

- 1 Large contribution of soil emissions to the atmospheric nitrogen
- 2 budget and their impacts on air quality and temperature rise in
- 3 North China
- 4 Tong Sha^{1*}, Siyu Yang¹, Qingcai Chen¹, Liangqing Li¹, Xiaoyan Ma², Yan-Lin Zhang^{3,4},
- 5 Zhaozhong Feng³, K. Folkert Boersma^{5,6}, Jun Wang^{7*}
- 6 ¹School of Environmental Science and Engineering, Shaanxi University of Science and
- 7 Technology, Xi'an 710021, China
- 8 ² Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological
- 9 Administration, Nanjing University of Information Science & Technology, Nanjing
- 10 210044, China
- ³ School of Ecology and Applied Meteorology, Nanjing University of Information
- 12 Science & Technology, Nanjing 210044, China
- ⁴ Atmospheric Environment Center, Joint Laboratory for International Cooperation on
- 14 Climate and Environmental Change, Ministry of Education (ILCEC), Nanjing
- 15 University of Information Science & Technology, Nanjing 210044, China
- ⁵ Satellite Observations Department, Royal Netherlands Meteorological Institute, De
- 17 Bilt 3731GA, the Netherlands
- ⁶ Meteorology and Air Quality Group, Wageningen University Wageningen 6708PB,
- 19 the Netherlands
- 20 ⁷ Department of Chemical and Biochemical Engineering, Center for Global and
- 21 Regional Environmental Research, and Iowa Technology Institute, University of Iowa,
- 22 Iowa City, IA, 52242, USA

- 23 *Corresponding authors:
- 24 Tong Sha: tong-sha@sust.edu.cn
- 25 Jun Wang, jun-wang-1@uiowa.edu

27 Abstract

28 Soil emissions of nitrogen compounds, including NO and HONO, play a significant role in atmospheric nitrogen budget. However, HONO has been overlooked 29 in previous research on soil reactive nitrogen (Nr) emissions and their impacts on air 30 31 quality in China. This study estimates both soil NOx and HONO emissions (SNOx and SHONO) in North China with an updated soil Nr emissions scheme in a chemical 32 33 transport model, the Unified Inputs for WRF-Chem (UI-WRF-Chem). The effects of 34 soil Nr emissions on O₃ pollution, air quality and temperature rise are also studied, with 35 a focus on two key regions, Beijing-Tianjin-Hebei (BTH) and Fenwei Plain (FWP), known for high soil Nr and anthropogenic emissions. We find that the flux of SNO_x is 36 nearly doubled those of SHONO; the monthly contributions of SNO_x and SHONO 37 38 account for 37.3% and 13.5% of anthropogenic NOx emissions in the BTH, and 29.2% and 19.2% in the FWP during July 2018, respectively. Soil Nr emissions have a 39 significant impact on surface O₃ and nitrate, exceeding SNO_x or SHONO effects alone. 40 On average, soil Nr emissions increase MDA8 O3 by 16.9% and nitrate concentrations 41 42 by 42.4% in the BTH, 17.2% for MDA8 O₃ and 42.7% for nitrate in the FWP. Reducing anthropogenic NOx emissions leads to a more substantial suppressive effect of soil Nr 43 emissions on O3 mitigation, particularly in BTH. Soil Nr emissions, via their role as 44 precursors for secondary inorganic aerosols, can result in a slower increase rate of 45 46 surface air temperature. This study suggests that mitigating O3 pollution and addressing climate change in China should consider the role of soil Nr emission, and their regional 47 48 differences.

49 1. Introduction

50 Surface ozone (O_3) is a major air pollutant harmful to human health, terrestrial vegetation, and crop growth (Feng et al., 2022b; Turner et al., 2016; Unger et al., 2020; 51 Yue et al., 2017). China is confronting serious O₃ pollution, with the surface O₃ 52 53 concentrations routinely exceeding air quality standards (Li et al., 2019). Although the Chinese Action Plan on Air Pollution Prevention and Control implemented in 2013 has 54 55 significantly reduced the nationwide anthropogenic emissions of primary pollutants including particulate matter (PM) and nitrogen oxides ($NO_x = NO + NO_2$), the 56 summertime O3 concentrations observed by national ground sites and satellite 57 observations both show an increasing trend of 1-3 ppbv a⁻¹ in megacity clusters of 58 eastern China from 2013 to 2019 (Wang et al., 2022b; Wei et al., 2022). Many studies 59 60 have explored the causes of O₃ pollution from the perspective of changes in meteorology and anthropogenic emissions, and attributed the O₃ increase to decreased 61 PM levels and anthropogenic NO_x emissions, and adverse meteorological conditions 62 (Li et al., 2021b; Li et al., 2019; Li et al., 2020; Liu and Wang, 2020a, b; Lu et al., 2019). 63 64 Soil emissions are an important natural source of reactive nitrogen species, including N2O, NOx, HONO and NH3, and can strongly affect the atmospheric 65 chemistry, air pollution and climate change (Elshorbany et al., 2012; Pinder et al., 2012). 66 It has been acknowledged that the soils emissions account for 12-20% of total emissions 67 of NOx in global average (Vinken et al., 2014; Yan et al., 2005), and 40-51% in 68 agricultural regions during periods in which fertilizers are applied to soils, resulting in 69 a significant increase in O3 and NO2 concentrations in US (Almaraz, 2018; Romer et 70

- 71 al., 2018; Sha et al., 2021; Wang et al., 2021a), Europe (Skiba et al., 2020) and sub-
- 72 Saharan Africa (Huang et al., 2018).

China has a large area of cultivated land (~1.276 $\times 10^6$ km², 73 http://gi.mnr.gov.cn/202304/t20230414_2781724.html, last access: 18th December 74 75 2023), which contributes to one-third of the global nitrogen fertilizer use and has extensive nitrogen deposition (Liu et al., 2013; Lu and Tian, 2017; Reay, 2008). So far, 76 77 only a limited studies focused on the impact of soil NO_x emissions (denoted as SNO_x) 78 on O₃ pollution in China (Huang et al., 2023; Lu et al., 2021; Shen et al., 2023; Wang 79 et al., 2008; Wang et al., 2023a; Wang et al., 2022a). Lu et al. (2021) demonstrated that 80 the presence of SNO_x in the North China Plain significantly reduced the sensitivity of surface O_3 to anthropogenic emissions. Huang et al. (2023) suggested that substantial 81 82 SNO_x could increase the maximum daily 8 h (MDA8) O₃ concentrations by 8.0-12.5 μg m⁻³ on average for June 2018 in China. These studies focused only on NO_x emitted 83 from soils, and neglected that similar soil microbial activities also emit nitrous acid 84 (HONO). The measurements in laboratory showed that the emission rates of soil HONO 85 86 were comparable to those of NO (Oswald et al., 2013; Weber B, 2015). The photolysis of HONO has been identified to be an important source of atmospheric hydroxyl radical 87 (OH), which enhances concentrations of hydroperoxyl (HO₂) and organic peroxy 88 radicals (RO₂), accelerating the conversion of NO to NO₂, resulting in more 89 concentrations of O₃ and secondary pollutants. Although the sources and formation 90 mechanisms of HONO are still not fully understood, recent model studies suggested 91 that HONO emission from soils in the agriculture-intensive North China Plain could 92

- 93 $\,$ increase the regionally averaged daytime $\cdot OH,$ $O_3,$ and daily fine particulate nitrate
- 94 concentrations (Feng et al., 2022a; Wang et al., 2021b).

