

1 **Large contribution of soil emissions to the atmospheric nitrogen**
2 **budget and their impacts on air quality and temperature rise in**
3 **North China**

4 *Tong Sha¹*, Siyu Yang¹, Qingcai Chen¹, Liangqing Li¹, Xiaoyan Ma², Yan-Lin Zhang^{3,4},*
5 *Zhaozhong Feng³, K. Folkert Boersma^{5,6}, Jun Wang⁷**

6 ¹ School of Environmental Science and Engineering, Shaanxi University of Science and
7 Technology, Xi'an 710021, China

8 ² Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological
9 Administration, Nanjing University of Information Science & Technology, Nanjing
10 210044, China

11 ³ School of Ecology and Applied Meteorology, Nanjing University of Information
12 Science & Technology, Nanjing 210044, China

13 ⁴ Atmospheric Environment Center, Joint Laboratory for International Cooperation on
14 Climate and Environmental Change, Ministry of Education (ILCEC), Nanjing
15 University of Information Science & Technology, Nanjing 210044, China

16 ⁵ Satellite Observations Department, Royal Netherlands Meteorological Institute, De
17 Bilt 3731GA, the Netherlands

18 ⁶ Meteorology and Air Quality Group, Wageningen University, Wageningen 6708PB,
19 the Netherlands

20 ⁷ Department of Chemical and Biochemical Engineering, Center for Global and
21 Regional Environmental Research, and Iowa Technology Institute, University of Iowa,
22 Iowa City, IA, 52242, USA

23 *Corresponding authors:

24 Tong Sha: tong-sha@sust.edu.cn

25 Jun Wang, jun-wang-1@uiowa.edu

26 Submitted: February 2024

27 Revised: June 2024

28

29 **Abstract**

30 Soil emissions of nitrogen compounds, including NO and HONO, play a
31 significant role in atmospheric nitrogen budget. However, HONO has been overlooked
32 in previous research on soil reactive nitrogen (Nr) emissions and their impacts on air
33 quality in China. This study estimates both soil NO_x and HONO emissions (SNO_x and
34 SHONO) in North China during July 2018 with an updated soil Nr emissions scheme
35 in a chemical transport model, the Unified Inputs for WRF-Chem (UI-WRF-Chem).
36 The effects of soil Nr emissions on O_3 pollution, air quality and temperature rise are
37 also studied, with a focus on two key regions, Beijing-Tianjin-Hebei (BTH) and Fenwei
38 Plain (FWP), known for high soil Nr and anthropogenic emissions. We find that the flux
39 of SNO_x is nearly doubled those of SHONO; the monthly contributions of SNO_x and
40 SHONO account for 37.3% and 13.5% of anthropogenic NO_x emissions in the BTH,
41 and 29.2% and 19.2% in the FWP during July 2018, respectively. Soil Nr emissions
42 have a significant impact on surface O_3 and nitrate, exceeding SNO_x or SHONO effects
43 alone. On average, soil Nr emissions increase MDA8 O_3 by 16.9% and nitrate
44 concentrations by 42.4% in the BTH, 17.2% for MDA8 O_3 and 42.7% for nitrate in the
45 FWP. Reducing anthropogenic NO_x emissions leads to a more substantial suppressive
46 effect of soil Nr emissions on O_3 mitigation, particularly in BTH. Soil Nr emissions,
47 via their role as precursors for secondary inorganic aerosols, can result in a slower
48 increase rate of surface air temperature under future emission reduction scenarios. This
49 study suggests that mitigating O_3 pollution and addressing climate change in China
50 should consider the role of soil Nr emission, and their regional differences.

51 **1. Introduction**

52 Surface ozone (O_3) is a major air pollutant harmful to human health, terrestrial
53 vegetation, and crop growth (Feng et al., 2022b; Turner et al., 2016; Unger et al., 2020;
54 Yue et al., 2017). China is confronting serious O_3 pollution, with the surface O_3
55 concentrations routinely exceeding air quality standards (Li et al., 2019). Although the
56 Chinese Action Plan on Air Pollution Prevention and Control implemented in 2013 has
57 significantly reduced the nationwide anthropogenic emissions of primary pollutants
58 including particulate matter (PM) and nitrogen oxides ($NO_x = NO + NO_2$), the
59 summertime O_3 concentrations observed by national ground sites and satellite
60 observations both show an increasing trend of $1-3 \text{ ppbv a}^{-1}$ in megacity clusters of
61 eastern China from 2013 to 2019 (Wang et al., 2022b; Wei et al., 2022). Many studies
62 have explored the causes of O_3 pollution from the perspective of changes in
63 meteorology and anthropogenic emissions, and attributed the O_3 increase to decreased
64 PM levels and anthropogenic NO_x emissions, and adverse meteorological conditions
65 (Li et al., 2019; Li et al., 2020; Li et al., 2021b; Liu and Wang, 2020a, b; Lu et al., 2019).

66 Soil emissions are an important natural source of reactive nitrogen species,
67 including N_2O , NO_x , $HONO$ and NH_3 , and can strongly affect the atmospheric
68 chemistry, air pollution and climate change (Elshorbany et al., 2012; Pinder et al., 2012).
69 It has been acknowledged that the soils emissions account for 12-20% of total emissions
70 of NO_x on global average (Vinken et al., 2014; Yan et al., 2005), and 40-51% in
71 agricultural regions during periods in which fertilizers are applied to soils, resulting in
72 a significant increase in O_3 and NO_2 concentrations in US (Almaraz et al., 2018; Romer

73 et al., 2018; Sha et al., 2021; Wang et al., 2021a), Europe (Skiba et al., 2020) and sub-
74 Saharan Africa (Huang et al., 2018).

75 China has a large area of cultivated land ($\sim 1.276 \times 10^6 \text{ km}^2$,
76 http://gi.mnr.gov.cn/202304/t20230414_2781724.html, last access: 18th December
77 2023), which contributes to one-third of the global nitrogen fertilizer use and has
78 extensive nitrogen deposition (Liu et al., 2013; Lu and Tian, 2017; Reay, 2008). So far,
79 only a limited studies focused on the impact of soil NO_x emissions (denoted as SNO_x)
80 on O₃ pollution in China (Huang et al., 2023; Lu et al., 2021; Shen et al., 2023; Wang
81 et al., 2008; Wang et al., 2022a; Wang et al., 2023a). Lu et al. (2021) demonstrated that
82 the presence of SNO_x in the North China Plain significantly reduced the sensitivity of
83 surface O₃ to anthropogenic emissions. Huang et al. (2023) suggested that substantial
84 SNO_x could increase the maximum daily 8 h (MDA8) O₃ concentrations by 8.0–12.5
85 $\mu\text{g m}^{-3}$ on average for June 2018 in China. These studies focused only on NO_x emitted
86 from soils and neglected that similar soil microbial activities also emit nitrous acid
87 (HONO). The measurements in laboratory showed that the emission rates of soil HONO
88 were comparable to those of NO (Oswald et al., 2013; Weber B, 2015). The photolysis
89 of HONO has been identified to be an important source of atmospheric hydroxyl radical
90 ($\cdot\text{OH}$), which enhances concentrations of hydroperoxyl (HO₂) and organic peroxy
91 radicals (RO₂), accelerating the conversion of NO to NO₂, resulting in more
92 concentrations of O₃ and secondary pollutants. Although the sources and formation
93 mechanisms of HONO are still not fully understood, recent model studies suggested
94 that HONO emission from soils in the agriculture-intensive North China Plain could

95 increase the regionally averaged daytime ·OH, O₃, and daily fine particulate nitrate
96 concentrations (Feng et al., 2022a; Wang et al., 2021b).

97 Only a few studies simultaneously considered the impact of soil HONO emissions
98 (denoted as SHONO) along with SNO_x on O₃ and other secondary pollutants (Tan et
99 al., 2023; Wang et al., 2023c). Wang et al. (2023c) found that the NO_x and HONO
100 emissions from natural soils (i.e., soil background emissions) increased daily average
101 O₃ concentrations by 2.0% in the Northeast Plain during August 2016 without
102 considering the contribution from fertilized croplands. Tan et al. (2023) believed that
103 the contribution of soil NO_x and HONO to O₃ pollution has been in an increasing trend
104 from 2013 (5.0 pptv) to 2019 (8.0 pptv) in the summer season over the North China
105 Plain by using the GEOS-Chem model; however the coarse resolution of GEOS-Chem
106 simulation may not be sufficient to resolve the spatial heterogeneity in soil emission
107 distribution (Lu et al., 2021). Associated with the decreasing anthropogenic emissions
108 is the increasing contribution of soil emissions to the atmospheric nitrogen budget in
109 China. Therefore, it is critical to quantify the impact of soil reactive nitrogen (Nr: NO_x
110 and HONO) emissions on O₃ and secondary pollutants.

111 In this study, we improve the soil Nr emissions scheme in the Unified Inputs
112 (initial and boundary conditions) for Weather Research and Forecasting model coupled
113 with Chemistry (UI-WRF-Chem) by considering all potential sources of HONO
114 published in the literature. July 2018 was chosen as the study period because of severe
115 O₃ pollution during this month, as well as higher air temperatures and more frequent
116 precipitation compared to June and August (Figure S1 and S2), which could contribute

117 to enhanced the soil Nr emissions (Figure S3). We conduct a series of sensitivity
118 experiments to quantify the coupled and separate impact of SNO_x and SHONO on O₃
119 and secondary pollutants during July 2018 over the North China, focusing on two city
120 clusters, the Beijing-Tianjin-Hebei (BTH) region and Fenwei Plain (FWP) region, both
121 of which have the vast areas of croplands and dense populations and experiencing
122 severe O₃ and PM_{2.5} pollutions. In addition, by quantitatively analyzing the difference
123 in the response of surface O₃ concentrations and surface air temperature to the
124 anthropogenic emissions reductions in the presence vs. absence of soil Nr emissions,
125 the roles of soil Nr emissions on O₃ mitigation strategies and climate change are also
126 studied. Our study is designed to address the underestimated role of soil Nr emission in
127 O₃ pollution, thereby providing the scientific basis for O₃ mitigation strategies and
128 climate change.

