1 Supplement of

2 Large contribution of soil emissions to the atmospheric nitrogen

3 budget and their impacts on air quality and temperature rise in

4 North China

- 5 Tong Sha^{1*}, Siyu Yang¹, Qingcai Chen¹, Liangqing Li¹, Xiaoyan Ma², Yan-Lin Zhang^{3,4},
- 6 Zhaozhong Feng³, K. Folkert Boersma^{5,6}, Jun Wang^{7*}
- ¹ School of Environmental Science and Engineering, Shaanxi University of Science and
 Technology, Xi'an 710021, China
- ² Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological
 Administration, Nanjing University of Information Science & Technology, Nanjing
 210044, China
- ³ School of Ecology and Applied Meteorology, Nanjing University of Information
 Science & Technology, Nanjing 210044, China
- ⁴ Atmospheric Environment Center, Joint Laboratory for International Cooperation on
- 15 Climate and Environmental Change, Ministry of Education (ILCEC), Nanjing
- 16 University of Information Science & Technology, Nanjing 210044, China
- ⁵ Satellite Observations Department, Royal Netherlands Meteorological Institute, De
- 18 Bilt 3731GA, the Netherlands
- ⁶ Meteorology and Air Quality Group, Wageningen University Wageningen 6708PB,
- 20 the Netherlands
- 21 ⁷ Department of Chemical and Biochemical Engineering, Center for Global and
- 22 Regional Environmental Research, and Iowa Technology Institute, University of Iowa,
- 23 Iowa City, IA, 52242, USA
- 24 *Corresponding authors:
- 25 Tong Sha: <u>tong-sha@sust.edu.cn</u>
- 26 Jun Wang, jun-wang-1@uiowa.edu
- 27

Text S1. Parameterization of HONO sources

- In the present study, we incorporated five additional HONO sources in the WRF-29
- 30 Chem model, as described below.

1. Direct traffic emissions 31

- The traffic emission was calculated by a HONO/NO_x ratio of 1.7% (Rappenglück 32
- 33 et al., 2013), which is the same as the setting of (Zhang et al., 2019).

2. The HONO source from soil emissions 34

35 See section 2.1.2 in the manuscript.

3. Heterogeneous source on aerosol surface 36

37
$$2NO_2 + H_2O \xrightarrow{aerosol surface} HONO + HNO_3 (k_a)$$
 (R1)

38 Most studies suggested that the heterogeneous reaction of NO₂ to HONO was first 39 order in NO₂ (Finlayson-Pitts et al., 2003; Saliba et al., 2000), thus for the NO₂ heterogeneous reaction on the aerosol surface, the first-order reaction rate constant k_a 40 is estimated by (Li et al., 2010) and (Zhang et al., 2016) as follows: 41

42
$$k_a = \frac{1}{4} \cdot v_{\text{NO2}} \cdot \left(\frac{S_a}{V}\right) \cdot \gamma_{\text{a-NO2}} \tag{1}$$

where v_{NO2} is the mean molecular velocity of NO₂ (m s⁻¹), S_a/V is the aerosol surface 43 to volume ratio (m⁻¹) representing the surface available for heterogeneous reaction. 44 γ_{a-NO2} is the uptake coefficient of NO₂ at the aerosol surface, which was set to be 1 × 45 10^{-6} for nighttime, and a higher value of 2×10^{-5} applied for daytime when the light 46 intensity (LI) was lower than 400 W m⁻², whereas we linearly scaled it with solar 47 radiation when the light intensity was higher than 400 W m⁻² (equation 2). 48

49
$$\gamma_{a-NO2} = \begin{cases} 1 \times 10^{-6} \text{ (nighttime)} \\ 2 \times 10^{-5} \cdot \left(\frac{\text{LI}}{400}\right) \text{ (daytime, LI} \ge 400 \text{W m}^{-2}) \\ 2 \times 10^{-5} \text{ (daytime, LI} < 400 \text{W m}^{-2}) \end{cases}$$
(2)

4. Heterogeneous source on ground surface 50

51
$$2NO_2 + H_2O \xrightarrow{ground \ surface} HONO + HNO_3 \ (k_g)$$
 (R2)

52 For the NO₂ heterogeneous reaction on ground surface (R2), the first-order reaction rate constant k_g is estimated by (Zhang et al., 2016) as follows: 53