Only a few studies simultaneously considered the impact of soil HONO emissions 95 (denoted as SHONO) along with SNOx on O3 and other secondary pollutants (Tan et 96 97 al., 2023; Wang et al., 2023b). Wang et al. (2023b) found that the NO_x and HONO emissions from natural soils (i.e., soil background emissions) increased daily average 98 99 O₃ concentrations by 2.0% in Northeast Plain during August 2016 without considering 100 the contribution from fertilized croplands. Tan et al. (2023) believed that the 101 contribution of soil NO_x and HONO to O₃ pollution has been in an increasing trend 102 from 2013 (5.0 pptv) to 2019 (8.0 pptv) in the summer season over the North China Plain by using the GEOS-Chem model; however the coarse resolution of GEOS-Chem 103 104 simulation may not insufficient to resolve the spatial heterogeneity in soil emission 105 distribution (Lu et al., 2021). Associated with the decreasing anthropogenic emissions is the increasing contribution of soil emissions to the atmospheric nitrogen budget in 106 China. Therefore, it is critical to quantify the impact of soil reactive nitrogen (Nr: NO_x 107 108 and HONO) emissions on O₃ and secondary pollutants.

In this study, we improve the soil Nr emissions scheme in the Unified Inputs (initial and boundary conditions) for Weather Research and Forecasting model coupled with Chemistry (UI-WRF-Chem) by considering all potential sources of HONO published in the literature. Since serious O_3 pollution and high soil emissions always occurred in summer, a series of sensitivity experiments are conducted to quantify the coupled and separate impact of SNO_x and SHONO on O_3 and secondary pollutants

115	during July over the North China, focusing on two city clusters, the Beijing-Tianjin-
116	Hebei (BTH) region and Fenwei Plain (FWP) region, both of which have the vast areas
117	of croplands and dense populations and experiencing severe O_3 and $PM_{2.5}$ pollutions.
118	In addition, by quantitatively analyzing the difference in the response of surface O_3
119	concentrations and surface air temperature to the anthropogenic $\ensuremath{\mathrm{NO}_x}$ emissions
120	reductions in the presence vs. absence of soil Nr emissions, the roles of soil Nr
121	emissions on O ₃ mitigation strategies and climate change are also studied. Our study is
122	designed to address the underestimated role of soil Nr emission in O ₃ pollution, thereby
123	providing the scientific basis for O ₃ mitigation strategies and climate change.
124	2. Methodology
125	2.1 Model description
126	2.1.1 Model configurations, input data, and non-soil HONO emission
127	The UI-WRF-Chem model, developed upon the standard version of WRF-Chem
128	3.8.1 (Grell et al., 2005), was used in this study. The $0.625^{\circ}\times0.5^{\circ}$ Modern-Era
129	Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis
130	data provide both the meteorological and chemical boundary and initial conditions
131	(Gelaro et al., 2017). The $0.25^{\circ} \times 0.25^{\circ}$ Global Land Data Assimilation System

(GLDAS) data provides the initial and boundary conditions of soil properties, i.e., soil
moisture and temperature (Rodell, 2004). Details of Unified Inputs of meteorological
and chemical position data for UI-WRF-Chem, can be found in recent publications (Li
et al., 2024; Wang et al., 2023c). Anthropogenic emissions are imported from the Multiresolution Emission Inventory for China (MEIC: http://www.meicmodel.org/) with a

137	spatial resolution of $0.25^\circ \times 0.25^\circ$ for the year 2017. Biomass burning emissions are
138	from the Fire Inventory from NCAR version (FINN, version 1.5,
139	https://www.acom.ucar.edu/Data/fire/). Biogenic emissions are calculated using the
140	Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1
141	(Guenther et al., 2012).
142	The physical and chemical schemes include the Morrison 2-moment
143	microphysical scheme (Morrison et al., 2009), Grell 3-D cumulus scheme (Grell and
144	Dévényi, 2002), RRTMG for both longwave and shortwave radiation scheme (Iacono
145	et al., 2008), Yonsei University planetary boundary layer scheme (Hong, 2006), Noah
146	land surface model (Tewari, 2004), and the Carbon Bond Mechanism (CBMZ) for gas-
147	phase chemistry and the Model for Simulating Aerosol Interactions and Chemistry
148	(MOSAIC) aerosol module with four sectional aerosol bins and aqueous reactions
149	(Zaveri et al., 2008; Zaveri and Peters, 1999) are adopted in the UI-WRF-Chem model.
150	Two nested domains are used, domain one covers China with a horizontal resolution of
151	27 km and contains 112×112 grid cells, and domain two covers central and eastern
152	China and its surrounding area with a horizontal resolution of 9 km, containing
153	196×166 grid cells (study region are shown in Figure S1), both domains have 74 vertical
154	levels from surface to 50 hPa and 4 levels of soil. The simulations are conducted from
155	29^{th} June to 31^{th} July in 2018 with the first 2 days as the spin-up period. The model
156	outputs from 1 th to 31 th July in 2018 are analyzed.

157 The default WRF-Chem model only considers the gas-phase formation of HONO 158 (NO + OH \rightarrow HONO), thus underestimating the HONO concentrations. In this study, in

159	addition to considering SHONO (details in Section 2.1.2), potential sources of HONO
160	recognized in recent studies are also taken into account in the current model (Fu et al.,
161	2019; Li et al., 2010; Ye et al., 2016; Ye et al., 2017; Zhang et al., 2022b; Zhang et al.,
162	2022a; Zhang et al., 2016; Zhang et al., 2021; Zhang et al., 2020), including traffic
163	emissions, NO ₂ heterogeneous reactions on ground and aerosol surfaces, and inorganic
164	nitrate photolysis in the atmosphere. Through a series of tests and comparisons with
165	observed surface HONO concentrations, the specific parameterization schemes of
166	HONO sources adopted in this study are shown in Text S1.

167 2.1.2 Parameterization of soil Nr emissions

The soil Nr emissions schemes in the UI-WRF-Chem model are updated in this 168 study. The default SNOx scheme in UI-WRF-Chem, MEGAN v2.1, is replaced by the 169 170 Berkeley-Dalhousie-Iowa Soil NO Parameterization (BDISNP), and the implementation of BDISNP can be found in Sha et al. (2021). Considering that the 171 baseline year of N fertilizer data is 2006, and the amount of N fertilizer application in 172 China has changed in the past ten years, we update the N fertilizer data to the year 2018 173 174 based on the N fertilizer application data at the province level from the statistical yearbook (Table S1). 175

The process of soil HONO emission is similar to that of NO_x , as both are influenced by the physical and chemical characteristics of soils. Consequently, soil emissions of HONO with consideration of their dependence on land type, soil humidity, and temperature are also parameterized into the UI-WRF-Chem model. We first map the soil types measured in Oswald et al. (2013) (collected from 17 ecosystems in Table

181 S2) into the most closely matching MODIS land cover types in the model following Feng et al. (2022a), described in Table S3. The optimal emission flux for each MODIS 182 land cover type is calculated as the average of the measured fluxes from the 183 category/categories in Oswald et al. (2013) that is/are been mapped into a specific 184 185 MODIS classification. We also collect the SHONO data from various ecosystems in China published in different studies to correct the optimal SHONO fluxes in the model 186 187 (Table S4). These ecosystems include semi-arid, fertilized and irrigated farmland in 188 China. Consequently, the parameterization scheme takes into account the effect of 189 fertilizer application on the SHONO. After that, the optimal fluxes over the domains 190 are digested into the model and further scaled online according to the soil temperature and water content in each model grid at each time step throughout the simulation period 191 192 by the following of equation from (Zhang et al., 2016):

193
$$F_N(\text{HONO}) = F_{N,opt}(\text{HONO}) \cdot f(T) \cdot f(SWC)$$

194 where $F_{N,opt}$ (HONO) is the optimum flux of SHONO in terms of nitrogen. f(T) and

195 f(SWC) are the scaling factors of soil temperature (T) and water content (SWC).

