrate has 

emerged as the dominant aerosol species in Europe and Eastern Asia over the past decade, except 

in summer. Mineral dust also contributes significantly to specific regions, as highlighted by 

EMAC. The study identifies substantial declines in sulfate, nitrate, and ammonium in Europe and 25 

North America, attributed to emission controls, though EMAC underestimates these reductions, 

especially sulfate, due to discrepancies in early-2000s levels. In Eastern Asia, sulfate reductions 

due to SO2 controls are partially captured. OA trends differ between methodologies, with filter 

data showing slight decreases, while AMS and model results suggest slight increases in PM1 OA 

across Europe, North America, and Eastern Asia. These findings underscore the need for 30 

integrating advanced models and diverse datasets to better understand aerosol trends and guide 

environmental policy. 
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1. Introduction 

Atmospheric aerosols are tiny solid or liquid particulate matter (PM) suspended in the air, 

ranging in size from a few nanometers to several micrometers. Atmospheric aerosol, especially 

fine particles with aerodynamic diameters less than 2.5 micrometers (PM2.5), poses health risks as 

it can penetrate deep into the respiratory system (WHO, 2003). Long-term exposure to high levels 40 

of PM has been associated with respiratory and cardiovascular diseases (Brook et al., 2010; George 

et al., 2017). Dominici et al. (2006) and Pope et al. (2009) highlight the impact of PM on mortality 

and morbidity, while more recent studies have determined that the air pollution by PM2.5 is 

responsible for more than 3 million premature deaths per year worldwide (Lelieveld et al., 2015; 

WHO, 2024). As a result, air pollution is recognized as the largest environmental threat to human 45 

health in the recent WHO report (WHO, 2021). Furthermore, aerosols can directly influence the 

Earth's climate by scattering and absorbing sunlight, leading to changes in radiation balance 

(Haywood and Boucher, 2000; IPCC, 2013). Aerosols can also affect the Earth’s energy balance 

indirectly through interactions with clouds, i.e., by serving as cloud condensation (CCN) and ice 

(IN) nuclei, affecting cloud formation, cloud properties, and precipitation patterns (Andreae and 50 

Rosenfeld, 2008). Beside the number and mass concentrations of atmospheric aerosol, its chemical 

composition determines its aerosol-related climatic (Klingmuller et al., 2019; Klingmüller et al., 

2020; Kok et al., 2023) and health impacts (Lelieveld et al., 2015; Fang et al., 2017; Karydis et al., 

2021). 

Atmospheric aerosols have various precursors, and they can be categorized into primary and 55 

secondary aerosols based on their origin. Primary sources include natural ones such as volcanic 

eruptions, wildfires, windblown desert dust, and sea spray, as well as human activities like 

industrial emissions and transportation. Secondary aerosols are formed through the oxidation of 

gas phase pollutants in the atmosphere and the thermodynamic partitioning of their products in the 

aerosol phase. Sulfuric acid (H2SO4) is produced by the oxidation of sulfur dioxide (SO2) which 60 

is primarily released from fossil fuel combustion, particularly coal, and from natural sources like 

volcanoes and oceanic dimethyl sulfide (DMS). Nitric acid (HNO3) is formed by the atmospheric 

oxidation of nitrogen oxides (NOx) emitted from combustion processes, such as those in vehicles 

and power plants. The formation of particulate sulfate and nitrate depends on thermodynamic 

partitioning, which governs the equilibrium between the gaseous acids (H2SO4 and HNO₃, 65 

respectively) and their aerosol-phase counterparts. This equilibrium is influenced by factors such 
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as temperature, relative humidity, and the availability of a base, particularly ammonia (NH3), 

which is emitted from agricultural activities and waste treatment. Secondary organic aerosols 

(SOA) can be formed by the oxidation of volatile organic compounds (VOCs), which are emitted 

from vegetation, wildfires, agricultural burning, industrial processes, vehicle exhaust, and volatile 70 

chemical products (VCPs) such as personal care products, coatings, and cleaning agents. 

Several measures have been discussed and implemented to mitigate pollutants emitted from 

specific source sectors including transport, energy (power generation, industries etc.), waste 

management, urban planning and agriculture. A few of the most prominent global conferences that 

have taken place for the purpose of combating climate change and air pollution are the Conferences 75 

of the Parties (COP) since the early 90s, and the supreme decision-making body of the United 

Nations’ Framework Convention on Climate Change (UNFCCC). Their agreements binding the 

parties to individual emission targets are for instance the Agenda 21 of 1992, the Kyoto Protocol 

of 1997 and its successor - the Paris Agreement of 2015. Besides these global agreements, the 

single parties had to implement national or continental plans to meet air quality requirements. The 80 

resulting emission trends have been so drastic that aerosol composition has been unevenly altered 

in different parts of the world. Most European countries are bound by the Gothenburg Protocol 

targets from 1999 and its amendment from 2012 and have in majority successfully reduced 

pollutant levels (EMEP, 2021). SO2 emissions have declined the most, by more than 80% in the 

last two decades. NOx emissions have declined significantly as well (by 50%), but for NH3 only 85 

very small reductions have been achieved (~10%) (Hoesly et al., 2018; EMEP, 2021). NMVOCs 

have also been significantly decreased due to emission controls to the transportation and the 

solvents sector (Hoesly et al., 2018). In the US, pollutant levels are controlled through regulations 

imposed by the National Ambient Air Quality Standards (NAAQS), the Regional Haze Rule and 

the US Clean Air Act of 1970. Over the past two decades, SO2 emissions have declined the most, 90 

by almost 90%, while NOx emissions have decreased by 65%. However, NMVOC emissions have 

only decreased slightly (~5%), and NH3 emissions have increased by 12% (EPA, 2025). The US 

and Canada are also part of the Gothenburg protocol, which has contributed to significant 

reductions in SO2 and NOx emissions. In Asia, South Korea and China, as newly industrialized 

and high-growth economies, experienced rapid growth in pollutant emissions, especially from 95 

1980 to the mid-2000s (Hoesly et al., 2018; Zhai et al., 2019). However, following the Beijing 

Olympic Games in 2008, there have been drastic endeavors of air pollution control in Beijing and 
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neighboring administrative regions (Huang et al., 2010). In 2013, the first consistent and 

aggressive emission controls started under the Clean Air Action (Zhai et al., 2019). The Clean Air 

Action has identified three target regions, the megacity clusters of Beijing-Tianjin-Hebei, Yangtze 100 

River Delta and the Pearl River Delta, while in 2018, the latter was replaced by the Fenwei Plain 

(Zhai et al., 2019). These efforts resulted in a national reduction of 60% for SO₂, 20% for NOx, 

and only 3% for NH₃, although NMVOCs increased by 2% (Zheng et al., 2018). In other parts of 

the world, including Asia, Africa, and Latin America, emissions from residential biomass burning 

and agriculture have continued to rise, driven by population growth (Hoesly et al., 2018). 105 

Air pollution concentration levels can vary by time of day, season, across large spans of time, 

based on meteorological factors, and in connection to climate change. Trends analysis of air 

pollution concentrations (Guerreiro et al., 2014; Lang et al., 2019) can allow the assessment of the 

impact of various factors on air quality including changes in industrial activities, traffic patterns, 

or energy production. Analyzing trends in air pollutants enables comparisons between different 110 

regions or countries (Anttila and Tuovinen, 2010; Chow et al., 2022; Kyllönen et al., 2020) as well 

as between different datasets that provide information for the same pollutant. This can highlight 

areas that are successfully addressing air quality issues, provide benchmarks for others to follow 

but also highlight any kind of inability of each method to reproduce the concentration levels of the 

pollutants. 115 

In this study, we combine model results with a global observational aerosol composition dataset 

to provide insights into the large spatiotemporal changes in aerosol composition over the past two 

decades, driven by changes in aerosol precursor emissions. The dataset includes observations from 

regional filter-based monitoring networks that routinely collect PM2.5 (see Section 2.2), as well as 

a unique comprehensive compilation of 744 individual Aerosol Mass Spectrometer (AMS) field 120 

campaigns worldwide that provide in-situ measurements of PM1 composition. To analyze these 

trends, we use the comprehensive atmospheric chemistry-climate model EMAC, which presents 

21-year global trends in the composition of fine aerosols in different regions of the planet. Here, 

for the first time, EMAC uses a computationally lite version of the organic aerosol module 

ORACLE (Tsimpidi et al., 2014) and the new highly computationally efficient module 125 

ISORROPIA-lite (Kakavas et al., 2022; Milousis et al., 2024). The large emission trends in our 

model are considered by employing the Copernicus Atmosphere Monitoring Service (CAMS) 

inventory for anthropogenic emissions (Granier et al., 2019).  
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2. Observational Dataset 130 

 

2.1 PM1 Dataset 

Since the year 2000, the quadrupole-based Aerodyne aerosol mass spectrometer (Q-AMS) and 

its successors enjoy great popularity as a method for atmospheric aerosol sampling. A great 

advantage of AMS is its ability to deliver high-resolved real-time quantitative data on mass 135 

concentration of particles with dry aerodynamic diameter between ~ 0.05 - 1 µm (Canagaratna et 

al., 2007) as a function of their non-refractory (NR-) chemical composition (i.e., OA and inorganic 

SO4
2-, NO3

-, NH4
+, and Cl-) (Jayne et al., 2000). Over the years and numerous field campaigns, a 

lot of valuable chemical and microphysical information about ambient aerosols has been obtained 

(Ng et al., 2011). During 2000s, these campaigns did not last more than a month, however, the 140 

development of the Aerosol Chemical Speciation Monitor (ACSM), a small and cost-efficient 

version of AMS, allowed the long-term monitoring of the PM1 composition over several locations 

during the 2010s. 