129 **2. Methodology**

130 **2.1 Model description**

131 **2.1.1 Model configurations, input data, and non-soil HONO emission**

132 The UI-WRF-Chem model, developed upon the standard version of WRF-Chem
133 3.8.1 (Grell et al., 2005), was used in this study. The 0.625°×0.5° Modern-Era
134 Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis
135 data provide both the meteorological and chemical boundary and initial conditions
136 (Gelaro et al., 2017). The 0.25° × 0.25° Global Land Data Assimilation System
137 (GLDAS) data provides the initial and boundary conditions of soil properties, i.e., soil
138 moisture and temperature (Rodell et al., 2004). Details of Unified Inputs of

139 meteorological and chemical position data for UI-WRF-Chem, can be found in recent
140 publications (Li et al., 2024; Wang et al., 2023d). Anthropogenic emissions are
141 imported from the Multi-resolution Emission Inventory for China (MEIC:
142 <http://www.meicmodel.org/>) with a spatial resolution of $0.25^\circ \times 0.25^\circ$ for the year 2017.
143 Due to the differences in spatial resolution and map projection between the MEIC
144 inventory and model grid, we applied a spatial interpolation method to convert the
145 MEIC inventory to the model-ready formats. The descriptions are detailed in Text S1.
146 Biomass burning emissions are from the Fire Inventory from NCAR version (FINN,
147 version 1.5, <https://www.acom.ucar.edu/Data/fire/>). Biogenic emissions are calculated
148 using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version
149 2.1 (Guenther et al., 2012).

150 The physical and chemical schemes include the Morrison 2-moment
151 microphysical scheme (Morrison et al., 2009), Grell 3-D cumulus scheme (Grell and
152 Dévényi, 2002), RRTMG for both longwave and shortwave radiation scheme (Iacono
153 et al., 2008), Yonsei University planetary boundary layer scheme (Hong et al., 2006),
154 Noah land surface model (Tewari et al., 2004), and the Carbon Bond Mechanism
155 (CBMZ) for gas-phase chemistry and the Model for Simulating Aerosol Interactions
156 and Chemistry (MOSAIC) aerosol module with four sectional aerosol bins and aqueous
157 reactions (Zaveri and Peters, 1999; Zaveri et al., 2008) are adopted in the UI-WRF-
158 Chem model. Two nested domains are used, domain one covers China with a horizontal
159 resolution of 27 km and contains 112×112 grid cells, and domain two covers central
160 and eastern China and its surrounding area with a horizontal resolution of 9 km,

161 containing 196×166 grid cells (study region are shown in Figure S4), both domains
162 have 74 vertical levels from surface to 50 hPa and 4 levels of soil. The simulations are
163 conducted from 29th June to 31th July in 2018 with the first 2 days as the spin-up period.
164 The model outputs from 1th to 31th July in 2018 are analyzed.

165 The default WRF-Chem model only considers the gas-phase formation of HONO
166 (NO + OH → HONO), thus underestimating the HONO concentrations. In this study, in
167 addition to considering SHONO (details in Section 2.1.2), potential sources of HONO
168 recognized in recent studies are also taken into account in the current model (Fu et al.,
169 2019; Li et al., 2010; Ye et al., 2016; Ye et al., 2017; Zhang et al., 2016; Zhang et al.,
170 2020; Zhang et al., 2021; Zhang et al., 2022a, b), including traffic emissions, NO₂
171 heterogeneous reactions on ground and aerosol surfaces, and inorganic nitrate
172 photolysis in the atmosphere. Through a series of tests and comparisons with observed
173 surface HONO concentrations, the specific parameterization schemes of HONO
174 sources adopted in this study are shown in Text S2.

175 **2.1.2 Parameterization of soil Nr emissions**

176 The soil Nr emissions schemes in the UI-WRF-Chem model are updated in this
177 study. The default SNO_x scheme in UI-WRF-Chem, MEGAN v2.1, is replaced by the
178 Berkeley–Dalhousie–Iowa Soil NO Parameterization (BDISNP), and the
179 implementation of BDISNP can be found in Sha et al. (2021). Considering that the
180 baseline year of N fertilizer data is 2006, and the amount of N fertilizer application in
181 China has changed in the past ten years, we update the N fertilizer data to the year 2018
182 based on the N fertilizer application data at the province level from the statistical

183 yearbook (Table S1).

184 The process of soil HONO emission is similar to that of NO_x, as both are
185 influenced by the physical and chemical characteristics of soils. Consequently, soil
186 emissions of HONO with consideration of their dependence on land type, soil humidity,
187 and temperature are also parameterized into the UI-WRF-Chem model. We first map
188 the soil types measured in Oswald et al. (2013) (collected from 17 ecosystems in Table
189 S2) into the most closely matching MODIS land cover types in the model following
190 Feng et al. (2022a), described in Table S3. The optimal emission flux for each MODIS
191 land cover type is calculated as the average of the measured fluxes from the
192 category/categories in Oswald et al. (2013) that is/are been mapped into a specific
193 MODIS classification. We also collect the SHONO data from various ecosystems in
194 China published in different studies to correct the optimal SHONO fluxes in the model
195 (Table S4). These ecosystems include semi-arid, fertilized and irrigated farmland in
196 China. Consequently, the parameterization scheme takes into account the effect of
197 fertilizer application on the SHONO. After that, the optimal fluxes over the domains
198 are digested into the model and further scaled online according to the soil temperature
199 and water content in each model grid at each time step throughout the simulation period
200 by the following of equation from (Zhang et al., 2016):

201
$$F_N(\text{HONO}) = F_{N,opt}(\text{HONO}) \cdot f(T) \cdot f(SWC)$$

202 where $F_{N,opt}(\text{HONO})$ is the optimum flux of SHONO in terms of nitrogen. $f(T)$ and
203 $f(SWC)$ are the scaling factors of soil temperature (T) and water content (SWC).

204
$$f(T) = e^{\frac{Ea}{R}(\frac{T}{T_{opt}} - \frac{1}{T})}$$

205 E_a is the activation energy of HONO (80 kJ mol⁻¹), R is the gas constant, T_{opt} is
206 the temperature at which optimum flux is emitted (298.15 K), T is the soil temperature
207 calculated online by the model, $f(SWC)$ is fitted based on the data curves in Figures
208 1 and 3 in (Oswald et al., 2013) and the equation is as follows:

209

$$f(SWC) = 1.04 \times \exp\left(-e^{-\frac{SWC-11.32586}{5.27335}} - \frac{SWC-11.32586}{5.27335} + 1\right)$$

210 **2.2 Model experiment design**

211 The descriptions of the sensitivity simulations are shown in Table 1. Default
212 simulation uses MEGAN scheme to estimate SNO_x and no SHONO is considered. Base
213 simulation uses soil Nr emissions schemes with the improvement of using BDISNP
214 scheme for SNO_x and consideration of SHONO and other four HONO sources (as
215 described above). Comparison of results from Default and Base simulations is used to
216 show the improvement in the model performance after updating the soil Nr emissions
217 schemes and incorporating HONO potential sources. To explore the impact of soil Nr
218 emissions on O₃ and secondary pollutants, we conduct a series of sensitivity simulations
219 with soil NO_x and HONO emissions turned on/off separately and jointly (anthropogenic
220 emissions for the year 2017), i.e., NoSoilNr, NoSHONO and NoSNO_x. To investigate
221 the relative importance and interaction between anthropogenic and natural emissions of
222 nitrogen-containing pollutants, we conduct the Base_redANO_x and NoSoil_redANO_x
223 simulations to evaluate the role of soil Nr emissions on O₃ mitigation strategies, in
224 which anthropogenic NO_x emissions reduced by 20%, 40%, 60%, 80%, and 100%,
225 respectively. Furthermore, considering the co-control of multiple air pollutants and
226 greenhouse gas reductions in future emission reduction scenarios, the Base_redAnt and

227 NoSoil_redAnt simulations are conducted to evaluate the role of soil Nr emissions on
228 air temperature change, and the anthropogenic reduction scenarios simultaneously
229 consider SO₂, NO_x, primary PM_{2.5}, VOCs, and CO emissions reductions (reduced by
230 20%, 40%, 60%, 80%, and 100%).

231 **2.3 Observational data**

232 The tropospheric column densities of NO₂ from TROPOMI (TROPOspheric
233 Monitoring Instrument) level-2 in version 1 with the horizontal spatial resolution of 3.5
234 × 7 km² are used (Van Geffen et al., 2021). The quality controls, i.e., cloud-screened
235 (cloud fraction below 30%) and quality-assured (qa_value above 0.50), and averaging
236 kernels (AK) are applied in the comparison of the TROPOMI and UI-WRF-Chem
237 simulated tropospheric NO₂ vertical column densities (defined as NO₂ VCD).

238 To evaluate the model performance on simulating surface air pollutants, we use
239 the hourly surface O₃ concentrations at 888 monitoring sites from the China National
240 Environmental Monitoring Center (CNEMC), and hourly surface HONO
241 concentrations measured by the In-situ Gas and Aerosol Compositions monitor (IGAC)
242 (Zhan et al., 2021) at Nanjing University of Information Science & Technology (NUIST)
243 (32.2° N, 118.7° E; 22m above sea level) (Xu et al., 2019).

244 **3. Results and discussions**

245 **3.1 Soil nitrogen emissions and air pollution evaluation**

246 The soil Nr emissions in July are much higher than the other seasons due to higher
247 air temperatures and frequent precipitation, accounting for 39.5% of anthropogenic
248 NO_x emissions over the study region, and 50.2% in the BTH, 47.4% in FWP, which is

249 consistent with the previous studies (Huang et al., 2023; Shen et al., 2023; Wang et al.,
250 2023c). And the proportions can increase to 58.9%, 57.0%, and 65.0%, respectively,
251 when only statistics over the cropland in these regions (Figure S3). Given the substantial
252 contribution of soil emissions to the atmospheric nitrogen budget in July, we thus
253 choose this month to assess the impact of soil Nr emissions on air quality and climate
254 change. From the spatial distribution of simulated monthly mean SNO_x and SHONO
255 fluxes across North China in July 2018 (Figure 1), it is shown that SNO_x flux is nearly
256 doubled that of SHONO in most regions, and higher SNO_x and SHONO are
257 concentrated in areas dominated by cropland. The monthly total soil emissions over the
258 whole study domain (cropland) are 104.5 (82.4) Gg N mon^{-1} for NO_x and 52.7 (45.9)
259 Gg N mon^{-1} for HONO. In the densely populated BTH region, the monthly total SNO_x
260 are 18.7 Gg N mon^{-1} in July, which is equivalent to 37.3% of anthropogenic NO_x
261 emissions for the year 2017. For the FEW region, where also experiences severe O_3 and
262 $\text{PM}_{2.5}$ pollutions, the monthly total SNO_x ($7.0 \text{ Gg N mon}^{-1}$) account for 29.2% of
263 anthropogenic NO_x emissions. The monthly total SHONO in both study regions are
264 much lower than their SNO_x counterparts, with the emissions of 6.9 and 4.6 Gg N mon^{-1}
265 $^{-1}$, accounting for 13.5% and 19.2% of anthropogenic NO_x emissions in BTH and FWP
266 regions, respectively.