54
$$k_g = \frac{1}{8} \cdot v_{\text{NO2}} \cdot \left(\frac{s_g}{V}\right) \cdot \gamma_{\text{g-NO2}}$$
(3)

where v_{NO2} is the mean molecular velocity of NO₂ (m s⁻¹), S_g/V represents the ground surface to volume ratio. Over the urban areas as defined by the MODIS land use data, we adopted a constant S_g/V value of 0.3 m⁻¹. For the vegetation-covered areas, the leaf area index (LAI, m²/m²) and the height of the first model layer (*H*, m) were used to estimate the surface area to volume ratio following the method in (Sarwar et al., 2008):

$$60 \qquad \frac{S_g}{V} = \frac{2 \times \text{LAI}}{H} \tag{4}$$

61 γ_{g-NO2} is the uptake coefficient of NO₂ at the ground surface and is assumed to be the 62 same as that for aerosol surface. The heterogeneous reaction of NO₂ on the ground 63 surface was only considered within the first model layer, whereas that on the aerosol 64 surface was treated in all model layers.

The photolysis reaction of particulate nitrate in the atmosphere to produce HONO
and NO₂ (R3) was added in the WRF-Chem model following the work of (Fu et al.,
2019).

69
$$pNO_3 + hv \to 0.67HONO + 0.33NO_2$$
 (R3)

The photolysis rate of particulate nitrate was estimated by a $J_{\text{nitrate}}/J_{\text{HNO3}}$ ratio of $\frac{8.3 \times 10^{-5}}{7 \times 10^{-7}}$, where J_{HNO3} is the photolysis rate of gaseous HNO₃ simulated online in the model.

74	Table S1 Total annual	N fertilizer ap	pplication from	2006 to 2018	(unit: 10	$Gg N yr^{-1}$),
----	-----------------------	-----------------	-----------------	--------------	-----------	-------------------

and the adjustment coefficient (2006 vs. 2018, unit: %) for N fertilizer application in

76 each province.

Province	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2006vs.2018
Neimenggu	64	68	73	80	80	81	83	89	97	99	98	95	86	34.5
Gansu	37	38	38	38	38	38	40	40	41	41	39	34	33	-9.6
Ningxia	16	17	17	17	18	18	18	19	18	17	17	17	16	4.5
Shaanxi	76	81	81	87	88	91	98	99	96	94	92	90	89	16.2
Shanxi	41	41	40	39	40	39	39	38	36	34	32	28	25	-38
Hebei	155	156	153	153	153	152	152	151	151	148	145	140	114	-26.2
Beijing	8	7	7	7	7	7	6	6	5	5	4	4	3	-61.3
Tianjin	12	13	12	12	12	11	11	11	11	10	9	7	6	-53.6
Henan	235	239	240	239	244	245	246	244	241	239	228	220	202	-14.3
Shandong	194	193	170	165	163	159	160	158	154	151	146	139	131	-32.5
Jiangsu	183	183	181	182	180	174	169	166	164	162	158	151	146	-20.4
Anhui	112	111	112	112	112	114	114	114	112	108	105	101	96	-14.4
Huibei	140	143	149	154	156	159	159	153	146	139	134	128	113	-19.5
Chongqing	46	48	50	50	49	50	50	50	50	50	48	47	46	-1.1
Sichuan	125	128	129	131	130	129	128	126	126	125	122	117	112	-10.1
Liaoning	63	65	66	67	68	70	68	70	68	66	60	57	55	-13.5

No.	Soil Category in Oswald et al. (2013)
S1	eucalyptus forest, Grose Valley, Australia
S2	tropical rain forest, Suriname
S 3	coniferous forest, Hohenpeißenberg, Germany
S4	coniferous forest, Fichtelgebirge, Germany
S 5	pasture, Hawkesbury River flood plain, Australia
S 6	open woody savannah, Dahra, Senegal
S7	open woody savannah, Agoufou, Mali
S8	grassland, Mainz-Finthen, Germany
S9	pasture, Hohenpeißenberg, Germany
S10	stone desert, Ruta B 376, Chile
S11	maize field, Grignon, France
S12	wheat field, Mainz-Finthen, Germany
S13	jujube field, Qiemo, China
S14	cotton field, Qiemo, China
S15	jujube field, Mingfeng, China
S16	stone desert, Sache, China
S17	cotton field, Milan, China

Table S2. Soil categories used in (Oswald et al., 2013).