196
$$f(T) = e^{\frac{Ea}{R}(\frac{T}{T_{opt}} - \frac{1}{T})}$$

197 E_a is the activation energy of HONO (80 kJ mol⁻¹), R is the gas constant, T_{opt} is 198 the temperature at which optimum flux is emitted (298.15 K), *T* is the soil temperature 199 calculated online by the model, f(SWC) is fitted based on the data curves in Figures 1 and 3 in (Oswald et al., 2013) and the equation is as follows:

201
$$f(SWC) = 1.04 \times exp^{\left(-e^{-\frac{SWC-11.32586}{5.27335}} - \frac{SWC-11.32586}{5.27335} + 1\right)}$$

202 2.2 Model experiment design

203	The descriptions of the sensitivity simulations are shown in Table S5. Default
204	simulation uses MEGAN scheme to estimate SNO _x and no SHONO is considered. Base
205	simulation uses soil Nr emissions schemes with the improvement of using BDISNP
206	scheme for $\ensuremath{\text{SNO}}_x$ and consideration of SHONO and other four HONO sources (as
207	described above). Comparison of results from Default and Base simulations is used to
208	show the improvement in the model performance after updating the soil Nr emissions
209	schemes and incorporating HONO potential sources. To explore the impact of soil Nr
210	emissions on O3 and secondary pollutants, we conduct a series of sensitivity simulations
211	with soil NO _x and HONO emissions turned on/off separately and jointly (anthropogenic
212	emissions for the year 2017), i.e., NoSoilNr, NoSHONO and NoSNO _x . To evaluate the
213	role of soil Nr emissions on O ₃ mitigation strategies and air temperature change under
214	different anthropogenic emission reduction scenarios, we further conduct the
215	Base_redANO _x and NoSoil_redANO _x simulations with anthropogenic NO _x emissions
216	reduced by 20%, 40%, 60%, 80% and 100%, respectively.

217 2.3 Observational data

The tropospheric column densities of NO_2 from TROPOMI (TROPOspheric Monitoring Instrument) level-2 in version 1 with the horizontal spatial resolution of 3.5 \times 7 km² are used. The quality controls, i.e., cloud-screened (cloud fraction below 30%) and quality-assured (qa_value above 0.50), and averaging kernels (AK) are applied in the comparison of the TROPOMI and UI-WRF-Chem simulated tropospheric NO_2 vertical column densities (defined as NO_2 VCD).

224 To evaluate the model performance on simulating surface air pollutants, we use

225	the hourly surface O ₃ concentrations at 888 monitoring sites from the China National
226	Environmental Monitoring Center (CNEMC), and hourly surface HONO
227	concentrations measured by the In-situ Gas and Aerosol Compositions monitor (IGAC)
228	(Zhan et al., 2021) at Nanjing University of Information Science & Technology (NUIST)
229	(32.2° N, 118.7° E; 22m above sea level) (Xu et al., 2019).
230	3. Results and discussions
231	3.1 Soil nitrogen emissions and air pollution evaluation
232	Figure 1 shows the spatial distribution of simulated monthly mean $\ensuremath{\text{SNO}}_x$ and
233	SHONO fluxes in July 2018 across North China. In most regions, SNO _x flux is nearly
234	doubled that of SHONO, and higher $\ensuremath{\text{SNO}}_x$ and SHONO are concentrated in areas
235	dominated by cropland. The monthly total soil emissions over the whole study domain
236	(cropland) are 104.5 (82.4) Gg N mon ⁻¹ for NO _x and 52.7 (45.9) Gg N mon ⁻¹ for HONO.
237	In the densely populated BTH region, the monthly total SNO_x are 18.7 Gg N mon ⁻¹ ,
238	which is equivalent to 37.3% of anthropogenic NO_x emissions for the year 2017. For
239	the FEW region, where also experiences severe O_3 and $\mathrm{PM}_{2.5}$ pollution, the monthly
240	total SNO _x (7.0 Gg N mon ⁻¹) account for 29.2% of anthropogenic NO _x emissions. The
241	monthly total SHONO in both study regions are much lower than their $\ensuremath{\text{SNO}}_x$
242	counterparts, with the emissions of 6.9 and 4.6 Gg N mon ⁻¹ , accounting for 13.5% and
243	19.2% of anthropogenic NO _x emissions in BTH and FWP regions, respectively.
244	To evaluate the model performance, Figure 2 shows the tropospheric NO_2 VCD
245	from TROPOMI satellite products and UI-WRF-Chem simulations (Default and Base)

during July 2018 in North China. Default and Base can both reproduce the hot spots of

247	$NO_2 VCD$ in urban areas shown in the TROPOMI observations. However, the Default
248	significantly underestimates the NO2 VCD, especially in regions surrounding urban
249	areas. It is found that Default underestimates NO_2 VCD by 48% over the regions where
250	soil emissions dominate (i.e., soil Nr emissions contribute more than half to the
251	atmospheric nitrogen emissions), while the Base reduced the bias to 13% (Figure S2).
252	Overall, Base shows the improved performance in simulating NO ₂ VCD in comparison
253	to Default with a decreasing bias from -30% (-21%) to $+4\%$ (+17%) in the study region
254	(cropland). The overestimated NO ₂ VCD in Base is most likely attributed to the time
255	lag in anthropogenic emissions inventory used in the study (Chen et al., 2021),
256	uncertainties in the stratospheric portion of NO2 VCD and AK caused the retrieval
257	errors (Van Geffen et al., 2020). Additionally, the estimated SNO _x are also subjected to
258	certain limitations and uncertainties. The first uncertainty comes from the amount of N
259	fertilizer application, which has been identified as the dominant contributor to SNO _x .
260	In this study, we use the amount of agricultural N fertilizer application at the province
261	level from the statistical yearbook to update the default N fertilizer application data in
262	the model (the baseline year for 2006), but a recent study showed that compound
263	fertilizer, usually with nitrogen (N), phosphorus (P), and potassium (K), were more
264	commonly used in China; if only N fertilizer is considered to nudge the N fertilizer
265	application data in the model, the estimated SNO_x may be underestimated by 11.1% -
266	41.5% (Huang et al., 2023). Furthermore, although we use the modeled green
267	vegetation fraction (GVF) to determine the distribution of arid (GVF \leq 30%) and non-
268	arid (GVF > 30%) regions. Huber et al. (2023) showed that the estimated SNO _x based

269	on the static classification of arid vs. non-arid is very sensitive to the soil moisture, and
270	thus could not produce self-consistent results when using different input soil moisture
271	products unless a normalized soil moisture index to represent. Therefore, more direct
272	measurements of soil Nr fluxes are crucial to better constrain soil emissions and
273	improve the parametrization in the model.