267 To evaluate the model performance, Figure 2 shows the tropospheric NO_2 VCD
268 from TROPOMI satellite products and UI-WRF-Chem simulations (Default and Base)
269 in North China during July 2018. Default and Base can both reproduce the hot spots of
270 NO_2 VCD in urban areas shown in the TROPOMI observations. However, the Default

271 significantly underestimates the NO₂ VCD, especially in regions surrounding urban
272 areas. It is found that Default underestimates NO₂ VCD by 48% over the regions where
273 soil emissions dominate (i.e., soil Nr emissions contribute more than half to the
274 atmospheric nitrogen emissions), while the Base reduced the bias to 13% (Figure S5).
275 Overall, Base shows the improved performance in simulating NO₂ VCD in comparison
276 to Default with a decreasing bias from -30% (-21%) to +4% (+17%) and an increasing
277 spatial correlation coefficient (R) from 0.62 (0.50) to 0.65 (0.54) in the study region
278 (cropland). However, there is still a discrepancy between the Base simulation and
279 TROPOMI NO₂ VCD. This discrepancy could be driven by the combined effects from
280 uncertainties in simulations and observations, associated with the time lag in
281 anthropogenic emissions inventory used in the model (Chen et al., 2021), instantaneous
282 uncertainties in TROPOMI tropospheric NO₂ VCD at the pixel level (up to 25-50% or
283 0.5~0.6×10¹⁵ molecules cm⁻²), as well as uncertainties of stratospheric portion of NO₂
284 VCD and AK caused the retrieval errors (Van Geffen et al., 2020; Van Geffen et al.,
285 2021). Additionally, the estimated SNO_x are also subjected to certain limitations and
286 uncertainties. The first uncertainty comes from the amount of N fertilizer application,
287 which has been identified as the dominant contributor to SNO_x. In this study, we use
288 the amount of agricultural N fertilizer application at the province level from the
289 statistical yearbook to update the default N fertilizer application data in the model (the
290 baseline year for 2006), but a recent study showed that compound fertilizer, usually
291 with nitrogen (N), phosphorus (P), and potassium (K), were more commonly used in
292 China; if only N fertilizer is considered to nudge the N fertilizer application data in the

model, the estimated SNO_x may be underestimated by 11.1%–41.5% (Huang et al., 2023). Furthermore, although we use the modeled green vegetation fraction (GVF) to determine the distribution of arid ($\text{GVF} \leq 30\%$) and non-arid ($\text{GVF} > 30\%$) regions. Huber et al. (2023) showed that the estimated SNO_x based on the static classification of arid vs. non-arid is very sensitive to the soil moisture, and thus could not produce self-consistent results when using different input soil moisture products unless a normalized soil moisture index to represent. Therefore, more direct measurements of soil Nr fluxes are crucial to better constrain soil emissions and improve the parametrization in the model. Nevertheless, the improved simulation performance of NO_2 VCD with a reduced bias and increased spatial correlation coefficient in Base is credible, and soil Nr emission scheme has the fidelity needed to study the implication of soil Nr emissions to air quality in North China.

We evaluate the simulation with the surface O_3 observations from the China National Environmental Monitoring Centre (CNEMC) network (<http://www.cnemc.cn/en/>) (Figure 3). Over the whole study region, the Base can better capture the spatial distribution of observed surface MDA8 O_3 with a relatively higher spatial correlation of $R = 0.68$ than that in Default ($R = 0.46$). The simulated monthly averaged MDA8 O_3 concentrations across the 888 sites in the study region are $123.0 \mu\text{g m}^{-3}$ in Default and $132.5 \mu\text{g m}^{-3}$ in Base, respectively, which are both slightly higher than the observed concentrations ($120.7 \mu\text{g m}^{-3}$). Overprediction is also observed for the FWP and BTH regions in the Base simulation, with the normalized mean bias (NMB) of 6.1% and 4.9%, respectively (Figure S6). Previous studies showed that the NMB of

315 simulated O₃ concentrations were within $\pm 30\%$ for nearly 80% of the cases collected
316 from air quality model studies (Yang and Zhao, 2023). These discrepancies may arise
317 from simplifications of complex chemical mechanisms and physical processes, such as
318 dry deposition and vertical mixing (Akimoto et al., 2019; Travis and Jacob, 2019). The
319 uncertainties of input data, including emission inventories, meteorological fields, and
320 other parameters, may also contribute to these discrepancies (Sun et al., 2019; Ye et al.,
321 2022), suggesting a potential systematic O₃ bias in air quality models. Therefore, the
322 increased spatial correlation and reasonable bias found in the Base indicate that the
323 application of the soil Nr emission schemes can effectively improve the simulation
324 performance of MDA8 O₃.

325 We also compare the simulated surface HONO and nitrate concentrations to the
326 observations at a rural station in Nanjing during July 2018. Figure 4 shows that the
327 simulated HONO concentrations in Default are 98.3% lower than the observations. In
328 comparison, the Base with considering SHONO and other HONO potential sources
329 significantly improves the simulation performance and reduces the bias to 47.8%, and
330 also reproduces the diurnal variation of HONO with the temporal correlation of $R =$
331 0.76. It is worth noting that the simulated concentrations of HONO from 08 am to 18
332 pm are lower than the observations, this discrepancy may be attributed to the
333 underestimated contribution from the predominant sources of HONO during the
334 daytime, such as NO₂ heterogeneous reactions on ground and aerosol surfaces.
335 Moreover, the contributions of different sources to ambient HONO concentrations at
336 this rural station are also evaluated, the soil emissions could contribute almost 25.8%

337 to the surface HONO concentrations, which may be partially attributed to the high
338 emissions of HONO from croplands around the city of Nanjing (Figure S7). The results
339 that soil emissions contribute less to the daytime positive flux than the other source is
340 consistent with previous studies (Skiba et al., 2020; Wang et al., 2023c). For nitrate
341 concentration, the Base simulation shows a lower bias (5.6%) and an improved diurnal
342 variation (temporal correlation of $R = 0.92$) compared to the Default simulation (bias =
343 27.8%, $R = 0.85$). We acknowledge that there are certain uncertainties in the current
344 model. Nevertheless, the improved simulation performance of NO_2 VCD, surface
345 HONO, MDA8 O_3 , and nitrate concentrations compared to the Default illustrates the
346 credibility of the results obtained from the Base simulation.

347 **3.2 Impact on O_3 formation and air quality**

348 To quantify the effects of SNO_x and SHONO on atmospheric oxidation capacity,
349 O_3 formation and air quality as well as their combined effect, the conventional brute-
350 force method was used, i.e., the impact of a specific source is determined in atmospheric
351 chemistry models as the differences between the standard/base simulation with all
352 emissions turned on and a sensitivity simulation with this source turned off or perturbed
353 (Table 1). As shown in Figure 5, the contribution of SNO_x and SHONO to surface NO_2
354 and HONO has a different spatial pattern from that of the fluxes of SNO_x and SHONO
355 in July. Overall, the maximum contribution of SNO_x to the monthly average surface
356 NO_2 concentrations is 78.6%, with a domain-averaged value of 30.3%. Regionally,
357 SNO_x contribute $5.5 \mu\text{g m}^{-3}$ (37.1%) and $2.5 \mu\text{g m}^{-3}$ (31.8%) to the surface NO_2 in the
358 BTH and FWP regions, respectively, which are both higher than the domain-averaged

359 contribution. Although SHONO fluxes are lower than that of SNO_x in this period, its
360 effect on ambient HONO cannot be ignored. Over the study region, the contribution of
361 SHONO to surface HONO concentration ranges from 0 to 49.0%, with a domain-
362 averaged value of 35.6%. For the selected key regions, there are $1.8 \mu\text{g}/\text{m}^3$ (36.7%) and
363 $1.5 \mu\text{g}/\text{m}^3$ (38.0%) of the monthly average HONO concentrations in the BTH and FWP
364 regions, respectively, from soil emissions. It is noteworthy that, despite the surface NO_2
365 (HONO) concentrations in the study regions being impacted by less than 13% (17%)
366 due to SHONO (SNO_x), the combined effects of soil Nr emissions on surface NO_2
367 (HONO) are found to be greater than the individual effects, which are 38.4% (40.3%)
368 for BTH and 33.9% (40.1%) for FWP region, respectively (Table S5). These results
369 highlight the importance of considering the cumulative impacts of multiple reactive
370 nitrogen emissions from soils on air pollution.

371 Consequently, substantial soil Nr emissions in July have a non-negligible effect on
372 atmospheric oxidation and the formation of secondary pollutants. For atmospheric
373 oxidation, we assess the impact of soil Nr emission on the maximum 1 h (max-1h) $\cdot\text{OH}$
374 levels and find that SHONO have a potential to increase the max-1h $\cdot\text{OH}$ in most areas,
375 with a domain-averaged increase of 10.0%. On the contrary, the inclusion of SNO_x
376 results in a significant reduction of 31.3% in the max-1h $\cdot\text{OH}$ across the entire study
377 domain. Considering the combined effect of SNO_x and SHONO, there is an overall
378 decrease of 24.3% in the max-1h $\cdot\text{OH}$ over the study domain, with the BTH region
379 experiencing a decrease of 22.6% and FWP region showing a relatively greater
380 reduction of 32.2% (Table S6). These findings are different from the previous study,

381 which showed that soil background emissions including NO_x and HONO led to a 7.5%
382 increase in $\text{max-1h} \cdot \text{OH}$ in China (Wang et al., 2023c). The discrepancy between our
383 findings and those of other studies regarding the impact of SNO_x on $\cdot \text{OH}$ levels could
384 be attributed to the abundance of ambient NH_3 in China during summer, where soil
385 emissions may lead to a significant increase in nitrate, and the increased aerosols can
386 affect the concentrations of $\cdot \text{OH}$ through photochemical reactions (Wang et al., 2011;
387 Xu et al., 2022). Additionally, after taking into account the SNO_x in the model, the
388 environment may shift to a relatively NO_x -saturated regime, thus the termination
389 reaction for O_3 production could be NO_2 and $\cdot \text{OH}$ to generate HNO_3 (Chen et al., 2022;
390 Wang et al., 2023b). We also stress the crucial role of SNO_x in influencing $\cdot \text{OH}$
391 concentrations and highlight the varying impacts across different regions. For
392 secondary pollutants, substantial O_3 enhancement is found in Henan and Hubei
393 provinces, while the increase in nitrate is consistent with the spatial pattern of surface
394 NO_2 from soil emissions. Specifically, soil Nr emissions increase the monthly average
395 MDA8 O_3 and nitrate concentrations by 18.2% and 31.8%, respectively, across the
396 study domain, with the increase of 16.9% and 42.4% in the BTH region and 17.2% and
397 42.7% in the FWP region. Moreover, SNO_x have a stronger effect on O_3 and nitrate in
398 North China in July than those of SHONO.

