

1 **Large contribution of soil emissions to the atmospheric nitrogen**  
2 **budget and their impacts on air quality and temperature rise in**  
3 **North China**

4 *Tong Sha<sup>1</sup>\*, Siyu Yang<sup>1</sup>, Qingcai Chen<sup>1</sup>, Liangqing Li<sup>1</sup>, Xiaoyan Ma<sup>2</sup>, Yan-Lin Zhang<sup>3,4</sup>,*  
5 *Zhaozhong Feng<sup>3</sup>, K. Folkert Boersma<sup>5,6</sup>, Jun Wang<sup>7</sup>\**

6 <sup>1</sup> School of Environmental Science and Engineering, Shaanxi University of Science and  
7 Technology, Xi'an 710021, China

8 <sup>2</sup> Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological  
9 Administration, Nanjing University of Information Science & Technology, Nanjing  
10 210044, China

11 <sup>3</sup> School of Ecology and Applied Meteorology, Nanjing University of Information  
12 Science & Technology, Nanjing 210044, China

13 <sup>4</sup> Atmospheric Environment Center, Joint Laboratory for International Cooperation on  
14 Climate and Environmental Change, Ministry of Education (ILCEC), Nanjing  
15 University of Information Science & Technology, Nanjing 210044, China

16 <sup>5</sup> Satellite Observations Department, Royal Netherlands Meteorological Institute, De  
17 Bilt 3731GA, the Netherlands

18 <sup>6</sup> Meteorology and Air Quality Group, Wageningen University, Wageningen 6708PB,  
19 the Netherlands

20 <sup>7</sup> Department of Chemical and Biochemical Engineering, Center for Global and  
21 Regional Environmental Research, and Iowa Technology Institute, University of Iowa,  
22 Iowa City, IA, 52242, USA

23 \*Corresponding authors:

24 Tong Sha: [tong-sha@sust.edu.cn](mailto:tong-sha@sust.edu.cn)

25 Jun Wang, [jun-wang-1@uiowa.edu](mailto:jun-wang-1@uiowa.edu)

26 Submitted: February 2024

27 Revised: June 2024

28

29      **Abstract**

30      Soil emissions of nitrogen compounds, including NO and HONO, play a  
31      significant role in atmospheric nitrogen budget. However, HONO has been overlooked  
32      in previous research on soil reactive nitrogen (Nr) emissions and their impacts on air  
33      quality in China. This study estimates both soil  $\text{NO}_x$  and HONO emissions ( $\text{SNO}_x$  and  
34      SHONO) in North China during July 2018 with an updated soil Nr emissions scheme  
35      in a chemical transport model, the Unified Inputs for WRF-Chem (UI-WRF-Chem).  
36      The effects of soil Nr emissions on  $\text{O}_3$  pollution, air quality and temperature rise are  
37      also studied, with a focus on two key regions, Beijing-Tianjin-Hebei (BTH) and Fenwei  
38      Plain (FWP), known for high soil Nr and anthropogenic emissions. We find that the flux  
39      of  $\text{SNO}_x$  is nearly doubled those of SHONO; the monthly contributions of  $\text{SNO}_x$  and  
40      SHONO account for 37.3% and 13.5% of anthropogenic  $\text{NO}_x$  emissions in the BTH,  
41      and 29.2% and 19.2% in the FWP during July 2018, respectively. Soil Nr emissions  
42      have a significant impact on surface  $\text{O}_3$  and nitrate, exceeding  $\text{SNO}_x$  or SHONO effects  
43      alone. On average, soil Nr emissions increase MDA8  $\text{O}_3$  by 16.9% and nitrate  
44      concentrations by 42.4% in the BTH, 17.2% for MDA8  $\text{O}_3$  and 42.7% for nitrate in the  
45      FWP. Reducing anthropogenic  $\text{NO}_x$  emissions leads to a more substantial suppressive  
46      effect of soil Nr emissions on  $\text{O}_3$  mitigation, particularly in BTH. Soil Nr emissions,  
47      via their role as precursors for secondary inorganic aerosols, can result in a slower  
48      increase rate of surface air temperature under future emission reduction scenarios. This  
49      study suggests that mitigating  $\text{O}_3$  pollution and addressing climate change in China  
50      should consider the role of soil Nr emission, and their regional differences.

51      **1. Introduction**

52      Surface ozone ( $O_3$ ) is a major air pollutant harmful to human health, terrestrial  
53      vegetation, and crop growth (Feng et al., 2022b; Turner et al., 2016; Unger et al., 2020;  
54      Yue et al., 2017). China is confronting serious  $O_3$  pollution, with the surface  $O_3$   
55      concentrations routinely exceeding air quality standards (Li et al., 2019). Although the  
56      Chinese Action Plan on Air Pollution Prevention and Control implemented in 2013 has  
57      significantly reduced the nationwide anthropogenic emissions of primary pollutants  
58      including particulate matter (PM) and nitrogen oxides ( $NO_x = NO + NO_2$ ), the  
59      summertime  $O_3$  concentrations observed by national ground sites and satellite  
60      observations both show an increasing trend of  $1-3 \text{ ppbv a}^{-1}$  in megacity clusters of  
61      eastern China from 2013 to 2019 (Wang et al., 2022b; Wei et al., 2022). Many studies  
62      have explored the causes of  $O_3$  pollution from the perspective of changes in  
63      meteorology and anthropogenic emissions, and attributed the  $O_3$  increase to decreased  
64      PM levels and anthropogenic  $NO_x$  emissions, and adverse meteorological conditions  
65      (Li et al., 2019; Li et al., 2020; Li et al., 2021b; Liu and Wang, 2020a, b; Lu et al., 2019).

66      Soil emissions are an important natural source of reactive nitrogen species,  
67      including  $N_2O$ ,  $NO_x$ ,  $HONO$  and  $NH_3$ , and can strongly affect the atmospheric  
68      chemistry, air pollution and climate change (Elshorbany et al., 2012; Pinder et al., 2012).  
69      It has been acknowledged that the soils emissions account for 12-20% of total emissions  
70      of  $NO_x$  on global average (Vinken et al., 2014; Yan et al., 2005), and 40-51% in  
71      agricultural regions during periods in which fertilizers are applied to soils, resulting in  
72      a significant increase in  $O_3$  and  $NO_2$  concentrations in US (Almaraz et al., 2018; Romer

73 et al., 2018; Sha et al., 2021; Wang et al., 2021a), Europe (Skiba et al., 2020) and sub-  
74 Saharan Africa (Huang et al., 2018).

75 China has a large area of cultivated land ( $\sim 1.276 \times 10^6 \text{ km}^2$ ,  
76 [http://gi.mnr.gov.cn/202304/t20230414\\_2781724.html](http://gi.mnr.gov.cn/202304/t20230414_2781724.html), last access: 18<sup>th</sup> December  
77 2023), which contributes to one-third of the global nitrogen fertilizer use and has  
78 extensive nitrogen deposition (Liu et al., 2013; Lu and Tian, 2017; Reay, 2008). So far,  
79 only a limited studies focused on the impact of soil NO<sub>x</sub> emissions (denoted as SNO<sub>x</sub>)  
80 on O<sub>3</sub> pollution in China (Huang et al., 2023; Lu et al., 2021; Shen et al., 2023; Wang  
81 et al., 2008; Wang et al., 2022a; Wang et al., 2023a). Lu et al. (2021) demonstrated that  
82 the presence of SNO<sub>x</sub> in the North China Plain significantly reduced the sensitivity of  
83 surface O<sub>3</sub> to anthropogenic emissions. Huang et al. (2023) suggested that substantial  
84 SNO<sub>x</sub> could increase the maximum daily 8 h (MDA8) O<sub>3</sub> concentrations by 8.0–12.5  
85  $\mu\text{g m}^{-3}$  on average for June 2018 in China. These studies focused only on NO<sub>x</sub> emitted  
86 from soils and neglected that similar soil microbial activities also emit nitrous acid  
87 (HONO). The measurements in laboratory showed that the emission rates of soil HONO  
88 were comparable to those of NO (Oswald et al., 2013; Weber B, 2015). The photolysis  
89 of HONO has been identified to be an important source of atmospheric hydroxyl radical  
90 ( $\cdot\text{OH}$ ), which enhances concentrations of hydroperoxyl (HO<sub>2</sub>) and organic peroxy  
91 radicals (RO<sub>2</sub>), accelerating the conversion of NO to NO<sub>2</sub>, resulting in more  
92 concentrations of O<sub>3</sub> and secondary pollutants. Although the sources and formation  
93 mechanisms of HONO are still not fully understood, recent model studies suggested  
94 that HONO emission from soils in the agriculture-intensive North China Plain could

95 increase the regionally averaged daytime ·OH, O<sub>3</sub>, and daily fine particulate nitrate  
96 concentrations (Feng et al., 2022a; Wang et al., 2021b).

97 Only a few studies simultaneously considered the impact of soil HONO emissions  
98 (denoted as SHONO) along with SNO<sub>x</sub> on O<sub>3</sub> and other secondary pollutants (Tan et  
99 al., 2023; Wang et al., 2023c). Wang et al. (2023c) found that the NO<sub>x</sub> and HONO  
100 emissions from natural soils (i.e., soil background emissions) increased daily average  
101 O<sub>3</sub> concentrations by 2.0% in the Northeast Plain during August 2016 without  
102 considering the contribution from fertilized croplands. Tan et al. (2023) believed that  
103 the contribution of soil NO<sub>x</sub> and HONO to O<sub>3</sub> pollution has been in an increasing trend  
104 from 2013 (5.0 pptv) to 2019 (8.0 pptv) in the summer season over the North China  
105 Plain by using the GEOS-Chem model; however the coarse resolution of GEOS-Chem  
106 simulation may not be sufficient to resolve the spatial heterogeneity in soil emission  
107 distribution (Lu et al., 2021). Associated with the decreasing anthropogenic emissions  
108 is the increasing contribution of soil emissions to the atmospheric nitrogen budget in  
109 China. Therefore, it is critical to quantify the impact of soil reactive nitrogen (Nr: NO<sub>x</sub>  
110 and HONO) emissions on O<sub>3</sub> and secondary pollutants.

111 In this study, we improve the soil Nr emissions scheme in the Unified Inputs  
112 (initial and boundary conditions) for Weather Research and Forecasting model coupled  
113 with Chemistry (UI-WRF-Chem) by considering all potential sources of HONO  
114 published in the literature. July 2018 was chosen as the study period because of severe  
115 O<sub>3</sub> pollution during this month, as well as higher air temperatures and more frequent  
116 precipitation compared to June and August (Fig. S1 and S2), which could contribute to

117 enhanced the soil Nr emissions (Fig. S3). We conduct a series of sensitivity experiments  
118 to quantify the coupled and separate impact of SNO<sub>x</sub> and SHONO on O<sub>3</sub> and secondary  
119 pollutants during July 2018 over the North China, focusing on two city clusters, the  
120 Beijing-Tianjin-Hebei (BTH) region and Fenwei Plain (FWP) region, both of which  
121 have the vast areas of croplands and dense populations and experiencing severe O<sub>3</sub> and  
122 PM<sub>2.5</sub> pollutions. In addition, by quantitatively analyzing the difference in the response  
123 of surface O<sub>3</sub> concentrations and surface air temperature to the anthropogenic emissions  
124 reductions in the presence vs. absence of soil Nr emissions, the roles of soil Nr  
125 emissions on O<sub>3</sub> mitigation strategies and climate change are also studied. Our study is  
126 designed to address the underestimated role of soil Nr emission in O<sub>3</sub> pollution, thereby  
127 providing the scientific basis for O<sub>3</sub> mitigation strategies and climate change.