We evaluate the simulation with the surface O3 observations from the China 274 275 National Environmental Monitoring Centre (CNEMC) network 276 (http://www.cnemc.cn/en/) (Figure 3). Over the whole study region, the Base can better 277 capture the spatial distribution of observed surface MDA8 O3 with a relatively higher 278 spatial correlation of R = 0.68 than that in Default (R = 0.46). The simulated monthly averaged MDA8 O3 concentrations across the 888 sites in the study region are 123.0 µg 279 280 m⁻³ in Default and 132.5 µg m⁻³ in Base, respectively, which are both slightly higher than the observed concentrations (120.7 μ g m⁻³). Overprediction is also observed for 281 the FWP and BTH regions in the Base simulation, with the normalized mean bias (NMB) 282 of 6.1% and 4.9%, respectively (Figure S3). These positive biases are mainly due to 283 overestimated transport of boundary O3 in both horizontal and vertical directions 284 (Huang et al., 2023) and underestimated precipitation and cloud cover in the current 285 model (Sun et al., 2019). 286

We also compare the simulated surface HONO and nitrate concentrations to the observations at a rural station in Nanjing during July 2018. Figure 4 shows that the simulated HONO concentrations in Default are 98.3% lower than the observations. In comparison, the Base with considering SHONO and other HONO potential sources

291 significantly improves the simulation performance and reduces the bias to 47.8%, and also reproduces the diurnal variation of HONO with the temporal correlation of R =292 0.76. It is worth noting that the concentrations of HONO from 08 am to 18 pm are lower 293 294 than the observations, this discrepancy may be attributed to the underestimated 295 contribution from the predominant sources of HONO during the daytime, such as NO2 heterogeneous reactions on ground and aerosol surfaces. Moreover, the contributions 296 297 of different sources to ambient HONO concentrations at this rural station are also 298 evaluated, the soil emissions could contribute almost 25.8% to the surface HONO, 299 which may be partially attributed to the high emissions of HONO from croplands around the city of Nanjing (Figure S4). The results that soil emissions contribute less 300 to the daytime positive flux than the other source is consistent with previous studies 301 302 (Skiba et al., 2020; Wang et al., 2023b). For nitrate concentration, the Base simulation 303 shows a lower bias (5.6%) and an improved diurnal variation (temporal correlation of R = 0.92) compared to the Default simulation (bias = 27.8%, R = 0.85). We 304 acknowledge that there are certain uncertainties in the current model. Nevertheless, the 305 306 improved simulation performance compared to the Default illustrates the credibility of the results obtained from the Base simulation. 307

308 **3.2 Impact on O3 formation and air quality**

To quantify the effects of SNO_x and SHONO on atmospheric oxidation capacity, O₃ formation and air quality as well as their combined effect, the conventional bruteforce method was used, i.e., the impact of a specific source is determined in atmospheric chemistry models as the differences between the standard/base simulation with all

313	emissions turned on and a sensitivity simulation with this source turned off or perturbed
314	(Table S5). As shown in Figure 5, the contribution of $\ensuremath{\text{SNO}}_x$ and $\ensuremath{\text{SHONO}}$ to surface
315	NO_2 and HONO has a different spatial pattern from that of the fluxes of SNO_x and
316	SHONO. Overall, the maximum contribution of SNO _x to the monthly average surface
317	NO_2 concentrations is 78.6%, with a domain-averaged value of 30.3%. Regionally,
318	SNOx contribute 5.5 μg m^-3 (37.1%) and 2.5 μg m^-3 (31.8%) to the surface NO_2 in the
319	BTH and FWP regions, respectively, which are both higher than the domain-averaged
320	contribution. Although SHONO fluxes are lower than that of SNO_x , its effect on
321	ambient HONO cannot be ignored. Over the study region, the contribution of SHONO
322	to surface HONO concentration ranges from 0 to 49.0%, with a domain-averaged value
323	of 35.6%. For the selected key regions, there are 1.8 $\mu g/m^3$ (36.7%) and 1.5 $\mu g/m^3$
324	(38.0%) of the monthly average HONO concentrations in the BTH and FWP regions,
325	respectively, from soil emissions. It is noteworthy that, despite the surface NO_2 (HONO)
326	concentrations in the study regions being impacted by less than 13% (17%) due to
327	SHONO (SNO _x), the combined effects of soil Nr emissions on surface NO ₂ (HONO)
328	are found to be greater than the individual effects, which are 38.4% (40.3%) for BTH
329	and 33.9% (40.1%) for FWP region, respectively (Table S6). These results highlight the
330	importance of considering the cumulative impacts of multiple reactive nitrogen
331	emissions from soils on air pollution.

Consequently, substantial soil Nr emissions have a non-negligible effect on atmospheric oxidation and the formation of secondary pollutants. For atmospheric oxidation, we assess the impact of soil Nr emission on the maximum 1 h (max-1h) ·OH

335	levels and find that SHONO have a potential to increase the max-1h ·OH in most areas,
336	with a domain-averaged increase of 10.0%. On the contrary, the inclusion of SNO_x
337	results in a significant reduction of 31.3% in the max-1h ·OH across the entire study
338	domain. Considering the combined effect of SNO_x and $SHONO$, there is an overall
339	decrease of 24.3% in the max-1h ·OH over the study domain, with the BTH region
340	experiencing a decrease of 22.6% and FWP region showing a relatively greater
341	reduction of 32.2% (Table S7). These findings are different from the previous study,
342	which showed that soil background emissions including NO_x and HONO led to a 7.5%
343	increase in max-1h ·OH in China (Wang et al., 2023b). We stress the crucial role of
344	$\ensuremath{\text{SNO}_x}$ in influencing $\cdot \ensuremath{\text{OH}}$ concentrations and highlight the varying impacts across
345	different regions. For secondary pollutants, substantial O3 enhancement is found in
346	Henan and Hubei provinces, while the increase in nitrate is consistent with the spatial
347	pattern of surface NO ₂ from soil emissions. Specifically, soil Nr emissions increase the
348	monthly average MDA8 O_3 and nitrate concentrations by 18.2% and 31.8%,
349	respectively, across the study domain, with the increase of 16.9% and 42.4% in the BTH
350	region and 17.2% and 42.7% in the FWP region. Moreover, soil emissions of NO_x have
351	a stronger effect on O ₃ and nitrate in North China than those of SHONO.
352	The ratio of surface H_2O_2 to HNO_3 concentrations (hereafter H_2O_2/HNO_3) was
353	used as an indicator of the O ₃ formation regime to study the changes in sensitivity of
354	summer O ₃ to its precursors after considering the soil Nr emissions. The threshold of
355	H ₂ O ₂ /HNO ₃ for determining O ₃ formation regime varies regionally (Sillman, 1995),

- thus in this study, we identify the regions with H_2O_2/HNO_3 values greater than 0.65 as
 - 17

357	NO_x -sensitive regime, H_2O_2/HNO_3 values lower than 0.35 as VOCs-sensitive regime,
358	and H_2O_2/HNO_3 values between 0.35 and 0.65 as VOCs-NO _x mixed sensitive regime
359	(Shen et al., 2023). Figure 6 illustrates that the majority of BTH region has H_2O_2/HNO_3
360	values lower than 0.35 in Base simulation, indicating a VOCs-sensitive regime or NO_x -
361	saturated regime, which is consistent with the previous studies based on satellite
362	observations and model simulations (Wang et al., 2019; Wang et al., 2017). The
363	distribution of sensitivity of O ₃ to precursor emission in FWP regions are more complex
364	with a mix of three O ₃ formation regimes, which is attributed to the large population,
365	regional urbanization and industrialization. However, when soil nitrogen emissions are
366	excluded, the H_2O_2/HNO_3 values mostly increase within 40% and the O_3 formation
367	regime shifts to VOCs-NOx mixed sensitive regime and NOx-sensitive regime in both
368	BTH and FWP regions. Although soil Nr emissions are lower than anthropogenic
369	emissions, they still could affect the sensitivity of O ₃ to its precursors and thus have an
370	impact on the effectiveness of emission reduction policies. Therefore, soil emissions
371	must be considered in formatting policies for the prevention and management of O_3
372	pollution.