399 The ratio of surface H_2O_2 to HNO_3 concentrations (hereafter $\text{H}_2\text{O}_2/\text{HNO}_3$) was
400 used as an indicator of the O_3 formation regime to study the changes in sensitivity of
401 summer O_3 to its precursors after considering the soil Nr emissions. The threshold of
402 $\text{H}_2\text{O}_2/\text{HNO}_3$ for determining O_3 formation regime varies regionally (Sillman, 1995),

403 thus in this study, we identify the regions with $\text{H}_2\text{O}_2/\text{HNO}_3$ values greater than 0.65 as
404 NO_x -sensitive regime, $\text{H}_2\text{O}_2/\text{HNO}_3$ values lower than 0.35 as VOCs-sensitive regime,
405 and $\text{H}_2\text{O}_2/\text{HNO}_3$ values between 0.35 and 0.65 as VOCs- NO_x mixed sensitive regime
406 (Shen et al., 2023). Figure 6 illustrates that the majority of BTH region has $\text{H}_2\text{O}_2/\text{HNO}_3$
407 values lower than 0.35 in Base simulation, indicating a VOCs-sensitive regime or NO_x -
408 saturated regime in July. In contrast, the distribution of sensitivity of O_3 to precursor
409 emission in FWP regions is more complex with a mix of three O_3 formation regimes.
410 The spatial patterns of O_3 formation regimes presented in this study are consistent with
411 the previous studies based on satellite observations and model simulations during
412 summer seasons, despite using a different method (Wang et al., 2019; Wang et al.,
413 2023b). This agreement across multiple approaches strengthens the confidence in the
414 spatial patterns of O_3 formation regimes in the key regions of China. However, when
415 soil nitrogen emissions are excluded, the $\text{H}_2\text{O}_2/\text{HNO}_3$ values mostly increase within 40%
416 and the O_3 formation regime shifts to VOCs- NO_x mixed sensitive regime and NO_x -
417 sensitive regime in both BTH and FWP regions. Although soil Nr emissions are lower
418 than anthropogenic emissions, they still could affect the sensitivity of O_3 to its
419 precursors and thus have an impact on the effectiveness of emission reduction policies.
420 Therefore, soil emissions must be considered in formating policies for the prevention
421 and management of O_3 pollution.

422 **3.3 Implication on O_3 mitigation strategies and temperature rise**

423 Due to the influence of soil Nr emissions, the sensitivity of O_3 pollution to its
424 precursors varies spatially, depending on the local levels of anthropogenic emissions. It

425 is thus important to quantify the role of soil Nr emissions in O₃ pollution regulation for
426 improving the effectiveness of air control measures. We conduct a series of sensitivity
427 experiments with anthropogenic NO_x emissions reduced by 20%, 40%, 60%, 80% and
428 100%, respectively, relative to the Base simulation (Table 1), and analyze the difference
429 in the response of surface O₃ concentrations to the anthropogenic NO_x emissions
430 reductions in the presence and absence of soil Nr emissions. Figure 7 shows that with
431 the reduction of anthropogenic NO_x emissions, MDA8 O₃ concentrations show an
432 accelerated decreasing trend, suggesting increasing efficiency of anthropogenic NO_x
433 control measures. And MDA8 O₃ response to anthropogenic NO_x emissions in the BTH
434 region is more curved (nonlinear) than that in the FWP region, which is consistent with
435 the fact that the BTH tends to have more NO_x-saturated regime (Figure 6).

436 It is noted that the reduction of anthropogenic NO_x emissions in the presence of
437 soil Nr emissions leads to a slower decrease in MDA8 O₃ compared to when soil Nr
438 emissions are excluded. We further analyze the details of the domain-averaged MDA8
439 O₃ changes under different anthropogenic reduction scenarios for the two key regions.
440 Specifically, in the BTH region, MDA8 O₃ decrease by 1.3% (1.8 $\mu\text{g m}^{-3}$), 6.3% (8.7
441 $\mu\text{g m}^{-3}$), and 17.4% (24.0 $\mu\text{g m}^{-3}$) with anthropogenic NO_x emission reductions by 20%,
442 60%, and 100%, respectively, in the present of soil Nr emissions. Comparatively, in the
443 absence of soil Nr emissions, the reductions in MDA8 O₃ are more pronounced and
444 decrease by 2.3% (2.7 $\mu\text{g m}^{-3}$), 10.7% (12.8 $\mu\text{g m}^{-3}$), and 42.3% (50.6 $\mu\text{g m}^{-3}$),
445 respectively. In the FWP region, with a 20% reduction in anthropogenic NO_x emissions,
446 MDA8 O₃ levels only exhibit a slight decrease of 1.7% (2.3 $\mu\text{g m}^{-3}$) in the presence of

447 soil Nr emissions, whereas a decrease of 2.3% ($2.6 \mu\text{g m}^{-3}$) is found in the absence of
448 soil Nr emissions. When anthropogenic NO_x emissions are removed entirely, MDA8
449 O_3 decreases by 13.6% ($17.7 \mu\text{g m}^{-3}$) in the presence of soil Nr emissions, and more
450 significant decreases are found in the absent of soil Nr emissions with a reduction of
451 27.4% ($34.0 \mu\text{g m}^{-3}$) (as shown in Figure 7b-c, e-f). We conclude that the existence of
452 soil Nr emissions could contribute to an additional part of O_3 production, amounting to
453 a range of 0-24.9% in the BTH and 0-13.8% in the FWP region in July, and these
454 suppressions could be enlarged over the rural areas where have more substantial soil Nr
455 emissions, i.e., 0-32.3% in cropland over the BTH and 0-15.0% in croplands over the
456 FWP region. These findings suggest that soil Nr emissions have the potential to
457 suppress the effectiveness of measures implemented to mitigate O_3 pollution, and this
458 effect becomes more significant as anthropogenic NO_x emissions decrease.

459 We also quantify the O_3 generated from soil Nr emission source (denoted as the
460 soil O_3) in July under the different anthropogenic NO_x emission reduction scenarios.
461 Overall, soil O_3 concentrations in croplands are higher than in non-croplands.
462 Regionally, in the BTH region, the soil O_3 concentrations are $19.8 \mu\text{g m}^{-3}$ under high
463 anthropogenic emissions level (referred to as the Base simulation), while the soil O_3
464 concentrations significantly increase to $46.4 \mu\text{g m}^{-3}$ when all anthropogenic NO_x
465 emissions are cut down (shown as red bar in Figure 7b). A similar trend is also found
466 in the FWP region, although soil Nr emissions are relatively lower than that in the BTH
467 region, the soil O_3 concentrations are $19.0 \mu\text{g m}^{-3}$ in the Base simulation, and do not
468 change significantly with the reduction of anthropogenic emissions, but increase to 31.9

469 $\mu\text{g m}^{-3}$ when anthropogenic NO_x emissions are excluded (shown as red bar in Figure
470 7c). The reduction in anthropogenic NO_x emissions results in a shift of the O_3 formation
471 regime towards a more NO_x -sensitive regime, leading to a higher contribution of O_3
472 from soil emission sources. We conclude that with stricter anthropogenic emission
473 reduction measures, the contributions of soil Nr emissions to O_3 production in both
474 absolute and relative value would increase and further hamper the effectiveness of
475 anthropogenic emission reductions. To effectively mitigate O_3 pollutions, it is necessary
476 to implement much stricter control measures for anthropogenic emissions including
477 coal burning and transportation due to the synergistic effects of SNO_x and SHONO.

478 Here we show that the substantial soil Nr emissions present an additional challenge
479 for O_3 pollution regulation in the North China. We further assess the impact of soil Nr
480 emissions on air temperature change under different anthropogenic emission reduction
481 scenarios. Under the background of climate change, future emission reduction scenarios
482 should focus on the co-control of multiple air pollutants and greenhouse gas reductions.
483 Therefore, we conduct multi-pollutant co-control reduction scenarios, taking into
484 account the SO_2 , NO_x , primary $\text{PM}_{2.5}$, VOCs, and CO emissions reduced by 20%, 40%,
485 60%, 80%, and 100%, respectively, to investigate the impact of soil Nr emissions on
486 air temperature change under different anthropogenic reduction scenarios (Table 1). By
487 comparing changes in air temperature at 2m (T2) with and without soil Nr emissions
488 under different reduction scenarios, Figure 8 shows that incorporating soil Nr emissions
489 results in a slower rate of T2 increase compared to scenarios without soil Nr emissions,
490 especially when multi-pollutant emissions are reduced to more than a half, and this

phenomenon is consistent across all study regions. In the FWP region, when anthropogenic emissions are eliminated, T₂ increases by 0.073 °C in the presence of soil Nr emissions, compared to 0.095 °C in the absence of soil Nr emissions. In the BTH region, which has relatively high anthropogenic emissions, reducing multi-pollutant emissions by the same proportion could result in relatively greater warming, and T₂ increases by 0.098 °C in the presence of soil Nr emissions, compared to 0.14 °C in the absence of soil Nr emissions when anthropogenic emissions are excluded. This is attributed to the effective radiative forcing (ERF) associated with the cooling effects of primary pollutants (e.g. SO₂, NO_x) and secondary inorganic aerosols (SIA), and positive ERF associated with the warming effects of CO and VOCs (high confidence) (Bellouin et al., 2020; Liao and Xie, 2021). Decreases in primary pollutants emissions and SIA concentrations could weaken the cooling effect and potentially accelerate warming to some extent, and the decrease in CO and VOCs emissions may still lead to a temperature rise in a short-term. However, the soil Nr emissions could contribute to a certain background concentration of aerosol, partially offsetting the temperature rise caused by declining anthropogenic emissions of primary pollutants and greenhouse gas (Figure S8). Therefore, although soil Nr emissions are relatively low compared to anthropogenic emissions, the combined effects of NO_x and HONO emissions from natural soil and agricultural land should be considered when assessing climate change and implementing strategies to mitigate O₃ pollution.