128 **2. Methodology**

129 **2.1 Model description**

130 **2.1.1 Model configurations, input data, and non-soil HONO emission**

131 The UI-WRF-Chem model, developed upon the standard version of WRF-Chem  
132 3.8.1 (Grell et al., 2005), was used in this study. The 0.625°×0.5° Modern-Era  
133 Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis  
134 data provide both the meteorological and chemical boundary and initial conditions  
135 (Gelaro et al., 2017). The 0.25° × 0.25° Global Land Data Assimilation System  
136 (GLDAS) data provides the initial and boundary conditions of soil properties, i.e., soil  
137 moisture and temperature (Rodell et al., 2004). Details of Unified Inputs of  
138 meteorological and chemical position data for UI-WRF-Chem, can be found in recent

139 publications (Li et al., 2024; Wang et al., 2023d). Anthropogenic emissions are  
140 imported from the Multi-resolution Emission Inventory for China (MEIC:  
141 <http://www.meicmodel.org/>) with a spatial resolution of  $0.25^\circ \times 0.25^\circ$  for the year 2017.

142 Due to the differences in spatial resolution and map projection between the MEIC  
143 inventory and model grid, we applied a spatial interpolation method to convert the  
144 MEIC inventory to the model-ready formats. The descriptions are detailed in Text S1.

145 Biomass burning emissions are from the Fire Inventory from NCAR version (FINN,  
146 version 1.5, <https://www.acom.ucar.edu/Data/fire/>). Biogenic emissions are calculated  
147 using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version  
148 2.1 (Guenther et al., 2012).

149 The physical and chemical schemes include the Morrison 2-moment  
150 microphysical scheme (Morrison et al., 2009), Grell 3-D cumulus scheme (Grell and  
151 Dévényi, 2002), RRTMG for both longwave and shortwave radiation scheme (Iacono  
152 et al., 2008), Yonsei University planetary boundary layer scheme (Hong et al., 2006),  
153 Noah land surface model (Tewari et al., 2004), and the Carbon Bond Mechanism  
154 (CBMZ) for gas-phase chemistry and the Model for Simulating Aerosol Interactions  
155 and Chemistry (MOSAIC) aerosol module with four sectional aerosol bins and aqueous  
156 reactions (Zaveri and Peters, 1999; Zaveri et al., 2008) are adopted in the UI-WRF-  
157 Chem model. Two nested domains are used, domain one covers China with a horizontal  
158 resolution of 27 km and contains  $112 \times 112$  grid cells, and domain two covers central  
159 and eastern China and its surrounding area with a horizontal resolution of 9 km,  
160 containing  $196 \times 166$  grid cells (study region are shown in Fig. S4), both domains have

161 74 vertical levels from surface to 50 hPa and 4 levels of soil. The simulations are  
162 conducted from 29<sup>th</sup> June to 31<sup>th</sup> July in 2018 with the first 2 days as the spin-up period.  
163 The model outputs from 1<sup>th</sup> to 31<sup>th</sup> July in 2018 are analyzed.

164 The default WRF-Chem model only considers the gas-phase formation of HONO  
165 (NO + OH → HONO), thus underestimating the HONO concentrations. In this study, in  
166 addition to considering SHONO (details in Sect. 2.1.2), potential sources of HONO  
167 recognized in recent studies are also taken into account in the current model (Fu et al.,  
168 2019; Li et al., 2010; Ye et al., 2016; Ye et al., 2017; Zhang et al., 2016; Zhang et al.,  
169 2020; Zhang et al., 2021; Zhang et al., 2022a, b), including traffic emissions, NO<sub>2</sub>  
170 heterogeneous reactions on ground and aerosol surfaces, and inorganic nitrate  
171 photolysis in the atmosphere. Through a series of tests and comparisons with observed  
172 surface HONO concentrations, the specific parameterization schemes of HONO  
173 sources adopted in this study are shown in Text S2.

174 **2.1.2 Parameterization of soil Nr emissions**

175 The soil Nr emissions schemes in the UI-WRF-Chem model are updated in this  
176 study. The default SNO<sub>x</sub> scheme in UI-WRF-Chem, MEGAN v2.1, is replaced by the  
177 Berkeley–Dalhousie–Iowa Soil NO Parameterization (BDISNP), and the  
178 implementation of BDISNP can be found in Sha et al. (2021). Considering that the  
179 baseline year of N fertilizer data is 2006, and the amount of N fertilizer application in  
180 China has changed in the past ten years, we update the N fertilizer data to the year 2018  
181 based on the N fertilizer application data at the province level from the statistical  
182 yearbook (Table S1).

183 The process of soil HONO emission is similar to that of NO<sub>x</sub>, as both are  
184 influenced by the physical and chemical characteristics of soils. Consequently, soil  
185 emissions of HONO with consideration of their dependence on land type, soil humidity,  
186 and temperature are also parameterized into the UI-WRF-Chem model. We first map  
187 the soil types measured in Oswald et al. (2013) (collected from 17 ecosystems in Table  
188 S2) into the most closely matching MODIS land cover types in the model following  
189 Feng et al. (2022a), described in Table S3. The optimal emission flux for each MODIS  
190 land cover type is calculated as the average of the measured fluxes from the  
191 category/categories in Oswald et al. (2013) that is/are been mapped into a specific  
192 MODIS classification. We also collect the SHONO data from various ecosystems in  
193 China published in different studies to correct the optimal SHONO fluxes in the model  
194 (Table S4). These ecosystems include semi-arid, fertilized and irrigated farmland in  
195 China. Consequently, the parameterization scheme takes into account the effect of  
196 fertilizer application on the SHONO. After that, the optimal fluxes over the domains  
197 are digested into the model and further scaled online according to the soil temperature  
198 and water content in each model grid at each time step throughout the simulation period  
199 by the following of equation from (Zhang et al., 2016):

200 
$$F_N(\text{HONO}) = F_{N,opt}(\text{HONO}) \cdot f(T) \cdot f(SWC)$$

201 where  $F_{N,opt}(\text{HONO})$  is the optimum flux of SHONO in terms of nitrogen.  $f(T)$  and  
202  $f(SWC)$  are the scaling factors of soil temperature ( $T$ ) and water content ( $SWC$ ).

203 
$$f(T) = e^{\frac{E_a}{R}(\frac{T}{T_{opt}} - \frac{1}{T})}$$

204  $E_a$  is the activation energy of HONO (80 kJ mol<sup>-1</sup>), R is the gas constant,  $T_{opt}$  is

205 the temperature at which optimum flux is emitted (298.15 K),  $T$  is the soil temperature  
206 calculated online by the model,  $f(SWC)$  is fitted based on the data curves in Fig. 1  
207 and 3 in (Oswald et al., 2013) and the equation is as follows:

208

$$f(SWC) = 1.04 \times \exp\left(-e^{-\frac{SWC-11.32586}{5.27335}} - \frac{SWC-11.32586}{5.27335} + 1\right)$$

209 **2.2 Model experiment design**

210 The descriptions of the sensitivity simulations are shown in Table 1. Default  
211 simulation uses MEGAN scheme to estimate  $SNO_x$  and no SHONO is considered. Base  
212 simulation uses soil Nr emissions schemes with the improvement of using BDISNP  
213 scheme for  $SNO_x$  and consideration of SHONO and other four HONO sources (as  
214 described above). Comparison of results from Default and Base simulations is used to  
215 show the improvement in the model performance after updating the soil Nr emissions  
216 schemes and incorporating HONO potential sources. To explore the impact of soil Nr  
217 emissions on  $O_3$  and secondary pollutants, we conduct a series of sensitivity simulations  
218 with soil  $NO_x$  and HONO emissions turned on/off separately and jointly (anthropogenic  
219 emissions for the year 2017), i.e., NoSoilNr, NoSHONO and No $SNO_x$ . To investigate  
220 the relative importance and interaction between anthropogenic and natural emissions of  
221 nitrogen-containing pollutants, we conduct the Base\_redANO<sub>x</sub> and NoSoil\_redANO<sub>x</sub>  
222 simulations to evaluate the role of soil Nr emissions on  $O_3$  mitigation strategies, in  
223 which anthropogenic  $NO_x$  emissions reduced by 20%, 40%, 60%, 80%, and 100%,  
224 respectively. Furthermore, considering the co-control of multiple air pollutants and  
225 greenhouse gas reductions in future emission reduction scenarios, the Base\_redAnt and  
226 NoSoil\_redAnt simulations are conducted to evaluate the role of soil Nr emissions on

227 air temperature change, and the anthropogenic reduction scenarios simultaneously  
228 consider  $\text{SO}_2$ ,  $\text{NO}_x$ , primary  $\text{PM}_{2.5}$ , VOCs, and CO emissions reductions (reduced by  
229 20%, 40%, 60%, 80%, and 100%).

230 **2.3 Observational data**

231 The tropospheric column densities of  $\text{NO}_2$  from TROPOMI (TROPOspheric  
232 Monitoring Instrument) level-2 in version 1 with the horizontal spatial resolution of  $3.5$   
233  $\times 7 \text{ km}^2$  are used (Van Geffen et al., 2021). The quality controls, i.e., cloud-screened  
234 (cloud fraction below 30%) and quality-assured (qa\_value above 0.50), and averaging  
235 kernels (AK) are applied in the comparison of the TROPOMI and UI-WRF-Chem  
236 simulated tropospheric  $\text{NO}_2$  vertical column densities (defined as  $\text{NO}_2$  VCD).

237 To evaluate the model performance on simulating surface air pollutants, we use  
238 the hourly surface  $\text{O}_3$  concentrations at 888 monitoring sites from the China National  
239 Environmental Monitoring Center (CNEMC), and hourly surface  $\text{HONO}$   
240 concentrations measured by the In-situ Gas and Aerosol Compositions monitor (IGAC)  
241 (Zhan et al., 2021) at Nanjing University of Information Science & Technology (NUIST)  
242 (32.2° N, 118.7° E; 22m above sea level) (Xu et al., 2019).

243 **3. Results and discussions**

244 **3.1 Soil nitrogen emissions and air pollution evaluation**

245 The soil Nr emissions in July are much higher than the other seasons due to higher  
246 air temperatures and frequent precipitation, accounting for 39.5% of anthropogenic  
247  $\text{NO}_x$  emissions over the study region, and 50.2% in the BTH, 47.4% in FWP, which is  
248 consistent with the previous studies (Huang et al., 2023; Shen et al., 2023; Wang et al.,

249 2023c). And the proportions can increase to 58.9%, 57.0%, and 65.0%, respectively,  
250 when only statistics over the cropland in these regions (Fig. S3). Given the substantial  
251 contribution of soil emissions to the atmospheric nitrogen budget in July, we thus  
252 choose this month to assess the impact of soil Nr emissions on air quality and climate  
253 change. From the spatial distribution of simulated monthly mean  $\text{SNO}_x$  and SHONO  
254 fluxes across North China in July 2018 (Fig. 1), it is shown that  $\text{SNO}_x$  flux is nearly  
255 doubled that of SHONO in most regions, and higher  $\text{SNO}_x$  and SHONO are  
256 concentrated in areas dominated by cropland. The monthly total soil emissions over the  
257 whole study domain (cropland) are 104.5 (82.4) Gg N mon<sup>-1</sup> for  $\text{NO}_x$  and 52.7 (45.9)  
258 Gg N mon<sup>-1</sup> for HONO. In the densely populated BTH region, the monthly total  $\text{SNO}_x$   
259 are 18.7 Gg N mon<sup>-1</sup> in July, which is equivalent to 37.3% of anthropogenic  $\text{NO}_x$   
260 emissions for the year 2017. For the FEW region, where also experiences severe  $\text{O}_3$  and  
261 PM<sub>2.5</sub> pollutions, the monthly total  $\text{SNO}_x$  (7.0 Gg N mon<sup>-1</sup>) account for 29.2% of  
262 anthropogenic  $\text{NO}_x$  emissions. The monthly total SHONO in both study regions are  
263 much lower than their  $\text{SNO}_x$  counterparts, with the emissions of 6.9 and 4.6 Gg N mon<sup>-1</sup>  
264 accounting for 13.5% and 19.2% of anthropogenic  $\text{NO}_x$  emissions in BTH and FWP  
265 regions, respectively.