3.3 Implication on O₃ mitigation strategies and temperature rise 373

374 Due to the influence of soil Nr emissions, the sensitivity of O3 pollution to its precursors varies spatially, depending on the local levels of anthropogenic emissions. It 375 is thus important to quantify the role of soil Nr emissions in O3 pollution regulation for 376 improving the effectiveness of air control measures. We conduct a series of sensitivity 377 experiments with anthropogenic NOx emissions reduced by 20%, 40%, 60%, 80% and 378

379	100%, respectively, relative to the Base simulation (Table S5), and analyze the
380	difference in the response of surface O_3 concentrations to the anthropogenic NO_x
381	emissions reductions in the presence and absence of soil Nr emissions. Figure 7 shows
382	that with the reduction of anthropogenic NO_x emissions, MDA8 O_3 concentrations show
383	an accelerated decreasing trend, suggesting increasing efficiency of anthropogenic NO_{x}
384	control measures. And MDA8 O_3 response to anthropogenic NO_x emissions in the BTH
385	region is more curved (nonlinear) than that in the FWP region, which is consistent with
386	the fact that the BTH tends to have more NO _x -saturated O ₃ production (Figure 6).
387	It is noted that the reduction of anthropogenic NO_x emissions in the presence of
388	soil Nr emissions leads to a slower decrease in MDA8 O3 compared to when soil Nr
389	emissions are excluded. We further analyze the details of the domain-averaged MDA8
390	O ₃ changes under different anthropogenic reduction scenarios for the two key regions.
391	Specifically, in the BTH region, MDA8 O_3 decrease by 1.3% (1.8 $\mu g \ m^{\text{-}3}),$ 3.4% (4.6
392	μg m^-3), 6.3% (8.7 μg m^-3), 10.7% (14.7 μg m^-3), and 17.4% (24.0 μg m^-3) with
393	anthropogenic NO_x emission reductions by 20%, 40%, 60%, 80%, and 100%,
394	respectively, in the present of soil Nr emissions. Comparatively, in the absence of soil
395	Nr emissions, the reductions in MDA8 O_3 are more pronounced and decrease by 2.3%
396	(2.7 μg m^-3), 5.6% (6.6 μg m^-3), 10.7% (12.8 μg m^-3), 19.4% (23.2 μg m^-3), and 42.3%
397	(50.6 μg m $^{\text{-3}}),$ respectively. In the FWP region, with a 20% reduction in anthropogenic
398	NO_x emissions, MDA8 O_3 levels only exhibit a slight decrease of 1.7% (2.3 $\mu g \ m^{\text{-}3})$ in
399	the presence of soil Nr emissions, whereas a decrease of 2.3% (2.6 $\mu g \ m^{\text{-3}})$ is found in
400	the absence of soil Nr emissions. When anthropogenic NO _x emissions are removed

401	entirely, MDA8 O_3 decreases by 13.6% (17.7 $\mu g\ m^{\text{-}3})$ in the presence of soil Nr
402	emissions, and more significant decreases are found in the absent of soil Nr emissions
403	with a reduction of 27.4% (34.0 μg m $^{-3})$ (as shown in Figure 7b-c, e-f). We conclude
404	that the existence of soil Nr emissions could contribute to an additional part of O_3
405	production, amounting to a range of 0-24.9% in the BTH and 0-13.8% in the FWP
406	region, and these suppressions could be enlarged over the rural areas where have more
407	substantial soil Nr emissions (e.g. 0-32.3% in cropland over the BTH and 0-15.0% in
408	croplands over the FWP region). These findings suggest that soil Nr emissions have the
409	potential to suppress the effectiveness of measures implemented to mitigate O_3
410	pollution, and this effect becomes more significant as anthropogenic emissions increase.
411	We also quantify the O3 generated from soil Nr emission source (denoted as the
412	soil O_3) under the different anthropogenic NO_x emission scenarios. Overall, soil O_3
413	concentrations in croplands are higher than in non-croplands. Regionally, in the BTH
414	region, the soil O_3 concentrations are 19.8 $\mu g\ m^{\text{-}3}$ under high anthropogenic emissions
415	level (referred to as the Base simulation), while the soil O ₃ concentrations significantly
416	increase to 46.4 $\mu g\ m^{\text{-}3}$ when all anthropogenic NO_x emissions are cut down (shown as
417	red bar in Figure 7b). A similar trend is also found in the FWP region, although soil O_3
418	concentrations are relatively lower than that in the BTH region, the soil O_3
419	concentrations are 19.0 $\mu g~m^{\text{-}3}$ in the Base simulation, and do not change significantly
420	with the reduction of anthropogenic emissions, but increase to 31.9 $\mu g\ m^{\text{-}3}$ when
421	anthropogenic NO_x emissions are excluded (shown as red bar in Figure 7c). The
422	reduction in anthropogenic NO_x emissions results in a shift of the O_3 formation regime

423	towards a more NO _x -sensitive chemical regime, leading to a higher contribution of O ₃
424	from soil sources. We conclude that with stricter anthropogenic emission reduction
425	measures, the contributions of soil Nr emissions to O ₃ production in both absolute and
426	relative value would increase and further hamper the effectiveness of anthropogenic
427	emission reductions. To effectively mitigate the desired level of O ₃ concentrations, it is
428	necessary to implement much stricter control measures for anthropogenic emissions
429	due to the synergistic effects of SNO_x and $SHONO$.

430 Here we show that the substantial soil Nr emissions present an additional challenge 431 for O₃ pollution regulation in the North China. We further assess the impact of soil Nr 432 emissions on air temperature change under different anthropogenic emission reduction scenarios. By comparing changes in air temperature at 2m (T2) with and without soil 433 434 Nr emissions under different anthropogenic emission reduction scenarios, Figure 8 shows that incorporating soil Nr emissions results in a slower rate of T2 increase 435 compared to scenarios without soil Nr emissions, and this phenomenon is consistent 436 across all study regions. In the FWP region, when anthropogenic NO_x emissions are 437 438 eliminated, T2 increases by 0.056 °C in the presence of soil Nr emissions, compared to 0.092 °C in the absence of soil Nr emissions. In the BTH region, which has relatively 439 high anthropogenic emissions, reducing anthropogenic NO_x emissions by the same 440 proportion could result in relatively greater warming, and T2 increases by 0.084 °C in 441 the presence of soil Nr emissions, compared to 0.15 °C in the absence of soil Nr 442 emissions when anthropogenic NO_x emissions are excluded. This is attributed to 443 aerosols (such as sulfate and nitrate) and NO_x emissions and their effective radiative 444

445	forcing (ERF) associated with a cooling effect (high confidence) (Liao and Xie, 2021;
446	Bellouin et al., 2020). Decreases in aerosol concentrations and NO _x emissions could
447	weaken the cooling effect and potentially accelerate warming to some extent, while soil
448	Nr emissions can offset temperature rise caused by declining anthropogenic NO_{x}
449	emissions (Figure S5). Therefore, although soil Nr emissions are relatively low
450	compared to anthropogenic emissions, the combined effects of $\ensuremath{\text{NO}}_x$ and $\ensuremath{\text{HONO}}$
451	emissions from natural soil and agricultural land should be considered when assessing
452	climate change and implementing strategies to mitigate O ₃ pollution.

453 4. Conclusions

In this study, the updated soil Nr emission scheme was implemented in the UI-454 WRF-Chem model and used to estimate the combined and individual impact of SNO_x 455 456 and SHONO on subsequent changes in air quality and air temperature rise in North China, with a focus on two key regions (the BTH and FWP regions) because of high 457 levels of soil Nr and anthropogenic emissions. We show that the SNO_x flux is nearly 458 doubled that of SHONO during July 2018, with higher soil emissions in areas with 459 460 extensive cropland. The contribution of soil Nr emissions to average surface NO2 and HONO are 38.4% and 40.3% in the BTH, and 33.9% and 40.1% in the FWP region, 461 respectively, and the substantial soil Nr emissions lead to a considerable increase in the 462 monthly average MDA8 O3 and nitrate concentrations, with the values of 16.9% and 463 42.4% in the BTH region and 17.2% and 42.7% in the FWP region, which both exceed 464 the individual SNO_x or SHONO effect. The presence of soil Nr emissions, acting as 465 precursors of O3 and secondary inorganic aerosols, has a suppressing effect on efforts 466

467	to mitigate O ₃ pollution, particularly in the BTH region, and also leads to a slower
468	increase rate of T2 compared to scenarios without soil Nr emissions. We note that the
469	effect of soil Nr emissions shows spatial heterogeneity under different anthropogenic
470	NO _x emissions reduction scenarios.
471	However, we admit that uncertainties in both soil Nr and anthropogenic emissions,
472	as well as the parameterization scheme of HONO sources. The agricultural emissions
473	of another important reactive nitrogen gas, NH ₃ , may also be underestimated due to
474	uncertainties in agricultural fertilizer application and livestock waste in MEIC
475	inventory (Li et al., 2021a). These uncertainties could impact the aerosol formation and
476	local cooling effect. Also, the discrepancies between simulated and observed NO ₂ , O ₃
477	and other air pollutants in the model may affect the assessment of the role of soil Nr
478	emissions in O ₃ mitigation strategies and their impact on climate change. Thus, more
479	direct measurements of soil Nr fluxes are crucial to better constrain soil emissions and
480	improve the parametrization in the model.