 

2.1.1 AMS factor analysis techniques 145 

The AMS spectra of OA are often further analyzed via factor analysis techniques in order to 

extract detailed information about the OA composition as well. Among factor analysis techniques 

(e.g., ME-2 (Paatero, 1999); PCA (Zhang et al., 2013); MCA (Zhang et al., 2007; Cottrell et al., 

2008)), the PMF (Paatero and Tapper, 1994; Paatero, 1997) is the most popular technique, 

occasionally in combination with the ME-2. Overall, a mass spectrum that peaks at m/z = 44 (or 150 

ƒ44) and m/z = 43 (or ƒ43) is mostly dominated by the CO2
+ and C2H3O

+ ions, respectively. The 

first is mostly linked to acidic groups (i.e, -COOH), typically associated with chemically aged and 

oxygenated organic aerosols (OOA), while the latter is dominated by non-acid oxygenates. OOA 

can be further categorized into different levels of aging and volatility stages. Most commonly, a 

less oxidized (semi-volatile) OA (L-OOA; Bougiatioti et al., 2014) and a more oxidized (low-155 

volatile) OA (M-OOA; Bozzetti et al., 2017) are distinguished (Jimenez et al., 2009; Ng et al., 

2010; Crippa et al., 2014; Stavroulas et al., 2019). The two OOA factors could be identified based 

on the ƒ44 to ƒ43 ratio: M-OOA component spectra have a higher ƒ44, while L-OOA component 

spectra have slightly higher ƒ43. Besides these general factors, other oxygenated OA compounds 
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have been resolved in some campaigns. One of the most important is the IEPOX-OA with abundant 160 

ions at m/z = 53, 75, or 82. This “isoprene” factor correlates strongly with molecular tracers of 

SOA that are derived from isoprene epoxydiols (Xu et al., 2015; Budisulistiorini et al., 2013; 

Budisulistiorini et al., 2016). Several campaigns in North America have found IEPOX-OA, as have 

campaigns in South America and Australia. Furthermore, methane-sulfonic acid (MSA) is often 

retrieved from datasets of marine sites (Crippa et al., 2014; Mallet et al., 2019). Some studies could 165 

identify a nitrogen-enriched OA-factor, NOA, mainly composed of amino compounds formed 

from industrial or marine emissions. A more local-SOA factor that is related to humic-like 

substances, termed as HULIS OA, found in the Netherlands (Schlag et al., 2016) and in Crete 

(Crippa et al., 2014). In Greece (Bougiatioti et al., 2014; Stavroulas et al., 2019; Vasilakopoulou 

et al., 2023), in the Amazonian (De Sá et al., 2019) and often in Asia (Zhang et al., 2015b; 170 

Chakraborty et al., 2015; Du et al., 2015) OOA factors directly associated with biomass burning 

were found, that are processed from fresh biomass burning emissions. Furthermore, OOA 

compounds that are verifiable only biogenically oxygenated were also derived (Kostenidou et al., 

2015).  

Apart from the mass spectrum, OA types can also be distinguished by their oxygen to carbon 175 

ratio (O:C), which is an indicator of photochemical aging. Fresh Primary organic aerosol (POA) 

has a lower oxygen content than OOA, therefore lower O:C ratios. Yet, it sometimes has the same 

dominant m/z peaks. Some of the most commonly resolved POA factors are the Hydrocarbon-like 

(HOA) and Biomass Burning (BBOA) OA. HOA has spectra that are distinguished by clear 

hydrocarbon signatures, dominated by the ion series CnH2n+1
+ and CnH2n-1

+ (Ng et al., 2010). HOA 180 

correlates with fossil fuel combustion tracers like NOx, CO and elemental carbon (Lanz et al., 

2008; Tsimpidi et al., 2016), therefore, is very often observed to be traffic-related and a rather 

dominant POA factor in urban areas (Crippa et al., 2014; Xu et al., 2015; Budisulistiorini et al., 

2016). On the other hand, BBOA typically originates from forest and savanna fires as well as from 

anthropogenically induced agricultural fires (Hoesly et al., 2018) and residential wood burning for 185 

heating. This makes the contribution of BBOA to total OA highly episodic (Zhang et al., 2007) 

and seasonal, and in several cases underestimated due to the rapid physicochemical transformation 

of these emissions to OOA (Stavroulas et al., 2019; Vasilakopoulou et al., 2023). Typical tracers 

to identify BBOA in the spectra are gas-phase acetonitrile, particle-phase levoglucosan and 

potassium (K+) (Lanz et al., 2010; Crippa et al., 2014). However, its mass spectra are also highly 190 
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variable since they can be affected by different types of wood and burning conditions (Crippa et 

al., 2014).  

Furthermore, a coal combustion factor (CCOA) is often identified, which presents a dominant 

contribution to POA during the heating season, mostly in Eastern Asia (Sun et al., 2013; Zhang et 

al., 2014). In many cases, HOA shows remarkably similar spectral patterns as CCOA, so that these 195 

two factors could not be separated and, instead, are combined in a fossil fuel related OA factor 

(FFOA) (Sun et al., 2018; Xu et al., 2019). Another relatively frequent primary type resolved by 

the factor analysis is the cooking related OA (COA) (Mohr et al., 2012). Its spectral pattern is 

governed by OA from fresh cooking emissions and, fittingly, the spectral profiles have a distinct 

diurnal cycle which corresponds to typical (local) meal hours (Mohr et al., 2012; Sun et al., 2013; 200 

Stavroulas et al., 2019). Occasionally, special types of COA are also resolved, including coffee 

roastery OA (Timonen et al., 2013) and OA related to charbroiling (Lanz et al., 2007). 

 

2.1.2 AMS Dataset 

Here, a collection of AMS and ACSM field campaign datasets during the period 2000-2020 has 205 

been compiled (Tables S4-S17). The dataset covers a wide range of environments and seasons 

from almost every continental region worldwide (Figure 1), characterized by a variety of 

atmospheric and climatological conditions as well as sources of pollutants. The selected field 

campaigns lasted from at least one full week to several months. Individual campaigns lasting more 

than one month are divided into shorter periods of preferably only one month. All these individual 210 

Figure 1: Seasonal distribution of AMS datasets per subcontinent. The colored bars indicate the relative 

proportions by season. The numbers in the colored boxes indicate the absolute number of field 

campaigns that occurred in each season. 
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periods of campaign data (thus covering a maximum of one month) are hereafter referred to as 

individual datasets.  

The number of both PM1 and OA composition datasets 

found for each year is increasing significantly for all regions 

through the years (Figure 2) due to the growing popularity of 215 

the AMS devices and the continuous improvement of the 

analysis techniques. Especially during the second decade, the 

number of field campaigns increase drastically, supported by 

the use of ACSM devices since 2010. The long-term 

campaigns in South Africa (2010-2011; (Tiitta et al., 2014)) 220 

and the Southern Great Planes (2010- 2012; (Parworth et al., 

2015)) belong to the very first where the ACSM has been 

utilized. Furthermore, campaigns in regions downwind of 

urban environments have gotten growing attention mostly 

after 2014, primarily in Europe. However, usually these 225 

datasets are not factor analyzed and lack information for the 

OA composition. It is worth mentioning that the small 

number of downwind datasets available can partially 

attributed to the ambiguous definition of downwind sites, 

which might have led instead to the more conventional 230 

classifications of rural or urban locations in some cases.  

Overall, the compiled dataset includes dry NR-PM1 aerosol 

composition from 744 AMS field campaigns datasets at 169 

ground-level observational sites around the world, while 

factor analysis has been used to estimate the OA composition in 398 cases at 140 different 235 

observational sites (Table S1). The dataset includes an intermediate level regional breakdown 

following the sixth assessment report of IPCC working group III (IPCC, 2022) as shown in Figure 

3. The most represented subcontinents are Europe, Eastern Asia and North America. Datasets from 

these three northern-hemisphere continents are evenly distributed over the seasons with only a 

little imbalance for North America which is over-represented during summer (Figure 1). The rest 240 

of the regions include a significantly lower number of datasets; therefore, the seasonal distribution 

Figure 2: Total AMS (dark red) 

and factor analysis (green) 

datasets per year in (a) rural, (b) 

urban-downwind, and (c) urban 

regions 
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is often very uneven. As an example, 50% of the data over the Asia-Pacific Developed region has 

been collected during spring. On the contrary, the changes between the wet and dry seasons are 

well represented at one site over Africa where the ACSM has been employed for year-long 

campaigns (Tiitta et al., 2014). 245 

2.1.3 Observed PM1 Aerosol Composition 

The NR- PM1 aerosol composition derived from AMS field campaigns at 8 regions around the 

world is depicted in Figure 4. The analysis of the AMS dataset reveals that OA is the dominant 

component of PM1 in all continental regions. Campaign data from tropical and subtropical regions 

(e.g., Latin America and Southern/Southeast Asia) is strongly influenced by biomass burning and 250 

biogenic VOC emissions, resulting in notably large OA fractions in aerosol composition, with 

regional averages around 65% and a peak of 92% in the Amazon. However, OA concentration 

shares up to 90% are also found over the Northern Hemisphere regions where the regional average 