4. Conclusions

In this study, the updated soil Nr emission scheme was implemented in the UI-

513 WRF-Chem model and used to estimate the combined and individual impact of SNO_x
514 and SHONO on subsequent changes in air quality and air temperature rise in North
515 China, with a focus on two key regions (the BTH and FWP regions) because of high
516 levels of soil Nr and anthropogenic emissions. We show that the SNO_x fluxes are almost
517 twice as high as SHONO during July 2018, with higher soil emissions in areas with
518 extensive cropland. The contribution of soil Nr emissions in July to monthly average
519 NO_2 and HONO are 38.4% and 40.3% in the BTH, and 33.9% and 40.1% in the FWP
520 region, respectively, and the substantial soil Nr emissions lead to a considerable
521 increase in the monthly average MDA8 O_3 and nitrate concentrations, with the values
522 of 16.9% and 42.4% in the BTH region and 17.2% and 42.7% in the FWP region, which
523 both exceed the individual SNO_x or SHONO effect. The presence of soil Nr emissions,
524 acting as precursors of O_3 and SIA, has a suppressing effect on efforts to mitigate
525 summer O_3 pollution, particularly in the BTH region, and also leads to a slower increase
526 rate of T2 (0.098 °C) in July compared to scenarios without soil Nr emissions (0.14 °C)
527 when anthropogenic emissions are excluded. We note that the effect of soil Nr emissions
528 shows spatial heterogeneity under different anthropogenic emissions reduction
529 scenarios.

530 However, we admit that uncertainties exist in both soil Nr and anthropogenic
531 emissions, as well as the parameterization scheme of HONO sources. The agricultural
532 emissions of another important reactive nitrogen gas, NH_3 , may also be underestimated
533 due to uncertainties in agricultural fertilizer application and livestock waste in MEIC
534 inventory (Li et al., 2021a). These uncertainties could impact the aerosol formation and

535 local cooling effect. Also, the discrepancies between simulated and observed NO₂, O₃,
536 and other air pollutants in the model may affect the assessment of the role of soil Nr
537 emissions in O₃ mitigation strategies and their impact on climate change. Thus, more
538 direct measurements of soil Nr fluxes are crucial to better constrain soil emissions and
539 improve the parametrization in the model.

540 Our study highlights that despite soil Nr emissions being lower than anthropogenic
541 emissions, they still have a substantial impact on the effectiveness of O₃ pollution
542 mitigation measures, and this effect becomes more significant as anthropogenic
543 emissions decrease. Therefore, reactive nitrogen from soil emission sources must be
544 considered in formating measures for the prevention and management of O₃ pollution,
545 as well as addressing climate change.

546

547 **Code and data availability.** Some of the data repositories have been listed in Section 2.
548 The other data, model outputs and codes can be accessed by contacting Tong Sha via
549 tong-sha@sust.edu.cn.

550 **Author contributions.** TS performed the model simulation, data analysis and
551 manuscript writing. TS and JW proposed the idea. SY, QC and LL supervised this work
552 and revised the manuscript. XM, ZF and KB helped the revision of the manuscript. YZ
553 provided and analyzed the observation data.

554 **Competing interests.** The authors declare that they have no conflict of interest.

555 **Acknowledgements.** This study is supported by the National Natural Science
556 Foundation of China (grant nos. 42205107, 42130714). Jun Wang's participation is
557 made possible via the in-kind support from the University of Iowa.

558

559 **References**

- 560 Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison
561 of surface ozone simulation among selected regional models in MICS-Asia III –
562 effects of chemistry and vertical transport for the causes of difference, *Atmos.*
563 *Chem. Phys.*, 19, 603-615, 10.5194/acp-19-603-2019, 2019.
- 564 Almaraz, M., Bai, E., Wang, C., Trousdale, J., Conley, S., Faloona, I., and Houlton, B.
565 Z.: Agriculture is a major source of NO_x pollution in California, *Sci. Adv.*, 4(1),
566 eaao3477., 2018.
- 567 Bellouin, N., Quaas, J., Gryspenrdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher,
568 O., Carslaw, K. S., Christensen, M., and Daniau, A. L.: Bounding global aerosol
569 radiative forcing of climate change, *Rev. Geophys.*, 58, e2019RG000660, 2020.
- 570 Chen, K., Wang, P., Zhao, H., Wang, P., Gao, A., Myllyvirta, L., and Zhang, H.:
571 Summertime O₃ and related health risks in the north China plain: A modeling study
572 using two anthropogenic emission inventories, *Atmos. Environ.*, 246, 118087,

- 573 10.1016/j.atmosenv.2020.118087, 2021.
- 574 Chen, W., Guenther, A. B., Jia, S., Mao, J., Yan, F., Wang, X., and Shao, M.: Synergistic
575 effects of biogenic volatile organic compounds and soil nitric oxide emissions on
576 summertime ozone formation in China, *Sci. Total Environ.*, 828, 154218,
577 10.1016/j.scitotenv.2022.154218, 2022.
- 578 Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global
579 atmospheric chemistry calculated with an empirical parameterization in the
580 EMAC model, *Atmos. Chem. Phys.*, 12, 9977-10000, 10.5194/acp-12-9977-2012,
581 2012.
- 582 Feng, T., Zhao, S., Liu, L., Long, X., Gao, C., and Wu, N.: Nitrous acid emission from
583 soil bacteria and related environmental effect over the North China Plain,
584 *Chemosphere*, 287, 132034, 10.1016/j.chemosphere.2021.132034, 2022a.
- 585 Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V.,
586 Paoletti, E., Mukherjee, A., Agrawal, M., Park, R. J., Oak, Y. J., and Yue, X.: Ozone
587 pollution threatens the production of major staple crops in East Asia, *Nat. Food*, 3,
588 47-56, 10.1038/s43016-021-00422-6, 2022b.
- 589 Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue,
590 D., Zhou, Y., Zheng, J., and Han, R.: The significant contribution of HONO to
591 secondary pollutants during a severe winter pollution event in southern China,
592 *Atmos. Chem. Phys.*, 19, 1-14, 10.5194/acp-19-1-2019, 2019.
- 593 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C.
594 A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather,
595 R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim,
596 G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson,
597 S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
598 The Modern-Era Retrospective Analysis for Research and Applications, Version 2
599 (MERRA-2), *J. Clim.*, 30, 5419-5454, 10.1175/jcli-d-16-0758.1, 2017.
- 600 Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection
601 combining ensemble and data assimilation techniques, *Geophys. Res. Lett.*, 29,
602 10.1029/2002gl015311, 2002.

- 603 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
604 and Eder, B.: Fully coupled “online” chemistry within the WRF model, *Atmos.*
605 *Environ.*, 39, 6957-6975, 10.1016/j.atmosenv.2005.04.027, 2005.
- 606 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.
607 K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
608 version 2.1 (MEGAN2.1): an extended and updated framework for modeling
609 biogenic emissions, *Geosci. Model Dev.*, 5, 1471-1492, 10.5194/gmd-5-1471-
610 2012, 2012.
- 611 Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit
612 treatment of entrainment processes, *Mon. Weather Rev.*, 134 (9), 2318,
613 10.1175/MWR3199.1, 2006.
- 614 Huang, L., Fang, J., Liao, J., Yarwood, G., Chen, H., Wang, Y., and Li, L.: Insights into
615 soil NO emissions and the contribution to surface ozone formation in China,
616 *Atmos. Chem. Phys.*, 23, 14919-14932, 10.5194/acp-23-14919-2023, 2023.
- 617 Huang, Y., Hickman, J. E., and Wu, S.: Impacts of enhanced fertilizer applications on
618 tropospheric ozone and crop damage over sub-Saharan Africa, *Atmos. Environ.*,
619 180, 117-125, 10.1016/j.atmosenv.2018.02.040, 2018.
- 620 Huber, D. E., Steiner, A. L., and Kort, E. A.: Sensitivity of Modeled Soil NO_x Emissions
621 to Soil Moisture, *J. Geophys. Res.: Atmos.*, 128, 10.1029/2022jd037611, 2023.
- 622 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and
623 Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations
624 with the AER radiative transfer models, *J. Geophys. Res.: Atmos.*, 113,
625 10.1029/2008jd009944, 2008.
- 626 Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H.: Improved
627 gridded ammonia emission inventory in China, *Atmos. Chem. Phys.*, 21, 15883-
628 15900, 10.5194/acp-21-15883-2021, 2021a.
- 629 Li, C., Wang, J., Zhang, H., Diner, D. J., Hasheminassab, S., and Janechek, N.:
630 Improvement of Surface PM_{2.5} Diurnal Variation Simulations in East Africa for
631 the MAIA Satellite Mission, *ACS ES&T Air*, 10.1021/acsestair.3c00008, 2024.
- 632 Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.:
29

- 633 Impacts of HONO sources on the photochemistry in Mexico City during the
634 MCMA-2006/MILAGO Campaign, *Atmos. Chem. Phys.*, 10, 6551-6567,
635 10.5194/acp-10-6551-2010, 2010.
- 636 Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface
637 ozone pollution in China from 2013 to 2019: anthropogenic and meteorological
638 influences, *Atmos. Chem. Phys.*, 20, 11423-11433, 10.5194/acp-20-11423-2020,
639 2020.
- 640 Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and
641 Zhai, S.: A two-pollutant strategy for improving ozone and particulate air quality
642 in China, *Nat. Geosci.*, 12, 906-910, 10.1038/s41561-019-0464-x, 2019.
- 643 Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P.,
644 Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk,
645 S. K.: Ozone pollution in the North China Plain spreading into the late-winter haze
646 season, *Proc. Natl. Acad. Sci. U.S.A.*, 118, 10.1073/pnas.2015797118, 2021b.
- 647 Liao, H. and Xie, P.: The roles of short-lived climate forcers in a changing climate, *Adv.*
648 *Clim. Change Res.*, 17, 685, 2021.
- 649 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,
650 Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen
651 deposition over China, *Nature*, 494, 459-462, 10.1038/nature11917, 2013.
- 652 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 –
653 Part 1: The complex and varying roles of meteorology, *Atmos. Chem. Phys.*, 20,
654 6305-6321, 10.5194/acp-20-6305-2020, 2020a.
- 655 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 –
656 Part 2: The effects of emission changes and implications for multi-pollutant
657 control, *Atmos. Chem. Phys.*, 20, 6323-6337, 10.5194/acp-20-6323-2020, 2020b.
- 658 Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture
659 production in the past half century: shifted hot spots and nutrient imbalance, *Earth*
660 *Syst. Sci. Data*, 9, 181-192, 10.5194/essd-9-181-2017, 2017.
- 661 Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Liu, Y., Lin, J., Fu, T.-M., and
662 Zhang, Q.: Exploring 2016–2017 surface ozone pollution over China: source

- 663 contributions and meteorological influences, *Atmos. Chem. Phys.*, 19, 8339-8361,
664 10.5194/acp-19-8339-2019, 2019.
- 665 Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B.,
666 Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.: The
667 underappreciated role of agricultural soil nitrogen oxide emissions in ozone
668 pollution regulation in North China, *Nat. Commun.*, 12, 10.1038/s41467-021-
669 25147-9, 2021.
- 670 Morrison, H., Thompson, G., and Tatarki, V.: Impact of Cloud Microphysics on the
671 Development of Trailing Stratiform Precipitation in a Simulated Squall Line:
672 Comparison of One- and Two-Moment Schemes, *Mon. Weather Rev.*, 137, 991-
673 1007, 10.1175/2008mwr2556.1, 2009.
- 674 Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C.,
675 Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A., Sörgel,
676 M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.:
677 HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive
678 Nitrogen, *Science*, 341, 1233-1235, 10.1126/science.1242266, 2013.
- 679 Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., and Liu,
680 L.: Climate change impacts of US reactive nitrogen, *Proc. Natl. Acad. Sci. U.S.A.*,
681 109, 7671-7675, 10.1073/pnas.1114243109, 2012.
- 682 Reay, D. S., Dentener, F., Smith, P., Grace, J., and Feely, R. A.: Global nitrogen
683 deposition and carbon sinks., *Nat. Geosci.*, 1(7), 430-437, 10.1038/ngeo230, 2008.
- 684 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J.,
685 Arsenault, K., Cosgrove, B., Radakovich, J., Bosolovich, M., Entin, J. K., Walker,
686 J. P., Lohmann, D., and Toll, D.: The global land data assimilation system, *Bull.*
687 *Am. Meteorol. Soc.*, 85, 381-394, 10.1175/BAMS-85-3-381, 2004.
- 688 Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A.,
689 Miller, D. O., Brune, W. H., Koss, A. R., de Gouw, J. A., Misztal, P. K., Goldstein,
690 A. H., and Cohen, R. C.: Effects of temperature-dependent NO_x emissions on
691 continental ozone production, *Atmos. Chem. Phys.*, 18, 2601-2614, 10.5194/acp-
692 18-2601-2018, 2018.