Our study highlights that despite soil Nr emissions being lower than anthropogenic emissions, they still have a substantial impact on the effectiveness of O₃ pollution mitigation measures, and this effect becomes more significant as anthropogenic emissions decrease. Therefore, reactive nitrogen from soil emission source must be considered in formatting measures for the prevention and management of O₃, as well as addressing climate change.

- 488 *Code and data availability.* Some of the data repositories have been listed in Section 2.
- 489 The other data, model outputs and codes can be accessed by contacting Tong Sha via
- 490 tong-sha@sust.edu.cn.
- 491 Author contributions. TS performed the model simulation, data analysis and
- 492 manuscript writing. TS and JW proposed the idea. SY, QC and LL supervised this work
- 493 and revised the manuscript. XM, ZF and KB helped the revision of the manuscript. YZ
- 494 provided and analyzed the observation data.
- 495 *Competing interests.* The authors declare that they have no conflict of interest.
- 496 Acknowledgements. This study is supported by the National Natural Science
- 497 Foundation of China (grant nos. 42205107, 42130714). Jun Wang's participation is
- 498 made possible via the in-kind support from the University of Iowa.
- 499

500 References

- 501 TROPOMI ATBD of the total and tropospheric NO₂ data products.
- 502 Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., & Houlton, B. Z.:
- 503 Agriculture is a major source of NO_x pollution in California, Sci. Adv., 4(1), 504 eaao3477., 2018.
- 505 Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher,
- O., Carslaw, K. S., Christensen, M., and Daniau, A. L.: Bounding global aerosol
 radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, 2020.
- 508 Chen, K., Wang, P., Zhao, H., Wang, P., Gao, A., Myllyvirta, L., and Zhang, H.:
- 509 Summertime O₃ and related health risks in the north China plain: A modeling study
- 510 using two anthropogenic emission inventories, Atmos. Environ., 246, 118087,
- 511 10.1016/j.atmosenv.2020.118087, 2021.
- 512 Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global
- 513 atmospheric chemistry calculated with an empirical parameterization in the

514	EMAC model, Atmos. Chem. Phys., 12, 9977-10000, 10.5194/acp-12-9977-2012,
515	2012.
516	Feng, T., Zhao, S., Liu, L., Long, X., Gao, C., and Wu, N.: Nitrous acid emission from
517	soil bacteria and related environmental effect over the North China Plain,
518	Chemosphere, 287, 132034, 10.1016/j.chemosphere.2021.132034, 2022a.
519	Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V.,
520	Paoletti, E., Mukherjee, A., Agrawal, M., Park, R. J., Oak, Y. J., and Yue, X.: Ozone
521	pollution threatens the production of major staple crops in East Asia, Nat. Food, 3,
522	47-56, 10.1038/s43016-021-00422-6, 2022b.
523	Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue,
524	D., Zhou, Y., Zheng, J., and Han, R.: The significant contribution of HONO to
525	secondary pollutants during a severe winter pollution event in southern China,
526	Atmos. Chem. Phys., 19, 1-14, 10.5194/acp-19-1-2019, 2019.
527	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C.
528	A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather,
529	R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim,
530	GK., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson,
531	S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
532	The Modern-Era Retrospective Analysis for Research and Applications, Version 2
533	(MERRA-2), J. Clim., 30, 5419-5454, 10.1175/jcli-d-16-0758.1, 2017.
534	Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection
535	combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29,
536	10.1029/2002gl015311, 2002.
537	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
538	and Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos.
539	Environ., 39, 6957-6975, 10.1016/j.atmosenv.2005.04.027, 2005.
540	Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.
541	K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
542	version 2.1 (MEGAN2.1): an extended and updated framework for modeling
543	biogenic emissions, Geosci. Model Dev., 5, 1471-1492, 10.5194/gmd-5-1471-

544	2012, 2012.
545	Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit
546	treatment of entrainment processes, Mon. Weather Rev., 134 (9), 2318, 2006.
547	Huang, L., Fang, J., Liao, J., Yarwood, G., Chen, H., Wang, Y., and Li, L.: Insights into
548	soil NO emissions and the contribution to surface ozone formation in China,
549	Atmos. Chem. Phys., 23, 14919-14932, 10.5194/acp-23-14919-2023, 2023.
550	Huang, Y., Hickman, J. E., and Wu, S.: Impacts of enhanced fertilizer applications on
551	tropospheric ozone and crop damage over sub-Saharan Africa, Atmos. Environ.,
552	180, 117-125, 10.1016/j.atmosenv.2018.02.040, 2018.
553	Huber, D. E., Steiner, A. L., and Kort, E. A.: Sensitivity of Modeled Soil NO_x Emissions
554	to Soil Moisture, J. Geophys. Res.: Atmos., 128, 10.1029/2022jd037611, 2023.
555	Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and
556	Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations
557	with the AER radiative transfer models, J. Geophys. Res.: Atmos., 113,
558	10.1029/2008jd009944, 2008.
559	Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H.: Improved
560	gridded ammonia emission inventory in China, Atmos. Chem. Phys., 21, 15883-
561	15900, 10.5194/acp-21-15883-2021, 2021a.
562	Li, C., Wang, J., Zhang, H., Diner, D. J., Hasheminassab, S., and Janechek, N.:
563	Improvement of Surface $PM_{2.5}$ Diurnal Variation Simulations in East Africa for
564	the MAIA Satellite Mission, ACS ES&T Air, 10.1021/acsestair.3c00008, 2024.
565	Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.:
566	Impacts of HONO sources on the photochemistry in Mexico City during the
567	MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551-6567,
568	10.5194/acp-10-6551-2010, 2010.
569	Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface
570	ozone pollution in China from 2013 to 2019: anthropogenic and meteorological
571	influences, Atmos. Chem. Phys., 20, 11423-11433, 10.5194/acp-20-11423-2020,
572	2020.