OA contribution to PM1 concentrations is around 50%. Overall, OA contributes between 17 - 92% 

(50% on average) of total NR-PM1. This agrees very well with the ranges reported by Kanakidou 255 

et al. (2005) (20%-90%) and Zhang et al. (2007) (18%-70% or 45% on average). Sulfate has been 

the dominant inorganic compound in the aerosol composition in most regions (Figure 4). The 

highest regional average share of sulfate is found over Asia-Pacific Developed (37%) while the 

Figure 3: Worldwide distribution of AMS and ACSM datasets for the of period 2000 - 2020. The world 

map is colored according to the intermediate level regional breakdown of the sixth assessment report of 

IPCC working group III (IPCC, 2022). The rural (green), downwind (red) and urban (blue) campaign 

locations and the total number of PM1 composition (and OA factor analysis in parenthesis) datasets for 

each region are also shown. 
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Figure 4: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 75th percentiles (box) 

of the mass concentration (in μg m–3) for the major PM1 aerosol components, i.e., organic aerosol (green), 

sulfate (red), nitrate (blue), ammonium (yellow), chloride (purple), and the total non-refractive PM1 

(dark red).  The 10th and 90th percentiles (whiskers) for each aerosol component are also shown. The 

number of total months (m.) with AMS data and the number of campaigns (cmp.) is written in small 

boxes under the violins. 
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lowest over Europe (17%) where SO2 has been drastically reduced due to strict air pollution 260 

mitigation strategies. Nitrate dominates over sulfate in Europe and Eastern Asia. However, it is 

surprising that the PM1 nitrate concentrations are significantly lower in North America, despite 

similar mitigation strategies and reductions in SO2 and NOx. This effect is probably due to an over-

representation of summer data in North America (Figure 1), which results in lower nitrate 

concentrations since higher temperatures hinder the condensation of nitric acid in the aerosol 265 

phase. At the same time, sulfate concentrations remain relatively stable and even higher during 

summer due to the increased photochemical production of H2SO4. Overall, nitrate concentrations 

are the highest in winter in Europe and North America, accounting for roughly a quarter of total 

PM1 (Figures S2 and S3). A similar proportion is observed in spring, although the absolute 

concentration is lower. The lowest average nitrate concentrations and shares occur in summer, 270 

when sulfate peaks dominate the inorganic composition. Although both sulfate and nitrate are 

generated through photochemical reactions, this seasonal shift is due to nitric acid partitioning in 

the gas phase at higher temperatures. Additionally, the increased production of sulfuric acid 

reduces the amount of free ammonia available for ammonium nitrate formation, further 

contributing to the summer nitrate decline (Seinfeld and Pandis, 2006). Ammonium concentrations 275 

remain relatively stable throughout the seasons, presenting similar shares of PM1 (Figures S2 and 

S3). However, in contrast to Europe and North America, sulfate concentrations in Eastern Asia are 

the highest in winter, closely followed by summer (Figure S4). While photochemical reactions still 

dominate during warmer, sunnier seasons, aqueous phase reactions are more influential in East 

Asian winter, particularly under high relative humidity (RH) and severe haze conditions. These 280 

factors are often present in Chinese winters and likely explain this regional pattern (Zhang et al., 

2015a; Zhou et al., 2020b). Over the southern regions, ammonium follows sulfate in the inorganic 

aerosol composition due to the high agricultural activities. Overall, the global average contribution 

of the inorganic compounds to total PM1 concentration is 20%, 18%, and 11%, and 1% by sulfate, 

nitrate, ammonium, and chloride, respectively. Zhang et al. (2007) reported a much stronger 285 

contribution by sulfate (32%), less by nitrate (10%), and similar values of ammonium (13%) and 

chloride (1%), by using AMS observations from the early 2000s, indicating that the inorganic 

aerosol composition has been altered during the last 20 years.  

 

 290 
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2.1.4 Observed PM1 Organic Aerosol Composition 

HOA concentrations are observed to be higher over North America and Eastern Asia in 

comparison to Europe (Figure 5). This could be explained by the significant influence of traffic 

emissions on HOA in the vicinity of urban areas. While urban locations are equally represented 

with rural sites in the dataset collection of North America and Eastern Asia, in Europe, rural sites 295 

are immensely over-represented (3 times more than urban sites), diminishing the importance of 

HOA. On the other side, the over-representation of rural sites in the European dataset resulted in 

high concentrations of BBOA which is found to be the dominant primary source of OA in the 

region (Lanz et al., 2010). Here, BBOA originates mostly from domestic wood burning during the 

colder seasons in central Europe, including the Alps, rather than from open biomass burning. Even 300 

though a few campaigns took place in the European boreal forests, only very few factor analyses 

have distinguished BBOA as an individual component. Thus, the contribution of European boreal 

forests to the total European BBOA is unfortunately not clear yet. Similarly, biomass burning is 

an important source of OA in North America and Eastern Asia (Rattanavaraha et al., 2017; Zhou 

et al., 2020a) but less important than HOA (Figure 5). Biomass burning also presents an especially 305 

important source in tropical and subtropical regions (i.e., South Asia and the Developing Pacific, 

Africa, and Latin America and Caribbean) due to episodic wildfires and harvest related burning 

(Budisulistiorini et al., 2018; Cash et al., 2021). Overall, the concentration range of BBOA is very 

high since it varies a lot with season. However, it should be emphasized that the availability of 

factor analysis datasets in equatorial and southern hemisphere continents is very low and therefore, 310 

there is not enough data available for statistically profound statements. The last primary type of 

OA, COA, is population dependent and therefore is mainly found in urban areas and highly 

populated regions (Zhou et al., 2020a). Cooking is a very constant and local source throughout the 

year with low variability and high contributions over Eastern Asia, Europe, North America, and 

South Asia and developing Pacific, especially in urban campaign sites.  315 
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Figure 5: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 75th percentiles (box) 

of the mass concentration (in μg m–3) for the major PM1 OA components calculated from the collected 

factor analysis datasets, i.e., COA (olive green), BBOA (orange), HOA (dark red), L-OOA (light 

turquoise), M-OOA (dark turquoise), OOA (blue), and total OA (green). The 10 th and 90th percentiles 

(whiskers) for each aerosol component are also shown. The number of datasets (m.) and the number of 

campaigns (cmp.) is written in small boxes under the violins.  
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OOA is unequivocally the dominant contributor to total OA with a mean share of 60% in urban 

and 75% in rural regions. Overall, the OOA contribution ranges from 19% (urban minimum) to 

99% (rural maximum). The extreme shares were both found during European campaigns. The 

mean OOA share in Europe however lies roughly in the same magnitude as the global mean 320 

(~70%). The dominant OOA subfactors resolved are L-OOA and M-OOA, while the more aged 

M-OOA dominates in the OA composition of all examined regions (~60% of total OOA). This 

agrees with the findings of Ng et al. (2010), who stated that OOA component spectra become 

increasingly similar to each other with atmospheric oxidation, indicating that ambient OA 

converges towards highly aged M-OOA.  325 

2.2 PM2.5 Dataset 

Routine filter measurement PM2.5 data from large observational networks in East Asia, Europe 

and North America is used. The filter samplers have three modules that independently collect dry 

PM2.5 species on a Teflon, a nylon and a quartz filter. The aerosol chemical composition is 

determined by further analysis of the filters in the laboratory via ion chromatography (inorganic 330 

ions), thermal-optical analysis (OC and EC), and X-ray fluorescence or ICP both OES and MS 

(trace elements) (Solomon et al., 2014). Potential difficulties that could arise when comparing on-

line AMS and ACSM PM1 composition to off-line filter based PM2.5 composition, are discussed 

in section 5. The Environmental Protection Agency (EPA) network includes 211 monitor sites 

primarily in urban areas of North America. The data used here cover monthly averaged PM2.5 335 

aerosol component measurements during 2000-2018 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html). The Interagency Monitoring of 

Protected Visual Environments (IMPROVE) network includes 198 monitoring sites that are 

representative of the regional haze conditions over North America. IMPROVE samplers collect 

24-hour samples, every three days. The data used here covers monthly averaged PM2.5 aerosol 340 

component measurements during 2000-2018 

(http://views.cira.colostate.edu/fed/QueryWizard/Default.aspx). It is worth mentioning that 

ammonium measurements by IMPROVE are only available until the year 2006. The European 

Monitoring and Evaluation Programme (EMEP) network monitors the long-range transmission of 

air pollutants in Europe and Eastern Eurasia (Figure 6). This network includes 70 monitoring sites. 345 

The data used here cover monthly averaged PM2.5 aerosol component measurements during 2000-

2018 (https://www.emep.int/). Finally, the Acid Deposition Monitoring Network in East Asia 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
http://views.cira.colostate.edu/fed/QueryWizard/Default.aspx
https://www.emep.int/
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(EANET) network includes 39 (18 remote, 10 rural, 11 urban) air concentration monitor sites in 

Eurasia, Eastern Asia, South-East Asia and Developing Pacific, and Asia-Pacific Developed. The 

data used here cover monthly averaged PM2.5 aerosol component measurements during 2001-2017 350 

(https://www.eanet.asia/). The global Surface Particulate Matter Network (SPARTAN; Snider et 

al., 2015; Snider et al., 2016) includes a global federation of ground-level PM2.5 monitors from 16 

sites situated primarily in highly populated regions around the word (i.e., North America, Latin 