ID	MODIS land cover type	MEDIUM	HIGH	LOW
1	Evergreen needleleaf forest	S3, S4	S3	S4
2	Evergreen broadleaf forest	S2	S2	S2
3	Deciduous needleleaf forest	S3, S4	S3	S4
4	Deciduous broadleaf forest	S1	S1	S1
5	Mixed forest	S1, S2, S3, S4	S2	S4
6	Closed shrublands	S6, S7, S8	S6	S 8
7	Open shrublands	\$6, \$7	S6	S 7
8	Woody savannas			
9	Savannas	\$6, \$7	S6	S 7
10	Grasslands	S8	S8	S 8
11	Permanent wetlands	-		
12	Croplands	\$5, \$9, \$11, \$12, \$14, \$17	S12	S9
13	Urban and built-up	-		
14	Cropland/Natural vegetation mosaic	\$8, \$5, \$9, \$11, \$12, \$14, \$17	S12	S9
15	Snow and ice	-		
16	Barren or sparsely vegetated	S16, S10	S10	S16
17	water			
18	Wooded tundra	-		
19	Mixed tundra			
20	Barren Tundra			

Table S3. Emission factor of 20 soil biomes based on MODIS land cover types.

ID	MODIS land anyor type	Optimum SHONO fluxes	References
ID	WODIS land cover type	$(ng m^{-2} s^{-1})$	(land cover type in local scale)
1	Evergreen needleleaf forest	0.549	this study
2	Evergreen broadleaf forest	2.872	this study
3	Deciduous needleleaf forest	0.549	this study
ł	Deciduous broadleaf forest	0.887	this study
		1.214	this study
-		1.3	Zhou et al. (2011)
5	Mixed forest	0.01-104.72 (mean=16.45)	Wu et al. (2022)
		0.2-208 (mean=50)	Wang et al. (2023)
6	Closed shrublands	20.57	this study
7	Open shrublands	29.779	this study
8	Woody savannas		
0	C	9.926	this study
9	Savainas	1.1	Weber B (2015)
		2.154	this study
10	Grasslands	1.0	Twigg et al. (2011)
		0.1-74.27(mean =17.57)	Wu et al. (2022)
11	Permanent wetlands		
		30.036	this study
		1.42-376.01(mean =119.8)	Wu et al. (2019, 2022)
10		0.84 ± 2.38	Meng et al. (2022)
12	Cropiands	-1.32-7.69 (mean=2.94)	Tang et al. (2020)
		3.21	Xue et al. (2019)
		16-484	Wang et al. (2023)
13	Urban and built-up		
14	Cropland/Natural vegetation mosaic	25.847	this study
5	Snow and ice		

82	Table S4.	The optimum	SHONO	fluxes use	d in this	s study and	l other literat	ure.
04		I He opullium		manes use	α m um	blud v und	f other moral	arc.

		1.5	Weber B (2015)
		5.38-288.23 (mean=57.06)	Wu et al. (2022)
17	water		
18	Wooded tundra		
19	Mixed tundra		
20	Barren Tundra		

Simulation	Soil em	issions	Anthropogenic emissions		
Simulation –	Soil NO _x	Soil HONO	NO _x		
Default	1(MEGAN)	0	1		
Base	1(BDISNP)	1	1		
NoSoilNr	0	0	1		
NoSHONO	1	0	1		
NoSNO _x	0	1	1		
Base_redANO _x	1	1	0.8/0.6/0.4/0.2/0 ^a		
NoSoil_redANO _x	0	0	0.8/0.6/0.4/0.2/0 ^b		

Table S5. Description of model simulation experiments.

^{a, b} The values represent the reduction ratios applied to the anthropogenic NO_x emissions in the

86 sensitivity simulations compared to the Base.

Surface NO₂ concentrations Surface HONO concentrations Contribution Study region (CL) BTH(CL) FWP(CL) Study region (CL) BTH(CL) FWP(CL) 6.2(5.7) SNO_x 30.3(33.2) 37.1(39.5) 31.8(38.6) 7.8(7.6) 4.95(4.2) SHONO 3.1(2.3) 1.8(1.75)2.7(3.1)35.6 (38.7) 36.7(38.6)38.0(42.7)Soil Nr 32.7(34.7) 38.4(40.5) 33.9(41.3) 38.2(20.0) 40.3(42.0) 40.1(44.6)

Table S6. Contribution of soil NO_x and HONO emissions to monthly average surface

concentrations of NO₂ and HONO (unit: %).

90

Table S7. Effect of soil NO_x and HONO emissions on monthly average surface
concentrations of MDA8 O₃, max-1h OH, and nitrate in BTH and FWP region during
July 2018 (unit: %).