266 To evaluate the model performance, Figure 2 shows the tropospheric  $\text{NO}_2$  VCD  
267 from TROPOMI satellite products and UI-WRF-Chem simulations (Default and Base)  
268 in North China during July 2018. Default and Base can both reproduce the hot spots of  
269  $\text{NO}_2$  VCD in urban areas shown in the TROPOMI observations. However, the Default  
270 significantly underestimates the  $\text{NO}_2$  VCD, especially in regions surrounding urban

271 areas. It is found that Default underestimates NO<sub>2</sub> VCD by 48% over the regions where  
272 soil emissions dominate (i.e., soil Nr emissions contribute more than half to the  
273 atmospheric nitrogen emissions), while the Base reduced the bias to 13% (Fig. S5).  
274 Overall, Base shows the improved performance in simulating NO<sub>2</sub> VCD in comparison  
275 to Default with a decreasing bias from -30% (-21%) to +4% (+17%) and an increasing  
276 spatial correlation coefficient (R) from 0.62 (0.50) to 0.65 (0.54) in the study region  
277 (cropland). However, there is still a discrepancy between the Base simulation and  
278 TROPOMI NO<sub>2</sub> VCD. This discrepancy could be driven by the combined effects from  
279 uncertainties in simulations and observations, associated with the time lag in  
280 anthropogenic emissions inventory used in the model (Chen et al., 2021), instantaneous  
281 uncertainties in TROPOMI tropospheric NO<sub>2</sub> VCD at the pixel level (up to 25-50% or  
282  $0.5\text{--}0.6 \times 10^{15}$  molecules cm<sup>-2</sup>), as well as uncertainties of stratospheric portion of NO<sub>2</sub>  
283 VCD and AK caused the retrieval errors (Van Geffen et al., 2020; Van Geffen et al.,  
284 2021). Additionally, the estimated SNO<sub>x</sub> are also subjected to certain limitations and  
285 uncertainties. The first uncertainty comes from the amount of N fertilizer application,  
286 which has been identified as the dominant contributor to SNO<sub>x</sub>. In this study, we use  
287 the amount of agricultural N fertilizer application at the province level from the  
288 statistical yearbook to update the default N fertilizer application data in the model (the  
289 baseline year for 2006), but a recent study showed that compound fertilizer, usually  
290 with nitrogen (N), phosphorus (P), and potassium (K), were more commonly used in  
291 China; if only N fertilizer is considered to nudge the N fertilizer application data in the  
292 model, the estimated SNO<sub>x</sub> may be underestimated by 11.1%–41.5% (Huang et al.,

293 2023). Furthermore, although we use the modeled green vegetation fraction (GVF) to  
294 determine the distribution of arid ( $GVF \leq 30\%$ ) and non-arid ( $GVF > 30\%$ ) regions.  
295 Huber et al. (2023) showed that the estimated  $SNO_x$  based on the static classification  
296 of arid vs. non-arid is very sensitive to the soil moisture, and thus could not produce  
297 self-consistent results when using different input soil moisture products unless a  
298 normalized soil moisture index to represent. Therefore, more direct measurements of  
299 soil Nr fluxes are crucial to better constrain soil emissions and improve the  
300 parametrization in the model. Nevertheless, the improved simulation performance of  
301  $NO_2$  VCD with a reduced bias and increased spatial correlation coefficient in Base is  
302 credible, and soil Nr emission scheme has the fidelity needed to study the implication  
303 of soil Nr emissions to air quality in North China.

304 We evaluate the simulation with the surface  $O_3$  observations from the China  
305 National Environmental Monitoring Centre (CNEMC) network  
306 (<http://www.cnemc.cn/en/>) (Fig. 3). Over the whole study region, the Base can better  
307 capture the spatial distribution of observed surface MDA8  $O_3$  with a relatively higher  
308 spatial correlation of  $R = 0.68$  than that in Default ( $R = 0.46$ ). The simulated monthly  
309 averaged MDA8  $O_3$  concentrations across the 888 sites in the study region are  $123.0 \mu g$   
310  $m^{-3}$  in Default and  $132.5 \mu g m^{-3}$  in Base, respectively, which are both slightly higher  
311 than the observed concentrations ( $120.7 \mu g m^{-3}$ ). Overprediction is also observed for  
312 the FWP and BTH regions in the Base simulation, with the normalized mean bias (NMB)  
313 of 6.1% and 4.9%, respectively (Fig. S6). Previous studies showed that the NMB of  
314 simulated  $O_3$  concentrations were within  $\pm 30\%$  for nearly 80% of the cases collected

315 from air quality model studies (Yang and Zhao, 2023). These discrepancies may arise  
316 from simplifications of complex chemical mechanisms and physical processes, such as  
317 dry deposition and vertical mixing (Akimoto et al., 2019; Travis and Jacob, 2019). The  
318 uncertainties of input data, including emission inventories, meteorological fields, and  
319 other parameters, may also contribute to these discrepancies (Sun et al., 2019; Ye et al.,  
320 2022), suggesting a potential systematic  $O_3$  bias in air quality models. Therefore, the  
321 increased spatial correlation and reasonable bias found in the Base indicate that the  
322 application of the soil Nr emission schemes can effectively improve the simulation  
323 performance of MDA8  $O_3$ .

324 We also compare the simulated surface HONO and nitrate concentrations to the  
325 observations at a rural station in Nanjing during July 2018. Figure 4 shows that the  
326 simulated HONO concentrations in Default are 98.3% lower than the observations. In  
327 comparison, the Base with considering SHONO and other HONO potential sources  
328 significantly improves the simulation performance and reduces the bias to 47.8%, and  
329 also reproduces the diurnal variation of HONO with the temporal correlation of  $R =$   
330 0.76. It is worth noting that the simulated concentrations of HONO from 08 am to 18  
331 pm are lower than the observations, this discrepancy may be attributed to the  
332 underestimated contribution from the predominant sources of HONO during the  
333 daytime, such as  $NO_2$  heterogeneous reactions on ground and aerosol surfaces.  
334 Moreover, the contributions of different sources to ambient HONO concentrations at  
335 this rural station are also evaluated, the soil emissions could contribute almost 25.8%  
336 to the surface HONO concentrations, which may be partially attributed to the high

337 emissions of HONO from croplands around the city of Nanjing (Fig. S7). The results  
338 that soil emissions contribute less to the daytime positive flux than the other source is  
339 consistent with previous studies (Skiba et al., 2020; Wang et al., 2023c). For nitrate  
340 concentration, the Base simulation shows a lower bias (5.6%) and an improved diurnal  
341 variation (temporal correlation of  $R = 0.92$ ) compared to the Default simulation (bias =  
342 27.8%,  $R = 0.85$ ). We acknowledge that there are certain uncertainties in the current  
343 model. Nevertheless, the improved simulation performance of  $\text{NO}_2$  VCD, surface  
344 HONO, MDA8  $\text{O}_3$ , and nitrate concentrations compared to the Default illustrates the  
345 credibility of the results obtained from the Base simulation.

### 346 **3.2 Impact on $\text{O}_3$ formation and air quality**

347 To quantify the effects of  $\text{SNO}_x$  and SHONO on atmospheric oxidation capacity,  
348  $\text{O}_3$  formation and air quality as well as their combined effect, the conventional brute-  
349 force method was used, i.e., the impact of a specific source is determined in atmospheric  
350 chemistry models as the differences between the standard/base simulation with all  
351 emissions turned on and a sensitivity simulation with this source turned off or perturbed  
352 (Table 1). As shown in Fig. 5, the contribution of  $\text{SNO}_x$  and SHONO to surface  $\text{NO}_2$   
353 and HONO has a different spatial pattern from that of the fluxes of  $\text{SNO}_x$  and SHONO  
354 in July. Overall, the maximum contribution of  $\text{SNO}_x$  to the monthly average surface  
355  $\text{NO}_2$  concentrations is 78.6%, with a domain-averaged value of 30.3%. Regionally,  
356  $\text{SNO}_x$  contribute  $5.5 \mu\text{g m}^{-3}$  (37.1%) and  $2.5 \mu\text{g m}^{-3}$  (31.8%) to the surface  $\text{NO}_2$  in the  
357 BTH and FWP regions, respectively, which are both higher than the domain-averaged  
358 contribution. Although SHONO fluxes are lower than that of  $\text{SNO}_x$  in this period, its

359 effect on ambient HONO cannot be ignored. Over the study region, the contribution of  
360 SHONO to surface HONO concentration ranges from 0 to 49.0%, with a domain-  
361 averaged value of 35.6%. For the selected key regions, there are  $1.8 \mu\text{g}/\text{m}^3$  (36.7%) and  
362  $1.5 \mu\text{g}/\text{m}^3$  (38.0%) of the monthly average HONO concentrations in the BTH and FWP  
363 regions, respectively, from soil emissions. It is noteworthy that, despite the surface  $\text{NO}_2$   
364 (HONO) concentrations in the study regions being impacted by less than 13% (17%)  
365 due to SHONO ( $\text{SNO}_x$ ), the combined effects of soil Nr emissions on surface  $\text{NO}_2$   
366 (HONO) are found to be greater than the individual effects, which are 38.4% (40.3%)  
367 for BTH and 33.9% (40.1%) for FWP region, respectively (Table S5). These results  
368 highlight the importance of considering the cumulative impacts of multiple reactive  
369 nitrogen emissions from soils on air pollution.

370       Consequently, substantial soil Nr emissions in July have a non-negligible effect on  
371 atmospheric oxidation and the formation of secondary pollutants. For atmospheric  
372 oxidation, we assess the impact of soil Nr emission on the maximum 1 h (max-1h)  $\cdot\text{OH}$   
373 levels and find that SHONO have a potential to increase the max-1h  $\cdot\text{OH}$  in most areas,  
374 with a domain-averaged increase of 10.0%. On the contrary, the inclusion of  $\text{SNO}_x$   
375 results in a significant reduction of 31.3% in the max-1h  $\cdot\text{OH}$  across the entire study  
376 domain. Considering the combined effect of  $\text{SNO}_x$  and SHONO, there is an overall  
377 decrease of 24.3% in the max-1h  $\cdot\text{OH}$  over the study domain, with the BTH region  
378 experiencing a decrease of 22.6% and FWP region showing a relatively greater  
379 reduction of 32.2% (Table S6). These findings are different from the previous study,  
380 which showed that soil background emissions including  $\text{NO}_x$  and HONO led to a 7.5%

381 increase in max-1h ·OH in China (Wang et al., 2023c). The discrepancy between our  
382 findings and those of other studies regarding the impact of SNO<sub>x</sub> on ·OH levels could  
383 be attributed to the abundance of ambient NH<sub>3</sub> in China during summer, where soil  
384 emissions may lead to a significant increase in nitrate, and the increased aerosols can  
385 affect the concentrations of ·OH through photochemical reactions (Wang et al., 2011;  
386 Xu et al., 2022). Additionally, after taking into account the SNO<sub>x</sub> in the model, the  
387 environment may shift to a relatively NO<sub>x</sub>-saturated regime, thus the termination  
388 reaction for O<sub>3</sub> production could be NO<sub>2</sub> and ·OH to generate HNO<sub>3</sub> (Chen et al., 2022;  
389 Wang et al., 2023b). We also stress the crucial role of SNO<sub>x</sub> in influencing ·OH  
390 concentrations and highlight the varying impacts across different regions. For  
391 secondary pollutants, substantial O<sub>3</sub> enhancement is found in Henan and Hubei  
392 provinces, while the increase in nitrate is consistent with the spatial pattern of surface  
393 NO<sub>2</sub> from soil emissions. Specifically, soil Nr emissions increase the monthly average  
394 MDA8 O<sub>3</sub> and nitrate concentrations by 18.2% and 31.8%, respectively, across the  
395 study domain, with the increase of 16.9% and 42.4% in the BTH region and 17.2% and  
396 42.7% in the FWP region. Moreover, SNO<sub>x</sub> have a stronger effect on O<sub>3</sub> and nitrate in  
397 North China in July than those of SHONO.