America and Caribbean, Africa, Middle East, Southern Asia, Eastern Asia, South-Eastern Asia 

and Developing Pacific) (Figure 6). The data used here covers monthly averaged PM2.5 aerosol 355 

component measurements of sulfate, nitrate, ammonium and sodium during 2013-2019 

(https://www.spartan-network.org/). Finally, PM2.5 aerosol component measurements from 

individual observational field campaigns over Latin America and Caribbean, Africa, Europe, 

Eastern Asia, and Asia-Pacific Developed reported as campaign averages in the literature are used 

( Wang et al., 2019;  Radhi et al., 2010; Favez et al., 2008; Mkoma, 2008; Mkoma et al., 2009; 360 

Weinstein et al., 2010; Celis et al., 2004; Bourotte et al., 2007; Fuzzi et al., 2007; Mariani and De 

Mello, 2007; Martin et al., 2010; Souza et al., 2010; Gioda et al., 2011; Molina et al., 2010; Molina 

et al., 2007; Kuzu et al., 2020; Aggarwal and Kawamura, 2009; Batmunkh et al., 2011; Cho and 

Park, 2013; Feng et al., 2006; Li et al., 2010; Pathak et al., 2011; Zhang et al., 2012; Zhao et al., 

2013). 365 

 

Figure 6: Worldwide distribution of filter-based observations for the period of 2000-2020. The world 

map is colored following the intermediate level regional breakdown of the sixth assessment report of 

IPCC working group III (IPCC, 2022). The black dots correspond to the location of the monitor stations.  

https://www.eanet.asia/
https://www.spartan-network.org/
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2.2.1 PM2.5 Aerosol Composition 

The PM2.5 aerosol composition derived from filter observations around the world is depicted in 

Figure 7. The measured organic carbon (OC) has been converted to organic mass (OM) using an 

appropriate OM:OC ratio, depending on the expected degree of chemical ageing of the OA for 370 

each monitoring network. For the EPA network, which includes monitoring sites mainly in urban 

areas, a multiplier of 1.6 is applied to convert the measured OC to OM. The IMPROVE network, 

which includes sites representative of regional haze conditions, uses a higher OM:OC ratio of 1.8 

to account for the more aged OA particles expected in remote areas. EMEP stations in Europe are 

a mix of urban and rural locations, so measured OC concentrations are typically multiplied by a 375 

median OM:OC value of 1.7. OA is the dominant component of PM2.5 in most regions, especially 

over regions affected by the tropical forests of the southern hemisphere (e.g., Latin America & 

Caribbean and Africa). Over the Northern Hemisphere, OA and EC dominate the aerosol 

composition in Eastern Asia (54% and 22% of total PM2.5, respectively) and contribute 

significantly to PM2.5 over Europe (30% and 5% of total PM2.5, respectively). On the other hand, 380 

over North America, OA share is equally important to sulfate over rural areas (28% of total PM2.5 

each) and less important over urban areas (24% versus 33% of sulfate). Indeed, sulfate is the most 

important inorganic component of PM2.5 around the world (~50% of the inorganic PM2.5 mass on 

average) followed by nitrate and ammonium (~20% each). This contradicts the results from AMS 

campaigns showing that ammonium nitrate surpasses ammonium sulfate in the aerosol 385 

composition, especially in Europe and North America. However, filter measurements are prone to 

negative sampling artifacts due to evaporation losses of the semivolatile ammonium nitrate under 

warm and dry conditions (Ames and Malm, 2001), in contrast to the nonvolatile sulfate aerosols 

(Docherty et al., 2011). The contribution of sulfate to the measured inorganic PM2.5 aerosol 

composition is the highest over the Middle East, while nitrate contributes significantly over Europe 390 

(Figure 7). The dominant inorganic ion varies with the season (Figures S2-S4). Nitrate is most 

important in winter, accounting for about a quarter of total PM2.5, while sulfate is the dominant 

PM2.5 component in summer and spring. Over the 8 regions where all 7 components are measured, 

the average contribution of each species to total PM2.5 concentration is 21%, 12%, 10%, 2%, 3%, 

and 40%, and 12% by sulfate, nitrate, ammonium, sodium, chloride, OA, and EC respectively.  395 
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3 Model Calculated Dataset 

3.1 Aerosol Chemistry Climate Model Description 

The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is used, a numerical chemistry 400 

and climate simulation system that includes sub-models describing atmospheric processes from 

the troposphere to the mesosphere and their interaction with oceans, land, and human influences 

(Jöckel et al., 2006). EMAC uses the Modular Earth Submodel System (MESSy2) (Jöckel et al., 

2010) to link the different sub-models with an atmospheric dynamical core, being an updated 

version of the 5th generation European Centre - Hamburg general circulation model (ECHAM5) 405 

(Roeckner et al., 2006). The EMAC model has been extensively described and evaluated against 

observations and satellite measurements and can be applied to a range of spatial resolutions 

(Tsimpidi et al., 2016; Karydis et al., 2016; Janssen et al., 2017; Tsimpidi et al., 2018; Pozzer et 

al., 2022; Milousis et al., 2024; Wang et al., 2025). The spectral resolution used in this study is 

T63L31, corresponding to a horizontal grid resolution of 1.875ox1.875o and 31 vertical layers 410 

extending to 10 hPa at about 25 km from the surface. The presented model simulations cover the 

period 2000–2020. 

In the model configuration used, EMAC calculates fields of gas phase species online through 

the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA) submodel (Sander 

et al., 2019). Aerosol microphysics and gas/aerosol partitioning are calculated by the Global 415 

Modal-aerosol eXtension (GMXe) module (Pringle et al., 2010). Cloud properties and 

microphysics are calculated by the CLOUD submodel utilizing the detailed two-moment 

microphysical scheme of Lohmann and Ferrachat (2010) and considering a physically based 

treatment of the processes of liquid (Karydis et al., 2017) and ice crystal (Bacer et al., 2018) 

activation. The inorganic aerosol composition is computed with the ISORROPIA-lite 420 

thermodynamic equilibrium model (Kakavas et al., 2022) as implemented in EMAC by Milousis 

et al. (2024). ISORROPIA-lite is an accelerated and simplified version of the widely used 

ISORROPIA-II aerosol thermodynamics model which calculates the gas/liquid/solid equilibrium 

partitioning of the K+-Ca2+-Mg2+-NH4
+-Na+-SO4

2--NO3
--Cl--H2O aerosol system. The organic 

aerosol composition and evolution in the atmosphere is calculated by a computationally lite version 425 

Figure 7: Bar chart plots depicting the distribution (violin) and the 25th, 50th and 75th percentiles (box) 

of the mass concentration (in μg m–3) for the major PM2.5 aerosol components, i.e., sulfate (red), nitrate 

(blue), ammonium (yellow), sodium (pink), chloride (purple), crustal ions (brown), organic aerosol 

(green), and elemental carbon (black). The 10th and 90th percentiles (whiskers) for each aerosol 

component are also shown. 
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of the ORACLE module (Tsimpidi et al., 2014) which simulates a wide variety of semi-volatile 

organic products separating them into bins of logarithmically spaced effective saturation 

concentrations (Figure S1). Further details on the EMAC submodels and aerosol modules utilized 

can be found in the supplementary material. 

 430 

3.2 Emissions 

Fuel combustion and agriculture related emissions are based on the high resolution (0.1°×0.1°) 

Copernicus Atmosphere Monitoring Service global anthropogenic emission inventory applied at 

monthly intervals and vary between years, CAMSv4.2 (Granier et al., 2019). As our objective is 

to analyze decadal trends under business-as-usual conditions, the CAMS v4.2 inventory used in 435 

this study does not account for the temporary emission reductions associated with the COVID-19 

lockdowns. The emission factors used for the distribution of traditional POA emissions from fuel 

combustion and open biomass burning sources into the three volatility bins considered by 

ORACLE are based on the work of Tsimpidi et al. (2014). These emission factors account 

additionally for IVOC emissions that are not included in the original emission inventories. We 440 

assume that the missing IVOC emissions from anthropogenic combustion are 1.5 times the 

traditional OA emissions included in the inventory. LVOCs and SVOCs are assumed to be emitted 

in the aerosol phase, while IVOCs are emitted in the gas phase. Then, they are allowed to partition 

between the gas and particle phase. Figure S5 shows the temporal evolution of anthropogenic 

emissions of inorganic (SO2, NH3, NOx) and organic (LVOC, SVOC, IVOC, VOC) aerosol 445 

precursors over the last 20 years, while Table S2 shows their decadal percentage change between 

the 2000s and 2010s.  Open biomass burning emissions are calculated online based on the dry 

matter burned from observations (Kaiser et al., 2012) and the fire type which affect the emission 

factors for the different tracers (Akagi et al., 2011). Similar to POA emissions from fuel 

combustion, POA from biomass burning is distributed to LVOC, SVOC, and IVOC emissions, 450 

however, no additional IVOC emissions are assumed for open biomass burning and therefore the 

sum for the biomass burning emission factors is unity (Tsimpidi et al., 2016). 