	MDA8 O ₃			max-1h ·OH			nitrate		
Change	Study region	BTH	FWP	Study region	BTH	FWP	Study region	BTH	FWP
	(CL)	(CL)	(CL)	(CL)	(CL)	(CL)	(CL)	(CL)	(CL)
Soil NOv	15.3	13.9	14.6	-31.3	-28.4	-38.6	17.8	29.6	27.6
SOILINOX	(17.4)	(15.0)	(15.6)	(-21.6)	(-13.5)	(-24.8)	(22.4)	(41.3)	(32.8)
Soil HONO	3.3	3.5	2.8	10.0	9.3	10.3	10.4	10.9	13.5
	(3.0)	(3.8)	(3.1)	(13.4)	(13.1)	(17.5)	(11.3)	(14.2)	(15.2)
C - 11 N -	18.2	16.9	17.2	-24.3	-22.6	-32.2	31.8	42.4	42.7
Soli INF	(20.0)	(18.1)	(18.6)	(-12.5)	(-4.4)	(-13.6)	(35.8)	(57.8)	(49.9)

96 Figure S1. The land cover type over the simulation domain.

Figure S2. (a) Distribution of simulated contribution of soil Nr emissions to total Nr emissions, which includes the sources from anthropogenic emissions, soil emissions, and biomass burning. The difference of monthly mean tropospheric NO₂ VCD from TROPOMI observations and simulations ((b) Default, (c) Base). Statistics in each panel are the mean value averaged over the study region.

Figure S3. Time series of observed (grey circles with bars representing the standard
deviations) and simulated (Default in red and Base in blue) surface MDA8 O₃
concentrations in the BTH and FWP regions, with the mean value and temporal
correlation coefficients (R) shown in the upper corner.

112

Figure S4. Average diurnal variations of contributions of different HONO sources to the simulated surface HONO at a rural station in Nanjing during July 2018. (P_{NO3}, Het_g, Het_a, Soil, Traffic, and NO+OH represent HONO sources from the inorganic nitrate photolysis in the atmosphere, NO₂ heterogeneous reactions on ground and aerosol surfaces, soil emissions, traffic emissions, and the gas-phase formation, respectively).

121

Figure S5. The responses of nitrate concentrations to the reductions of anthropogenic 122 NO_x emissions (20%, 40%, 60%, 80% and 100%) relative to July 2018 levels in the 123 presence (solid line) and absence (dotted line) of soil nitrogen emissions. (The lines in 124 panel (a-b) are the nitrate concentrations and the relative reductions in nitrate 125 concentrations under different anthropogenic NO_x emission reductions, respectively. 126 The bars (right y-axis) in panel (a) show the corresponding nitrate contribution from 127 128 soil Nr emissions (denoted as soil nitrate concentrations) under different anthropogenic NO_x emission reductions, which are determined as the difference between the solid and 129 dotted lines. The bars (right y-axis) in panel (b) show the suppression of nitrate 130 reduction due to the existence of soil nitrogen emissions (denoted as soil suppression), 131 which are determined as the difference between the solid and dotted lines. Green lines 132 and bars are the results in the FWP region, and the yellow are the results in the BTH 133 134 region.)

136 **Reference**

- Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan, K. A.:
 The heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and
 indoor atmospheres: An integrated mechanism, Phys. Chem. Chem. Phys., 5, 223242, 10.1039/b208564j, 2003.
- Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue,
 D., Zhou, Y., Zheng, J., and Han, R.: The significant contribution of HONO to
 secondary pollutants during a severe winter pollution event in southern China,
 Atmos. Chem. Phys., 19, 1-14, 10.5194/acp-19-1-2019, 2019.
- Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.:
 Impacts of HONO sources on the photochemistry in Mexico City during the
 MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551-6567,
 10.5194/acp-10-6551-2010, 2010.
- Meng, F., Qin, M., Fang, W., Duan, J., Tang, K., Zhang, H., Shao, D., Liao, Z., Feng,
 Y., Huang, Y., Ni, T., Xie, P., Liu, J., and Liu, W.: Measurement of HONO flux
 using the aerodynamic gradient method over an agricultural field in the Huaihe
 River Basin, China, J. Environ. Sci., 114, 297-307, 10.1016/j.jes.2021.09.005,
 2022.
- Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C.,
 Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A., Sörgel,
 M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.:
 HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive
 Nitrogen, Science, 341, 1233-1235, 10.1126/science.1242266, 2013.
- Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B., and Ackermann,
 L.: Radical precursors and related species from traffic as observed and modeled at
 an urban highway junction, J. Air Waste Manage. Assoc., 63, 1270-1286, 2013.
- Saliba, N. A., Mochida, M., and Finlayson-Pitts, B. J.: Laboratory studies of sources of
 HONO in polluted urban atmospheres, Geophys. Res. Lett., 27, 3229-3232,
- 164 10.1029/2000gl011724, 2000.
- 165 Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., and Vogel, B.: A