- 693 Sha, T., Ma, X., Zhang, H., Janecek, N., Wang, Y., Wang, Y., Castro García, L.,
694 Jenerette, G. D., and Wang, J.: Impacts of Soil NO_x Emission on O₃ Air Quality in
695 Rural California, *Environ. Sci. Technol.*, 55, 7113-7122, 10.1021/acs.est.0c06834,
696 2021.
- 697 Shen, Y., Xiao, Z., Wang, Y., Xiao, W., Yao, L., and Zhou, C.: Impacts of Agricultural
698 Soil NO_x Emissions on O₃ Over Mainland China, *J. Geophys. Res.: Atmos.*, 128,
699 10.1029/2022jd037986, 2023.
- 700 Sillman, S.: The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon
701 sensitivity in urban locations, *J. Geophys. Res.*, 100(D7), 14175–14188.,
702 10.1029/94JD02953, 1995.
- 703 Skiba, U., Medinets, S., Cardenas, L. M., Carnell, E. J., Hutchings, N., and Amon, B.:
704 Assessing the contribution of soil NO_x emissions to European atmospheric
705 pollution, *Environ. Res. Lett.*, 10.1088/1748-9326/abd2f2, 2020.
- 706 Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q.,
707 and Wang, W.: Impacts of meteorology and emissions on summertime surface
708 ozone increases over central eastern China between 2003 and 2015, *Atmos. Chem.*
709 *Phys.*, 19, 1455-1469, 10.5194/acp-19-1455-2019, 2019.
- 710 Tan, W., Wang, H., Su, J., Sun, R., He, C., Lu, X., Lin, J., Xue, C., Wang, H., Liu, Y.,
711 Liu, L., Zhang, L., Wu, D., Mu, Y., and Fan, S.: Soil Emissions of Reactive
712 Nitrogen Accelerate Summertime Surface Ozone Increases in the North China
713 Plain, *Environ. Sci. Technol.*, 57, 12782-12793, 10.1021/acs.est.3c01823, 2023.
- 714 Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M.,
715 Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the
716 unified NOAH land surface model in the WRF model, 20th Conference on
717 Weather Analysis and Forecasting/16th Conference on Numerical Weather
718 Prediction, 11–15., 2004.
- 719 Travis, K. R. and Jacob, D. J.: Systematic bias in evaluating chemical transport models
720 with maximum daily 8 h average (MDA8) surface ozone for air quality
721 applications: a case study with GEOS-Chem v9.02, *Geosci. Model Dev.*, 12, 3641-
722 3648, 10.5194/gmd-12-3641-2019, 2019.

- 723 Turner, M. C., Jerrett, M., Pope, C. A., Krewski, D., Gapstur, S. M., Diver, W. R.,
724 Beckerman, B. S., Marshall, J. D., Su, J., Crouse, D. L., and Burnett, R. T.: Long-
725 Term Ozone Exposure and Mortality in a Large Prospective Study, *Am. J. Resp.*
726 *Crit. Care.*, 193, 1134-1142, 10.1164/rccm.201508-1633OC, 2016.
- 727 Unger, N., Zheng, Y., Yue, X., and Harper, K. L.: Mitigation of ozone damage to the
728 world's land ecosystems by source sector, *Nat. Clim. Change*, 10, 134-137,
729 10.1038/s41558-019-0678-3, 2020.
- 730 van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and
731 Veefkind, J. P.: S5P TROPOMI NO₂ slant column retrieval: method, stability,
732 uncertainties and comparisons with OMI, *Atmos. Meas. Tech.*, 13, 1315-1335,
733 10.5194/amt-13-1315-2020, 2020.
- 734 van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., and Veefkind, J. P.: TROPOMI
735 ATBD of the total and tropospheric NO₂ data products, Report S5P-KNMI-L2-
736 0005-RP, version 2.2.0, 2021-06-16, KNMI, De Bilt, The Netherlands,
737 <http://www.tropomi.eu/data-products/nitrogen-dioxide/> (last access: 7 March
738 2022), 2021.
- 739 Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M., and Martin, R. V.:
740 Worldwide biogenic soil NO_x emissions inferred from OMI NO₂ observations,
741 *Atmos. Chem. Phys.*, 14, 10363-10381, 10.5194/acp-14-10363-2014, 2014.
- 742 Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O₃
743 pollution due to NO_x emission control in eastern China, *Sci. Total Environ.*, 677,
744 732-744, 10.1016/j.scitotenv.2019.04.388, 2019.
- 745 Wang, Q. g., Han, Z., Wang, T., and Zhang, R.: Impacts of biogenic emissions of VOC
746 and NO_x on tropospheric ozone during summertime in eastern China, *Sci. Total*
747 *Environ.*, 395, 41-49, 10.1016/j.scitotenv.2008.01.059, 2008.
- 748 Wang, R., Bei, N., Wu, J., Li, X., Liu, S., Yu, J., Jiang, Q., Tie, X., and Li, G.: Cropland
749 nitrogen dioxide emissions and effects on the ozone pollution in the North China
750 plain, *Environ. Pollut.*, 294, 118617, 10.1016/j.envpol.2021.118617, 2022a.
- 751 Wang, R., Bei, N., Pan, Y., Wu, J., Liu, S., Li, X., Yu, J., Jiang, Q., Tie, X., and Li, G.:
752 Urgency of controlling agricultural nitrogen sources to alleviate summertime air

- 753 pollution in the North China Plain, *Chemosphere*, 311, 137124,
754 10.1016/j.chemosphere.2022.137124, 2023a.
- 755 Wang, S., Xing, J., Jang, C., Zhu, Y., Fu, J. S., and Hao, J.: Impact Assessment of
756 Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface
757 Modeling Technique, *Environ. Sci. Technol.*, 45, 9293-9300, 10.1021/es2022347,
758 2011.
- 759 Wang, W., Parrish, D. D., Wang, S., Bao, F., Ni, R., Li, X., Yang, S., Wang, H., Cheng,
760 Y., and Su, H.: Long-term trend of ozone pollution in China during 2014–2020:
761 distinct seasonal and spatial characteristics and ozone sensitivity, *Atmos. Chem.
762 Phys.*, 22, 8935-8949, 10.5194/acp-22-8935-2022, 2022b.
- 763 Wang, W., Li, X., Cheng, Y., Parrish, D. D., Ni, R., Tan, Z., Liu, Y., Lu, S., Wu, Y., Chen,
764 S., Lu, K., Hu, M., Zeng, L., Shao, M., Huang, C., Tian, X., Leung, K. M., Chen,
765 L., Fan, M., Zhang, Q., Rohrer, F., Wahner, A., Pöschl, U., Su, H., and Zhang, Y.:
766 Ozone pollution mitigation strategy informed by long-term trends of atmospheric
767 oxidation capacity, *Nat. Geosci.*, 17, 20-25, 10.1038/s41561-023-01334-9, 2023b.
- 768 Wang, Y., Ge, C., Castro Garcia, L., Jenerette, G. D., Oikawa, P. Y., and Wang, J.:
769 Improved modelling of soil NO_x emissions in a high temperature agricultural
770 region: role of background emissions on NO₂ trend over the US, *Environ. Res.
771 Lett.*, 16, 084061, 10.1088/1748-9326/ac16a3, 2021a.
- 772 Wang, Y., Fu, X., Wang, T., Ma, J., Gao, H., Wang, X., and Pu, W.: Large Contribution
773 of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air
774 Quality, *Environ. Sci. Technol.*, 57, 3516-3526, 10.1021/acs.est.2c07793, 2023c.
- 775 Wang, Y., Fu, X., Wu, D., Wang, M., Lu, K., Mu, Y., Liu, Z., Zhang, Y., and Wang, T.:
776 Agricultural Fertilization Aggravates Air Pollution by Stimulating Soil Nitrous
777 Acid Emissions at High Soil Moisture, *Environ. Sci. Technol.*, 55, 14556-14566,
778 10.1021/acs.est.1c04134, 2021b.
- 779 Wang, Y., Wang, J., Zhang, H., Janechek, N., Wang, Y., Zhou, M., Shen, P., Tan, J., He,
780 Q., Cheng, T., and Huang, C.: Impact of land use change on the urban-rural
781 temperature disparity in Eastern China, *Atmos. Environ.*, 308, 119850,
782 10.1016/j.atmosenv.2023.119850, 2023d.