Biogenic emissions of isoprene and terpenes are calculated online using the Model of Emissions 

of Gases and Aerosol from Nature (MEGANv2.04; Guenther et al., 2012) and vary between years 

with an average emission flux of 454 and 81.7 Tg yr-1, respectively. The natural emissions of NH3 455 

are based on the GEIA database (Bouwman et al., 1997) and are constant over years but vary 
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seasonally. The database includes excreta from domestic animals, wild animals, synthetic nitrogen 

fertilizers, oceans, biomass burning, and emissions from soils under natural vegetation. NOx 

produced by lightning is calculated online and distributed vertically based on the parameterization 

of Price and Rind (1992). The emissions of NO from soils are calculated online based on the 460 

algorithm of Yienger and Levy (1995). Eruptive and non-eruptive volcanic degassing emissions 

of SO2 are based on the AEROCOM data set (Dentener et al., 2006). The oceanic DMS emissions 

are calculated online by the AIRSEA submodel (Pozzer et al., 2006). Emission fluxes of sea spray 

aerosols are calculated online (Guelle et al., 2001) and vary between years assuming a constant 

composition of 55% Cl-, 30.6% Na+, 7.7% SO4
2-, 3.7% Mg2+, 1.2% Ca2+, 1.1% K+ (Seinfeld and 465 

Pandis, 2006). The average global emission flux of sea spray aerosols is 5910 Tg yr-1. These 

emissions are introduced into the accumulation and coarse aerosol modes, consistent with the 

typical size distribution of sea spray particles. Dust emission fluxes are also calculated online by 

using the meteorological fields calculated by the EMAC model (temperature, pressure, relative 

humidity, soil moisture and the surface friction velocity) together with specific input fields for soil 470 

properties (i.e., the geographical location of the dust sources, the clay fraction of the soils, the 

rooting depth, and the monthly vegetation area index) producing emissions that vary between years 

(Astitha et al., 2012). The average global emission flux of dust particles is 5684 Tg yr-1. Emissions 

of individual crustal species (Ca2+, Mg2+, K+, Na+) are estimated as a constant fraction of mineral 

dust emissions. This fraction is determined based on the geological information that exists for the 475 

different dust source regions of the planet (Karydis et al., 2016) and is applied online on the 

calculated mineral dust emission fluxes based on the location of the grid cell (Klingmuller et al., 

2018). Similar to sea spray, dust emissions are allocated to the accumulation and coarse modes, 

reflecting their observed size distribution in the atmosphere. 

 480 

3.3 Model calculated aerosol composition 

The EMAC simulation corroborates the findings based on filters and AMS observations that 

OA is the dominant component of fine atmospheric aerosols in all continental regions, excluding 

contributions from windblown mineral dust, which are not captured by the observational datasets 

used here (Figure 8). The strongest OA contribution to total PM2.5 (more than 50%) is calculated 485 

over regions affected by biomass burning and biogenic VOC emissions: the tropical forests and 

savannas of Africa, Latin America and Caribbean, Southern Asia, and Southeast Asia and 
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Developing Pacific, as well as the boreal forests of Eurasia. Considerable OA shares (30-35%) are 

also calculated over the industrialized regions of the Northern Hemisphere (i.e., North America, 

Europe, Eastern Asia) and the Middle East, where strong fossil and biofuel combustion-related 490 

sources are located. OA shares peak in the summer over Europe and North America and in the 

winter over Eastern Asia (Figures S2-S4). EMAC is also able to reproduce the dominance of SOA 

(resolved by the AMS as OOA) in all regions, even in regions with strong primary emissions, e.g., 

close to tropical forests or industrial areas. However, EMAC cannot reproduce the dominance of 

aged SOA in many cases (resolved as M-OOA by the AMS), especially over Eastern Asia, 495 

revealing weaknesses in the oxidation scheme of its organic module (e.g., including missing 

sources and formation pathways). POA has the strongest contribution (more than 20%) over 

heavily forested areas (e.g., Africa and Eurasia) and the lowest (less than 10%) over highly 

industrialized regions (e.g., Europe and the Middle East). Regarding the inorganic aerosol 

composition, the EMAC model is not always consistent with filter-based observations since in 500 

many regions it reveals that nitrate overpasses sulfate in the aerosol composition, which is also 

supported by the AMS results. These regions are Europe, North America, and Eastern Asia, where 

nitrate accounts for ~30% of total PM2.5 (excluding contributions from windblown mineral dust), 

with higher contributions in winter and lower contributions in summer (Figures S2-S4). Sulfate 

becomes the dominant inorganic aerosol component only during winter over North America 505 

(Figures S2-S4). On the other hand, sulfate contribution is stronger over the Middle East and Latin 

America and Caribbean (~30%). Ammonium follows the spatial distribution of sulfate and nitrate 

with high contributions to PM2.5 composition (~10-15%) over the highly populated and 

agriculturally intensive regions of North America, Europe, Eastern Asia and Southern Asia. 

Mineral dust is simulated to be a significant natural contributor to aerosol composition in some 510 

regions (Figure 8) accompanied by chemically active crustal cations such as calcium, potassium, 

sodium, and magnesium. Their total share to PM2.5 ionic composition is around 15% in regions 

affected by desert emissions (e.g., Africa, Middle East, Eastern Asia) while in other areas their 

contribution is limited (~ 1%). Finally, sodium and chloride from sea salt emissions are found to 

be high over regions with long coastlines per land area. Most notably, chloride consists of 7% of 515 

the total PM2.5 over the Asia Pacific Developed region, while sodium is the dominant inorganic 

component in the same region with a share of 8%. 
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3.4 Model Evaluation 

In this study we compare the model results with PM1 observational datasets, where each 520 

observational dataset typically represents a monthly average. The model output is sampled for the 

grid cell containing the location of the field campaign for the corresponding month and year. The 

statistical evaluation of EMAC PM1 concentrations against AMS and ACSM datasets over Europe, 

North America, Eastern Asia and other tropical and subtropical regions can be found in table S3.  

Figure 8: Pie charts showing the simulated 21-year average chemical composition of PM2.5 in the 10 

regions considered as defined by the intermediate-level regional breakdown of the IPCC Sixth 

Assessment Report (AR6), Working Group III (IPCC, 2022). The central world map shows the 

simulated average near-surface concentration of PM2.5 (in μg m-3) during the period 2000-2020. The 

spatial domains of the ten regions are illustrated in Figures 3 and 6. 
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The EMAC model generally underpredicts sulfate concentrations, with performance varying by 525 

region. Over North America, it performs best in rural areas (NMB = -8%) but underestimates urban 

concentrations (NMB=-40%) due to low spatial resolution and to possible errors in the assumed 

injection height of SO2 (Yang et al., 2019). It overestimates sulfate in the Midwest and 

underestimates it in the Eastern states, resulting in a narrower concentration range than 

observations (Figure 9a). In Europe, sulfate is underpredicted by ~40% across all environments, 530 

except for some overestimations in Italy and Greece, due to errors in emissions and an 

underestimation of the oxidation capacity of the atmosphere (EMEP, 2021) (Figure 9a). Around 

65% of simulated concentrations are within a factor of 2 compared to measurements. Over Asia, 

sulfate concentrations are higher than in Europe or North America, but the model still 

underpredicts (Table S3). The simulated concentration range is narrower than observed, covering 535 

little more than one order of magnitude compared to two orders of magnitude reported by the 

AMS. In tropical and subtropical regions, sulfate is underestimated, particularly in Asia (NMB ≈ 

-45%), with smaller underpredictions in Africa, Latin America, and the Caribbean (NMB= -30%). 

Average nitrate concentrations are well captured by the model across regions (NMB < 10%), 

but high scatter (NME 40–80%) indicates discrepancies are not systematic. The scatter is more 540 

Figure 9: Deviations (in %) between EMAC results and the AMS and ACSM datasets over the period 

2000 – 2020 for PM1 (a) sulphate, (b) nitrate, (c) ammonium, and (d) organic aerosol. Negative values 

(blue colors) correspond to underprediction of the PM1 aerosol concentrations by the model.  

(a) (b) 

(c) (d) 
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intense over North America (NME=88%), while in Europe, performance is better (NMB = -4%, 

NME = 53%), with 70% of data within a factor of two compared to observations. In Eastern Asia, 

nitrate is generally overestimated (NMB = 8%), especially over the west coast of South Korea and 

the Chinese inlands (Figure 9b). However, Eastern China and especially the coastal regions are 

well described by the model. The contribution of sea salt to nitrate formation is important in these 545 

coastal regions due to their proximity to the Pacific Ocean (Bian et al., 2017). Therefore, the 

overestimation of nitrate levels on the west coast of Korea, in contrast to the well captured east 

coast, could be caused by the dominant west-east winds in the Yellow Sea simulated by the model, 

leading to an overestimation of sea salt content that can contribute to nitrate formation. In tropical 

and subtropical regions, the model tends to overpredict, except in Latin America and the 550 

Caribbean, where it underpredicts (NMB = -50%). The model strongly overpredicts nitrate in 

industrialized Japan and Australia but performs well over Southeast Asia and the Developing 

Pacific (NMB = -3%). 