573 Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and

574	Zhai, S.: A two-pollutant strategy for improving ozone and particulate air quality
575	in China, Nat. Geosci., 12, 906-910, 10.1038/s41561-019-0464-x, 2019.
576	Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P.,
577	Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk,
578	S. K.: Ozone pollution in the North China Plain spreading into the late-winter haze
579	season, Proc. Natl. Acad. Sci. U.S.A., 118, 10.1073/pnas.2015797118, 2021b.
580	Liao, H. and Xie, P.: The roles of short-lived climate forcers in a changing climate, Adv.
581	Clim. Change Res., 17, 685, 2021.
582	Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,
583	Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen
584	deposition over China, Nature, 494, 459-462, 10.1038/nature11917, 2013.
585	Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 $-$
586	Part 2: The effects of emission changes and implications for multi-pollutant
587	control, Atmos. Chem. Phys., 20, 6323-6337, 10.5194/acp-20-6323-2020, 2020a.
588	Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 $-$
589	Part 1: The complex and varying roles of meteorology, Atmos. Chem. Phys., 20,
590	6305-6321, 10.5194/acp-20-6305-2020, 2020b.
591	Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture
592	production in the past half century: shifted hot spots and nutrient imbalance, Earth
593	Syst. Sci. Data, 9, 181-192, 10.5194/essd-9-181-2017, 2017.
594	Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, TM., and
595	Zhang, Q.: Exploring 2016-2017 surface ozone pollution over China: source
596	contributions and meteorological influences, Atmos. Chem. Phys., 19, 8339-8361,
597	10.5194/acp-19-8339-2019, 2019.
598	Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B.,
599	Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.: The
600	underappreciated role of agricultural soil nitrogen oxide emissions in ozone
601	pollution regulation in North China, Nat. Commun., 12, 10.1038/s41467-021-
602	25147-9, 2021.
603	Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on the $^{\rm 27}$

604	Development of Trailing Stratiform Precipitation in a Simulated Squall Line:
605	Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137, 991-
606	1007, 10.1175/2008mwr2556.1, 2009.
607	Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C.,
608	Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A., Sörgel,
609	M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.:
610	HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive
611	Nitrogen, Science, 341, 1233-1235, 10.1126/science.1242266, 2013.
612	Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., and Liu,
613	L.: Climate change impacts of US reactive nitrogen, Proc. Natl. Acad. Sci. U.S.A.,
614	109, 7671-7675, 10.1073/pnas.1114243109, 2012.
615	Reay, D. S., Dentener, F., Smith, P., Grace, J., and Feely, R. A.: Global nitrogen
616	deposition and carbon sinks., Nat. Geosci., 1(7), 430-437, 2008.
617	Rodell, M. H., P. R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, CJ.; Arsenault,
618	K.; Cosgrove, B.; Radakovich, J.; Bosolovich, M.; Entin, J. K.; Walker, J. P.;
619	Lohmann, D.; D., T. : The global land data assimilation system., Bull. Am.
620	Meteorol. Soc., 85 (3), 381-394., 2004.
621	Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A.,
622	Miller, D. O., Brune, W. H., Koss, A. R., de Gouw, J. A., Misztal, P. K., Goldstein,
623	A. H., and Cohen, R. C.: Effects of temperature-dependent NO _x emissions on
624	continental ozone production, Atmos. Chem. Phys., 18, 2601-2614, 10.5194/acp-
625	18-2601-2018, 2018.
626	Sha, T., Ma, X., Zhang, H., Janechek, N., Wang, Y., Wang, Y., Castro García, L.,
627	Jenerette, G. D., and Wang, J.: Impacts of Soil NOx Emission on O3 Air Quality in
628	Rural California, Environ. Sci. Technol., 55, 7113-7122, 10.1021/acs.est.0c06834,
629	2021.
630	Shen, Y., Xiao, Z., Wang, Y., Xiao, W., Yao, L., and Zhou, C.: Impacts of Agricultural
631	Soil NOx Emissions on O3 Over Mainland China, J. Geophys. Res.: Atmos., 128,
632	10.1029/2022jd037986, 2023.

 $633 \qquad Sillman, S.: The use of NO_y, H_2O_2, and HNO_3 as indicators for ozone-NO_x-hydrocarbon$

634

https://doi.org/10.1029/94JD02953, 1995. 635 Skiba, U., Medinets, S., Cardenas, L. M., Carnell, E. J., Hutchings, N., and Amon, B.: 636 Assessing the contribution of soil NO_x emissions to European atmospheric 637 pollution, Environ. Res. Lett., 10.1088/1748-9326/abd2f2, 2020. 638 639 Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.: Impacts of meteorology and emissions on summertime surface 640 ozone increases over central eastern China between 2003 and 2015, Atmos. Chem. 641 Phys., 19, 1455-1469, 10.5194/acp-19-1455-2019, 2019. 642 Tan, W., Wang, H., Su, J., Sun, R., He, C., Lu, X., Lin, J., Xue, C., Wang, H., Liu, Y., 643 Liu, L., Zhang, L., Wu, D., Mu, Y., and Fan, S.: Soil Emissions of Reactive 644 645 Nitrogen Accelerate Summertime Surface Ozone Increases in the North China Plain, Environ. Sci. Technol., 57, 12782-12793, 10.1021/acs.est.3c01823, 2023. 646 647 Tewari, M., Chen F., Wang W., Dudhia J., LeMone M. A., Mitchell K., M. Gayno Ek, Wegiel G., J., and Cuenca R. H.: Implementation and verification of the unified 648 649 NOAH land surface model in the WRF model, in 20th Conference on Weather 650 Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 11-15., 2004. 651 Turner, M. C., Jerrett, M., Pope, C. A., Krewski, D., Gapstur, S. M., Diver, W. R., 652 653 Beckerman, B. S., Marshall, J. D., Su, J., Crouse, D. L., and Burnett, R. T.: Long-Term Ozone Exposure and Mortality in a Large Prospective Study, Am. J. Resp. 654 Crit. Care., 193, 1134-1142, 10.1164/rccm.201508-1633OC, 2016. 655 656 Unger, N., Zheng, Y., Yue, X., and Harper, K. L.: Mitigation of ozone damage to the world's land ecosystems by source sector, Nat. Clim. Change, 10, 134-137, 657 10.1038/s41558-019-0678-3, 2020. 658 van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and 659 Veefkind, J. P.: S5P TROPOMI NO₂ slant column retrieval: method, stability, 660 uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315-1335, 661 10.5194/amt-13-1315-2020, 2020. 662

sensitivity in urban locations., J. Geophys. Res., 100(D7), 14175-14188.,

663 Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M., and Martin, R. V.:

664	Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations,
665	Atmos. Chem. Phys., 14, 10363-10381, 10.5194/acp-14-10363-2014, 2014.
666	Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O3
667	pollution due to NO _x emission control in eastern China, Sci. Total Environ., 677,
668	732-744, 10.1016/j.scitotenv.2019.04.388, 2019.
669	Wang, Q. g., Han, Z., Wang, T., and Zhang, R.: Impacts of biogenic emissions of VOC
670	and NO_x on tropospheric ozone during summertime in eastern China, Sci. Total
671	Environ., 395, 41-49, 10.1016/j.scitotenv.2008.01.059, 2008.
672	Wang, R., Bei, N., Wu, J., Li, X., Liu, S., Yu, J., Jiang, Q., Tie, X., and Li, G.: Cropland
673	nitrogen dioxide emissions and effects on the ozone pollution in the North China
674	plain, Environ. Pollut., 294, 118617, 10.1016/j.envpol.2021.118617, 2022a.
675	Wang, R., Bei, N., Pan, Y., Wu, J., Liu, S., Li, X., Yu, J., Jiang, Q., Tie, X., and Li, G.:
676	Urgency of controlling agricultural nitrogen sources to alleviate summertime air
677	pollution in the North China Plain, Chemosphere, 311, 137124,
678	10.1016/j.chemosphere.2022.137124, 2023a.
679	Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution
680	in China: A review of concentrations, meteorological influences, chemical
681	precursors, and effects, Sci. Total Environ., 575, 1582-1596,
682	10.1016/j.scitotenv.2016.10.081, 2017.
683	Wang, W., Parrish, D. D., Wang, S., Bao, F., Ni, R., Li, X., Yang, S., Wang, H., Cheng,
684	Y., and Su, H.: Long-term trend of ozone pollution in China during 2014-2020:
685	distinct seasonal and spatial characteristics and ozone sensitivity, Atmos. Chem.
686	Phys., 22, 8935-8949, 10.5194/acp-22-8935-2022, 2022b.
687	Wang, Y., Ge, C., Castro Garcia, L., Jenerette, G. D., Oikawa, P. Y., and Wang, J.:
688	Improved modelling of soil NO _x emissions in a high temperature agricultural
689	region: role of background emissions on NO2 trend over the US, Environ. Res.
690	Lett., 16, 084061, 10.1088/1748-9326/ac16a3, 2021a.
691	Wang, Y., Fu, X., Wang, T., Ma, J., Gao, H., Wang, X., and Pu, W.: Large Contribution
692	of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air