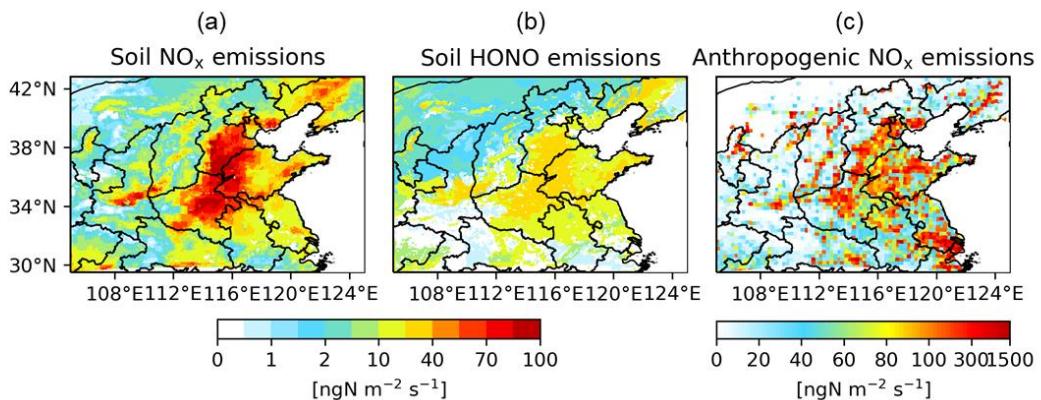
- 783 Weber B, W. D., Tamm A, et al. : Biological soil crusts accelerate the nitrogen cycle
784 through large NO and HONO emissions in drylands, Proc. Natl. Acad. Sci. U.S.A.,
785 112(50): 15384-15389., 2015.
- 786 Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue,
787 W., and Cribb, M.: Full-coverage mapping and spatiotemporal variations of
788 ground-level ozone (O_3) pollution from 2013 to 2020 across China, Remote Sens.
789 Environ., 270, 112775, 10.1016/j.rse.2021.112775, 2022.
- 790 Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C.,
791 Liang, L., Zhang, G., Lin, W., and Xu, X.: NH_3 -promoted hydrolysis of NO_2
792 induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557-10570,
793 10.5194/acp-19-10557-2019, 2019.
- 794 Xu, W., Zhao, Y., Wen, Z., Chang, Y., Pan, Y., Sun, Y., Ma, X., Sha, Z., Li, Z., Kang, J.,
795 Liu, L., Tang, A., Wang, K., Zhang, Y., Guo, Y., Zhang, L., Sheng, L., Zhang, X.,
796 Gu, B., Song, Y., Van Damme, M., Clarisse, L., Coheur, P.-F., Collett, J. L.,
797 Goulding, K., Zhang, F., He, K., and Liu, X.: Increasing importance of ammonia
798 emission abatement in $PM_{2.5}$ pollution control, Sci. Bull., 67, 1745-1749,
799 10.1016/j.scib.2022.07.021, 2022.
- 800 Yan, X., Ohara, T., and Akimoto, H.: Statistical modeling of global soil NO_x emissions,
801 Global Biogeochem. Cycles, 19, 10.1029/2004gb002276, 2005.
- 802 Yang, J. and Zhao, Y.: Performance and application of air quality models on ozone
803 simulation in China – A review, Atmos. Environ., 293, 119446,
804 10.1016/j.atmosenv.2022.119446, 2023.
- 805 Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and Nitrate on
806 Natural and Artificial Surfaces, Environ. Sci. Technol., 50, 3530-3536,
807 10.1021/acs.est.5b05032, 2016.
- 808 Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate as a Source
809 of HONO and NO_x , Environ. Sci. Technol., 51, 6849-6856,
810 10.1021/acs.est.7b00387, 2017.
- 811 Ye, X., Wang, X., and Zhang, L.: Diagnosing the Model Bias in Simulating Daily
812 Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry

- 813 Deposition and Cloud Optical Depth, Environ. Sci. Technol., 56, 16665-16675,
814 10.1021/acs.est.2c05712, 2022.
- 815 Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.:
816 Ozone and haze pollution weakens net primary productivity in China, Atmos.
817 Chem. Phys., 17, 6073-6089, 10.5194/acp-17-6073-2017, 2017.
- 818 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for
819 large-scale applications, J. Geophys. Res.: Atmos., 104, 30387-30415,
820 10.1029/1999jd900876, 1999.
- 821 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol
822 Interactions and Chemistry (MOSAIC), J. Geophys. Res.: Atmos., 113,
823 10.1029/2007jd008782, 2008.
- 824 Zhan, Y., Xie, M., Gao, D., Wang, T., Zhang, M., and An, F.: Characterization and
825 source analysis of water-soluble inorganic ionic species in PM_{2.5} during a
826 wintertime particle pollution episode in Nanjing, China, Atmos. Res., 262, 105769,
827 10.1016/j.atmosres.2021.105769, 2021.
- 828 Zhang, J., Ran, H., Guo, Y., Xue, C., Liu, X., Qu, Y., Sun, Y., Zhang, Q., Mu, Y., Chen,
829 Y., Wang, J., and An, J.: High crop yield losses induced by potential HONO
830 sources — A modelling study in the North China Plain, Sci. Total Environ., 803,
831 149929, 10.1016/j.scitotenv.2021.149929, 2022a.
- 832 Zhang, J., Lian, C., Wang, W., Ge, M., Guo, Y., Ran, H., Zhang, Y., Zheng, F., Fan, X.,
833 Yan, C., Daellenbach, K. R., Liu, Y., Kulmala, M., and An, J.: Amplified role of
834 potential HONO sources in O₃ formation in North China Plain during autumn haze
835 aggravating processes, Atmos. Chem. Phys., 22, 3275-3302, 10.5194/acp-22-
836 3275-2022, 2022b.
- 837 Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z., and Lv, M.: Potential sources of
838 nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a
839 polluted subtropical region, J. Geophys. Res.: Atmos., 121, 3645-3662,
840 10.1002/2015jd024468, 2016.
- 841 Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu,
842 Y., Duan, F., Ma, T., and He, H.: Improving the representation of HONO chemistry

843 in CMAQ and examining its impact on haze over China, *Atmos. Chem. Phys.*, 21,
844 15809-15826, 10.5194/acp-21-15809-2021, 2021.

845 Zhang, W., Tong, S., Jia, C., Wang, L., Liu, B., Tang, G., Ji, D., Hu, B., Liu, Z., Li, W.,
846 Wang, Z., Liu, Y., Wang, Y., and Ge, M.: Different HONO Sources for Three
847 Layers at the Urban Area of Beijing, *Environ. Sci. Technol.*, 54, 12870-12880,
848 10.1021/acs.est.0c02146, 2020.

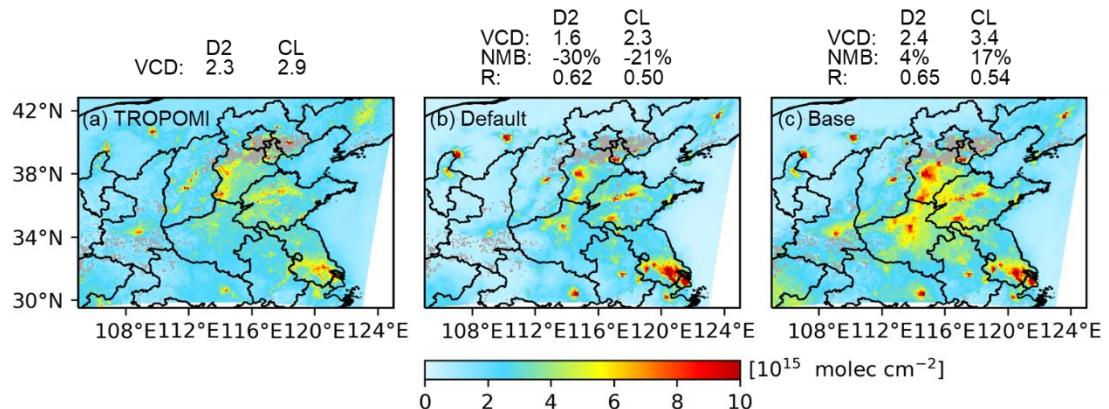
849


850 **Table 1.** Description of model simulation experiments.

Simulation	Soil emissions		Anthropogenic emissions		
	Soil NO _x	Soil HONO	NO _x	VOCs	Others
Default	1(MEGAN)	0	1	1	1
Base	1(BDISNP)	1	1	1	1
NoSoilNr	0	0	1	1	1
NoSHONO	1	0	1	1	1
NoSNO_x	0	1	1	1	1
Base_redANO_x	1	1	0.8/0.6/0.4/0.2/0 ^a	1	1
NoSoil_redANO_x	0	0	0.8/0.6/0.4/0.2/0 ^b	1	1
Base_redAnt	1	1	0.8/0.6/0.4/0.2/0 ^c	0.8/0.6/0.4/0.2/0 ^d	0.8/0.6/0.4/0.2/0 ^e
NoSoil_redAnt	0	0	0.8/0.6/0.4/0.2/0 ^f	0.8/0.6/0.4/0.2/0 ^g	0.8/0.6/0.4/0.2/0 ^h

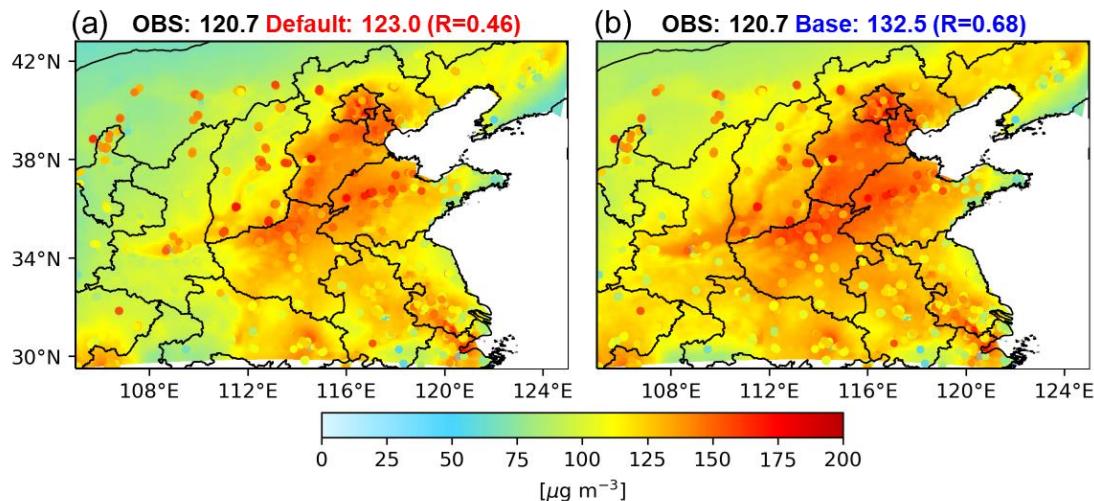
851 ^{a-h} The values represent the reduction ratios applied to the anthropogenic emissions in the sensitivity

852 simulations compared to the Base.