- 166 comparison of CMAQ HONO predictions with observations from the Northeast
 167 Oxidant and Particle Study, Atmos. Environ., 42, 5760-5770,
 168 10.1016/j.atmosenv.2007.12.065, 2008.
- Tang, K., Qin, M., Fang, W., Duan, J., Meng, F., Ye, K., Zhang, H., Xie, P., Liu, J., Liu,
 W., Feng, Y., Huang, Y., and Ni, T.: An automated dynamic chamber system for
 exchange flux measurement of reactive nitrogen oxides (HONO and NO_x) in
 farmland ecosystems of the Huaihe River Basin, China, Sci. Total Environ., 745,
 140867, 10.1016/j.scitotenv.2020.140867, 2020.
- Twigg, M. M., House, E., Thomas, R., Whitehead, J., Phillips, G. J., Famulari, D.,
 Fowler, D., Gallagher, M. W., Cape, J. N., Sutton, M. A., and Nemitz, E.:
 Surface/atmosphere exchange and chemical interactions of reactive nitrogen
 compounds above a manured grassland, Agric. For. Meteorol., 151, 1488-1503,
 10.1016/j.agrformet.2011.06.005, 2011.
- Wang, Y., Fu, X., Wang, T., Ma, J., Gao, H., Wang, X., and Pu, W.: Large Contribution
 of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air
 Quality, Environ. Sci. Technol., 57, 3516-3526, 10.1021/acs.est.2c07793, 2023.
- Weber B, W. D., Tamm A, et al. : Biological soil crusts accelerate the nitrogen cycle
 through large NO and HONO emissions in drylands, Proc. Natl. Acad. Sci. U.S.A.,
 112(50): 15384-15389., 2015.
- Wu, D., Horn, M. A., Behrendt, T., Müller, S., Li, J., Cole, J. A., Xie, B., Ju, X., Li, G.,
 Ermel, M., Oswald, R., Fröhlich-Nowoisky, J., Hoor, P., Hu, C., Liu, M., Andreae,
 M. O., Pöschl, U., Cheng, Y., Su, H., Trebs, I., Weber, B., and Sörgel, M.: Soil
 HONO emissions at high moisture content are driven by microbial nitrate
 reduction to nitrite: tackling the HONO puzzle, ISME J., 13, 1688-1699,
 10.1038/s41396-019-0379-y, 2019.
- Wu, D., Zhang, J., Wang, M., An, J., Wang, R., Haider, H., Xu-Ri, Huang, Y., Zhang,
 Q., Zhou, F., Tian, H., Zhang, X., Deng, L., Pan, Y., Chen, X., Yu, Y., Hu, C., Wang,
- 193 R., Song, Y., Gao, Z., Wang, Y., Hou, L., and Liu, M.: Global and Regional Patterns
- 194 of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical
- 195 Reactions, J. Geophys. Res.: Atmos., 127, 10.1029/2021jd036379, 2022.

- Xue, C., Ye, C., Zhang, Y., Ma, Z., Liu, P., Zhang, C., Zhao, X., Liu, J., and Mu, Y.:
 Development and application of a twin open-top chambers method to measure soil
 HONO emission in the North China Plain, Sci. Total Environ., 659, 621-631,
 10.1016/j.scitotenv.2018.12.245, 2019.
- Zhang, J., An, J., Qu, Y., Liu, X., and Chen, Y.: Impacts of potential HONO sources on
 the concentrations of oxidants and secondary organic aerosols in the BeijingTianjin-Hebei region of China, Sci. Total Environ., 647, 836-852,
 10.1016/j.scitotenv.2018.08.030, 2019.
- Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z., and Lv, M.: Potential sources of
 nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a
 polluted subtropical region, J. Geophys. Res.: Atmos., 121, 3645-3662,
 10.1002/2015jd024468, 2016.
- Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M.,
 Shepson, P. B., Carroll, M. A., Griffith, S., Dusanter, S., and Stevens, P. S.: Nitric
 acid photolysis on forest canopy surface as a source for tropospheric nitrous acid,
 Nat. Geosci., 4, 440-443, 10.1038/ngeo1164, 2011.