The EMAC model generally underpredicts ammonium across the Northern Hemisphere but 

performs satisfactorily with low bias and scatter. The largest discrepancies occur in North America 555 

(NME = 63%), where 50% of sites fall outside a factor of two from observations. In Europe, 

performance is best (NMB = -9%), with 75% of results within a factor of two compared to 

measurements. The model performs particularly well in the high-emission Benelux region (Figure 

9c), indicating an accurate emission inventory for agricultural and livestock NH3. However, it may 

overestimate the ammonium nitrate formation (rather than ammonium sulfate) due to errors in 560 

nitrate and sulfate predictions. Over Asia, ammonium is strongly underestimated (NMB = -30%), 

especially in Eastern China, indicating NH3 emission inventory errors. However, it is 

overpredicted in inland deserts (e.g., Tibet) and South Korea, aligning with nitrate overpredictions, 

suggesting excessive NH3 condensation into aerosols, leading to unrealistic ammonium nitrate 

formation. In tropical and southern regions, ammonium underpredictions are more severe (NMB 565 

= -40% to -60%), particularly in Africa and the Asia Pacific Developed region. The largest 

underprediction occurs in Latin America, though both EMAC and AMS agree that ammonium 

contributes the smallest fraction to PM1. Overall, discrepancies are linked to uncertainties in global 

livestock NH3 emissions as criticized by Hoesly et al. (2018). 

The model performance in simulating OA concentrations varies across continents. Over North 570 

America, the model captures mean OA levels well (NMB = -4%) but shows significant scatter 
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(NME = 64%). It overpredicts OA in rural areas (NMB = 37%) while underpredicting it in urban 

and downwind locations (NMB = -28%). Over Europe, OA is generally underestimated (Figure 

9d) while over Eastern Asia, model performance is best (NMB = -29%, NME = 49%). The model 

does well in rural and downwind locations, with 75% of data points within a factor of two 575 

compared to observations. However, as with many global models (Tsigaridis et al., 2014), it fails 

to capture extremely high OA concentrations in large cities due to spatial resolution limitations. 

For other regions, OA underpredictions occur mainly in South Asia and Developing Pacific, 

especially in urban areas, while overpredictions occur over Africa.  

4 Aerosol Trends 580 

Here, the simulated 21-year global aerosol composition trends of fine aerosols are presented 

and discussed against trends calculated based on observational data. For this, it is vital to have data 

well distributed spatially and measured consistently in a comparable way at all observational sites 

within a region (Tørseth et al., 2012; Hand et al., 2011). These conditions, unfortunately, cannot 

be satisfied by the available PM1 datasets (Figure 2). Instead, here we summarize the available 585 

observational data from each region for the 1st versus the 2nd decade of the examined period. This 

allows a rough statistical comparison between the two decades and can give insights into the 

overall tendency of the observed aerosol composition trends for each region. These trends are 

compared against the simulated PM1 trends based on the respective spatiotemporal model data, as 

well as based on all the available model data for the entire model domain over the complete 21-590 

year period (Figure 10). As the spatial and temporal AMS campaign distribution is much higher 

for regions in the northern than the southern hemisphere, only PM1 data of the former is plotted 

here. PM2.5 data from the large monitoring networks is also used to calculate the aerosol 

composition trends within the regions of North America, Europe, and Eastern Asia. These 

networks present cooperative measurement efforts that, among others, provide routinely filter 595 

based measured data of aerosol composition. Even though not every element is always measured 

at all sites and despite data gaps for some places, collectively, the networks’ datasets provide the 

consistency and duration requirements mentioned above. It is important to note that the end year 

of the observational datasets varies by region, depending on data availability (see Section 2.2). The 

calculated trends are compared against PM2.5 simulated results based on the respective 600 

spatiotemporal model data. It is worth noting that a comparison of filter PM2.5 to AMS detected 

PM1 is not completely straightforward. First, as seen in Sections 2.1.3 and 2.2.1, there are expected 
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compositional differences between the two size ranges, especially in polluted regions (Sun et al., 

2020; Petit et al., 2015). Second, instrumental differences of the real-time on-line AMS (Decarlo 

et al., 2006) versus the non-real-time off-line filter instruments (Docherty et al., 2011; Hand et al., 605 

2011) can impact the measurements in different ways, as discussed in the following sections.  

 

4.1 Europe 

Figure 11 depicts the interannual and seasonal concentration change of filter-measured PM2.5 

components with a polynomial fitted trendline, in comparison to the corresponding concentration 610 

trends calculated by the EMAC model. Both observations and the model reveal a concentration 

decrease for the three main inorganic components of PM2.5, following the emission reductions 

during the last 20 years. Sulfate concentrations have decreased drastically during the last decade 

(b) Nitrate 

(d) Organic Aerosol (c) Ammonium 

(a) Sulfate 

Figure 10: Simulated decadal change in (a) sulfate, (b) nitrate, (c) ammonium, and (d) anthropogenic 

organic aerosol concentrations between the 2000s and 2010s.  
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Figure 11: Temporal evolution of the filter-based observed (a, c, e, and g subplots on the left) and 

simulated (b, d, f, and h subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate (c, d), 

ammonium, (e, f), and organic aerosol (g, h) during the period 2000–2018 over Europe. Black lines 

show the annual trend while the dark blue, light blue, orange, and red lines represent the seasonal trends 

during winter, spring, summer, and autumn. Ranges represent the 1σ SD (standard deviation). 

 (b) Sulfate 

 (d) Nitrate 

 (f) Ammonium 

 (h) Organic aerosol 

EMAC simulations over Europe EMEP observations over Europe 

 (a) Sulfate 

 (c) Nitrate 

 (e) Ammonium 

 (g) Organic aerosol 
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(i.e., -46% compared to 2000s). However, the simulated reduction is not so apparent mainly 615 

because filter observations show much higher concentrations during the first half of the 2000s than 

model simulations. Until 2005, the observed sulfate concentrations rose during all seasons, 

however, they rapidly dropped below the 2000 levels in the following years. The CAMS emission 

inventory used by the model assumes much lower emissions of pollutants such as SO2 over Europe 

compared to more detailed regional emission inventories such as the CEDS (Hoesly et al., 2018). 620 

This discrepancy leads to an underestimation of sulphate trends in the region due to inconsistencies 

in the concentrations observed by the EMEP network filters in the early 2000s. The average decline 

rate is -0.15 µg m-3 yr-1, compared to the simulated rate of -0.02 µg m-3 yr-1. AMS measurements 

(Figure 12) corroborate the findings of filter observations, revealing a drastic decrease in PM1 

sulfate concentrations during the decade of 2010s (i.e., -18% compared to 2000s). EMAC 625 

underestimates European PM1 sulfate (Figure 9a) resulting in a less pronounced negative trend in 

its concentrations (i.e., -11%) since the model underestimation is more pronounced during the 

2000s. The average simulated decadal change in sulfate PM1 concentrations for the entire 

European domain is -15% (Figure 10). Similar to sulfate, filter measured nitrate concentrations 

rose until 2005 (except during summer where they remain in low levels) and then quickly dropped 630 

again with an average rate of -0.09 µg m-3 yr-1 (Figure 11c). The high observed nitrate 

concentrations during the first half of the 2000s results in an average decrease of -35% between 

the two decades. On the other hand, the calculated change of AMS-PM1 nitrate concentrations 

between the 2000s and the 2010s is -10 %, which is similar to the simulated drop of -12%. 

However, it is worth mentioning that the model significantly overestimates the nitrate 635 

concentrations both in comparison to AMS measurements (Figure 9b) and filter observations, 

especially during summer (Milousis et al., 2024). The analysis of model simulation and 

observations (both by AMS and filters) reveal that ammonium concentrations exhibit strong 

reductions between the decades of 2000s and 2010s. The average concentration reduction between 

the two decades is -21% based on the AMS observations, -13% based on the EMAC results for 640 

PM1 (or -16% for the entire European domain), and -56% for the PM2.5 filter observations. 

Therefore, the reduction of ammonium is much stronger based on the filter observations (i.e., -0.1 

µg m-3 yr-1) than based on AMS measurements or modeled data (i.e., -0.02 µg m-3 yr-1). However, 

the overprediction of nitrate and underprediction of sulfate by the model, suggest that the model 

overpredicts the fraction of ammonium that exists as ammonium nitrate rather than ammonium 645 
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sulfate. It is worth emphasizing that the ammonium is clearly declining, even though NH3 

emissions have only been slightly reduced. This apparent inconsistency can be attributed to the 

strong reductions of SO2 and NOx. This results in reduced availability of acids (i.e., H2SO4 and 

HNO3) preventing the formation of ammonium and allowing the NH3 to reside in the gas phase. 

This is also verified by NH3 observations, where no significant trends, and even statistical 650 

increases, have been observed despite reported reductions in NH3 emissions (Fagerli et al., 2016; 

Liu et al., 2024).  