398 The ratio of surface H<sub>2</sub>O<sub>2</sub> to HNO<sub>3</sub> concentrations (hereafter H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub>) was  
399 used as an indicator of the O<sub>3</sub> formation regime to study the changes in sensitivity of  
400 summer O<sub>3</sub> to its precursors after considering the soil Nr emissions. The threshold of  
401 H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> for determining O<sub>3</sub> formation regime varies regionally (Sillman, 1995),  
402 thus in this study, we identify the regions with H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> values greater than 0.65 as

403 NO<sub>x</sub>-sensitive regime, H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> values lower than 0.35 as VOCs-sensitive regime,  
404 and H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> values between 0.35 and 0.65 as VOCs-NO<sub>x</sub> mixed sensitive regime  
405 (Shen et al., 2023). Figure 6 illustrates that the majority of BTH region has H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub>  
406 values lower than 0.35 in Base simulation, indicating a VOCs-sensitive regime or NO<sub>x</sub>-  
407 saturated regime in July. In contrast, the distribution of sensitivity of O<sub>3</sub> to precursor  
408 emission in FWP regions is more complex with a mix of three O<sub>3</sub> formation regimes.  
409 The spatial patterns of O<sub>3</sub> formation regimes presented in this study are consistent with  
410 the previous studies based on satellite observations and model simulations during  
411 summer seasons, despite using a different method (Wang et al., 2019; Wang et al.,  
412 2023b). This agreement across multiple approaches strengthens the confidence in the  
413 spatial patterns of O<sub>3</sub> formation regimes in the key regions of China. However, when  
414 soil nitrogen emissions are excluded, the H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> values mostly increase within 40%  
415 and the O<sub>3</sub> formation regime shifts to VOCs-NO<sub>x</sub> mixed sensitive regime and NO<sub>x</sub>-  
416 sensitive regime in both BTH and FWP regions. Although soil Nr emissions are lower  
417 than anthropogenic emissions, they still could affect the sensitivity of O<sub>3</sub> to its  
418 precursors and thus have an impact on the effectiveness of emission reduction policies.  
419 Therefore, soil emissions must be considered in formating policies for the prevention  
420 and management of O<sub>3</sub> pollution.

421 **3.3 Implication on O<sub>3</sub> mitigation strategies and temperature rise**

422 Due to the influence of soil Nr emissions, the sensitivity of O<sub>3</sub> pollution to its  
423 precursors varies spatially, depending on the local levels of anthropogenic emissions. It  
424 is thus important to quantify the role of soil Nr emissions in O<sub>3</sub> pollution regulation for

425 improving the effectiveness of air control measures. We conduct a series of sensitivity  
426 experiments with anthropogenic NO<sub>x</sub> emissions reduced by 20%, 40%, 60%, 80% and  
427 100%, respectively, relative to the Base simulation (Table 1), and analyze the difference  
428 in the response of surface O<sub>3</sub> concentrations to the anthropogenic NO<sub>x</sub> emissions  
429 reductions in the presence and absence of soil Nr emissions. Figure 7 shows that with  
430 the reduction of anthropogenic NO<sub>x</sub> emissions, MDA8 O<sub>3</sub> concentrations show an  
431 accelerated decreasing trend, suggesting increasing efficiency of anthropogenic NO<sub>x</sub>  
432 control measures. And MDA8 O<sub>3</sub> response to anthropogenic NO<sub>x</sub> emissions in the BTH  
433 region is more curved (nonlinear) than that in the FWP region, which is consistent with  
434 the fact that the BTH tends to have more NO<sub>x</sub>-saturated regime (Fig. 6).

435 It is noted that the reduction of anthropogenic NO<sub>x</sub> emissions in the presence of  
436 soil Nr emissions leads to a slower decrease in MDA8 O<sub>3</sub> compared to when soil Nr  
437 emissions are excluded. We further analyze the details of the domain-averaged MDA8  
438 O<sub>3</sub> changes under different anthropogenic reduction scenarios for the two key regions.  
439 Specifically, in the BTH region, MDA8 O<sub>3</sub> decrease by 1.3% (1.8  $\mu\text{g m}^{-3}$ ), 6.3% (8.7  
440  $\mu\text{g m}^{-3}$ ), and 17.4% (24.0  $\mu\text{g m}^{-3}$ ) with anthropogenic NO<sub>x</sub> emission reductions by 20%,  
441 60%, and 100%, respectively, in the present of soil Nr emissions. Comparatively, in the  
442 absence of soil Nr emissions, the reductions in MDA8 O<sub>3</sub> are more pronounced and  
443 decrease by 2.3% (2.7  $\mu\text{g m}^{-3}$ ), 10.7% (12.8  $\mu\text{g m}^{-3}$ ), and 42.3% (50.6  $\mu\text{g m}^{-3}$ ),  
444 respectively. In the FWP region, with a 20% reduction in anthropogenic NO<sub>x</sub> emissions,  
445 MDA8 O<sub>3</sub> levels only exhibit a slight decrease of 1.7% (2.3  $\mu\text{g m}^{-3}$ ) in the presence of  
446 soil Nr emissions, whereas a decrease of 2.3% (2.6  $\mu\text{g m}^{-3}$ ) is found in the absence of

447 soil Nr emissions. When anthropogenic  $\text{NO}_x$  emissions are removed entirely, MDA8  
448  $\text{O}_3$  decreases by 13.6% ( $17.7 \mu\text{g m}^{-3}$ ) in the presence of soil Nr emissions, and more  
449 significant decreases are found in the absent of soil Nr emissions with a reduction of  
450 27.4% ( $34.0 \mu\text{g m}^{-3}$ ) (as shown in Fig. 7b-c, e-f). We conclude that the existence of soil  
451 Nr emissions could contribute to an additional part of  $\text{O}_3$  production, amounting to a  
452 range of 0-24.9% in the BTH and 0-13.8% in the FWP region in July, and these  
453 suppressions could be enlarged over the rural areas where have more substantial soil Nr  
454 emissions, i.e., 0-32.3% in cropland over the BTH and 0-15.0% in croplands over the  
455 FWP region. These findings suggest that soil Nr emissions have the potential to  
456 suppress the effectiveness of measures implemented to mitigate  $\text{O}_3$  pollution, and this  
457 effect becomes more significant as anthropogenic  $\text{NO}_x$  emissions decrease.

458 We also quantify the  $\text{O}_3$  generated from soil Nr emission source (denoted as the  
459 soil  $\text{O}_3$ ) in July under the different anthropogenic  $\text{NO}_x$  emission reduction scenarios.  
460 Overall, soil  $\text{O}_3$  concentrations in croplands are higher than in non-croplands.  
461 Regionally, in the BTH region, the soil  $\text{O}_3$  concentrations are  $19.8 \mu\text{g m}^{-3}$  under high  
462 anthropogenic emissions level (referred to as the Base simulation), while the soil  $\text{O}_3$   
463 concentrations significantly increase to  $46.4 \mu\text{g m}^{-3}$  when all anthropogenic  $\text{NO}_x$   
464 emissions are cut down (shown as red bar in Fig. 7b). A similar trend is also found in  
465 the FWP region, although soil Nr emissions are relatively lower than that in the BTH  
466 region, the soil  $\text{O}_3$  concentrations are  $19.0 \mu\text{g m}^{-3}$  in the Base simulation, and do not  
467 change significantly with the reduction of anthropogenic emissions, but increase to  $31.9$   
468  $\mu\text{g m}^{-3}$  when anthropogenic  $\text{NO}_x$  emissions are excluded (shown as red bar in Fig. 7c).

469 The reduction in anthropogenic NO<sub>x</sub> emissions results in a shift of the O<sub>3</sub> formation  
470 regime towards a more NO<sub>x</sub>-sensitive regime, leading to a higher contribution of O<sub>3</sub>  
471 from soil emission sources. We conclude that with stricter anthropogenic emission  
472 reduction measures, the contributions of soil Nr emissions to O<sub>3</sub> production in both  
473 absolute and relative value would increase and further hamper the effectiveness of  
474 anthropogenic emission reductions. To effectively mitigate O<sub>3</sub> pollutions, it is necessary  
475 to implement much stricter control measures for anthropogenic emissions including  
476 coal burning and transportation due to the synergistic effects of SNO<sub>x</sub> and SHONO.

477 Here we show that the substantial soil Nr emissions present an additional challenge  
478 for O<sub>3</sub> pollution regulation in the North China. We further assess the impact of soil Nr  
479 emissions on air temperature change under different anthropogenic emission reduction  
480 scenarios. Under the background of climate change, future emission reduction scenarios  
481 should focus on the co-control of multiple air pollutants and greenhouse gas reductions.  
482 Therefore, we conduct multi-pollutant co-control reduction scenarios, taking into  
483 account the SO<sub>2</sub>, NO<sub>x</sub>, primary PM<sub>2.5</sub>, VOCs, and CO emissions reduced by 20%, 40%,  
484 60%, 80%, and 100%, respectively, to investigate the impact of soil Nr emissions on  
485 air temperature change under different anthropogenic reduction scenarios (Table 1). By  
486 comparing changes in air temperature at 2m (T2) with and without soil Nr emissions  
487 under different reduction scenarios, Figure 8 shows that incorporating soil Nr emissions  
488 results in a slower rate of T2 increase compared to scenarios without soil Nr emissions,  
489 especially when multi-pollutant emissions are reduced to more than a half, and this  
490 phenomenon is consistent across all study regions. In the FWP region, when

491 anthropogenic emissions are eliminated, T2 increases by 0.073 °C in the presence of  
492 soil Nr emissions, compared to 0.095 °C in the absence of soil Nr emissions. In the  
493 BTH region, which has relatively high anthropogenic emissions, reducing multi-  
494 pollutant emissions by the same proportion could result in relatively greater warming,  
495 and T2 increases by 0.098 °C in the presence of soil Nr emissions, compared to 0.14 °C  
496 in the absence of soil Nr emissions when anthropogenic emissions are excluded. This  
497 is attributed to the effective radiative forcing (ERF) associated with the cooling effects  
498 of primary pollutants (e.g. SO<sub>2</sub>, NO<sub>x</sub>) and secondary inorganic aerosols (SIA), and  
499 positive ERF associated with the warming effects of CO and VOCs (high confidence)  
500 (Bellouin et al., 2020; Liao and Xie, 2021). Decreases in primary pollutants emissions  
501 and SIA concentrations could weaken the cooling effect and potentially accelerate  
502 warming to some extent, and the decrease in CO and VOCs emissions may still lead to  
503 temperature rise in a short-term. However, the soil Nr emissions could contribute to a  
504 certain background concentration of aerosol, partially offsetting the temperature rise  
505 caused by declining anthropogenic emissions of primary pollutants and greenhouse gas  
506 (Fig. S8). Therefore, although soil Nr emissions are relatively low compared to  
507 anthropogenic emissions, the combined effects of NO<sub>x</sub> and HONO emissions from  
508 natural soil and agricultural land should be considered when assessing climate change  
509 and implementing strategies to mitigate O<sub>3</sub> pollution.