Quality, Environ. Sci. Technol., 57, 3516-3526, 10.1021/acs.est.2c07793, 2023b. 693

694	Wang, Y., Fu, X., Wu, D., Wang, M., Lu, K., Mu, Y., Liu, Z., Zhang, Y., and Wang, T.:
695	Agricultural Fertilization Aggravates Air Pollution by Stimulating Soil Nitrous
696	Acid Emissions at High Soil Moisture, Environ. Sci. Technol., 55, 14556-14566,
697	10.1021/acs.est.1c04134, 2021b.
698	Wang, Y., Wang, J., Zhang, H., Janechek, N., Wang, Y., Zhou, M., Shen, P., Tan, J., He,
699	Q., Cheng, T., and Huang, C.: Impact of land use change on the urban-rural
700	temperature disparity in Eastern China, Atmos. Environ., 308, 119850,
701	10.1016/j.atmosenv.2023.119850, 2023c.
702	Weber B, W. D., Tamm A, et al. : Biological soil crusts accelerate the nitrogen cycle
703	through large NO and HONO emissions in drylands, Proc. Natl. Acad. Sci. U.S.A.,
704	112(50): 15384-15389., 2015.
705	Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue,
706	W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of
707	ground-level ozone (O ₃) pollution from 2013 to 2020 across China, Remote Sens.
708	Environ., 270, 112775, 10.1016/j.rse.2021.112775, 2022.
709	Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C.,
710	Liang, L., Zhang, G., Lin, W., and Xu, X.: NH ₃ -promoted hydrolysis of NO ₂
711	induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557-10570,
712	10.5194/acp-19-10557-2019, 2019.
713	Yan, X., Ohara, T., and Akimoto, H.: Statistical modeling of global soil NO_x emissions,
714	Global Biogeochem. Cycles, 19, 10.1029/2004gb002276, 2005.
715	Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and Nitrate on
716	Natural and Artificial Surfaces, Environ. Sci. Technol., 50, 3530-3536,
717	10.1021/acs.est.5b05032, 2016.
718	Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate as a Source
719	of HONO and NOx, Environ. Sci. Technol., 51, 6849-6856,
720	10.1021/acs.est.7b00387, 2017.
721	Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.:
722	Ozone and haze pollution weakens net primary productivity in China, Atmos.
723	Chem. Phys., 17, 6073-6089, 10.5194/acp-17-6073-2017, 2017.

724 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.: Atmos., 104, 30387-30415, 725 10.1029/1999jd900876, 1999. 726 727 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.: Atmos., 113, 728 10.1029/2007jd008782, 2008. 729 730 Zhang, J., Ran, H., Guo, Y., Xue, C., Liu, X., Qu, Y., Sun, Y., Zhang, Q., Mu, Y., Chen, Y., Wang, J., and An, J.: High crop yield losses induced by potential HONO 731 sources — A modelling study in the North China Plain, Sci. Total Environ., 803, 732 149929, 10.1016/j.scitotenv.2021.149929, 2022a. 733 Zhang, J., Lian, C., Wang, W., Ge, M., Guo, Y., Ran, H., Zhang, Y., Zheng, F., Fan, X., 734 Yan, C., Daellenbach, K. R., Liu, Y., Kulmala, M., and An, J.: Amplified role of 735 potential HONO sources in O3 formation in North China Plain during autumn haze 736 aggravating processes, Atmos. Chem. Phys., 22, 3275-3302, 10.5194/acp-22-737 3275-2022, 2022b. 738 Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z., and Lv, M.: Potential sources of 739 nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a 740 polluted subtropical region, J. Geophys. Res.: Atmos., 121, 3645-3662, 741 742 10.1002/2015jd024468, 2016. 743 Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu, Y., Duan, F., Ma, T., and He, H.: Improving the representation of HONO chemistry 744 in CMAQ and examining its impact on haze over China, Atmos. Chem. Phys., 21, 745 746 15809-15826, 10.5194/acp-21-15809-2021, 2021. Zhang, W., Tong, S., Jia, C., Wang, L., Liu, B., Tang, G., Ji, D., Hu, B., Liu, Z., Li, W., 747 Wang, Z., Liu, Y., Wang, Y., and Ge, M.: Different HONO Sources for Three 748 Layers at the Urban Area of Beijing, Environ. Sci. Technol., 54, 12870-12880, 749 10.1021/acs.est.0c02146, 2020. 750 751 752

- Figure 1. Distribution of the simulated monthly mean (a) soil NO_x emissions, (b) soil
- HONO emissions, and (c) anthropogenic NO_x emissions in July 2018.
- 756

- **Figure 2.** (a) Monthly mean tropospheric NO₂ VCD retrieved by TROPOMI measured
- at 12:00-14:00 LT and simulated by (e) Default and (f) Base averaged over the same
- 760 periods in July 2018.
- 761

Figure 3. Distribution of observed (dots) and simulated (shaded) surface MDA8 O₃
from (a) Default and (b) Base in July 2018. Statistics in the upper corner of panels are
the monthly mean MDA8 O₃ concentrations averaged over the study region and the
spatial correlation coefficient R between observations and simulations.

Figure 4. Diurnal variation of observed (in grey) and simulated (Default in red and
Base in blue) surface (a) HONO and (b) nitrate concentrations at a rural station in
Nanjing, with the mean value and temporal correlation coefficients (R) shown in the
upper right corner.

Figure 5. Simulated effects of soil Nr emissions on air quality. The first and second
rows show the contributions of soil NO_x and soil HONO emissions on monthly average
concentrations of NO₂, HONO, MDA8O₃, max-1h ·OH, and nitrate, respectively. The
third row shows the combined effect of soil Nr emissions on the species listed above.
Statistics in the upper right corner of each panel are the mean values averaged over the
study region.

Figure 6. Distribution of the O₃ formation regimes (represented as H₂O₂/HNO₃ ratios)

785 for (a) Base simulation with the addition of soil Nr emissions and (b) NoSoilNr

simulation without the addition of soil Nr emissions. (c) Changes in the distribution of

- 787 O₃ formation regimes due to the soil Nr emissions
- 788

789

790 Figure 7. Role of soil Nr emissions in O3 pollution regulation. The responses of MDA8 O₃ concentrations to the reductions of anthropogenic NO_x emissions (20%, 40%, 60%, 791 80% and 100%) relative to July 2018 levels, in the presence (solid line) and absence 792 793 (dotted line) of soil Nr emissions in the study region, BTH and FWP region. (The lines in panels a-c and d-f are MDA8 O₃ concentrations and the relative reductions in MDA8 794 O₃ under different anthropogenic NO_x emission reductions, respectively. The red bars 795 (right y-axis) in panels a-c show the corresponding O₃ contribution from soil Nr 796 797 emissions, which is determined as the difference between the solid and dotted lines, and the blue bars are the same as the red bars but for statistics in cropland. The red bars 798 799 (right y-axis) in panels d-f show the suppression of O₃ pollution mitigated due to the existence of soil Nr emissions, which are determined as the difference between the solid 800 and dotted lines, and the blue bars are the same as the red bars but for statistics in 801 802 cropland.)

804

Figure 8. The responses of air temperature at 2m (T2) to the reductions of anthropogenic NO_x emissions (20%, 40%, 60%, 80% and 100%) relative to July 2018 levels in the presence (solid line) and absence (dotted line) of soil Nr emissions (a) in the study region, (b) BTH and FWP region.