The downward trend of organic aerosol calculated based on the filter observations (-0.04 µg m-

3 yr-1) is less than half as steep as that of inorganic components and differs between seasons (Figure 

11e). During summer, there is no clear trend observed, while in winter, OC concentration soars 655 

from 2003 until 2005 when it starts to gradually drop until it reaches the concentration levels of 

the other seasons during the second half of 2010s. Irregularities in the early first decade could be 

owed to a lack of OC data (Fagerli et al., 2016). OC data during spring and autumn shows a mild 

downward trend after 2005 as well. Overall, the average difference of OC concentration between 

the two decades is -22%. However, model data does not corroborate this reduction; on the opposite 660 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 

Figure 12: Decadal PM1 concentration trends in Europe expressed by the bar plots of the mass 

concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, and (d) OA during the periods 2000 

- 2010 (left) and 2011 - 2020 (right) as calculated from the AMS observational dataset (dark colors) and 

the corresponding simulation values (light colors). The upper and lower whiskers range from 10-90%, 

the quartiles from 25-75% of the dataset. The black line is the median. 
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a slight increase is calculated by the model during the last five years (Figure 11h). This agrees with 

the AMS observations which predict a positive OA trend (Figure 12d) with an average increase of 

+0.44 µg m-3 (or 10%) from the first to the second decade. Despite the prominent underestimation 

of PM1 OA by the model, the simulated PM1 OA trend is also positive with an average decadal 

increase of +0.55 µg m-3 (or 31%). Overall, inconsistencies between AMS and filter observations 665 

can be attributed to instrumental differences. First, is the size of particulate matter observed which 

is 2.5 μm for filters and up to 1 μm for the AMS. The size distribution of OA can be affected by 

multiple factors, including RH and chemical composition. Sun et al. (2020) have shown that the 

PM1/PM2.5 SOA ratio increases when RH is below 60% and the contribution of inorganic 

components in the aerosol decreases. This increase is related to differences in aerosol water content 670 

due to changes in aerosol hygroscopicity and phase state. Simulated data reveals that the frequency 

of RH dropping below 60% over European locations has marginally increased (by 1%) during the 

2010s. However, the drastic reduction of sulfate and nitrate levels during the same period can 

explain the increase in PM1 OA, as measured by the AMS, as opposed to the decrease in PM2.5 

OA observed by filters. Another important difference between the AMS and the filters is that the 675 

latter, in contrast to AMS, only detects the carbonaceous fraction (OC) of OA. Then, the ratio of 

the total organic mass (OM) to OC must be considered when comparing the measured OC to AMS 

or simulated OA. However, the OM:OC is broadly debated in literature. OM:OC is closely 

correlated to the oxygen to carbo ratio (O:C) and therefore it is dependent on the chemical aging 

degree of OA. For the range of SOA found in the atmosphere, Aiken et al. (2008) calculated the 680 

OM/OC ratios between 1.9 to 2.5. Similarly, the ratio for POA varies depending on the source and 

composition between 1.3 and 1.5 (Aiken et al., 2008). As the EMEP stations in Europe are a mix 

of urban and rural locations, the measured OC concentrations are typically multiplied by a median 

OM:OC value of 1.7. However, the oxidation capacity of the atmosphere has increased as 

anthropogenic emissions such as SO2 have decreased (Dalsøren et al., 2016), leading to an 685 

increased oxidation rate of organic compounds and the formation of SOA. Consequently, a 

growing SOA fraction over the last 20 years would have been accompanied by a rising OM:OC 

ratio. It can be assumed that while the OC measured by the filters showed a slight downward trend 

(Figure 11g), a conversion into OA via adapted gradually increasing OM:OC ratios could have 

compensated the OC reduction and show a better matching trend compared to the AMS and EMAC 690 

OA. 
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4.2 North America 

Over North America, the filter measured inorganic aerosol compound concentrations declined 

strongly during the last 20 years, following their precursor emission reductions, with higher 695 

reductions over urban locations (Figure 13) and less over rural regions (Figure 14). Nitrate 

reductions are more pronounced over urban regions (-0.07 µg m-3 yr-1), especially during winter, 

while over rural locations, the decline is imperceptible (-0.01 µg m-3 yr-1) since the abundance of 

NH3 have decelerated the decrease of NH4NO3. On the other hand, the drastic decrease of SO2 

emissions (Table S2, Figure S5) resulted in strong reductions of sulfate concentrations primarily 700 

over urban areas (-0.16 µg m-3 yr-1) but also over remote regions (-0.07 µg m-3 yr-1), especially 

during the summer seasons. Following the reductions of sulfate and nitrate, ammonium decrease 

strongly over urban locations by -0.08 µg m-3 yr-1, especially during the 2010s (Figure 13), even 

though NH3 emissions remain practically unchanged (Figure S5). Similarly, over Canada, strong 

reductions in sulfate and nitrate concentrations were observed by the Canadian Air and 705 

Precipitation Monitoring Network (CAPMoN), driven by significant decreases in SO₂ and NOₓ 

emissions (Cheng et al., 2022). While PM2.5 concentrations decreased in eastern Canada, as 

observed by the National Air Pollution Surveillance (NAPS), emission reductions were less 

effective in the west, where large-scale wildfires overwhelmed these improvements and even led 

to occasional increases in PM2.5 concentrations (Yao and Zhang, 2024). These regional differences 710 

over Canada are also captured by the EMAC model (Figure 10). Furthermore, EMAC simulates a 

weaker decline of sulfate concentrations over both rural and urban locations (Figures 13 and 14), 

mainly due to its tendency to underestimate sulfate concentrations during the 2000s and especially 

during summer. Reductions on the simulated nitrate and ammonium concentrations are also 

noticeable but to a lesser extent than on the filter observations (Figures 13 and 14). The observed 715 

OA concentrations over urban regions decrease until 2009, however, they gradually increase 

during 2010s by 0.11 µg m-3 yr-1. On the other hand, the model calculated OA concentration levels 

remain practically unchanged during the simulated period. Both the simulated and the observed 

OA concentration trends are also very weak over the rural and remote regions (Figure 14). 
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 720 

Figure 13: Temporal evolution of the filter-based observed (a, c, e, and g subplots on the left) and 

simulated (b, d, f, h subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate (c, d), ammonium, 

(e, f), and organic aerosol (g, h) during the period 2000–2018 over urban locations in North America. 

Black lines show the annual trend while the dark blue, light blue, orange, and red lines represent the 

seasonal trends during winter, spring, summer, and autumn. Ranges represent the 1σ SD (standard 

deviation). 
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EMAC simulations over urban N. America EPA observations over N. America 
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Figure 15 depicts the decadal PM1 concentration trends in North America between 2000s and 

2010s. The AMS data for PM1 aerosol composition is composed of observational datasets from 30 

field campaigns during the 2000s and 58 during the 2010s (Figure 2). This uneven distribution can 

statistically impact the calculations and hinder the extraction of valid statements for trends over 

North America. Sulfate concentrations exhibit a tighter distribution during the 2nd decade (Figure 725 

15); however, the mean concentration remains unchanged between the two decades. On the other 

hand, the simulated sulfate concentrations increase during the 2010s, mainly due to the larger 

 (b) Sulfate 

 (d) Nitrate 

 (f) Organic aerosol 

EMAC simulations over rural N. America IMPROVE observations over N. America 

 (a) Sulfate 

 (c) Nitrate 

 (e) Organic aerosol 

Figure 14: Temporal evolution of the filter-based observed (a, c, and e subplots on the left) and 

simulated (b, d, and f subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate (c, d), and 

organic aerosol (e, f) during the period 2000–2018 over rural locations in North America. Black lines 

show the annual trend while the dark blue, light blue, orange, and red lines represent the seasonal trends 

during winter, spring, summer, and autumn. Ranges represent the 1σ SD (standard deviation). 
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proportion of urban field campaigns during the second decade. Indeed, the model simulates a 

reduction of the continental average sulfate concentrations by 20%, with maximum differences 

exceeding 1 μg m-3 over the Southeast US (Figure 10). This contradicted behavior is also mirrored 730 

on nitrate concentrations where both the AMS dataset and the corresponding simulated results 

produce a positive trend between the two decades, while the simulated continental average nitrate 

concentrations decrease (Figure 10). Furthermore, compared to AMS observations, the model 

tends to underpredict sulfate concentrations and overpredict nitrate. This results in a strong 

correlation of the simulated ammonium with nitrate exhibiting a significant positive trend, which 735 

is not observed in the AMS dataset (Figure 15). In addition, current emission inventories offer 

reasonable estimates of total annual NH3 emissions, but significant uncertainties remain regarding 

their seasonal distribution. Since animal husbandry and fertilizer application are the primary 

sources, seasonal variations are difficult to quantify (Paulot et al., 2014). Studies in the U.S. 

suggest NH3 emissions may be underestimated in summer and overestimated in other seasons, 740 

while estimates for spring and fall remain uncertain due to biases in precipitation predictions. 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 

Figure 15: Decadal PM1 concentration trends in North America expressed by the bar plots of the mass 

concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, and (d) OA during the periods 2000 

- 2010 (left) and 2011 - 2020 (right) as calculated from the AMS observational dataset (dark colors) and 

the corresponding simulation values (light colors). The upper and lower whiskers range from 10-90%, 

the quartiles from 25-75% of the dataset. The black line is the median. 
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Finally, as for PM2.5 OA, the observed and, to a lesser extent, the simulated PM1 OA concentrations 

increase slightly during the 2010s.  

 

4.3 Eastern Asia 745 

EANET observations of PM2.5 sulfate reveal a significant increase of its concentrations until 

2007 (Figure 16). However, in view of the upcoming Beijing Olympic Games in 2008, the first 

SO2 emission controls have started to be implemented, and sulfate gradually reduced by -0.27 µg 

m-3 yr-1. By the end of 2017, SO2 emissions have declined by 59% following the Clean Air Action 

(Zhai et al., 2019), however, observed sulfate concentrations have decreased by only 23% due to 750 

an increased dry deposition and oxidation rate of SO2 during the same period (Fagerli et al., 2016). 