510 **4. Conclusions**

511 In this study, the updated soil Nr emission scheme was implemented in the UI-  
512 WRF-Chem model and used to estimate the combined and individual impact of SNO<sub>x</sub>

513 and SHONO on subsequent changes in air quality and air temperature rise in North  
514 China, with a focus on two key regions (the BTH and FWP regions) because of high  
515 levels of soil Nr and anthropogenic emissions. We show that the  $\text{SNO}_x$  fluxes are almost  
516 twice as high as SHONO during July 2018, with higher soil emissions in areas with  
517 extensive cropland. The contribution of soil Nr emissions in July to monthly average  
518  $\text{NO}_2$  and HONO are 38.4% and 40.3% in the BTH, and 33.9% and 40.1% in the FWP  
519 region, respectively, and the substantial soil Nr emissions lead to a considerable  
520 increase in the monthly average MDA8  $\text{O}_3$  and nitrate concentrations, with the values  
521 of 16.9% and 42.4% in the BTH region and 17.2% and 42.7% in the FWP region, which  
522 both exceed the individual  $\text{SNO}_x$  or SHONO effect. The presence of soil Nr emissions,  
523 acting as precursors of  $\text{O}_3$  and SIA, has a suppressing effect on efforts to mitigate  
524 summer  $\text{O}_3$  pollution, particularly in the BTH region, and also leads to a slower increase  
525 rate of  $T_2$  ( $0.098\text{ }^\circ\text{C}$ ) in July compared to scenarios without soil Nr emissions ( $0.14\text{ }^\circ\text{C}$ )  
526 when anthropogenic emissions are excluded. We note that the effect of soil Nr emissions  
527 shows spatial heterogeneity under different anthropogenic emissions reduction  
528 scenarios.

529 However, we admit that uncertainties exist in both soil Nr and anthropogenic  
530 emissions, as well as the parameterization scheme of HONO sources. The agricultural  
531 emissions of another important reactive nitrogen gas,  $\text{NH}_3$ , may also be underestimated  
532 due to uncertainties in agricultural fertilizer application and livestock waste in MEIC  
533 inventory (Li et al., 2021a). These uncertainties could impact the aerosol formation and  
534 local cooling effect. Also, the discrepancies between simulated and observed  $\text{NO}_2$ ,  $\text{O}_3$ ,

535 and other air pollutants in the model may affect the assessment of the role of soil Nr  
536 emissions in O<sub>3</sub> mitigation strategies and their impact on climate change. Thus, more  
537 direct measurements of soil Nr fluxes are crucial to better constrain soil emissions and  
538 improve the parametrization in the model.

539 Our study highlights that despite soil Nr emissions being lower than anthropogenic  
540 emissions, they still have a substantial impact on the effectiveness of O<sub>3</sub> pollution  
541 mitigation measures, and this effect becomes more significant as anthropogenic  
542 emissions decrease. Therefore, reactive nitrogen from soil emission sources must be  
543 considered in formattting measures for the prevention and management of O<sub>3</sub> pollution,  
544 as well as addressing climate change.

545

546 **Code and data availability.** Some of the data repositories have been listed in Sect. 2.  
547 The other data, model outputs and codes can be accessed by contacting Tong Sha via  
548 [tong-sha@sust.edu.cn](mailto:tong-sha@sust.edu.cn).

549 **Author contributions.** TS performed the model simulation, data analysis and  
550 manuscript writing. TS and JW proposed the idea. SY, QC and LL supervised this work  
551 and revised the manuscript. XM, ZF and KB helped the revision of the manuscript. YZ  
552 provided and analyzed the observation data.

553 **Competing interests.** The authors declare that they have no conflict of interest.

554 **Acknowledgements.** This study is supported by the National Natural Science  
555 Foundation of China (grant nos. 42205107, 42130714). Jun Wang's participation is  
556 made possible via the in-kind support from the University of Iowa.

557

## 558 **References**

559 Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison  
560 of surface ozone simulation among selected regional models in MICS-Asia III –  
561 effects of chemistry and vertical transport for the causes of difference, *Atmos.*  
562 *Chem. Phys.*, 19, 603-615, 10.5194/acp-19-603-2019, 2019.

563 Almaraz, M., Bai, E., Wang, C., Trousdale, J., Conley, S., Faloona, I., and Houlton, B.  
564 Z.: Agriculture is a major source of NO<sub>x</sub> pollution in California, *Sci. Adv.*, 4(1),  
565 eaao3477., 2018.

566 Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher,  
567 O., Carslaw, K. S., Christensen, M., and Daniau, A. L.: Bounding global aerosol  
568 radiative forcing of climate change, *Rev. Geophys.*, 58, e2019RG000660, 2020.

569 Chen, K., Wang, P., Zhao, H., Wang, P., Gao, A., Myllyvirta, L., and Zhang, H.:  
570 Summertime O<sub>3</sub> and related health risks in the north China plain: A modeling study  
571 using two anthropogenic emission inventories, *Atmos. Environ.*, 246, 118087,

572 10.1016/j.atmosenv.2020.118087, 2021.

573 Chen, W., Guenther, A. B., Jia, S., Mao, J., Yan, F., Wang, X., and Shao, M.: Synergistic  
574 effects of biogenic volatile organic compounds and soil nitric oxide emissions on  
575 summertime ozone formation in China, *Sci. Total Environ.*, 828, 154218,  
576 10.1016/j.scitotenv.2022.154218, 2022.

577 Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global  
578 atmospheric chemistry calculated with an empirical parameterization in the  
579 EMAC model, *Atmos. Chem. Phys.*, 12, 9977-10000, 10.5194/acp-12-9977-2012,  
580 2012.

581 Feng, T., Zhao, S., Liu, L., Long, X., Gao, C., and Wu, N.: Nitrous acid emission from  
582 soil bacteria and related environmental effect over the North China Plain,  
583 *Chemosphere*, 287, 132034, 10.1016/j.chemosphere.2021.132034, 2022a.

584 Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V.,  
585 Paoletti, E., Mukherjee, A., Agrawal, M., Park, R. J., Oak, Y. J., and Yue, X.: Ozone  
586 pollution threatens the production of major staple crops in East Asia, *Nat. Food*, 3,  
587 47-56, 10.1038/s43016-021-00422-6, 2022b.

588 Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue,  
589 D., Zhou, Y., Zheng, J., and Han, R.: The significant contribution of HONO to  
590 secondary pollutants during a severe winter pollution event in southern China,  
591 *Atmos. Chem. Phys.*, 19, 1-14, 10.5194/acp-19-1-2019, 2019.

592 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C.  
593 A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather,  
594 R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim,  
595 G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson,  
596 S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:  
597 The Modern-Era Retrospective Analysis for Research and Applications, Version 2  
598 (MERRA-2), *J. Clim.*, 30, 5419-5454, 10.1175/jcli-d-16-0758.1, 2017.

599 Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection  
600 combining ensemble and data assimilation techniques, *Geophys. Res. Lett.*, 29,  
601 10.1029/2002gl015311, 2002.

602 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,  
603 and Eder, B.: Fully coupled “online” chemistry within the WRF model, *Atmos.*  
604 *Environ.*, 39, 6957-6975, 10.1016/j.atmosenv.2005.04.027, 2005.

605 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.  
606 K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature  
607 version 2.1 (MEGAN2.1): an extended and updated framework for modeling  
608 biogenic emissions, *Geosci. Model Dev.*, 5, 1471-1492, 10.5194/gmd-5-1471-  
609 2012, 2012.

610 Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit  
611 treatment of entrainment processes, *Mon. Weather Rev.*, 134 (9), 2318,  
612 10.1175/MWR3199.1, 2006.

613 Huang, L., Fang, J., Liao, J., Yarwood, G., Chen, H., Wang, Y., and Li, L.: Insights into  
614 soil NO emissions and the contribution to surface ozone formation in China,  
615 *Atmos. Chem. Phys.*, 23, 14919-14932, 10.5194/acp-23-14919-2023, 2023.

616 Huang, Y., Hickman, J. E., and Wu, S.: Impacts of enhanced fertilizer applications on  
617 tropospheric ozone and crop damage over sub-Saharan Africa, *Atmos. Environ.*,  
618 180, 117-125, 10.1016/j.atmosenv.2018.02.040, 2018.

619 Huber, D. E., Steiner, A. L., and Kort, E. A.: Sensitivity of Modeled Soil NO<sub>x</sub> Emissions  
620 to Soil Moisture, *J. Geophys. Res.: Atmos.*, 128, 10.1029/2022jd037611, 2023.

621 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and  
622 Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations  
623 with the AER radiative transfer models, *J. Geophys. Res.: Atmos.*, 113,  
624 10.1029/2008jd009944, 2008.

625 Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H.: Improved  
626 gridded ammonia emission inventory in China, *Atmos. Chem. Phys.*, 21, 15883-  
627 15900, 10.5194/acp-21-15883-2021, 2021a.

628 Li, C., Wang, J., Zhang, H., Diner, D. J., Hasheminassab, S., and Janechek, N.:  
629 Improvement of Surface PM<sub>2.5</sub> Diurnal Variation Simulations in East Africa for  
630 the MAIA Satellite Mission, *ACS ES&T Air*, 10.1021/acsestair.3c00008, 2024.

631 Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.:  
29

632 Impacts of HONO sources on the photochemistry in Mexico City during the  
633 MCMA-2006/MILAGO Campaign, *Atmos. Chem. Phys.*, 10, 6551-6567,  
634 10.5194/acp-10-6551-2010, 2010.

635 Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface  
636 ozone pollution in China from 2013 to 2019: anthropogenic and meteorological  
637 influences, *Atmos. Chem. Phys.*, 20, 11423-11433, 10.5194/acp-20-11423-2020,  
638 2020.

639 Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and  
640 Zhai, S.: A two-pollutant strategy for improving ozone and particulate air quality  
641 in China, *Nat. Geosci.*, 12, 906-910, 10.1038/s41561-019-0464-x, 2019.

642 Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P.,  
643 Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk,  
644 S. K.: Ozone pollution in the North China Plain spreading into the late-winter haze  
645 season, *Proc. Natl. Acad. Sci. U.S.A.*, 118, 10.1073/pnas.2015797118, 2021b.

646 Liao, H. and Xie, P.: The roles of short-lived climate forcers in a changing climate, *Adv.*  
647 *Clim. Change Res.*, 17, 685, 2021.

648 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,  
649 Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen  
650 deposition over China, *Nature*, 494, 459-462, 10.1038/nature11917, 2013.

651 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 –  
652 Part 1: The complex and varying roles of meteorology, *Atmos. Chem. Phys.*, 20,  
653 6305-6321, 10.5194/acp-20-6305-2020, 2020a.

654 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 –  
655 Part 2: The effects of emission changes and implications for multi-pollutant  
656 control, *Atmos. Chem. Phys.*, 20, 6323-6337, 10.5194/acp-20-6323-2020, 2020b.

657 Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture  
658 production in the past half century: shifted hot spots and nutrient imbalance, *Earth*  
659 *Syst. Sci. Data*, 9, 181-192, 10.5194/essd-9-181-2017, 2017.

660 Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-M., and  
661 Zhang, Q.: Exploring 2016–2017 surface ozone pollution over China: source

662 contributions and meteorological influences, *Atmos. Chem. Phys.*, 19, 8339-8361,  
663 10.5194/acp-19-8339-2019, 2019.

664 Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B.,  
665 Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.: The  
666 underappreciated role of agricultural soil nitrogen oxide emissions in ozone  
667 pollution regulation in North China, *Nat. Commun.*, 12, 10.1038/s41467-021-  
668 25147-9, 2021.

669 Morrison, H., Thompson, G., and Tatarki, V.: Impact of Cloud Microphysics on the  
670 Development of Trailing Stratiform Precipitation in a Simulated Squall Line:  
671 Comparison of One- and Two-Moment Schemes, *Mon. Weather Rev.*, 137, 991-  
672 1007, 10.1175/2008mwr2556.1, 2009.