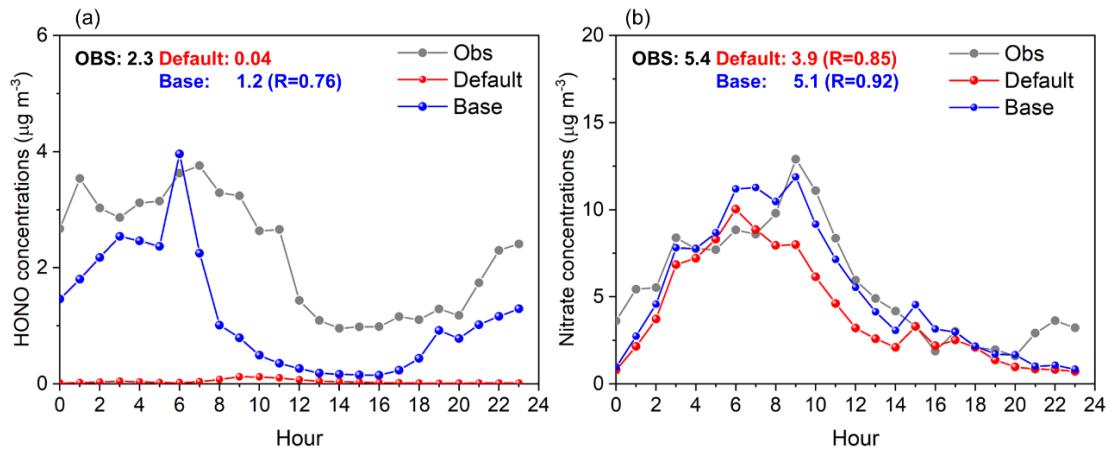

853

854

855 **Figure 1.** Distribution of the simulated monthly mean (a) soil NO_x emissions, (b) soil
856 HONO emissions, and (c) anthropogenic NO_x emissions in North China in July 2018.


857

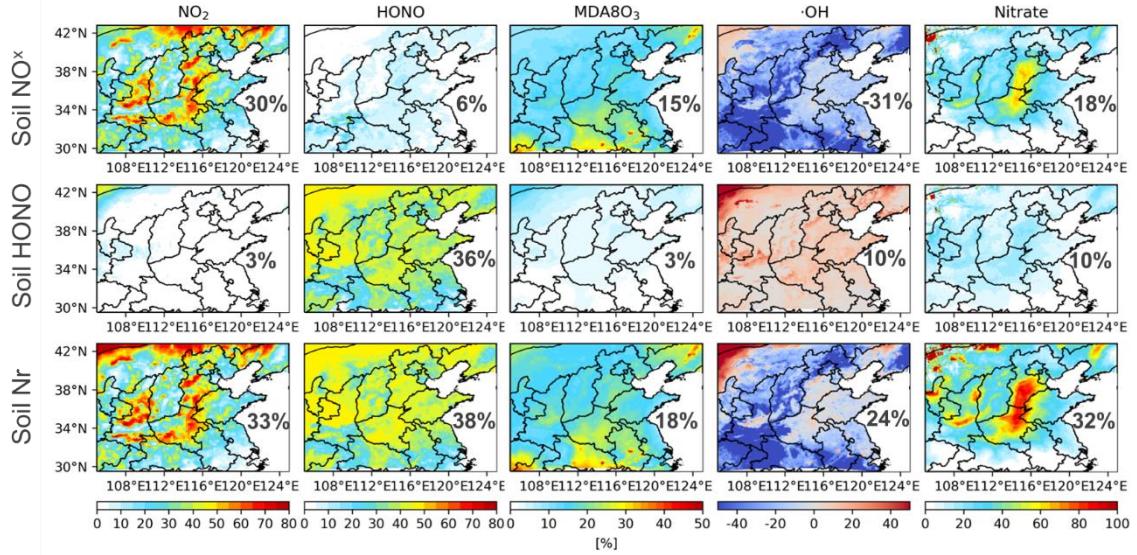
858


859 **Figure 2.** (a) Monthly mean tropospheric NO₂ VCD retrieved by TROPOMI measured
 860 at 12:00–14:00 LT and simulated by (b) Default and (c) Base averaged over the same
 861 periods in July 2018 in North China.

862

863

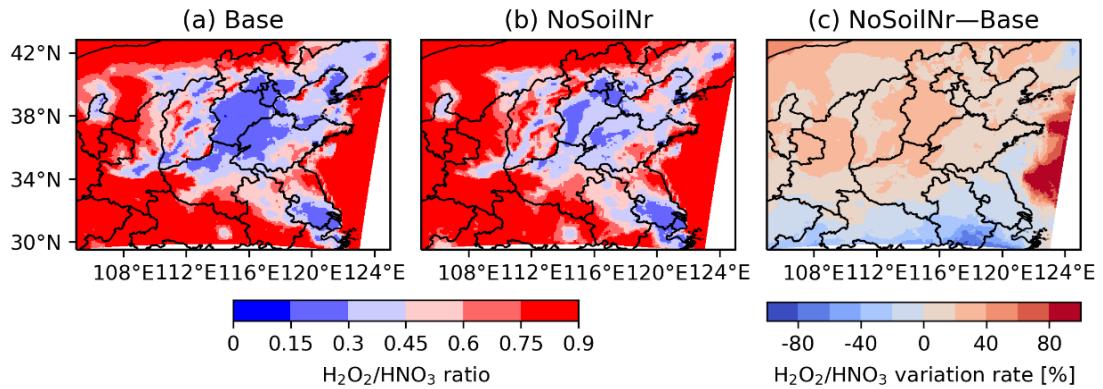
864 **Figure 3.** Distribution of observed (dots) and simulated (shaded) surface MDA8 O₃
 865 from (a) Default and (b) Base in North China in July 2018. Statistics in the upper corner
 866 of panels are the monthly mean MDA8 O₃ concentrations averaged over the study
 867 region and the spatial correlation coefficient R between observations and simulations.
 868



869

870 **Figure 4.** Diurnal variation of observed (in grey) and simulated (Default in red and
 871 Base in blue) surface (a) HONO and (b) nitrate concentrations at a rural station in
 872 Nanjing in July 2018, with the mean value and temporal correlation coefficients (R)
 873 shown in the upper right corner.

874

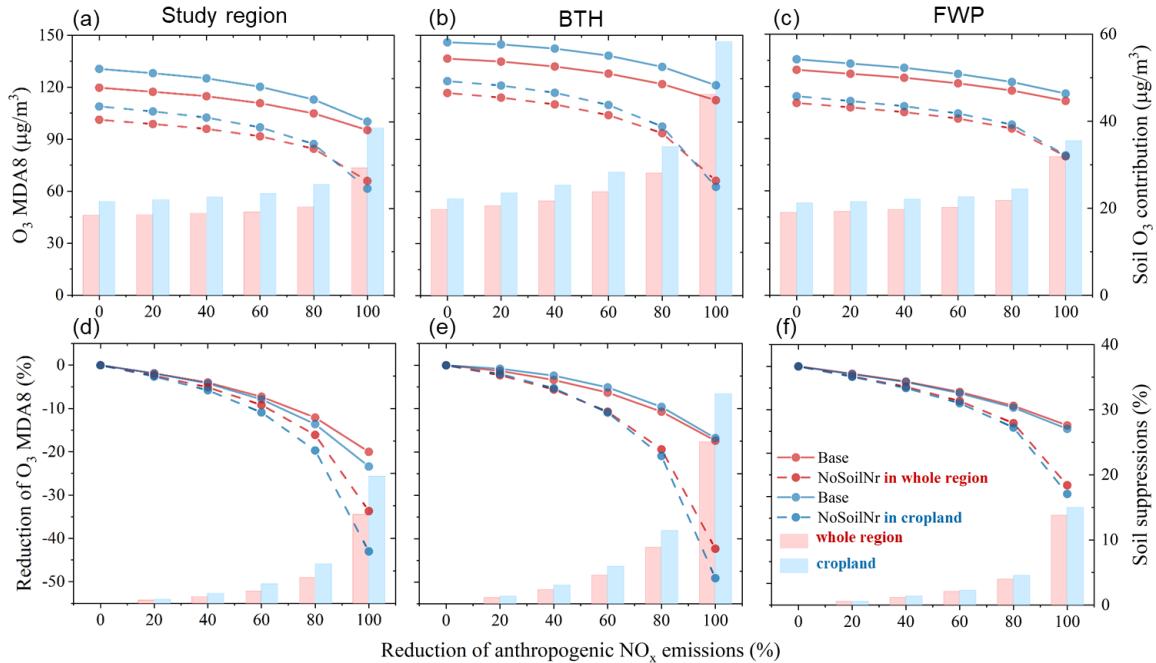

875

876

877 **Figure 5.** Simulated effects of soil Nr emissions on air quality in North China in July
 878 2018. The first and second rows show the contributions of soil NO_x and soil HONO
 879 emissions on monthly average concentrations of NO_2 , HONO , MDA8O_3 , max-1h $\cdot\text{OH}$,
 880 and nitrate, respectively. The third row shows the combined effect of soil Nr emissions
 881 on the species listed above. Statistics in the right corner of each panel are the mean
 882 values averaged over the study region.

883

884


885 **Figure 6.** Distribution of the O₃ formation regimes (represented as H₂O₂/HNO₃ ratios)

886 in North China in July 2018 for (a) Base simulation with the addition of soil Nr

887 emissions and (b) NoSoilNr simulation without the addition of soil Nr emissions. (c)

888 Changes in the distribution of O₃ formation regimes due to the soil Nr emissions

889

890

891 **Figure 7.** Role of soil Nr emissions in O₃ pollution regulation in North China in July
892 2018. The responses of MDA8 O₃ concentrations to the reductions of anthropogenic
893 NO_x emissions (20%, 40%, 60%, 80% and 100%) relative to July 2018 levels, in the
894 presence (solid line) and absence (dotted line) of soil Nr emissions in the study region,
895 BTH and FWP region. (The lines in panels a-c and d-f are MDA8 O₃ concentrations
896 and the relative reductions in MDA8 O₃ under different anthropogenic NO_x emission
897 reductions, respectively. The red bars (right y-axis) in panels a-c show the
898 corresponding O₃ contribution from soil Nr emissions, which is determined as the
899 difference between the solid and dotted lines, and the blue bars are the same as the red
900 bars but for statistics in cropland. The red bars (right y-axis) in panels d-f show the
901 suppression of O₃ pollution mitigated due to the existence of soil Nr emissions, which
902 are determined as the difference between the solid and dotted lines, and the blue bars
903 are the same as the red bars but for statistics in cropland.)

904

905 **Figure 8.** The responses of air temperature at 2m (T2) to the reductions of
 906 anthropogenic emissions (taking into account the SO_2 , NO_x , primary $\text{PM}_{2.5}$, VOCs,
 907 and CO reduced by 20%, 40%, 60%, 80%, and 100%) relative to July 2018 levels in
 908 the presence (solid line) and absence (dotted line) of soil Nr emissions (a) in the study
 909 region, (b) BTH and FWP region.

910