EMAC fails to reproduce the reduction of sulfate concentrations after 2008 since the CAMS 

emission inventory assumes only a stabilization of SO2 emissions after the year 2013 (Figure S5), 

instead of a strong decline reported by regional emission inventories such as the CEDS (Hoesly et 

al., 2018). At the same period, NOx was reduced by 21% and NH3 by just 3% (Zhai et al., 2019). 755 

This, however, is not mirrored in the observed nitrate trends (Figure 16), where nitrate reduces by 

only -0.05 µg m-3 yr-1 after 2007. The strong SO2 reduction hinders the decline of nitrate since 

reductions in (NH4)2SO4 release NH3 to react with HNO3 and form NH4NO3. unlike observations, 

the simulated nitrate and ammonium continue to increase until the end of 2010s, following the 

trends in NOx emissions used as input in the model (Figure S5), in contrast to the emission trends 760 

reported by the CEDS (Hoesly et al., 2018).  

The frequency of AMS field-campaigns started to grow significantly in Eastern Asia only after 

2008, while after 2013, the first consistent and aggressive emission controls started in China under 

the Clean Air Action (Zhai et al., 2019). Thus, since 2013 marks a significant year for Eastern Asia 

and due to the lack of AMS campaigns prior to 2006 in the region, the decade comparison for 765 

Eastern Asia is done for the periods of 2006-2012 and 2013-2020. Between these two periods, 

AMS observations reveal a -17% decline for sulfate, while the corresponding simulated sulfate 

concentrations reduce by just -5% (Figure 17). Τhe model tends to underpredict sulfate 

concentrations during all seasons, however, its performance is the worst in winter when sulfate 

exhibits its annual peak concentrations due to its multiphase formation during haze events, a 770 

pathway not accurately resolved simulated by the model. Similar to PM2.5, the average PM1 nitrate 

concentrations remain the same between the two periods with a marginal decline observed by the 



36 

 

AMS and a marginal increase simulated by EMAC, while the observed ammonium reduces by 

18% following the reduction in sulfate concentrations (Figure 17). In contrast to inorganic aerosol 

precursors, the anthropogenic VOC emissions over Eastern Asia continue to increase even after 775 

2013, mostly due to the use of solvents but also due to the energy transformation and industrial 

sector (Hoesly et al., 2018). Thus, both the observed and the simulated PM1 OA concentrations 

increase between the two examined periods by 15% and 33%, respectively (Figure 17). 

Figure 16: Temporal evolution of the filter-based observed (a, c, and e subplots on the left) and 

simulated (b, d, and f subplots on the right) concentrations of PM2.5 sulfate (a, b), nitrate (c, d), and 

ammonium (e, f) during the period 2001–2017 over Eastern Asia. Black lines show the annual trend 

while the dark blue, light blue, orange, and red lines represent the seasonal trends during winter, spring, 

summer, and autumn. Ranges represent the 1σ SD (standard deviation). 
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5. Conclusion 

This study examines observed global trends in surface atmospheric aerosol composition over 780 

the past two decades and evaluates the ability of the EMAC chemistry-climate model, driven by 

the CAMS anthropogenic emissions inventory, to reproduce these trends. Results integrate model 

outputs with global observational data from 2000-2020, covering surface PM2.5 composition from 

regional monitoring networks (e.g., EMEP in Europe) and NR-PM1 composition from 744 AMS 

observational datasets at 169 ground-level sites worldwide. Findings reveal substantial regional 785 

variations in aerosol composition driven by industrial activities, energy production, and air quality 

regulations, highlighting the complexity of air pollution dynamics and its management. 

AMS field campaign data show that OA are the dominant NR-PM1 component globally, 

especially in tropical and subtropical regions affected by biomass burning and biogenic VOC 

emissions. Sulfate is the primary inorganic compound across most areas, though nitrate 790 

predominates in Europe and Eastern Asia. Notably, North America shows unexpected sulfate 

Figure 17: Decadal PM1 concentration trends in Eastern Asia expressed by the bar plots of the mass 

concentration (in μg m–3) for (a) sulfate, (b) nitrate, (c) ammonium, and (d) OA during the periods 2006 

- 2012 (left) and 2013 - 2020 (right) as calculated from the AMS observational dataset (dark colors) and 

the corresponding simulation values (light colors). The upper and lower whiskers range from 10-90%, 

the quartiles from 25-75% of the dataset. The black line is the median. 

 

(d) Organic 

Aerosol 
(b) Nitrate (a) Sulfate (c) Ammonium 
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dominance, likely due to seasonal sampling bias. HOA levels are higher in North America and 

Eastern Asia, while BBOA is prominent in rural Europe and tropical regions. OOA, particularly 

aged M-OOA, is the largest OA contributor in rural regions across all studied areas. 

For PM2.5 composition, global filter observations indicate OA as the primary component in 795 

most regions, notably in Southern Hemisphere tropical forests. OA is the dominant component in 

Eastern Asia, while OA and sulfate have similar importance in rural North America. Globally, 

sulfate constitutes roughly 50% of the inorganic PM2.5 mass, followed by nitrate and ammonium. 

However, sulfate dominance observed in filter samples contrasts with AMS findings, likely due to 

sampling artifacts. Regionally, sulfate is the highest in the Middle East, while nitrate plays a 800 

significant role in Europe. Across eight regions, PM2.5 averages are: 21% sulfate, 12% nitrate, 10% 

ammonium, 2% sodium, 3% chloride, 40% OA, and 12% EC. 

The EMAC model confirms OA as the dominant component of fine aerosols globally, with the 

highest concentrations in regions influenced by biomass burning, such as tropical forests and 

savannas. Northern industrialized regions exhibit substantial OA levels (30-35%) from fossil and 805 

biofuel combustion. While EMAC successfully reproduces the prominence of SOA, it struggles to 

accurately simulate aged SOA in areas like Eastern Asia. The model further suggests that nitrate 

surpasses sulfate in PM2.5 composition in Europe, North America, and Eastern Asia, consistent 

with AMS findings but differing from some filter observations. Ammonium mirrors sulfate and 

nitrate distribution, with significant contributions in populated and agricultural regions. Mineral 810 

dust and sea salt emissions also play key roles regionally. Overall, EMAC provides valuable 

insights into global fine aerosol composition, while indicating areas for model refinement. 

This study presents a 21-year analysis of global trends in fine aerosol composition, comparing 

EMAC model simulations with observed trends. Given limited and inconsistent PM1 datasets, the 

analysis focuses on broad regional trends across the first and second decades, using primarily 815 

Northern Hemisphere AMS campaign data and PM2.5 data from major monitoring networks in 

North America, Europe, and Eastern Asia. While these comparisons offer insights, they are 

complicated by compositional differences between PM1 and PM2.5 and by differences between 

real-time AMS and non-real-time filter-based methods. 

Both filter-based data and EMAC simulations show a decline in key inorganic components over 820 

Europe. In particular, sulfate is observed to have dropped by 46% in the last decade. However, the 

EMAC model underestimates the sulfate reduction due to initial discrepancies in early 2000s 
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concentrations. Nitrate and ammonium also declined significantly, though the model overestimates 

nitrate levels. Organic aerosol (OA) trends vary by method: filter data indicate a downward trend 

with a slope of -0.04 µg m-3 yr-1, while AMS data and simulations suggest an OA increase in PM1 825 

by approximately 0.5 µg m-3 from the first to the second decade. This discrepancy is likely due to 

differences in particle size (PM2.5 vs. PM1) and instrument detection capabilities (filter-based OC 

vs. AMS OA). 

In North America, filter-based measurements reveal sharp declines in inorganic aerosol 

compounds, particularly in urban areas. Nitrate and sulfate concentrations decreased significantly 830 

due to lower SO2 and NOx precursor emissions, with ammonium levels following this trend, 

although NH3 itself remained stable in the 2010s. The EMAC model, however, simulates a weaker 

sulfate and nitrate decline, underestimating sulfate in the early 2000s while overestimating nitrate. 

Observed OA concentrations in urban North America decreased until 2009, then rose in the 2010s, 

a trend only partially captured by the model. PM1 sulfate and nitrate levels from AMS data show 835 

inconsistent trends, with the model generally underestimating sulfate and overestimating nitrate, 

leading to a positive ammonium trend in the model not observed in AMS data. 

In Eastern Asia, EANET PM2.5 data show rising sulfate concentrations until 2007, followed by 

a decline as SO2 emission controls implemented prior to the 2008 Beijing Olympics. Despite a 

59% reduction in SO2 emissions by 2017, sulfate concentrations fell by only 23%, likely due to 840 

increased dry deposition and oxidation rates of SO2. The EMAC model does not fully capture this 

trend, as it assumes stable SO2 emissions post-2013 rather than a steep decline. Similarly, while 

observed nitrate and ammonium levels show minimal reductions after 2007, the model 

inaccurately projects continued increases, reflecting discrepancies in NOx emissions trends. AMS 

data indicate a 17% reduction in PM1 sulfate from 2006–2012 to 2013–2020, compared to a 5% 845 

reduction in the model, with observed PM1 OA concentrations increasing by 15% and model 

predictions showing a 33% rise, driven by sustained VOC emissions from solvents and industrial 

sources. 

Overall, despite the complexities and inconsistencies in long-term aerosol trend analysis due to 

instrumental and methodological differences, this study highlights the importance of consistent, 850 

long-term global aerosol trend analysis. By integrating model results and observational data over 

20 years, the study reveals significant spatiotemporal changes in atmospheric aerosol composition 
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over different regions of the planet, largely driven by recent changes in aerosol precursor 

emissions. 

 855 
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