673 Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C.,  
674 Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A., Sörgel,  
675 M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.:  
676 HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive  
677 Nitrogen, *Science*, 341, 1233-1235, 10.1126/science.1242266, 2013.

678 Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., and Liu,  
679 L.: Climate change impacts of US reactive nitrogen, *Proc. Natl. Acad. Sci. U.S.A.*,  
680 109, 7671-7675, 10.1073/pnas.1114243109, 2012.

681 Reay, D. S., Dentener, F., Smith, P., Grace, J., and Feely, R. A.: Global nitrogen  
682 deposition and carbon sinks., *Nat. Geosci.*, 1(7), 430-437, 10.1038/ngeo230, 2008.

683 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J.,  
684 Arsenault, K., Cosgrove, B., Radakovich, J., Bosolovich, M., Entin, J. K., Walker,  
685 J. P., Lohmann, D., and Toll, D.: The global land data assimilation system, *Bull.*  
686 *Am. Meteorol. Soc.*, 85, 381-394, 10.1175/BAMS-85-3-381, 2004.

687 Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A.,  
688 Miller, D. O., Brune, W. H., Koss, A. R., de Gouw, J. A., Misztal, P. K., Goldstein,  
689 A. H., and Cohen, R. C.: Effects of temperature-dependent NO<sub>x</sub> emissions on  
690 continental ozone production, *Atmos. Chem. Phys.*, 18, 2601-2614, 10.5194/acp-  
691 18-2601-2018, 2018.

692 Sha, T., Ma, X., Zhang, H., Janecek, N., Wang, Y., Wang, Y., Castro García, L.,  
693 Jenerette, G. D., and Wang, J.: Impacts of Soil NO<sub>x</sub> Emission on O<sub>3</sub> Air Quality in  
694 Rural California, *Environ. Sci. Technol.*, 55, 7113-7122, 10.1021/acs.est.0c06834,  
695 2021.

696 Shen, Y., Xiao, Z., Wang, Y., Xiao, W., Yao, L., and Zhou, C.: Impacts of Agricultural  
697 Soil NO<sub>x</sub> Emissions on O<sub>3</sub> Over Mainland China, *J. Geophys. Res.: Atmos.*, 128,  
698 10.1029/2022jd037986, 2023.

699 Sillman, S.: The use of NO<sub>y</sub>, H<sub>2</sub>O<sub>2</sub>, and HNO<sub>3</sub> as indicators for ozone-NO<sub>x</sub>-hydrocarbon  
700 sensitivity in urban locations, *J. Geophys. Res.*, 100(D7), 14175–14188.,  
701 10.1029/94JD02953, 1995.

702 Skiba, U., Medinets, S., Cardenas, L. M., Carnell, E. J., Hutchings, N., and Amon, B.:  
703 Assessing the contribution of soil NO<sub>x</sub> emissions to European atmospheric  
704 pollution, *Environ. Res. Lett.*, 10.1088/1748-9326/abd2f2, 2020.

705 Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q.,  
706 and Wang, W.: Impacts of meteorology and emissions on summertime surface  
707 ozone increases over central eastern China between 2003 and 2015, *Atmos. Chem.*  
708 *Phys.*, 19, 1455-1469, 10.5194/acp-19-1455-2019, 2019.

709 Tan, W., Wang, H., Su, J., Sun, R., He, C., Lu, X., Lin, J., Xue, C., Wang, H., Liu, Y.,  
710 Liu, L., Zhang, L., Wu, D., Mu, Y., and Fan, S.: Soil Emissions of Reactive  
711 Nitrogen Accelerate Summertime Surface Ozone Increases in the North China  
712 Plain, *Environ. Sci. Technol.*, 57, 12782-12793, 10.1021/acs.est.3c01823, 2023.

713 Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M.,  
714 Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the  
715 unified NOAH land surface model in the WRF model, 20th Conference on  
716 Weather Analysis and Forecasting/16th Conference on Numerical Weather  
717 Prediction, 11–15., 2004.

718 Travis, K. R. and Jacob, D. J.: Systematic bias in evaluating chemical transport models  
719 with maximum daily 8 h average (MDA8) surface ozone for air quality  
720 applications: a case study with GEOS-Chem v9.02, *Geosci. Model Dev.*, 12, 3641-  
721 3648, 10.5194/gmd-12-3641-2019, 2019.

722 Turner, M. C., Jerrett, M., Pope, C. A., Krewski, D., Gapstur, S. M., Diver, W. R.,  
723 Beckerman, B. S., Marshall, J. D., Su, J., Crouse, D. L., and Burnett, R. T.: Long-  
724 Term Ozone Exposure and Mortality in a Large Prospective Study, *Am. J. Resp.*  
725 *Crit. Care.*, 193, 1134-1142, 10.1164/rccm.201508-1633OC, 2016.

726 Unger, N., Zheng, Y., Yue, X., and Harper, K. L.: Mitigation of ozone damage to the  
727 world's land ecosystems by source sector, *Nat. Clim. Change*, 10, 134-137,  
728 10.1038/s41558-019-0678-3, 2020.

729 van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and  
730 Veefkind, J. P.: S5P TROPOMI NO<sub>2</sub> slant column retrieval: method, stability,  
731 uncertainties and comparisons with OMI, *Atmos. Meas. Tech.*, 13, 1315-1335,  
732 10.5194/amt-13-1315-2020, 2020.

733 van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., and Veefkind, J. P.: TROPOMI  
734 ATBD of the total and tropospheric NO<sub>2</sub> data products, Report S5P-KNMI-L2-  
735 0005-RP, version 2.2.0, 2021-06-16, KNMI, De Bilt, The Netherlands,  
736 <http://www.tropomi.eu/data-products/nitrogen-dioxide/> (last access: 7 March  
737 2022), 2021.

738 Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M., and Martin, R. V.:  
739 Worldwide biogenic soil NO<sub>x</sub> emissions inferred from OMI NO<sub>2</sub> observations,  
740 *Atmos. Chem. Phys.*, 14, 10363-10381, 10.5194/acp-14-10363-2014, 2014.

741 Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O<sub>3</sub>  
742 pollution due to NO<sub>x</sub> emission control in eastern China, *Sci. Total Environ.*, 677,  
743 732-744, 10.1016/j.scitotenv.2019.04.388, 2019.

744 Wang, Q. g., Han, Z., Wang, T., and Zhang, R.: Impacts of biogenic emissions of VOC  
745 and NO<sub>x</sub> on tropospheric ozone during summertime in eastern China, *Sci. Total*  
746 *Environ.*, 395, 41-49, 10.1016/j.scitotenv.2008.01.059, 2008.

747 Wang, R., Bei, N., Wu, J., Li, X., Liu, S., Yu, J., Jiang, Q., Tie, X., and Li, G.: Cropland  
748 nitrogen dioxide emissions and effects on the ozone pollution in the North China  
749 plain, *Environ. Pollut.*, 294, 118617, 10.1016/j.envpol.2021.118617, 2022a.

750 Wang, R., Bei, N., Pan, Y., Wu, J., Liu, S., Li, X., Yu, J., Jiang, Q., Tie, X., and Li, G.:  
751 Urgency of controlling agricultural nitrogen sources to alleviate summertime air

752 pollution in the North China Plain, *Chemosphere*, 311, 137124,  
753 10.1016/j.chemosphere.2022.137124, 2023a.

754 Wang, S., Xing, J., Jang, C., Zhu, Y., Fu, J. S., and Hao, J.: Impact Assessment of  
755 Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface  
756 Modeling Technique, *Environ. Sci. Technol.*, 45, 9293-9300, 10.1021/es2022347,  
757 2011.

758 Wang, W., Parrish, D. D., Wang, S., Bao, F., Ni, R., Li, X., Yang, S., Wang, H., Cheng,  
759 Y., and Su, H.: Long-term trend of ozone pollution in China during 2014–2020:  
760 distinct seasonal and spatial characteristics and ozone sensitivity, *Atmos. Chem.  
761 Phys.*, 22, 8935-8949, 10.5194/acp-22-8935-2022, 2022b.

762 Wang, W., Li, X., Cheng, Y., Parrish, D. D., Ni, R., Tan, Z., Liu, Y., Lu, S., Wu, Y., Chen,  
763 S., Lu, K., Hu, M., Zeng, L., Shao, M., Huang, C., Tian, X., Leung, K. M., Chen,  
764 L., Fan, M., Zhang, Q., Rohrer, F., Wahner, A., Pöschl, U., Su, H., and Zhang, Y.:  
765 Ozone pollution mitigation strategy informed by long-term trends of atmospheric  
766 oxidation capacity, *Nat. Geosci.*, 17, 20-25, 10.1038/s41561-023-01334-9, 2023b.

767 Wang, Y., Ge, C., Castro Garcia, L., Jenerette, G. D., Oikawa, P. Y., and Wang, J.:  
768 Improved modelling of soil NO<sub>x</sub> emissions in a high temperature agricultural  
769 region: role of background emissions on NO<sub>2</sub> trend over the US, *Environ. Res.  
770 Lett.*, 16, 084061, 10.1088/1748-9326/ac16a3, 2021a.

771 Wang, Y., Fu, X., Wang, T., Ma, J., Gao, H., Wang, X., and Pu, W.: Large Contribution  
772 of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air  
773 Quality, *Environ. Sci. Technol.*, 57, 3516-3526, 10.1021/acs.est.2c07793, 2023c.

774 Wang, Y., Fu, X., Wu, D., Wang, M., Lu, K., Mu, Y., Liu, Z., Zhang, Y., and Wang, T.:  
775 Agricultural Fertilization Aggravates Air Pollution by Stimulating Soil Nitrous  
776 Acid Emissions at High Soil Moisture, *Environ. Sci. Technol.*, 55, 14556-14566,  
777 10.1021/acs.est.1c04134, 2021b.

778 Wang, Y., Wang, J., Zhang, H., Janechek, N., Wang, Y., Zhou, M., Shen, P., Tan, J., He,  
779 Q., Cheng, T., and Huang, C.: Impact of land use change on the urban-rural  
780 temperature disparity in Eastern China, *Atmos. Environ.*, 308, 119850,  
781 10.1016/j.atmosenv.2023.119850, 2023d.

782 Weber B, W. D., Tamm A, et al. : Biological soil crusts accelerate the nitrogen cycle  
783 through large NO and HONO emissions in drylands, Proc. Natl. Acad. Sci. U.S.A.,  
784 112(50): 15384-15389., 2015.

785 Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue,  
786 W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of  
787 ground-level ozone ( $O_3$ ) pollution from 2013 to 2020 across China, Remote Sens.  
788 Environ., 270, 112775, 10.1016/j.rse.2021.112775, 2022.

789 Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C.,  
790 Liang, L., Zhang, G., Lin, W., and Xu, X.:  $NH_3$ -promoted hydrolysis of  $NO_2$   
791 induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557-10570,  
792 10.5194/acp-19-10557-2019, 2019.

793 Xu, W., Zhao, Y., Wen, Z., Chang, Y., Pan, Y., Sun, Y., Ma, X., Sha, Z., Li, Z., Kang, J.,  
794 Liu, L., Tang, A., Wang, K., Zhang, Y., Guo, Y., Zhang, L., Sheng, L., Zhang, X.,  
795 Gu, B., Song, Y., Van Damme, M., Clarisse, L., Coheur, P.-F., Collett, J. L.,  
796 Goulding, K., Zhang, F., He, K., and Liu, X.: Increasing importance of ammonia  
797 emission abatement in  $PM_{2.5}$  pollution control, Sci. Bull., 67, 1745-1749,  
798 10.1016/j.scib.2022.07.021, 2022.

799 Yan, X., Ohara, T., and Akimoto, H.: Statistical modeling of global soil  $NO_x$  emissions,  
800 Global Biogeochem. Cycles, 19, 10.1029/2004gb002276, 2005.

801 Yang, J. and Zhao, Y.: Performance and application of air quality models on ozone  
802 simulation in China – A review, Atmos. Environ., 293, 119446,  
803 10.1016/j.atmosenv.2022.119446, 2023.

804 Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and Nitrate on  
805 Natural and Artificial Surfaces, Environ. Sci. Technol., 50, 3530-3536,  
806 10.1021/acs.est.5b05032, 2016.

807 Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate as a Source  
808 of HONO and  $NO_x$ , Environ. Sci. Technol., 51, 6849-6856,  
809 10.1021/acs.est.7b00387, 2017.

810 Ye, X., Wang, X., and Zhang, L.: Diagnosing the Model Bias in Simulating Daily  
811 Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry

812 Deposition and Cloud Optical Depth, Environ. Sci. Technol., 56, 16665-16675,  
813 10.1021/acs.est.2c05712, 2022.

814 Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.:  
815 Ozone and haze pollution weakens net primary productivity in China, Atmos.  
816 Chem. Phys., 17, 6073-6089, 10.5194/acp-17-6073-2017, 2017.

817 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for  
818 large-scale applications, J. Geophys. Res.: Atmos., 104, 30387-30415,  
819 10.1029/1999jd900876, 1999.

820 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol  
821 Interactions and Chemistry (MOSAIC), J. Geophys. Res.: Atmos., 113,  
822 10.1029/2007jd008782, 2008.

823 Zhan, Y., Xie, M., Gao, D., Wang, T., Zhang, M., and An, F.: Characterization and  
824 source analysis of water-soluble inorganic ionic species in PM<sub>2.5</sub> during a  
825 wintertime particle pollution episode in Nanjing, China, Atmos. Res., 262, 105769,  
826 10.1016/j.atmosres.2021.105769, 2021.

827 Zhang, J., Ran, H., Guo, Y., Xue, C., Liu, X., Qu, Y., Sun, Y., Zhang, Q., Mu, Y., Chen,  
828 Y., Wang, J., and An, J.: High crop yield losses induced by potential HONO  
829 sources — A modelling study in the North China Plain, Sci. Total Environ., 803,  
830 149929, 10.1016/j.scitotenv.2021.149929, 2022a.

831 Zhang, J., Lian, C., Wang, W., Ge, M., Guo, Y., Ran, H., Zhang, Y., Zheng, F., Fan, X.,  
832 Yan, C., Daellenbach, K. R., Liu, Y., Kulmala, M., and An, J.: Amplified role of  
833 potential HONO sources in O<sub>3</sub> formation in North China Plain during autumn haze  
834 aggravating processes, Atmos. Chem. Phys., 22, 3275-3302, 10.5194/acp-22-  
835 3275-2022, 2022b.

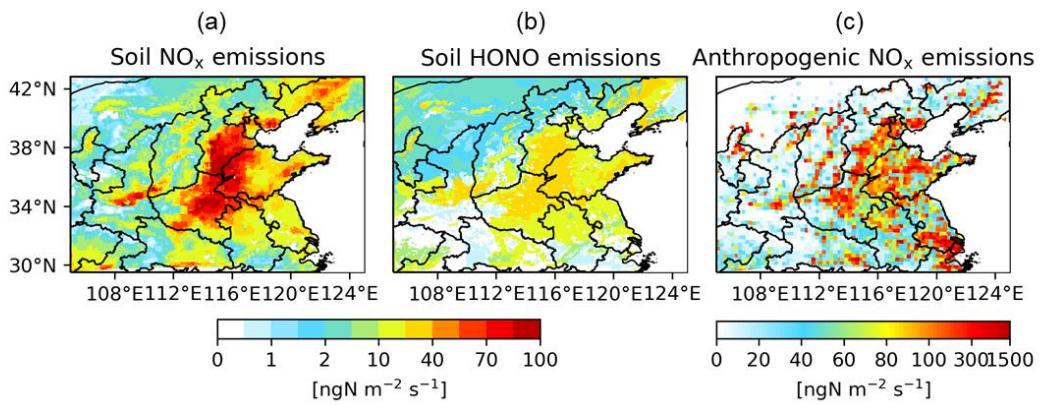
836 Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z., and Lv, M.: Potential sources of  
837 nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a  
838 polluted subtropical region, J. Geophys. Res.: Atmos., 121, 3645-3662,  
839 10.1002/2015jd024468, 2016.

840 Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu,  
841 Y., Duan, F., Ma, T., and He, H.: Improving the representation of HONO chemistry

842 in CMAQ and examining its impact on haze over China, *Atmos. Chem. Phys.*, 21,  
843 15809-15826, 10.5194/acp-21-15809-2021, 2021.

844 Zhang, W., Tong, S., Jia, C., Wang, L., Liu, B., Tang, G., Ji, D., Hu, B., Liu, Z., Li, W.,  
845 Wang, Z., Liu, Y., Wang, Y., and Ge, M.: Different HONO Sources for Three  
846 Layers at the Urban Area of Beijing, *Environ. Sci. Technol.*, 54, 12870-12880,  
847 10.1021/acs.est.0c02146, 2020.

848

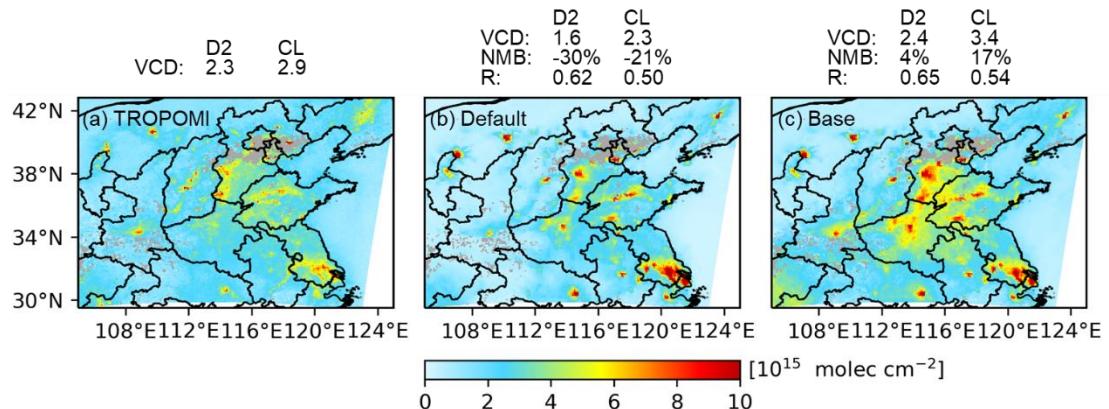

849 **Table 1.** Description of model simulation experiments.

| Simulation                       | Soil emissions       |           | Anthropogenic emissions        |                                |                                |
|----------------------------------|----------------------|-----------|--------------------------------|--------------------------------|--------------------------------|
|                                  | Soil NO <sub>x</sub> | Soil HONO | NO <sub>x</sub>                | VOCs                           | Others                         |
| <b>Default</b>                   | 1(MEGAN)             | 0         | 1                              | 1                              | 1                              |
| <b>Base</b>                      | 1(BDISNP)            | 1         | 1                              | 1                              | 1                              |
| <b>NoSoilNr</b>                  | 0                    | 0         | 1                              | 1                              | 1                              |
| <b>NoSHONO</b>                   | 1                    | 0         | 1                              | 1                              | 1                              |
| <b>NoSNO<sub>x</sub></b>         | 0                    | 1         | 1                              | 1                              | 1                              |
| <b>Base_redANO<sub>x</sub></b>   | 1                    | 1         | 0.8/0.6/0.4/0.2/0 <sup>a</sup> | 1                              | 1                              |
| <b>NoSoil_redANO<sub>x</sub></b> | 0                    | 0         | 0.8/0.6/0.4/0.2/0 <sup>b</sup> | 1                              | 1                              |
| <b>Base_redAnt</b>               | 1                    | 1         | 0.8/0.6/0.4/0.2/0 <sup>c</sup> | 0.8/0.6/0.4/0.2/0 <sup>d</sup> | 0.8/0.6/0.4/0.2/0 <sup>e</sup> |
| <b>NoSoil_redAnt</b>             | 0                    | 0         | 0.8/0.6/0.4/0.2/0 <sup>f</sup> | 0.8/0.6/0.4/0.2/0 <sup>g</sup> | 0.8/0.6/0.4/0.2/0 <sup>h</sup> |

850 <sup>a-h</sup> The values represent the reduction ratios applied to the anthropogenic emissions in the sensitivity

851 simulations compared to the Base.

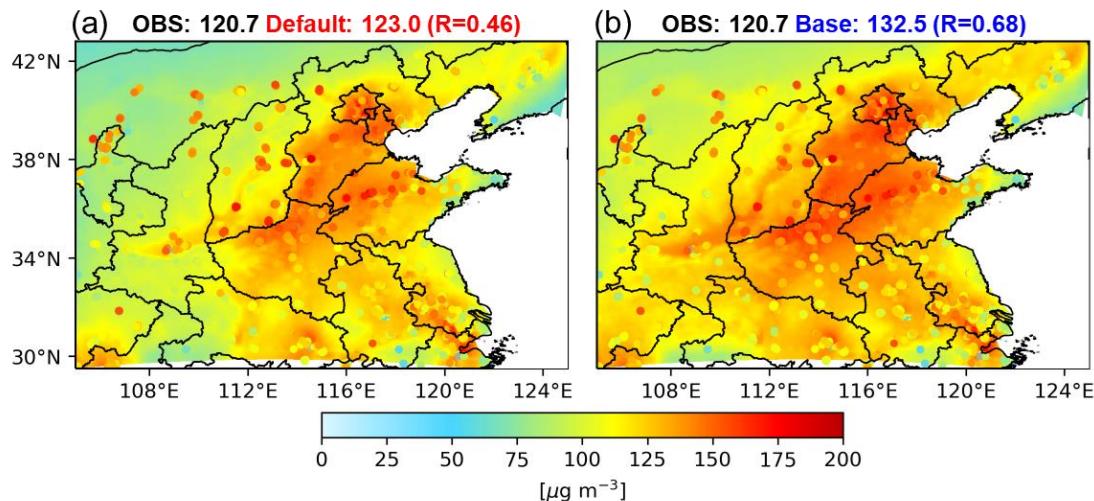
852




853

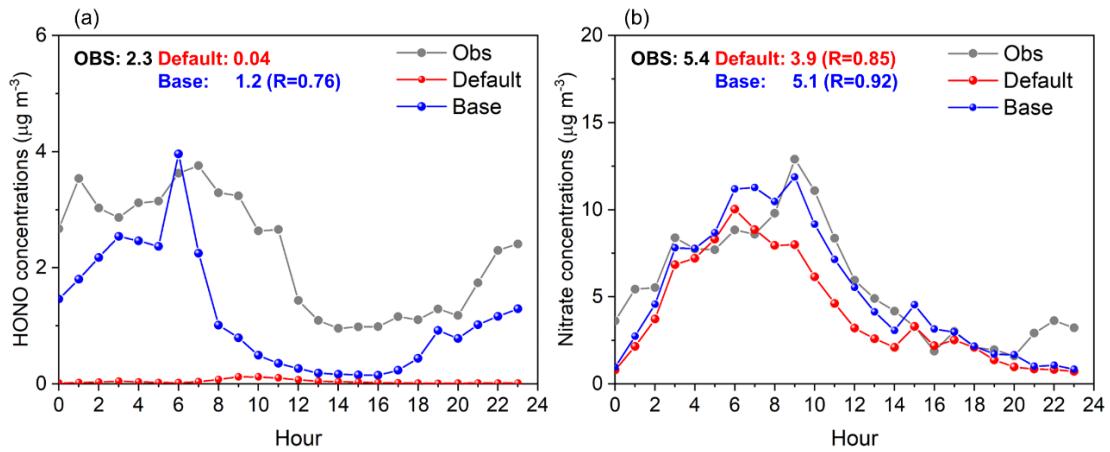
854 **Figure 1.** Distribution of the simulated monthly mean (a) soil  $\text{NO}_x$  emissions, (b) soil

855 HONO emissions, and (c) anthropogenic  $\text{NO}_x$  emissions in North China in July 2018.


856



857

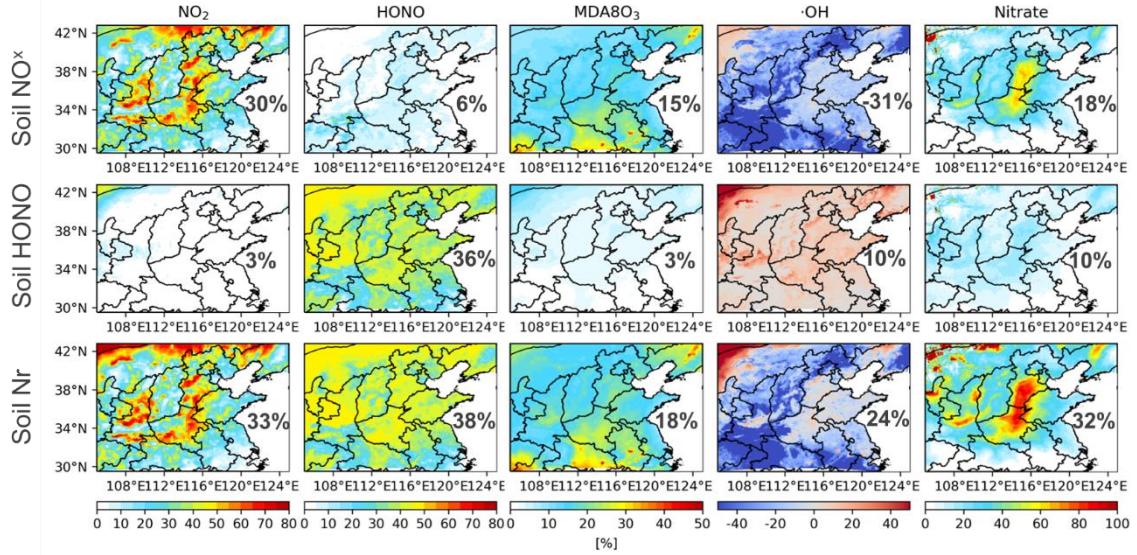

858 **Figure 2.** (a) Monthly mean tropospheric NO<sub>2</sub> VCD retrieved by TROPOMI measured  
 859 at 12:00–14:00 LT and simulated by (b) Default and (c) Base averaged over the same  
 860 periods in July 2018 in North China.

861



862

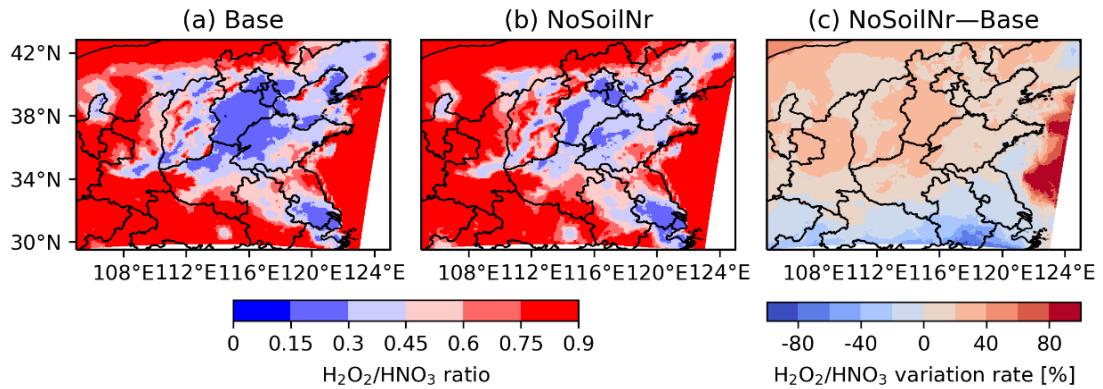
863 **Figure 3.** Distribution of observed (dots) and simulated (shaded) surface MDA8  $O_3$   
 864 from (a) Default and (b) Base in North China in July 2018. Statistics in the upper corner  
 865 of panels are the monthly mean MDA8  $O_3$  concentrations averaged over the study  
 866 region and the spatial correlation coefficient R between observations and simulations.  
 867




868

869 **Figure 4.** Diurnal variation of observed (in grey) and simulated (Default in red and  
 870 Base in blue) surface (a) HONO and (b) nitrate concentrations at a rural station in  
 871 Nanjing in July 2018, with the mean value and temporal correlation coefficients (R)  
 872 shown in the upper right corner.

873


874



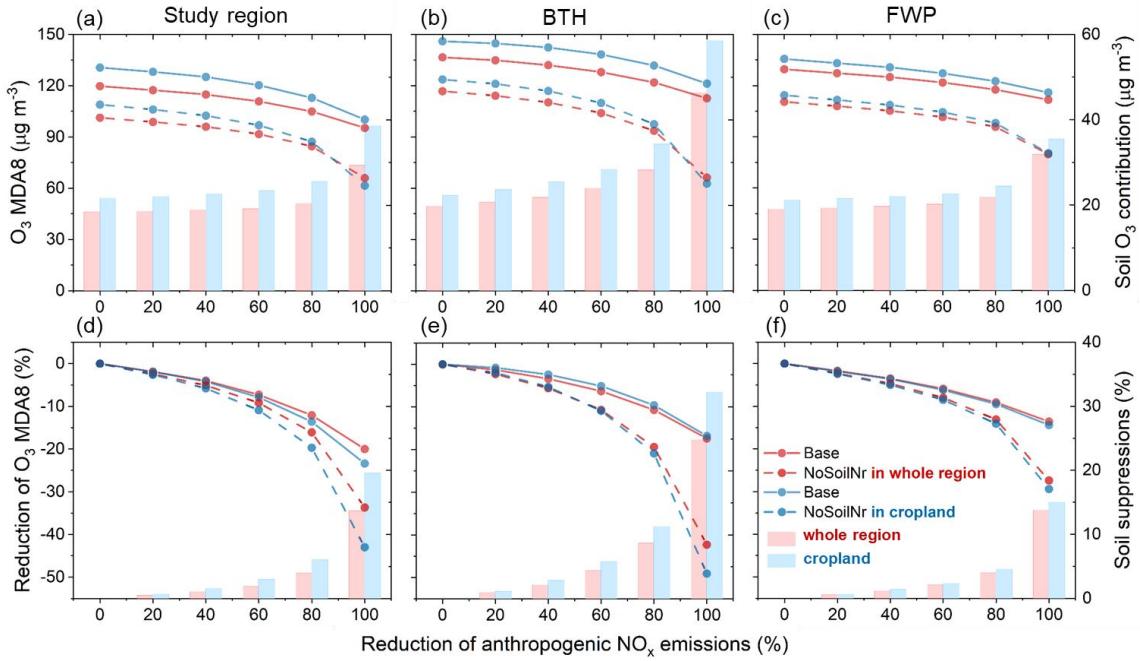
875

876 **Figure 5.** Simulated effects of soil Nr emissions on air quality in North China in July  
 877 2018. The first and second rows show the contributions of soil  $\text{NO}_x$  and soil HONO  
 878 emissions on monthly average concentrations of  $\text{NO}_2$ ,  $\text{HONO}$ ,  $\text{MDA8O}_3$ , max-1h  $\cdot\text{OH}$ ,  
 879 and nitrate, respectively. The third row shows the combined effect of soil Nr emissions  
 880 on the species listed above. Statistics in the right corner of each panel are the mean  
 881 values averaged over the study region.

882



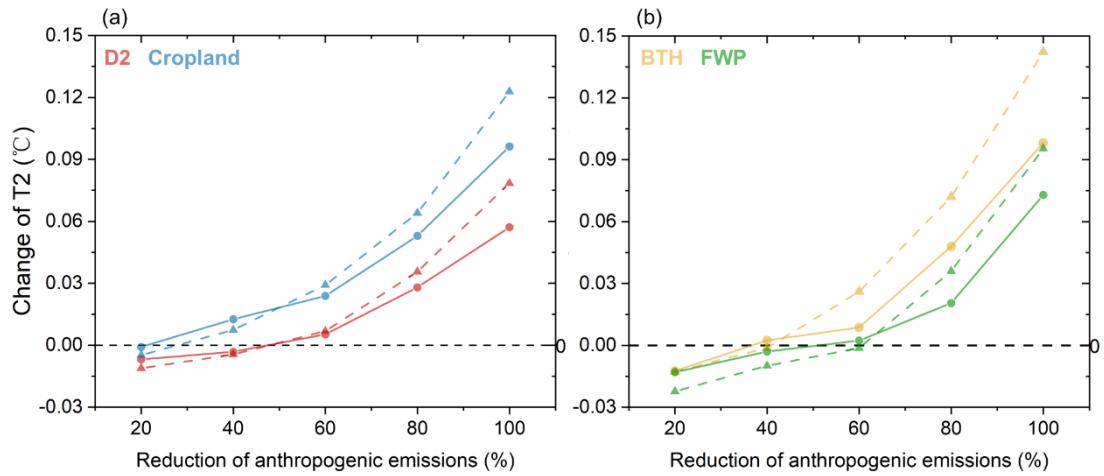
883


884 **Figure 6.** Distribution of the O<sub>3</sub> formation regimes (represented as H<sub>2</sub>O<sub>2</sub>/HNO<sub>3</sub> ratios)

885 in North China in July 2018 for (a) Base simulation with the addition of soil Nr

886 emissions and (b) NoSoilNr simulation without the addition of soil Nr emissions. (c)

887 Changes in the distribution of O<sub>3</sub> formation regimes due to the soil Nr emissions


888



889

890 **Figure 7.** Role of soil Nr emissions in O<sub>3</sub> pollution regulation in North China in July

891 2018. The responses of MDA8 O<sub>3</sub> concentrations to the reductions of anthropogenic  
 892 NO<sub>x</sub> emissions (20%, 40%, 60%, 80% and 100%) relative to July 2018 levels, in the  
 893 presence (solid line) and absence (dotted line) of soil Nr emissions in the study region,  
 894 BTH and FWP region. (The lines in panels a-c and d-f are MDA8 O<sub>3</sub> concentrations  
 895 and the relative reductions in MDA8 O<sub>3</sub> under different anthropogenic NO<sub>x</sub> emission  
 896 reductions, respectively. The red bars (right y-axis) in panels a-c show the  
 897 corresponding O<sub>3</sub> contribution from soil Nr emissions, which is determined as the  
 898 difference between the solid and dotted lines, and the blue bars are the same as the red  
 899 bars but for statistics in cropland. The red bars (right y-axis) in panels d-f show the  
 900 suppression of O<sub>3</sub> pollution mitigated due to the existence of soil Nr emissions, which  
 901 are determined as the difference between the solid and dotted lines, and the blue bars  
 902 are the same as the red bars but for statistics in cropland.)



903

904 **Figure 8.** The responses of air temperature at 2m (T2) to the reductions of  
 905 anthropogenic emissions (taking into account the  $\text{SO}_2$ ,  $\text{NO}_x$ , primary  $\text{PM}_{2.5}$ , VOCs,  
 906 and CO reduced by 20%, 40%, 60%, 80%, and 100%) relative to July 2018 levels in  
 907 the presence (solid line) and absence (dotted line) of soil Nr emissions (a) in the study  
 908 region, (b) BTH and FWP region.

909